1
|
Liu Y, Chen D, Zhao L, Zhang H, Wu S, Chen X, Shen E, Li L, Yang Z, Wang Y, Yin F, Zhang Y, Shi Y, Zhou S, Li S, Du X, Guo J, Wang D, Wang H, Liu S, Jin G, Zhang H, Yu X, Chen X, Shang L, Liu Y, Liu Y. Stability study of recombinant 9-valent human papillomavirus vaccine based on Escherichia coli expression system. Hum Vaccin Immunother 2025; 21:2455807. [PMID: 39973250 PMCID: PMC11845052 DOI: 10.1080/21645515.2025.2455807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
This study reports on the long-term stability of a recombinant 9-valent HPV vaccine, addressing a gap in the literature as previous research did not extend beyond 72 months. The vaccine targets HPV types 6, 11, 16, 18, 31, 33, 45, 52, and 58 and was produced using an E. coli expression system. We optimized soluble HPV L1 protein expression by truncating the N- and C-termini, resulting in HPV L1 virus-like particles (VLPs). Structural analysis confirmed the VLPs' resemblance to natural ones, suitable for vaccine production. Stability testing encompassed appearance, dosage, pH, osmolarity, aluminum content, polysorbate 80, in vitro relative potency, abnormal toxicity, in vivo potency, sterility, and endotoxin levels. The vaccine showed stability under extreme conditions of light (4500 lx) and shaking table vibration (10-30 rpm) for at least 7 days at 5 ± 3°C. Long-term storage at 5 ± 3°C maintained stability for up to 72 months, while accelerated testing at 25 ± 2°C showed stability for at least 12 months. The findings suggest that the vaccine's potency is best preserved under protection from high temperatures and direct light, with even harsh conditions not significantly compromising stability. This enhances the global distribution potential of the HPV vaccine.
Collapse
Affiliation(s)
- Yuying Liu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Dan Chen
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Li Zhao
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Haijiang Zhang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Shuming Wu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Xiao Chen
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Ercui Shen
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Ling Li
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Zengmin Yang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yan Wang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Fei Yin
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yao Zhang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yazheng Shi
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Shuyi Zhou
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Shuang Li
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Xiaoli Du
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Jiaping Guo
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Di Wang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Huan Wang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Shujuan Liu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Guiying Jin
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Hongcai Zhang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Xinyu Yu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Xuejiao Chen
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Lulu Shang
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yang Liu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| | - Yongjiang Liu
- R&D Center, Beijing Health Guard Biotechnology Inc., BDA, Beijing, China
| |
Collapse
|
2
|
Kim KR, Lee AS, Heo HR, Park SY, Kim CS. Bioinspired synthesis of virus-like particle-templated thin silica-layered nanocages with enhanced biocompatibility and cellular uptake as drug delivery carriers. Colloids Surf B Biointerfaces 2025; 247:114418. [PMID: 39642678 DOI: 10.1016/j.colsurfb.2024.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
The bioinspired synthesis of virus-like silica nanoparticles in biomedical applications makes it possible to utilize the cellular delivery capabilities of viruses while minimizing the cytotoxicity of inorganic silica. In this study, we developed a diatom-inspired method for synthesizing silica-layered nanocages utilizing R5 peptide-functionalized virus-like particles (VLPs). R5 peptides were genetically inserted into the F-G loop of human papillomavirus 16 L1 proteins (HPV16 L1-R5). HPV16 L1-R5 was self-assembled into VLPs under an acidic pH similar to native ones and exhibited ∼65 % drug encapsulation efficiency. The HPV16 L1-R5 VLP@silica nanocages (SiNPs) were synthesized through diatom-inspired silicification of HPV16 L1-R5 VLPs via intermolecular interaction of the R5 peptide and polyol. HPV16L1-R5 VLP@SiNPs displayed uniform, monodisperse particles with approximately 10 nm silica layer compared to HPV16 L1-R5 VLPs. HPV16 L1-R5 VLP@SiNPs showed high biocompatibility at high concentrations, unlike commercial mesoporous SiNPs. Furthermore, the virus-like HPV16 L1-R5 VLP@SiNPs resulted in approximately 2.5-fold increased cellular uptake efficiency compared to commercial mesoporous SiNPs. These results suggest that the thin silica layer on HPV16 L1-R5 VLPs retains cellular delivery capacity while reducing cytotoxicity. Our strategy presents an innovative method for synthesizing virus-like nanoparticles in biomedical applications, enhancing cellular delivery capacity and biocompatibility.
Collapse
Affiliation(s)
- Kyeong Rok Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ae Sol Lee
- Graduate School of Chemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Hye Ryoung Heo
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea.
| | - Chang Sup Kim
- Graduate School of Chemical Engineering, Dongguk University, Seoul 04620, Republic of Korea; Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
3
|
Patterson A, Young K, Biever MP, Klein SM, Huang SY, DePhillips PA, Jacobson SC, Jarrold MF, Zlotnick A. Heterogeneity of HPV16 virus-like particles indicates a complex assembly energy surface. Virology 2024; 600:110211. [PMID: 39276669 PMCID: PMC11560593 DOI: 10.1016/j.virol.2024.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Human Papillomavirus serotype 16 (HPV16) capsid protein (L1) pentamers canonically assemble into T = 7 icosahedral capsids. Such virus-like particles are the basis of the HPV vaccine. We examined assembly of L1 pentamers in response to pH, mild oxidants, and ionic strength and found a mixture of closed, roughly spherical structures from ∼20 to ∼70 nm in diameter, indicating the presence of many kinetically accessible energy minima. Using bulk and single particle techniques we observed that the size distribution changes but does not reach homogeneity. Though heterogenous in size, particles showed uniform responses to low ionic strength dissociation, thermal unfolding, and susceptibility to protease digestion. These assays suggest maturation over time, but at different rates. Cysteine oxidation further stabilized particles at early, but not late, times without changing general characteristics including thermal stability and protease digestion. These data show complex assembly paths to species of different sizes, but with locally similar interactions.
Collapse
Affiliation(s)
- Angela Patterson
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Kim Young
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - MacRyan P Biever
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Shelby M Klein
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Sheng-Yuan Huang
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Pete A DePhillips
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | | | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
4
|
Feng Y, van Bodegraven D, Kádek A, L B Munguira I, Soria-Martinez L, Nentwich S, Saha S, Chardon F, Kavan D, Uetrecht C, Schelhaas M, Roos WH. Glycan-induced structural activation softens the human papillomavirus capsid for entry through reduction of intercapsomere flexibility. Nat Commun 2024; 15:10076. [PMID: 39572555 PMCID: PMC11582657 DOI: 10.1038/s41467-024-54373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
High-risk human papillomaviruses (HPVs) cause various cancers. While type-specific prophylactic vaccines are available, additional anti-viral strategies are highly desirable. Initial HPV cell entry involves receptor-switching induced by structural capsid modifications. These modifications are initiated by interactions with cellular heparan sulphates (HS), however, their molecular nature and functional consequences remain elusive. Combining virological assays with hydrogen/deuterium exchange mass spectrometry, and atomic force microscopy, we investigate the effect of capsid-HS binding and structural activation. We show how HS-induced structural activation requires a minimal HS-chain length and simultaneous engagement of several binding sites by a single HS molecule. This engagement introduces a pincer-like force that stabilizes the capsid in a conformation with extended capsomer linkers. It results in capsid enlargement and softening, thereby likely facilitating L1 proteolytic cleavage and subsequent L2-externalization, as needed for cell entry. Our data supports the further devising of prophylactic strategies against HPV infections.
Collapse
Affiliation(s)
- Yuzhen Feng
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | | | - Alan Kádek
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY & Leibniz Institute of Virology (LIV), Notkestraße 85, Hamburg, Germany
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Ignacio L B Munguira
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | | | - Sarah Nentwich
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY & Leibniz Institute of Virology (LIV), Notkestraße 85, Hamburg, Germany
| | - Sreedeepa Saha
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
| | - Florian Chardon
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
| | - Daniel Kavan
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Charlotte Uetrecht
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY & Leibniz Institute of Virology (LIV), Notkestraße 85, Hamburg, Germany.
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany.
| | - Mario Schelhaas
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany.
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands.
| |
Collapse
|
5
|
Jin J, Li S, Huang H, Li J, Lyu Y, Ran Y, Chang H, Zhao X. Development of human papillomavirus and its detection methods (Review). Exp Ther Med 2024; 28:382. [PMID: 39161614 PMCID: PMC11332130 DOI: 10.3892/etm.2024.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 08/21/2024] Open
Abstract
Human papillomavirus (HPV) infection plays an important role in cervical cancer. HPV is classified within the Papillomaviridae family and is a non-enveloped, small DNA virus. HPV infection can be classified into two distinct scenarios: i) With or without integration into the host chromosomes. Detection of its infection can be useful in the study of cervical lesions. In the present review, the structural and functional features of HPV, HPV typing, infection and transmission mode, the risk factors for cervical susceptibility to infection and HPV detection methods are described in detail. The development of HPV detection methods may have far-reaching significance in the prevention and treatment of cervical disease. This review summarizes the advantages and limitations of each HPV detection method.
Collapse
Affiliation(s)
- Jian Jin
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shujuan Li
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| | - Hehuan Huang
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| | - Junqi Li
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yuan Lyu
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yunwei Ran
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| | - Hui Chang
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shanxi 710049, P.R. China
| | - Xin Zhao
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| |
Collapse
|
6
|
Nand KN, Jordan TB, Yuan X, Basore DA, Zagorevski D, Clarke C, Werner G, Hwang JY, Wang H, Chung JJ, McKenna A, Jarvis MD, Singh G, Bystroff C. Bacterial production of recombinant contraceptive vaccine antigen from CatSper displayed on a human papilloma virus-like particle. Vaccine 2023; 41:6791-6801. [PMID: 37833124 DOI: 10.1016/j.vaccine.2023.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
CatSper is a voltage dependent calcium ion channel present in the principal piece of sperm tail. It plays a crucial role in sperm hyperactivated motility and so in fertilization. Extracellular loops of mouse sperm CatSper were used to develop a vaccine to achieve protection from pregnancy. These loops were inserted at one of the three hypervariable regions of Human Papilloma Virus (HPV) capsid protein (L1). Recombinant vaccines were expressed in E.coli as inclusion body (IB), purified, refolded and assembled into virus-like particles (VLP) in vitro, and adsorbed on alum. Four vaccine candidates were tested in Balb/C mice. All the constructs proved immunogenic, one showed contraceptive efficacy. This recombinant contraceptive vaccine is a non-hormonal intervention and is expected to give long-acting protection from undesired pregnancies.
Collapse
Affiliation(s)
- K N Nand
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - T B Jordan
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - X Yuan
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - D A Basore
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States; Department of Health and Natural Science, Mercy University, Dobbs Ferry, NY, United States
| | - D Zagorevski
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - C Clarke
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - G Werner
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - J Y Hwang
- Dept of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| | - H Wang
- Dept of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| | - J-J Chung
- Dept of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States; Department of Gynecology and Obstetrics, Yale University School of Medicine, New Haven, CT, United States
| | - A McKenna
- Bioresearch Core, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - M D Jarvis
- Bioresearch Core, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - G Singh
- Bioresearch Core, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - C Bystroff
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States.
| |
Collapse
|
7
|
Chen CW, Saubi N, Joseph-Munné J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting HIV-1 P18I10 Peptide: Expression, Purification, Bio-Physical Properties and Immunogenicity in BALB/c Mice. Int J Mol Sci 2023; 24:ijms24098060. [PMID: 37175776 PMCID: PMC10179162 DOI: 10.3390/ijms24098060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Human papillomavirus (HPV) vaccines based on HPV L1 virus-like particles (VLPs) are already licensed but not accessible worldwide. About 38.0 million people were living with HIV in 2020 and there is no HIV vaccine yet. Therefore, safe, effective, and affordable vaccines against both viruses are an urgent need. In this study, the HIV-1 P18I10 CTL peptide from the V3 loop of HIV-1 gp120 glycoprotein was inserted into the HPV16 L1 protein to construct chimeric HPV:HIV (L1:P18I10) VLPs. Instead of the traditional baculovirus expression vector/insect cell (BEVS/IC) system, we established an alternative mammalian 293F cell-based expression system using cost-effective polyethylenimine-mediated transfection for L1:P18I10 protein production. Compared with conventional ultracentrifugation, we optimized a novel chromatographic purification method which could significantly increase L1:P18I10 VLP recovery (~56%). Chimeric L1:P18I10 VLPs purified from both methods were capable of self-assembling to integral particles and shared similar biophysical and morphological properties. After BALB/c mice immunization with 293F cell-derived and chromatography-purified L1:P18I10 VLPs, almost the same titer of anti-L1 IgG (p = 0.6409) was observed as Gardasil anti-HPV vaccine-immunized mice. Significant titers of anti-P18I10 binding antibodies (p < 0.01%) and P18I10-specific IFN-γ secreting splenocytes (p = 0.0002) were detected in L1:P18I10 VLP-immunized mice in comparison with licensed Gardasil-9 HPV vaccine. Furthermore, we demonstrated that insertion of HIV-1 P18I10 peptide into HPV16 L1 capsid protein did not affect the induction in anti-L1 antibodies. All in all, we expected that the mammalian cell expression system and chromatographic purification methods could be time-saving, cost-effective, scalable platforms to engineer bivalent VLP-based vaccines against HPV and HIV-1.
Collapse
Affiliation(s)
- Chun-Wei Chen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Narcís Saubi
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Joan Joseph-Munné
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| |
Collapse
|
8
|
Kim KR, Lee AS, Kim SM, Heo HR, Kim CS. Virus-like nanoparticles as a theranostic platform for cancer. Front Bioeng Biotechnol 2023; 10:1106767. [PMID: 36714624 PMCID: PMC9878189 DOI: 10.3389/fbioe.2022.1106767] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Virus-like nanoparticles (VLPs) are natural polymer-based nanomaterials that mimic viral structures through the hierarchical assembly of viral coat proteins, while lacking viral genomes. VLPs have received enormous attention in a wide range of nanotechnology-based medical diagnostics and therapies, including cancer therapy, imaging, and theranostics. VLPs are biocompatible and biodegradable and have a uniform structure and controllable assembly. They can encapsulate a wide range of therapeutic and diagnostic agents, and can be genetically or chemically modified. These properties have led to sophisticated multifunctional theranostic platforms. This article reviews the current progress in developing and applying engineered VLPs for molecular imaging, drug delivery, and multifunctional theranostics in cancer research.
Collapse
Affiliation(s)
- Kyeong Rok Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Ae Sol Lee
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Su Min Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Hye Ryoung Heo
- Senotherapy-Based Metabolic Disease Control Research Center, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Chang Sup Kim, ; Hye Ryoung Heo,
| | - Chang Sup Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea,School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Chang Sup Kim, ; Hye Ryoung Heo,
| |
Collapse
|
9
|
Development of Fluorescence-Tagged SARS-CoV-2 Virus-like Particles by a Tri-Cistronic Vector Expression System for Investigating the Cellular Entry of SARS-CoV-2. Viruses 2022; 14:v14122825. [PMID: 36560829 PMCID: PMC9786960 DOI: 10.3390/v14122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has caused the pandemic that began late December 2019. The co-expression of SARS-CoV-2 structural proteins in cells could assemble into several types of virus-like particles (VLPs) without a viral RNA genome. VLPs containing S proteins with the structural and functional properties of authentic virions are safe materials to exploit for virus-cell entry and vaccine development. In this study, to generate SARS-CoV-2 VLPs (SCoV2-SEM VLPs) composed of three structural proteins including spike (S), envelop (E) protein and membrane (M) protein, a tri-cistronic vector expression system was established in a cell line co-expressing SARS-CoV-2 S, E and M proteins. The SCoV2-SEM VLPs were harvested from the cultured medium, and three structure proteins were confirmed by Western blot assay. A negative-stain TEM assay demonstrated the size of the SCoV2-SEM VLPs with a diameter of about 90 nm. To further characterize the infectious properties of SCoV2-SEM VLPs, the VLPs (atto647N-SCoV2-SEM VLPs) were fluorescence-labeled by conjugation with atto-647N and visualized under confocal microscopy at a single-particle resolution. The results of the infection assay revealed that atto647N-SCoV2-SEM VLPs attached to the surface of the HEK293T cells at the pre-binding phase in a ACE2-dependent manner. At the post-infection phase, atto647N-SCoV2-SEM VLPs either fused with the cellular membrane or internalized into the cytoplasm with mCherry-rab5-positive early endosomes. Moreover, fusion with the cellular membrane and the internalization with early endosomes could be inhibited by the treatment of camostat (a pharmacological inhibitor of TMPRSS2) and chlorpromazine (an endocytosis inhibitor), respectively. These results elucidated that SCoV2-SEM VLPs behave similarly to the authentic live SARS-CoV-2 virus, suggesting that the development of SCoV2-SEM VLPs provide a realistic and safe experimental model for studying the infectious mechanism of SARS-CoV-2.
Collapse
|
10
|
Martins SA, Santos J, Silva RDM, Rosa C, Cabo Verde S, Correia JDG, Melo R. How promising are HIV-1-based virus-like particles for medical applications. Front Cell Infect Microbiol 2022; 12:997875. [PMID: 36275021 PMCID: PMC9585283 DOI: 10.3389/fcimb.2022.997875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
New approaches aimed at identifying patient-specific drug targets and addressing unmet clinical needs in the framework of precision medicine are a strong motivation for researchers worldwide. As scientists learn more about proteins that drive known diseases, they are better able to design promising therapeutic approaches to target those proteins. The field of nanotechnology has been extensively explored in the past years, and nanoparticles (NPs) have emerged as promising systems for target-specific delivery of drugs. Virus-like particles (VLPs) arise as auspicious NPs due to their intrinsic properties. The lack of viral genetic material and the inability to replicate, together with tropism conservation and antigenicity characteristic of the native virus prompted extensive interest in their use as vaccines or as delivery systems for therapeutic and/or imaging agents. Owing to its simplicity and non-complex structure, one of the viruses currently under study for the construction of VLPs is the human immunodeficiency virus type 1 (HIV-1). Typically, HIV-1-based VLPs are used for antibody discovery, vaccines, diagnostic reagent development and protein-based assays. This review will be centered on the use of HIV-1-based VLPs and their potential biomedical applications.
Collapse
Affiliation(s)
- Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rúben D. M. Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cátia Rosa
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
11
|
Liu Y, Zhang Y, Zhang G, Yang Z, Wang Y, Wu S, Chen D, Zhang H, Liu Y. Development and characterisation of anti-HPV16 monoclonal antibodies for assembly of an HPV16 detection kit. Biotechnol Appl Biochem 2022; 70:613-621. [PMID: 35841266 DOI: 10.1002/bab.2384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022]
Abstract
Quality control is very important during the development of 3-valent (16/18/58), 9-valent (6/11/16/18/31/33/45/52/58), and 15-valent human papillomavirus (HPV) vaccines (6/11/16/18/31/33/35/39/45/52/56/58/59/68). All 3-valent, 9-valent, and 15-valent HPV vaccines contain the HPV16 antigen; therefore, a detection method that can specifically identify HPV16 in vaccines is urgently required. This study aimed to develop and characterise monoclonal antibodies to assemble a highly specific HPV16 detection kit. The HPV16 L1 pentameric protein developed as an immunogen was used to prepare monoclonal antibodies. From the pool of prepared monoclonal antibodies, we selected 4G12 and 5A6 to screen and evaluate their subtypes, specificity, neutralising activity, serum competition, binding affinity, and gene sequencing. After these characterisations, an enzyme-linked immunosorbent assay kit for these monoclonal antibodies was developed, and excellent quality was demonstrated in the assessment of linearity, repeatability, and specificity. The developed detection kit has great potential for wide use in clinical testing and quality control in vaccine production processes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuying Liu
- Beijing Health Guard Biotechnology Inc., BDA, Daxing District, Beijing, 100176, China.,National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Zhang
- Beijing Health Guard Biotechnology Inc., BDA, Daxing District, Beijing, 100176, China
| | - Guifeng Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zengmin Yang
- Beijing Health Guard Biotechnology Inc., BDA, Daxing District, Beijing, 100176, China
| | - Yan Wang
- Beijing Health Guard Biotechnology Inc., BDA, Daxing District, Beijing, 100176, China
| | - Shuming Wu
- Beijing Health Guard Biotechnology Inc., BDA, Daxing District, Beijing, 100176, China
| | - Dan Chen
- Beijing Health Guard Biotechnology Inc., BDA, Daxing District, Beijing, 100176, China
| | - Haijiang Zhang
- Beijing Health Guard Biotechnology Inc., BDA, Daxing District, Beijing, 100176, China
| | - Yongjiang Liu
- Beijing Health Guard Biotechnology Inc., BDA, Daxing District, Beijing, 100176, China
| |
Collapse
|
12
|
Peng B, Esquirol L, Lu Z, Shen Q, Cheah LC, Howard CB, Scott C, Trau M, Dumsday G, Vickers CE. An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae. Nat Commun 2022; 13:2895. [PMID: 35610221 PMCID: PMC9130285 DOI: 10.1038/s41467-022-30529-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
Bottlenecks in metabolic pathways due to insufficient gene expression levels remain a significant problem for industrial bioproduction using microbial cell factories. Increasing gene dosage can overcome these bottlenecks, but current approaches suffer from numerous drawbacks. Here, we describe HapAmp, a method that uses haploinsufficiency as evolutionary force to drive in vivo gene amplification. HapAmp enables efficient, titratable, and stable integration of heterologous gene copies, delivering up to 47 copies onto the yeast genome. The method is exemplified in metabolic engineering to significantly improve production of the sesquiterpene nerolidol, the monoterpene limonene, and the tetraterpene lycopene. Limonene titre is improved by 20-fold in a single engineering step, delivering ∼1 g L-1 in the flask cultivation. We also show a significant increase in heterologous protein production in yeast. HapAmp is an efficient approach to unlock metabolic bottlenecks rapidly for development of microbial cell factories.
Collapse
Affiliation(s)
- Bingyin Peng
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia.
- CSIRO Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia.
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| | - Lygie Esquirol
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Zeyu Lu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Qianyi Shen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Li Chen Cheah
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Colin Scott
- CSIRO Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia
- Biocatalysis and Synthetic Biology Team, CSIRO Land and Water, Black Mountain Science and Innovation Park, Canberra, ACT, 2061, Australia
| | - Matt Trau
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Claudia E Vickers
- CSIRO Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia.
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
13
|
Latif S, Gottschamel J, Syed T, Younus I, Gull K, Sameeullah M, Batool N, Lössl AG, Mariz F, Müller M, Mirza B, Waheed MT. Inducible expression of human papillomavirus-16 L1 capsomeres in the plastomes of Nicotiana tabacum: Transplastomic plants develop normal flowers and pollen. Biotechnol Appl Biochem 2022; 69:596-611. [PMID: 33650709 DOI: 10.1002/bab.2136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022]
Abstract
Human papillomavirus type-16 (HPV-16) is the major HPV type involved in causing cervical cancer among women. The disease burden is high in developing and underdeveloped countries. Previously, the constitutive expression of HPV-16 L1 protein led to male sterility in transplastomic tobacco plants. Here, the HPV-16 L1 gene was expressed in chloroplasts of Nicotiana tabacum under the control of an ethanol-inducible promoter, trans-activated by nucleus-derived signal peptide. Plants containing nuclear component were transformed with transformation vector pEXP-T7-L1 by biolistic gun. The transformation and homoplasmic status of transformed plants was verified by polymerase chain reaction and Southern blotting, respectively. Protein was induced by spraying 5% ethanol for 7 consecutive days. The correct folding of L1 protein was confirmed by antigen-capture ELISA using a conformation-specific antibody. The L1 protein accumulated up to 3 μg/g of fresh plant material. The L1 protein was further purified using affinity chromatography. All transplastomic plants developed normal flowers and produced viable seeds upon self-pollination. Pollens also showed completely normal structure under light microscope and scanning electron microscopy. These data confirm the use of the inducible expression as plant-safe approach for expressing transgenes in plants, especially those genes that cause detrimental effects on plant growth and morphology.
Collapse
Affiliation(s)
- Sara Latif
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Johanna Gottschamel
- Department of Applied Plant Science and Plant Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Tahira Syed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iqra Younus
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, , Oxford Road, Manchester, United Kingdom
| | - Kehkshan Gull
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Sameeullah
- Innovative Food Technologies Development Application and Research Centre, Faculty of Engineering, Bolu Abant Izzet Baysal University, Golkoye Campus, Bolu, Turkey
| | - Neelam Batool
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Andreas Günter Lössl
- Department of Applied Plant Science and Plant Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Filipe Mariz
- Tumorvirus-specific Vaccination Strategies, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Martin Müller
- Tumorvirus-specific Vaccination Strategies, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Lahore College for Women University, Lahore, Pakistan
| | - Mohammad Tahir Waheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
14
|
Lu W, Zhao Z, Huang YW, Wang B. Review: A systematic review of virus-like particles of coronavirus: Assembly, generation, chimerism and their application in basic research and in the clinic. Int J Biol Macromol 2022; 200:487-497. [PMID: 35065135 PMCID: PMC8769907 DOI: 10.1016/j.ijbiomac.2022.01.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Virus-like particles (VLPs) are nano-scale particles that are morphologically similar to a live virus but which lack a genetic component. Since the pandemic spread of COVID-19, much focus has been placed on coronavirus (CoV)-related VLPs. CoVs contain four structural proteins, though the minimum requirement for VLP formation differs among virus species. CoV VLPs are commonly produced in mammalian and insect cell systems, sometimes in the form of chimeric VLPs that enable surface display of CoV epitopes. VLPs are an ideal model for virological research and have been applied as vaccines and diagnostic reagents to aid in clinical disease control. This review summarizes and updates the research progress on the characteristics of VLPs from different known CoVs, mainly focusing on assembly, in vitro expression systems for VLP generation, VLP chimerism, protein-based nanoparticles and their applications in basic research and clinical settings, which may aid in development of novel VLP vaccines against emerging coronavirus diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Wan Lu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhuangzhuang Zhao
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yao-Wei Huang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Bin Wang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Mustopa AZ, Meilina L, Irawan S, Ekawati N, Fathurahman AT, Triratna L, Kusumawati A, Prastyowati A, Nurfatwa M, Hertati A, Harmoko R. Construction, expression, and in vitro assembly of virus-like particles of L1 protein of human papillomavirus type 52 in Escherichia coli BL21 DE3. J Genet Eng Biotechnol 2022; 20:19. [PMID: 35132511 PMCID: PMC8821762 DOI: 10.1186/s43141-021-00281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022]
Abstract
Abstract
Background
A major discovery in human etiology recognized that cervical cancer is a consequence of an infection caused by some mucosatropic types of human papillomavirus (HPV). Since L1 protein of HPV is able to induce the formation of neutralizing antibodies, it becomes a protein target to develop HPV vaccines. Therefore, this study aims to obtain and analyze the expression of HPV subunit recombinant protein, namely L1 HPV 52 in E. coli BL21 DE3. The raw material used was L1 HPV 52 protein, while the synthetic gene, which is measured at 1473 bp in pD451-MR plasmid, was codon-optimized (ATUM) and successfully integrated into 5643 base pairs (bps) of pETSUMO. Bioinformatic studies were also conducted to analyze B cell epitope, T cell epitope, and immunogenicity prediction for L1HPV52 protein.
Results
The pETSUMO-L1HPV52 construct was successfully obtained in a correct ligation size when it was cut with EcoRI. Digestion by EcoRI revealed a size of 5953 and 1160 bps for both TA cloning petSUMO vector and gene of interest, respectively. Furthermore, the right direction of construct pETSUMO-L1HPV52 was proven by PCR techniques using specific primer pairs then followed by sequencing, which shows 147 base pairs. Characterization of L1 HPV 52 by SDS-PAGE analysis confirms the presence of a protein band at a size of ~55 kDa with 6.12 mg/L of total protein concentration. Observation under by transmission electron microscope demonstrates the formation of VLP-L1 at a size between 30 and 40 nm in assembly buffer under the condition of pH 5.4. Based on bioinformatics studies, we found that there are three B cell epitopes (GFPDTSFYNPET, DYLQMASEPY, KEKFSADLDQFP) and four T cell epitopes (YLQMASEPY, PYGDSLFFF, DSLFFFLRR, MFVRHFFNR). Moreover, an immunogenicity study shows that among all the T cell epitopes, the one that has the highest affinity value is DSLFFFLRR for Indonesian HLAs.
Conclusion
Regarding the achievement on successful formation of L1 HPV52-VLPs, followed by some possibilities found from bioinformatics studies, this study suggests promising results for future development of L1 HPV type 52 vaccine in Indonesia.
Collapse
|
16
|
Suffian IFBM, Al-Jamal KT. Bioengineering of virus-like particles as dynamic nanocarriers for in vivo delivery and targeting to solid tumours. Adv Drug Deliv Rev 2022; 180:114030. [PMID: 34736988 DOI: 10.1016/j.addr.2021.114030] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/16/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
Virus-like particles (VLPs) are known as self-assembled, non-replicative and non-infectious protein particles, which imitate the formation and structure of original wild type viruses, however, lack the viral genome and/or their fragments. The capacity of VLPs to encompass small molecules like nucleic acids and others has made them as novel vessels of nanocarriers for drug delivery applications. In addition, VLPs surface have the capacity to achieve variation of the surface display via several modification strategies including genetic modification, chemical modification, and non-covalent modification. Among the VLPs nanocarriers, Hepatitis B virus core (HBc) particles have been the most encouraging candidate. HBc particles are hollow nanoparticles in the range of 30-34 nm in diameter and 7 nm thick envelopes, consisting of 180 or 240 copies of identical polypeptide monomer. They also employ a distinctive position among the VLPs carriers due to the high-level synthesis, which serves as a strong protective capsid shell and efficient self-assembly properties. This review highlights on the bioengineering of HBc particles as dynamic nanocarriers for in vivo delivery and specific targeting to solid tumours.
Collapse
Affiliation(s)
- Izzat F B M Suffian
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (Kuantan Campus), Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
17
|
Wang Z, Zhang T, Xu X. Combined truncations at both N- and C-terminus of human papillomavirus type 58 L1 enhanced the yield of virus-like particles produced in a baculovirus system. J Virol Methods 2021; 301:114403. [PMID: 34890711 DOI: 10.1016/j.jviromet.2021.114403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/26/2022]
Abstract
Human papillomavirus (HPV) major capsid protein L1 virus-like particles (VLPs) produced in baculovirus system are highly immunogenic, but the relatively high production cost limits its application in the development of broad-spectrum vaccines. Here we report a novel method for enhancing VLP production in this system. We incorporated respectively 4, 8 or 13 residues truncation mutations in the N-terminus of L1ΔC, a C-terminal 25-residue-deleted L1 of HPV58, to construct three mutants. After expression in Sf9 cells, L1ΔN4C exhibited 2.3-fold higher protein production, 2.0-fold mRNA expression and lower rate of mRNA decay, compared to L1ΔC. More importantly, L1ΔN4C protein was easily purified by two-step chromatography with a VLP yield of up to 60 mg/L (purity > 99 %), 5-fold that of L1ΔC, whereas L1ΔN8C and L1ΔN13C behaved similarly to L1ΔC either in protein or mRNA expression. Moreover, L1ΔN4C VLPs showed similar binding activities with six HPV58 neutralizing monoclonal antibodies and induced comparable level of neutralizing antibody in mice to that of L1ΔC VLPs. Our results demonstrate that certain N- and C-terminal truncations of HPV58 L1 can enhance VLP yield. This method may be used to reduce production costs of other L1VLPs or chimeric VLPs to developing pan-HPV vaccines using baculovirus system.
Collapse
Affiliation(s)
- Zhirong Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ting Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xuemei Xu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Eto Y, Saubi N, Ferrer P, Joseph-Munné J. Expression of Chimeric HPV-HIV Protein L1P18 in Pichia pastoris; Purification and Characterization of the Virus-like Particles. Pharmaceutics 2021; 13:pharmaceutics13111967. [PMID: 34834382 PMCID: PMC8622379 DOI: 10.3390/pharmaceutics13111967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, three human papillomavirus (HPV) vaccines are already licensed and all of them are based on virus-like particles (VLPs) of HPV L1 capsid protein but not worldwide accessible. While about 38.0 million people were living with HIV in 2019, only 68% of HIV-infected individuals were accessing antiretroviral therapy as of the end of June 2020 and there is no HIV vaccine yet. Therefore, safe, effective, and affordable vaccines against those two viruses are immediately needed. Both HPV and HIV are sexually transmitted infections and one of the main access routes is the mucosal genital tract. Thus, the development of a combined vaccine that would protect against HPV and HIV infections is a logical effort in the fight against these two major global pathogens. In this study, a recombinant Pichia pastoris producing chimeric HPV-HIV L1P18 protein intracellularly was constructed. After cell disruption, the supernatant was collected, and the VLPs were purified by a combination of ammonium sulfate precipitation, size exclusion chromatography, ultracentrifugation, and ultrafiltration. At the end of purification process, the chimeric VLPs were recovered with 96% purity and 9.23% overall yield, and the morphology of VLPs were confirmed by transmission electron microscopy. This work contributes towards the development of an alternative platform for production of a bivalent vaccine against HPV and HIV in P. pastoris.
Collapse
Affiliation(s)
- Yoshiki Eto
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (Y.E.); (N.S.)
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Narcís Saubi
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (Y.E.); (N.S.)
- Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Joan Joseph-Munné
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (Y.E.); (N.S.)
- Correspondence:
| |
Collapse
|
19
|
Recent Advances in Our Understanding of the Infectious Entry Pathway of Human Papillomavirus Type 16. Microorganisms 2021; 9:microorganisms9102076. [PMID: 34683397 PMCID: PMC8540256 DOI: 10.3390/microorganisms9102076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Papillomaviruses are a diverse viral species, but several types such as HPV16 are given special attention due to their contribution towards the pathogenesis of several major cancers. In this review, we will summarize how the knowledge of HPV16 entry has expanded since the last comprehensive HPV16 entry review our lab published in 2017.
Collapse
|
20
|
Xue YR, Wang Y, Chen G, Sun B, Li B, Wu L, Wu Y. A hybrid HPV capsid protein L1 with giant Mo-containing polyoxometalate improves the stability of virus-like particles and the anti-tumor effect of [Mo 154]. Biomater Sci 2021; 9:3875-3883. [PMID: 33890954 DOI: 10.1039/d1bm00138h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a bio-inorganic hybrid system, [Mo154]@VLPs, constructed from the virus-like particles (VLPs) of the HPV capsid protein L1 and a giant disc-shaped, molybdenum-containing polyoxometalate of [Mo154]. The hybrid was purified by CsCl gradient centrifugation and further validated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), dynamic light scattering (DLS) and transmission electron microscopy (TEM). An assembly with [Mo154] improved the tolerance of VLPs to pH, temperature, and storage time, thereby defining an opportunity to reduce the cost of HPV vaccines. Moreover, the ability of [Mo154] to kill cancer cells was improved by 6% after being encapsulated inside the VLPs, which is mainly attributed to the enhanced biocompatibility of [Mo154]. The irradiation of both [Mo154] and [Mo154]@VLPs with an infrared light of 808 nm further enhanced their ability to destroy cancer cells by 3- and 2-fold, respectively, confirming that [Mo154] is an effective anti-tumor photo-thermal agent. Therefore, the successful hybrid of L1-p and [Mo154] improves the stability of VLPs and simultaneously paves the way to enhance the anti-tumor ability of [Mo154] and further extends its application prospects as a future anti-tumor drug.
Collapse
Affiliation(s)
- Ya-Rong Xue
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Gang Chen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
21
|
Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology 2021; 19:59. [PMID: 33632278 PMCID: PMC7905985 DOI: 10.1186/s12951-021-00806-7] [Citation(s) in RCA: 430] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Virus-like particles (VLPs) are virus-derived structures made up of one or more different molecules with the ability to self-assemble, mimicking the form and size of a virus particle but lacking the genetic material so they are not capable of infecting the host cell. Expression and self-assembly of the viral structural proteins can take place in various living or cell-free expression systems after which the viral structures can be assembled and reconstructed. VLPs are gaining in popularity in the field of preventive medicine and to date, a wide range of VLP-based candidate vaccines have been developed for immunization against various infectious agents, the latest of which is the vaccine against SARS-CoV-2, the efficacy of which is being evaluated. VLPs are highly immunogenic and are able to elicit both the antibody- and cell-mediated immune responses by pathways different from those elicited by conventional inactivated viral vaccines. However, there are still many challenges to this surface display system that need to be addressed in the future. VLPs that are classified as subunit vaccines are subdivided into enveloped and non- enveloped subtypes both of which are discussed in this review article. VLPs have also recently received attention for their successful applications in targeted drug delivery and for use in gene therapy. The development of more effective and targeted forms of VLP by modification of the surface of the particles in such a way that they can be introduced into specific cells or tissues or increase their half-life in the host is likely to expand their use in the future. Recent advances in the production and fabrication of VLPs including the exploration of different types of expression systems for their development, as well as their applications as vaccines in the prevention of infectious diseases and cancers resulting from their interaction with, and mechanism of activation of, the humoral and cellular immune systems are discussed in this review.
Collapse
Affiliation(s)
- Saghi Nooraei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Howra Bahrulolum
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Zakieh Sadat Hoseini
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Camellia Katalani
- Sari Agriculture Science and Natural Resource University (SANRU), Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari, Iran
| | - Abbas Hajizade
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Andrew J Easton
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK.
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran.
| |
Collapse
|
22
|
Gerstweiler L, Billakanti J, Bi J, Middelberg A. Comparative evaluation of integrated purification pathways for bacterial modular polyomavirus major capsid protein VP1 to produce virus-like particles using high throughput process technologies. J Chromatogr A 2021; 1639:461924. [PMID: 33545579 PMCID: PMC7825977 DOI: 10.1016/j.chroma.2021.461924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/21/2022]
Abstract
Modular virus-like particles and capsomeres are potential vaccine candidates that can induce strong immune responses. There are many described protocols for the purification of microbially-produced viral protein in the literature, however, they suffer from inherent limitations in efficiency, scalability and overall process costs. In this study, we investigated alternative purification pathways to identify and optimise a suitable purification pathway to overcome some of the current challenges. Among the methods, the optimised purification strategy consists of an anion exchange step in flow through mode followed by a multi modal cation exchange step in bind and elute mode. This approach allows an integrated process without any buffer adjustment between the purification steps. The major contaminants like host cell proteins, DNA and aggregates can be efficiently removed by the optimised strategy, without the need for a size exclusion polishing chromatography step, which otherwise could complicate the process scalability and increase overall cost. High throughput process technology studies were conducted to optimise binding and elution conditions for multi modal cation exchanger, Capto™ MMC and strong anion exchanger Capto™ Q. A dynamic binding capacity of 14 mg ml−1 was achieved for Capto™ MMC resin. Samples derived from each purification process were thoroughly characterized by RP-HPLC, SEC-HPLC, SDS-PAGE and LC-ESI-MS/MS Mass Spectrometry analytical methods. Modular polyomavirus major capsid protein could be purified within hours using the optimised process achieving purities above 87% and above 96% with inclusion of an initial precipitation step. Purified capsid protein could be easily assembled in-vitro into well-defined virus-like particles by lowering pH with addition of calcium chloride to the eluate. High throughout studies allowed the screening of a vast design space within weeks, rather than months, and unveiled complicated binding behaviour for CaptoTM MMC.
Collapse
Affiliation(s)
- Lukas Gerstweiler
- The University of Adelaide, School of Chemical Engineering and Advanced Materials, Adelaide, SA 5005, Australia
| | - Jagan Billakanti
- Cytiva, Product and Application Specialist Downstream Design-In ANZ, Suite 547, Level 5, 7 Eden Park Drive, Macquarie Park, NSW 2113, Australia
| | - Jingxiu Bi
- The University of Adelaide, School of Chemical Engineering and Advanced Materials, Adelaide, SA 5005, Australia
| | - Anton Middelberg
- The University of Adelaide, Division of Research and Innovation, Adelaide, SA 5005, Australia.
| |
Collapse
|
23
|
Cross-neutralizing antibody titres against non-vaccine types induced by a recombinant trivalent HPV vaccine (16/18/58) in rhesus macaques. PAPILLOMAVIRUS RESEARCH 2020; 10:100209. [PMID: 33197649 PMCID: PMC7704424 DOI: 10.1016/j.pvr.2020.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/05/2022]
Abstract
Human papillomavirus (HPV) causes not only most cervical cancers but also cancers of the vagina, vulva, penis, anus, rectum, and oropharynx. Every year, 200,000 women die of cervical cancer in the world, and China accounts for about 10%. HPV vaccines are effective in preventing HPV infections thus HPV-related cancers worldwide. Studies on the clinical trials of the 2v Cervarix™ and the 4v Gardasil® have suggested that immunization with either of these vaccines provided some level of protection against other HPV types that are closely related to the types contained in the vaccines. Here we conducted a preliminary evaluation on the ability to induce cross-neutralizing antibodies in rhesus monkeys by a 3v HPV vaccine that targets HPV16, 18, and 58 and it is specifically designed for Chinese women. We found that this vaccine is no less than Gardasil® in terms of the ability to induce NAbs against non-vaccine types of HPV in rhesus macaques. These results provided evidence from the immunogenicity point of view that the KLWS 3v HPV vaccine is a strong competitor to the imported 2v and 4v HPV vaccines currently available on the market.
Collapse
|
24
|
Roos N, Breiner B, Preuss L, Lilie H, Hipp K, Herrmann H, Horn T, Biener R, Iftner T, Simon C. Optimized production strategy of the major capsid protein HPV 16L1 non-assembly variant in E. coli. Protein Expr Purif 2020; 175:105690. [DOI: 10.1016/j.pep.2020.105690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/31/2022]
|
25
|
Saylor K, Waldman A, Gillam F, Zhang C. Multi-epitope insert modulates solubility-based and chromatographic purification of human papilloma virus 16 L1-based vaccine without inhibiting virus-like particle assembly. J Chromatogr A 2020; 1631:461567. [PMID: 32980800 DOI: 10.1016/j.chroma.2020.461567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022]
Abstract
The separation of heterogeneous protein mixtures has always been characterized by a trade-off between purity and yield. One way this issue has been addressed in the past is by recombinantly modifying protein to improve separations. Such modifications are mostly employed in the form of tags used specifically for affinity chromatography, though it is also possible to make changes to a protein that will have a sizeable impact on its hydrophobicity and charge/charge distribution. As such, it should also be possible to use protein tags to modulate phase separations and protein-resin binding kinetics when performing ion exchange chromatography. Here, we employed a three-step purification scheme on E. coli expressed, His-tagged, human papilloma virus 16 L1-based recombinant proteins (rHPV 16 L1) that consisted of an inclusion body (IB) wash step, a diethylaminoethyl (DEAE) anion exchange chromatography (AEX) step, and an immobilized metal affinity chromatography (IMAC) polishing step. Purification of the wild type rHPV 16 L1 protein (WT) was characterized by substantial losses during the IB wash but relatively high yield over the DEAE column. In contrast, purification of modified rHPV 16 L1, a chimeric version of the WT protein that had the last 34 amino acids replaced with an MHC class II multi-epitope insert derived from tetanus toxin and diphtheria toxin (WTΔC34-2TEp), was characterized by little to no losses in the IB wash but had a relatively low yield over the DEAE column. Since the fate of these proteins was to be used in vaccine formulations, it is important to note that the modifications made to the WTΔC34-2TEp protein had little to no effect on its ability to assemble into virus-like particles (VLPs). These results demonstrate that modifications of the WT protein via the recombinant insertion of immunofunctional polypeptides can modulate both phase-based separation and charge-based chromatographic processes. Additionally, incorporation of the specific, multi-epitope tag used in this study may prove to be beneficial in recombinant HPV vaccine development due to its potential to improve phase separation yield and vaccine immunogenicity without inhibiting VLP formation.
Collapse
Affiliation(s)
- Kyle Saylor
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States.
| | - Alison Waldman
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States; Chemical and Biomolecular Engineering, NC State, Raleigh, NC, United States.
| | - Frank Gillam
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States; Locus Biosciences, Morrisville, NC, United States.
| | - Chenming Zhang
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
26
|
Näsman A, Du J, Dalianis T. A global epidemic increase of an HPV-induced tonsil and tongue base cancer - potential benefit from a pan-gender use of HPV vaccine. J Intern Med 2020; 287:134-152. [PMID: 31733108 DOI: 10.1111/joim.13010] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022]
Abstract
In 2007, human papillomavirus (HPV) type 16 was finally recognized as a risk factor, besides smoking and alcohol, for oropharyngeal squamous cell carcinoma (OPSCC), including tonsillar squamous cell carcinoma (TSCC), by the International Agency for Research against Cancer. Just before, in 2006, the Food and Drug Administration had approved Gardasil, the first vaccine against HPV16, 18, 6 and 11, for preventive vaccination women against cervical cancer. Concurrently, some Western countries, where smoking was decreasing, disclosed an epidemic increase in the incidence of OPSCC, especially of TSCC and base of tongue cancer (BOTSCC), together accounting for 80-90% of all OPSCCs, and mainly affecting men. The epidemic was later revealed to be due to a rise in HPV-positive cases, and scientists in the field suggested HPV vaccination also of boys. Globally, there are roughly 96 000 incident OPSCC cases/year of which 20-24% are caused by HPV, thereby accounting for around 22 000 OPSCC cases annually. Of these cases, 80-90% are due to HPV16 infection and would be prevented with the presently registered HPV vaccines. In Western countries, such as Sweden (with almost 400 TSCC and BOTSCC cases per year) and the United States, HPV prevalence in OPSCC is higher and around 70%. HPV vaccination of girls has been initiated in many countries, and the vaccines have been efficient and their side effects limited. HPV vaccination of boys has, however, been the exception, but should definitely not be delayed any further. It would benefit both girls and boys directly, and result in better and more robust herd immunity. Today, we have the possibility to eliminate several high-risk HPV types in the younger generations and avoid more than 600 000 cancer cases annually worldwide, and this possibility should be embraced by offering global pan-gender HPV vaccination.
Collapse
Affiliation(s)
- A Näsman
- From the, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - J Du
- Department of Microbiology, Tumor Biology and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - T Dalianis
- From the, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Jia C, Yang T, Liu Y, Zhu A, Yin F, Wang Y, Xu L, Wang Y, Yan M, Cai Q, Liang X, Ju R, Chen J, Wang L. A Novel Human Papillomavirus 16 L1 Pentamer-Loaded Hybrid Particles Vaccine System: Influence of Size on Immune Responses. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35745-35759. [PMID: 30360122 DOI: 10.1021/acsami.8b11556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cervical cancer remains the second-most prevalent female malignancy around the world, leading to a great majority of cancer-related mortality that occurs mainly in developing countries. Developing an effective and low-cost vaccine against human papillomavirus (HPV) infection, especially in medically underfunded areas, is urgent. Compared with vaccines based on HPV L1 viruslike particles (VLPs) in the market, recombinant HPV L1 pentamer expressed in Escherichia coli represents a promising and potentially cost-effective vaccine for preventing HPV infection. Hybrid particles comprising a polymer core and lipid shell have shown great potential compared to conventional aluminum salts adjuvant and is urgently needed for HPV L1 pentamer vaccines. It is well-reported that particle sizes are crucial in regulating immune responses. Nevertheless, reports on the relationship between the particulate size and the resultant immune response have been in conflict, and there is no answer to how the size of particles regulates specific immune response for HPV L1 pentamer-based candidate vaccines. Here, we fabricated HPV 16 L1 pentamer-loaded poly(d,l-lactide- co-glycolide) (PLGA)/lecithin hybrid particles with uniform sizes (0.3, 1, and 3 μm) and investigated the particle size effects on antigen release, activation of lymphocytes, dendritic cells (DCs) activation and maturation, follicular helper CD4+ T (TFH) cells differentiation, and release of pro-inflammatory cytokines and chemokines. Compared with the other particle sizes, 1 μm particles induced more powerful antibody protection and yielded more persistent antibody responses, as well as more heightened anamnestic responses upon repeat vaccination. The superior immune responses might be attributed to sustainable antigen release and robust antigen uptake and transport and then further promoted a series of cascade reactions, including enhanced DCs maturation, increased lymphocytes activation, and augmented TFH cells differentiation in draining lymph nodes (DLNs). Here, a powerful and economical platform for HPV vaccine and a comprehensive understanding of particle size effect on immune responses for HPV L1 pentamer-based candidate vaccines are provided.
Collapse
Affiliation(s)
- Chengcheng Jia
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Tingyuan Yang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yongjiang Liu
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Ali Zhu
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Fei Yin
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Yajun Wang
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Lan Xu
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Yan Wang
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Mei Yan
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Qingman Cai
- Beijing Institute of Petrochemical Technology , Beijing 102617 , P.R. China
| | - Xiaoxu Liang
- Beijing Institute of Petrochemical Technology , Beijing 102617 , P.R. China
| | - Ruijun Ju
- Beijing Institute of Petrochemical Technology , Beijing 102617 , P.R. China
| | - Jianping Chen
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Lianyan Wang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
28
|
Wei M, Wang D, Li Z, Song S, Kong X, Mo X, Yang Y, He M, Li Z, Huang B, Lin Z, Pan H, Zheng Q, Yu H, Gu Y, Zhang J, Li S, Xia N. N-terminal truncations on L1 proteins of human papillomaviruses promote their soluble expression in Escherichia coli and self-assembly in vitro. Emerg Microbes Infect 2018; 7:160. [PMID: 30254257 PMCID: PMC6156512 DOI: 10.1038/s41426-018-0158-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/03/2022]
Abstract
Human papillomavirus (HPV) is the causative agent in genital warts and nearly all cervical, anogenital, and oropharyngeal cancers. Nine HPV types (6, 11, 16, 18, 31, 33, 45, 52, and 58) are associated with about 90% of cervical cancers and 90% of genital warts. HPV neutralization by vaccine-elicited neutralizing antibodies can block viral infection and prevent HPV-associated diseases. However, there is only one commercially available HPV vaccine, Gardasil 9, produced from Saccharomyces cerevisiae that covers all nine types, raising the need for microbial production of broad-spectrum HPV vaccines. Here, we investigated whether N-terminal truncations of the major HPV capsid proteins L1, improve their soluble expression in Escherichia coli. We found that N-terminal truncations promoted the soluble expression of HPV 33 (truncated by 10 amino acids [aa]), 52 (15 aa), and 58 (10 aa). The resultant HPV L1 proteins were purified in pentamer form and extensively characterized with biochemical, biophysical, and immunochemical methods. The pentamers self-assembled into virus-like particles (VLPs) in vitro, and 3D cryo-EM reconstructions revealed that all formed T = 7 icosahedral particles having 50–60-nm diameters. Moreover, we formulated a nine-valent HPV vaccine candidate with aluminum adjuvant and L1 VLPs from four genotypes used in this study and five from previous work. Immunogenicity assays in mice and non-human primates indicated that this HPV nine-valent vaccine candidate elicits neutralizing antibody titers comparable to those induced by Gardasil 9. Our study provides a method for producing a nine-valent HPV vaccine in E. coli and may inform strategies for the soluble expression of other vaccine candidates. • N-terminal truncations promote the soluble expression of HPV L1 proteins in E. coli and their self-assembly of T = 7 icosahedral particle in vitro • An HPV 9-valent vaccine candidate was formulated with E. coli-derived HPV 6, 11, 16, 18, 31, 33, 45, 52, and 58 VLPs, and conferred comparable immunogenicity with Gardasil 9
Collapse
Affiliation(s)
- Minxi Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Daning Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Zhihai Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Shuo Song
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Xianglin Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Xiaobing Mo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Yurou Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Maozhou He
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Zhongyi Li
- Xiamen Innovax Biotech Company, Ltd, 361022, Xiamen, China
| | - Bo Huang
- Xiamen Innovax Biotech Company, Ltd, 361022, Xiamen, China
| | - Zhijie Lin
- Xiamen Innovax Biotech Company, Ltd, 361022, Xiamen, China
| | - Huirong Pan
- Xiamen Innovax Biotech Company, Ltd, 361022, Xiamen, China
| | - Qingbing Zheng
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Hai Yu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China.
| |
Collapse
|
29
|
Zhang Y, He Y, Li L, Liang S, Yan M, Ren D, Yang Z, Zhao W, Miao L, Zhang H, Liu Y. Development and characterization of an HPV18 detection kit using two novel HPV18 type-specific monoclonal antibodies. Diagn Pathol 2018; 13:55. [PMID: 30115088 PMCID: PMC6097307 DOI: 10.1186/s13000-018-0727-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/30/2018] [Indexed: 11/16/2022] Open
Abstract
Background HPV 18 is one of the most prevalent oncogenic types, only second to HPV 16, and included in the licensed vaccines on the market. In this study, we describe the production and characterization of a panel of monoclonal antibodies (mAb) to HPV18. Methods The immunocompetence of 1B1 and 4C2 mAbs for HPV L1 protein was evaluated by SDS-PAGE analysis, neutralization assays, affinity identification, and ELISA. The 1B1 and 4C2 genes were sequenced and analyzed. Finally, the detection kit with the two mAbs was assessed for linearity, repeatability and specificity. Results Both mAbs specifically recognized HPV18 L1 and virus-like particles (VLPs). These mAbs are conformation-neutralizing antibodies that have high affinity and type specificity. Based on these characteristics of these mAbs, we developed an ELISA kit for specifically detecting HPV 18 antigen. We showed that this kit displayed good linearity, repeatability and sensitivity for detecting HPV18 L1 pentamer and HPV18 VLP. Conclusions We characterized two monoclonal neutralizing antibodies for HPV L1 protein, and developed an ELISA kit for specifically detecting HPV 18 antigen. This newly developed kit can be used to monitor the potency of HPV vaccines throughout the entire production process as well as preliminary analysis of HPV18 infections.
Collapse
Affiliation(s)
- Yao Zhang
- Beijing Health Guard Biotechnology Co., Ltd., Unit 201 & 202, Block 2, Longsheng Industrial Park, 7 Rongchang East Street, Beijing Economic and Technological Development Area, Daxing District, Beijing, 100176, People's Republic of China
| | - Ye He
- Beijing Health Guard Biotechnology Co., Ltd., Unit 201 & 202, Block 2, Longsheng Industrial Park, 7 Rongchang East Street, Beijing Economic and Technological Development Area, Daxing District, Beijing, 100176, People's Republic of China
| | - Ling Li
- Beijing Health Guard Biotechnology Co., Ltd., Unit 201 & 202, Block 2, Longsheng Industrial Park, 7 Rongchang East Street, Beijing Economic and Technological Development Area, Daxing District, Beijing, 100176, People's Republic of China
| | - Shutian Liang
- Beijing Health Guard Biotechnology Co., Ltd., Unit 201 & 202, Block 2, Longsheng Industrial Park, 7 Rongchang East Street, Beijing Economic and Technological Development Area, Daxing District, Beijing, 100176, People's Republic of China
| | - Mei Yan
- Beijing Health Guard Biotechnology Co., Ltd., Unit 201 & 202, Block 2, Longsheng Industrial Park, 7 Rongchang East Street, Beijing Economic and Technological Development Area, Daxing District, Beijing, 100176, People's Republic of China
| | - Dongyan Ren
- Beijing Health Guard Biotechnology Co., Ltd., Unit 201 & 202, Block 2, Longsheng Industrial Park, 7 Rongchang East Street, Beijing Economic and Technological Development Area, Daxing District, Beijing, 100176, People's Republic of China
| | - Zengmin Yang
- Beijing Health Guard Biotechnology Co., Ltd., Unit 201 & 202, Block 2, Longsheng Industrial Park, 7 Rongchang East Street, Beijing Economic and Technological Development Area, Daxing District, Beijing, 100176, People's Republic of China
| | - Wenli Zhao
- Beijing Health Guard Biotechnology Co., Ltd., Unit 201 & 202, Block 2, Longsheng Industrial Park, 7 Rongchang East Street, Beijing Economic and Technological Development Area, Daxing District, Beijing, 100176, People's Republic of China
| | - Luyan Miao
- Beijing Health Guard Biotechnology Co., Ltd., Unit 201 & 202, Block 2, Longsheng Industrial Park, 7 Rongchang East Street, Beijing Economic and Technological Development Area, Daxing District, Beijing, 100176, People's Republic of China
| | - Haijiang Zhang
- Beijing Health Guard Biotechnology Co., Ltd., Unit 201 & 202, Block 2, Longsheng Industrial Park, 7 Rongchang East Street, Beijing Economic and Technological Development Area, Daxing District, Beijing, 100176, People's Republic of China.
| | - Yongjiang Liu
- Beijing Health Guard Biotechnology Co., Ltd., Unit 201 & 202, Block 2, Longsheng Industrial Park, 7 Rongchang East Street, Beijing Economic and Technological Development Area, Daxing District, Beijing, 100176, People's Republic of China.
| |
Collapse
|
30
|
Bredell H, Smith JJ, Görgens JF, van Zyl WH. Expression of unique chimeric human papilloma virus type 16 (HPV-16) L1-L2 proteins in Pichia pastoris and Hansenula polymorpha. Yeast 2018; 35:519-529. [PMID: 29709079 DOI: 10.1002/yea.3318] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/02/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022] Open
Abstract
Cervical cancer is ranked the fourth most common cancer in women worldwide. Despite two prophylactic vaccines being commercially available, they are unaffordable for most women in developing countries. We compared the optimized expression of monomers of the unique HPV type 16 L1-L2 chimeric protein (SAF) in two yeast strains of Pichia pastoris, KM71 (Muts ) and GS115 (Mut+ ), with Hansenula polymorpha NCYC 495 to determine the preferred host in bioreactors. SAF was uniquely created by replacing the h4 helix of the HPV-16 capsid L1 protein with an L2 peptide. Two different feeding strategies in fed-batch cultures of P. pastoris Muts were evaluated: a predetermined feed rate vs. feeding based on the oxygen consumption by maintaining constant dissolved oxygen levels (DO stat). All cultures showed a significant increase in biomass when methanol was fed using the DO stat method. In P. pastoris the SAF concentrations were higher in the Muts strains than in the Mut+ strains. However, H. polymorpha produced the highest level of SAF at 132.10 mg L-1 culture while P. pastoris Muts only produced 23.61 mg L-1 . H. polymorpha showed greater potential for the expression of HPV-16 L1/L2 chimeric proteins despite the track record of P. pastoris as a high-level producer of heterologous proteins.
Collapse
Affiliation(s)
- Helba Bredell
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa.,Department of Process Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Jacques J Smith
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa.,Department of Process Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Johann F Görgens
- Department of Process Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
31
|
Fu DY, Zhang S, Qu Z, Yu X, Wu Y, Wu L. Hybrid Assembly toward Enhanced Thermal Stability of Virus-like Particles and Antibacterial Activity of Polyoxometalates. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6137-6145. [PMID: 29381053 DOI: 10.1021/acsami.7b17082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In an effort to improve both the stability of virus-like particles (VLPs) and the medical activity of polyoxometalates (POMs), a new hybrid assembly system between human papillomavirus (HPV) capsid protein L1 and a europium-containing POM (EuW10) has been constructed, for the first time, via the electrostatic interactions between them. The co-assembly of EuW10 and HPV 16 L1-pentamer (L1-p) in buffer solution resulted in the encapsulation of POMs in the cavity of VLPs, which was further confirmed by cesium chloride (CsCl) gradient ultracentrifugation, SDS-PAGE, dynamic light scattering, and transmission electron microscopy, whereas the post-assembly of EuW10 with the as-prepared VLPs leads to the adsorption of POMs only on the external surface of particles, and both cases improved the thermal and storage stabilities of VLPs obviously. Particularly, the encapsulation of POMs in VLPs largely improved the antibacterial activity of EuW10, and thereby, the present study will be significant for both the stability improvement of protein vaccines and the development of POM medicine.
Collapse
Affiliation(s)
- Ding-Yi Fu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡State Engineering Laboratory of AIDS Vaccine, Jilin University , No. 2699, Qianjin Street, Changchun 130012, China
| | - Simin Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡State Engineering Laboratory of AIDS Vaccine, Jilin University , No. 2699, Qianjin Street, Changchun 130012, China
| | - Zhiyu Qu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡State Engineering Laboratory of AIDS Vaccine, Jilin University , No. 2699, Qianjin Street, Changchun 130012, China
| | - Xianghui Yu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡State Engineering Laboratory of AIDS Vaccine, Jilin University , No. 2699, Qianjin Street, Changchun 130012, China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡State Engineering Laboratory of AIDS Vaccine, Jilin University , No. 2699, Qianjin Street, Changchun 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡State Engineering Laboratory of AIDS Vaccine, Jilin University , No. 2699, Qianjin Street, Changchun 130012, China
| |
Collapse
|
32
|
Jia XY, Xue YR, Li HW, Fu DY, Wang WX, Wu Y. The capsid assembly-induced luminescence enhancement (AILE) of DNA-protected silver nanoclusters and anin situapplication. NEW J CHEM 2018. [DOI: 10.1039/c8nj03179g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The study presents an AILE phenomenon for silver nanoclusters and supplies a fluorescence method to evaluate the processes of VLP assembly/disassembly.
Collapse
Affiliation(s)
- Xiang-Yu Jia
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Ya-Rong Xue
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Ding-Yi Fu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Wei-Xian Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
33
|
Gu Y, Wei M, Wang D, Li Z, Xie M, Pan H, Wu T, Zhang J, Li S, Xia N. Characterization of an Escherichia coli-derived human papillomavirus type 16 and 18 bivalent vaccine. Vaccine 2017; 35:4637-4645. [PMID: 28736197 DOI: 10.1016/j.vaccine.2017.06.084] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 12/26/2022]
Abstract
Human papillomavirus (HPV) types 16 and 18 account for approximately 70% of cervical cancer worldwide. Neutralizing HPV prophylactic vaccines offer significant benefit, as they block HPV infection and prevent subsequent disease. However, the three licensed HPV vaccines that cover these two genotypes were produced in eukaryotic cells, which is expensive, particularly for low-income countries where HPV is highest. Here, we report a new HPV16 and -18 bivalent candidate vaccine produced from Escherichia coli. We used two strategies of N-terminal truncation of HPV L1 proteins and soluble non-fusion expression to generate HPV16 and HPV18 L1-only virus-like particles (VLPs) in a scalable process. Through comprehensive characterization of the bivalent candidate vaccine, we confirm lot consistency in a pilot scale-up of 30L, 100L and 500L. Using cryo-EM 3D reconstruction, we found that HPV16 and -18VLPs present in a T=7 icosahedral arrangement, similar in shape and size to that of the native virions. This HPV16/18 bivalent vaccine shares comparable immunogenicity with the licensed vaccines. Overall, we show that the production of a HPV16/18 bivalent vaccine from an E. coli expression system is robust and scalable, with potentially good accessibility worldwide as a population-based immunization strategy.
Collapse
Affiliation(s)
- Ying Gu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Minxi Wei
- Xiamen Innovax Biotech Company, Ltd, Xiamen, Fujian 361022, China
| | - Daning Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhihai Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Minghui Xie
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Huirong Pan
- Xiamen Innovax Biotech Company, Ltd, Xiamen, Fujian 361022, China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
34
|
Gupta G, Glueck R, Patel PR. HPV vaccines: Global perspectives. Hum Vaccin Immunother 2017; 13:1-4. [PMID: 28362244 PMCID: PMC5489288 DOI: 10.1080/21645515.2017.1289301] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/27/2017] [Indexed: 01/07/2023] Open
Abstract
The discovery of HPV as the etiological factor for HPV-associated malignancies and disease has opened up several opportunities for prevention and therapy. Current commercially available HPV vaccines (Gardasil, Gardasil 9, and Cervarix) are prophylactic in nature and derived from adjuvanted L1-based virus-like particles of HPV. Globally, through several clinical trials, they were found to be very safe and efficacious. Certain limitations such as cost-effectiveness, low coverage against all HPV types and a 3-dose schedule make these vaccines difficult to use worldwide. Approaches to address these issues involve alternate expression systems using L1 or alternate antigen (L2) as well as optimizing doses and broadening protection to provide cheap and cross-protective vaccines. Additionally, promising preclinical immunogenicity results from our own studies using alternative hosts such as Pichia and an antigen delivery system-based measles vector have potential for development as next generation HPV prophylactic vaccines. Several other therapeutic approaches are also ongoing.
Collapse
Affiliation(s)
- Gaurav Gupta
- Vaccine Technology Centre, Zydus Biologics Compound, Changodar, Ahmedabad, Gujarat, India
| | - Reinhard Glueck
- Vaccine Technology Centre, Zydus Biologics Compound, Changodar, Ahmedabad, Gujarat, India
| | - Pankaj R. Patel
- Vaccine Technology Centre, Zydus Biologics Compound, Changodar, Ahmedabad, Gujarat, India
| |
Collapse
|
35
|
Effects of site-directed mutagenesis of L469 in helix-5 of human papillomavirus 16 L1 on pentamer formation. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-6357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Pan H, Li Z, Wang J, Song S, Wang D, Wei M, Gu Y, Zhang J, Li S, Xia N. Bacterially expressed human papillomavirus type 6 and 11 bivalent vaccine: Characterization, antigenicity and immunogenicity. Vaccine 2017; 35:3222-3231. [DOI: 10.1016/j.vaccine.2017.04.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/14/2017] [Accepted: 04/23/2017] [Indexed: 12/31/2022]
|
37
|
Yin F, Wang Y, Chen N, Jiang D, Qiu Y, Wang Y, Yan M, Chen J, Zhang H, Liu Y. A novel trivalent HPV 16/18/58 vaccine with anti-HPV 16 and 18 neutralizing antibody responses comparable to those induced by the Gardasil quadrivalent vaccine in rhesus macaque model. PAPILLOMAVIRUS RESEARCH 2017; 3:85-90. [PMID: 28720462 PMCID: PMC5883244 DOI: 10.1016/j.pvr.2017.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 12/28/2022]
Abstract
Persistent infection with human papillomavirus (HPV) is a key factor in the development of precancerous lesions and invasive cervical cancer. Prophylactic vaccines to immunize against HPV are an effective approach to reducing HPV related disease burden. In this study, we investigated the immunogenicity and dosage effect of a trivalent HPV 16/18/58 vaccine (3vHPV) produced in Escherichia coli (E.coli), with Gardasil quadrivalent vaccine (4vHPV, Merck & Co.) as a positive control. Sera collected from rhesus macaques vaccinated with three dosage formulations of 3vHPV (termed low-, mid-, and high-dosage formulations, respectively), and the 4vHPV vaccine were analyzed by both Pseudovirus-Based Neutralization Assay (PBNA) and Enzyme-Linked Immunosorbent Assay (ELISA). Strong immune responses against HPV 16/18/58 were successfully elicited, and dosage-dependence was observed, with likely occurrence of immune interference between different L1-VLP antigens. HPV 16/18 specific neutralizing antibody (nAb) and total immunoglobulin G (IgG) antibody responses in rhesus macaques receiving 3vHPV at the three dosages tested were generally non-inferior to those observed in rhesus macaques receiving 4vHPV throughout the study period. Particularly, HPV 18 nAb titers induced by the mid-dosage formulation that contained the same amounts of HPV 16/18 L1-VLPs as Gardasil 4vHPV were between 7.3 to 12.7-fold higher compared to the positive control arm from weeks 24-64. The durability of antibody responses specific to HPV 16/18 elicited by 3vHPV vaccines was also shown to be non-inferior to that associated with Gardasil 4vHPV.
Collapse
Affiliation(s)
- Fei Yin
- Beijing Health Guard Biotechnology Inc., Beijing 100176, China
| | - Yajun Wang
- Beijing Health Guard Biotechnology Inc., Beijing 100176, China
| | - Na Chen
- Beijing Health Guard Biotechnology Inc., Beijing 100176, China
| | - Dunquan Jiang
- Beijing Health Guard Biotechnology Inc., Beijing 100176, China
| | - Yefeng Qiu
- Laboratory Animal Centre of Academy of Military Medical Sciences, Beijing 100071, China
| | - Yan Wang
- Beijing Health Guard Biotechnology Inc., Beijing 100176, China
| | - Mei Yan
- Beijing Health Guard Biotechnology Inc., Beijing 100176, China
| | - Jianping Chen
- Beijing Health Guard Biotechnology Inc., Beijing 100176, China
| | - Haijiang Zhang
- Beijing Health Guard Biotechnology Inc., Beijing 100176, China.
| | - Yongjiang Liu
- Beijing Health Guard Biotechnology Inc., Beijing 100176, China.
| |
Collapse
|
38
|
Jeong H, Seong BL. Exploiting virus-like particles as innovative vaccines against emerging viral infections. J Microbiol 2017; 55:220-230. [PMID: 28243941 PMCID: PMC7090582 DOI: 10.1007/s12275-017-7058-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 01/20/2023]
Abstract
Emerging viruses pose a major threat to humans and livestock with global public health and economic burdens. Vaccination remains an effective tool to reduce this threat, and yet, the conventional cell culture often fails to produce sufficient vaccine dose. As an alternative to cell-culture based vaccine, virus-like particles (VLPs) are considered as a highpriority vaccine strategy against emerging viruses. VLPs represent highly ordered repetitive structures via macromolecular assemblies of viral proteins. The particulate nature allows efficient uptake into antigen presenting cells stimulating both innate and adaptive immune responses towards enhanced vaccine efficacy. Increasing research activity and translation opportunity necessitate the advances in the design of VLPs and new bioprocessing modalities for efficient and cost-effective production. Herein, we describe major achievements and challenges in this endeavor, with respect to designing strategies to harnessing the immunogenic potential, production platforms, downstream processes, and some exemplary cases in developing VLP-based vaccines.
Collapse
Affiliation(s)
- Hotcherl Jeong
- Department of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Baik Lin Seong
- Department of Biotechnology & Vaccine Translational Research Center, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
39
|
Jin S, Zheng DD, Sun B, Yu X, Zha X, Liu Y, Wu S, Wu Y. Controlled Hybrid-Assembly of HPV16/18 L1 Bi VLPs in Vitro. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34244-34251. [PMID: 27998118 DOI: 10.1021/acsami.6b12456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Based on the helix4-exchanged HPV16 L1 and HPV18 L1, HPV16 L1 Bi and HPV18 L1 Bi, we have successfully realized the controlled hybrid-assembly of HPV16/18 L1 Bi VLPs (bihybrid-VLPs) in vitro. The bihybrid-VLPs were further confirmed by fluorescence resonance energy transfer (FRET) and complex-immunoprecipitation (Co-IP) assays. The ratio of 16 L1 Bi and 18 L1 Bi in bihybrid-VLPs was verified to be 3:5 based on a modified magnetic Co-IP procedure, when mixing 1 equiv pentamer in assembly buffer solution, but it changed with conditions. In addition, the bihybrid-VLPs showed identical thermal stability as that of normal VLPs, suggesting high potential in practical applications. The present study is significant because it modified one of the vital steps of virus life cycle at the stage of virus assembly, supplying a new approach not only to deepen structural insights but also a possibility to prepare stable, low-cost, bivalent antivirus vaccine. Furthermore, the controlled hybrid-assembly of bihybrid-VLPs in vitro provides suggestions for the design of effective multivalent hybrid-VLPs, being a potential to develop broad-spectrum vaccines for the prevention of infection with multiple types of HPV.
Collapse
Affiliation(s)
| | | | | | | | - Xiao Zha
- Sichuan Tumor Hospital & Institute , Chengdu 610041, China
| | | | - Shuming Wu
- Beijing Health Guard Inc., Beijing 100176, China
| | | |
Collapse
|
40
|
Gu J, Chen Q, Xiao X, Ito F, Wolfe A, Chen XS. Biochemical Characterization of APOBEC3H Variants: Implications for Their HIV-1 Restriction Activity and mC Modification. J Mol Biol 2016; 428:4626-4638. [PMID: 27534815 DOI: 10.1016/j.jmb.2016.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 12/26/2022]
Abstract
APOBEC3H (A3H) is the most polymorphic member of the APOBEC3 family. Seven haplotypes (hap I-VII) and four mRNA splicing variants (SV) of A3H have been identified. The various haplotypes differ in anti-HIV activity, which is attributed to differences in protein stability, subcellular distribution, and/or RNA binding and virion packaging. Here, we report the first comparative biochemical studies of all the A3H variants using highly purified proteins. We show that all haplotypes were stably expressed and could be purified to homogeneity by Escherichia coli expression. Surprisingly, four out of the seven haplotypes showed high cytosine (C) deaminase activity, with hap V displaying extremely high activity that was comparable to the highly active A3A. Furthermore, all four haplotypes that were active in C deamination were also highly active on methylated C (mC), with hap II displaying almost equal deamination efficiency on both. The deamination activity of these A3H variants correlates well with their reported anti-HIV activity for the different haplotypes, suggesting that deaminase activity may be an important factor in determining their respective anti-HIV activities. Moreover, mC deamination of A3H displayed a strong preference for the sequence motif of T-mCpG-C/G, which may suggest a potential role in genomic mC modification at the characteristic "CpG" island motif.
Collapse
Affiliation(s)
- Jiang Gu
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Qihan Chen
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiao Xiao
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Fumiaki Ito
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Aaron Wolfe
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
41
|
Chen Y, Liu Y, Zhang G, Wang A, Dong Z, Qi Y, Wang J, Zhao B, Li N, Jiang M. Human papillomavirus L1 protein expressed in Escherichia coli self-assembles into virus-like particles that are highly immunogenic. Virus Res 2016; 220:97-103. [DOI: 10.1016/j.virusres.2016.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 12/13/2022]
|
42
|
López-Toledo G, Schädlich L, Alonso-Castro ÁJ, Monroy-García A, García-Rocha R, Guido MC, Gissmann L, García-Carrancá A. Immunization with Human Papillomavirus 16 L1+E2 Chimeric Capsomers Elicits Cellular Immune Response and Antitumor Activity in a Mouse Model. Viral Immunol 2016; 29:276-87. [PMID: 27058179 DOI: 10.1089/vim.2015.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Development of cervical cancer is associated with persistent infections by high-risk human papillomavirus (HPV). Although current HPV L1-based prophylactic vaccines prevent infection, they do not help to eliminate prevalent infections or lesions. Our aims were (i) to generate a vaccine combining prophylactic and therapeutic properties by producing chimeric capsomers after fusion of the L1 protein to different fragments of E2 from HPV 16, and (ii) to evaluate their capacity to generate an antitumoral cellular response, while conserving L1 neutralizing epitopes. Chimeric proteins were produced in Escherichia coli and purified by glutathione S-transferase (GST)-affinity chromatography. Their structure was characterized using size exclusion chromatography, sucrose gradient centrifugation, electron microscopy, and anti-L1 enzyme-linked immunosorbent assay. All chimeric proteins form capsomers and heterogeneous aggregates. One, containing part of the carboxy-terminal domain of E2 and its hinge region (L1Δ+E2H/NC, aa 206-307), conserved the neutralizing epitope H16.V5. We then evaluated the capacity of this chimeric protein to induce a cytotoxic T-cell response against HPV 16 E2. In (51)Cr release cytotoxicity assays, splenocytes from C57BL/6 immunized mice recognized and lysed TC-1/E2 cells, which express and present endogenously processed E2 peptides. Moreover, this E2-specific cytotoxic response inhibited the growth of tumors of TC-1/E2 cells in mice. Finally, we identified an epitope (aa 292-301) of E2 involved in this cytotoxic response. We conclude that the L1Δ+E2H/NC chimeric protein produced in bacteria can be an effective and economically interesting candidate for a combined prophylactic and therapeutic vaccine that could help eliminating HPV16-positive low-grade cervical lesions and persistent viral infections, thus preventing the development of lesions and, at the same time, the establishment of new infections.
Collapse
Affiliation(s)
- Gabriela López-Toledo
- 1 Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico .,2 Laboratory of Virus and Cancer, Division of Basic Research, Instituto Nacional de Cancerología-SS , Mexico City, Mexico
| | - Lysann Schädlich
- 3 Division of Genome Modifications and Carcinogenesis, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Ángel Josabad Alonso-Castro
- 2 Laboratory of Virus and Cancer, Division of Basic Research, Instituto Nacional de Cancerología-SS , Mexico City, Mexico
| | - Alberto Monroy-García
- 4 Laboratory of Immunobiology, Facultad de Estudios Superiores Zaragoza , Unidad de Investigación en Diferenciación Celular y Cáncer, UMIEZ, UNAM, Mexico City, Mexico .,5 Laboratory of Immunology and Cancer, Unidad de Investigación Médica en Enfermedades Oncológicas , CMN SXXI, IMSS, Mexico City, Mexico
| | - Rosario García-Rocha
- 5 Laboratory of Immunology and Cancer, Unidad de Investigación Médica en Enfermedades Oncológicas , CMN SXXI, IMSS, Mexico City, Mexico .,6 Department of Immunology, Escuela Nacional de Ciencias Biológicas , IPN, Mexico City, Mexico
| | - Miriam C Guido
- 1 Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico .,2 Laboratory of Virus and Cancer, Division of Basic Research, Instituto Nacional de Cancerología-SS , Mexico City, Mexico
| | - Lutz Gissmann
- 3 Division of Genome Modifications and Carcinogenesis, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Alejandro García-Carrancá
- 1 Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico .,2 Laboratory of Virus and Cancer, Division of Basic Research, Instituto Nacional de Cancerología-SS , Mexico City, Mexico
| |
Collapse
|
43
|
Fang M, Diao W, Dong B, Wei H, Liu J, Hua L, Zhang M, Guo S, Xiao Y, Yu Y, Wang L, Wan M. Detection of the Assembly and Disassembly of PCV2b Virus-Like Particles Using Fluorescence Spectroscopy Analysis. Intervirology 2016; 58:318-23. [PMID: 26783743 DOI: 10.1159/000442751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/20/2015] [Indexed: 11/19/2022] Open
Abstract
Monitoring the assembly and disassembly of virus-like particles (VLPs) is important in developing effective VLP-based vaccines. We tried to establish a simple and rapid method to evaluate the status of VLP assembly using fluorescence spectroscopic analysis (FSA) while developing a VLP-based vaccine against porcine circovirus type 2b (PCV2b). We synthesized the gene coding for PCV2b capsid protein (CP). The CP was expressed in Escherichia coli in a soluble form, dialyzed into three different buffers, and assembled into VLPs. The immunogenicity of the VLPs was evaluated by an enzyme-linked immunosorbent assay using the sera of mice immunized with inactivated PCV2b. The VLP assembly was detected using transmission electron microscopy and FSA. The assembled VLPs showed a distinct FSA curve with a peak at 320 nm. We found that the assembly status was related to the immunogenicity, fluorescence intensity, and morphology of the VLP. The FSA assay was able to monitor the various denatured statuses of PCV2b VLPs treated with β-mercaptoethanol or β-mercaptoethanol plus urea. We have demonstrated that FSA can be used to detect the assembly of PCV2b VLPs produced in E. coli. This provides a simple solution for monitoring VLP assembly during the production of VLP-based vaccines.
Collapse
Affiliation(s)
- Mingli Fang
- Departments of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang T, Fu DY, Wu Y, Wang Y, Wu L. A fluorescence-enhanced inorganic probe to detect the peptide and capsid protein of human papillomavirus in vitro. RSC Adv 2016. [DOI: 10.1039/c6ra00105j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A europium-substituted polyoxometalate (EuW10) could be used as a fluorescence-enhanced probe to detect the recombinant HPV L1 protein in vitro.
Collapse
Affiliation(s)
- Teng Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- China
| | - Ding-Yi Fu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- China
| | - Yizhan Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
45
|
Pan D, Zha X, Yu X, Wu Y. Enhanced expression of soluble human papillomavirus L1 through coexpression of molecular chaperonin in Escherichia coli. Protein Expr Purif 2015; 120:92-8. [PMID: 26732286 DOI: 10.1016/j.pep.2015.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 01/01/2023]
Abstract
The major recombinant capsid protein L1 of human papillomavirus (HPV) is widely used to produce HPV prophylactic vaccines. However, the quality of soluble and active expression of L1 in Escherichia coli was below the required amount. Coexpression with the chaperonin GroEL/ES enhanced L1 expression. Overexpressing GroEL/ES increased the soluble expression level of glutathione S-transferase-fused L1 (GST-L1) by approximately ∼3 fold. The yield of HPV type 16 L1 pentamer (L1-p) was ∼2 fold higher than that in a single expression system after purification through size-exclusion chromatograph. The expression and purification conditions were then optimized. The yield of L1-p was enhanced by ∼5 fold, and those of HPV types 18 and 58 L1-p increased by ∼3 and ∼2 folds, respectively, compared with that in the single expression system. Coexpressing the mono-site mutant HPV16 L1 L469A with GroEL/ES increased L1-p yield by ∼7 fold compared with strains expressing the wild-type L1 gene. L1-p was then characterized using circular dichroism spectra, UV-vis cloud point, dynamic light scattering and transmission electron microscope analyses. Results indicated that the conformation and biological characteristics of L1-p were identical to that of native L1. Hence, overexpressing chaperonin in E. coli can increase the expression level of GST-L1 and L1-p production after purification. This finding may contribute to the development of a platform for prophylactic HPV vaccines.
Collapse
Affiliation(s)
- Dong Pan
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun, 130012, China
| | - Xiao Zha
- Sichuan Tumor Hospital & Institute, 55, Renmin Nanlu, Section 4, Chengdu, 610041, China
| | - Xianghui Yu
- The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun, 130012, China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
46
|
Mansour AA, Sereda YV, Yang J, Ortoleva PJ. Prospective on multiscale simulation of virus-like particles: Application to computer-aided vaccine design. Vaccine 2015; 33:5890-6. [DOI: 10.1016/j.vaccine.2015.05.099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/25/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
|
47
|
Doorbar J, Egawa N, Griffin H, Kranjec C, Murakami I. Human papillomavirus molecular biology and disease association. Rev Med Virol 2015; 25 Suppl 1:2-23. [PMID: 25752814 PMCID: PMC5024016 DOI: 10.1002/rmv.1822] [Citation(s) in RCA: 582] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/12/2014] [Accepted: 06/25/2014] [Indexed: 12/27/2022]
Abstract
Human papillomaviruses (HPVs) have evolved over millions of years to propagate themselves in a range of different animal species including humans. Viruses that have co‐evolved slowly in this way typically cause chronic inapparent infections, with virion production in the absence of apparent disease. This is the case for many Beta and Gamma HPV types. The Alpha papillomavirus types have however evolved immunoevasion strategies that allow them to cause persistent visible papillomas. These viruses activate the cell cycle as the infected epithelial cell differentiates in order to create a replication competent environment that allows viral genome amplification and packaging into infectious particles. This is mediated by the viral E6, E7, and E5 proteins. High‐risk E6 and E7 proteins differ from their low‐risk counterparts however in being able to drive cell cycle entry in the upper epithelial layers and also to stimulate cell proliferation in the basal and parabasal layers. Deregulated expression of these cell cycle regulators underlies neoplasia and the eventual progression to cancer in individuals who cannot resolve high‐risk HPV infection. Most work to date has focused on the study of high‐risk HPV types such as HPV 16 and 18, which has led to an understanding of the molecular pathways subverted by these viruses. Such approaches will lead to the development of better strategies for disease treatment, including targeted antivirals and immunotherapeutics. Priorities are now focused toward understanding HPV neoplasias at sites other than the cervix (e.g. tonsils, other transformation zones) and toward understanding the mechanisms by which low‐risk HPV types can sometimes give rise to papillomatosis and under certain situations even cancers. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
48
|
Frébortová J, Greplová M, Seidl MF, Heyl A, Frébort I. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120. PLoS One 2015; 10:e0138468. [PMID: 26376297 PMCID: PMC4574047 DOI: 10.1371/journal.pone.0138468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022] Open
Abstract
Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants.
Collapse
Affiliation(s)
- Jitka Frébortová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Marta Greplová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Michael F. Seidl
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Alexander Heyl
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Ivo Frébort
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
49
|
Hassett KJ, Meinerz NM, Semmelmann F, Cousins MC, Garcea RL, Randolph TW. Development of a highly thermostable, adjuvanted human papillomavirus vaccine. Eur J Pharm Biopharm 2015; 94:220-8. [PMID: 25998700 DOI: 10.1016/j.ejpb.2015.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023]
Abstract
A major impediment to economical, worldwide vaccine distribution is the requirement for a "cold chain" to preserve antigenicity. We addressed this problem using a model human papillomavirus (HPV) vaccine stabilized by immobilizing HPV16 L1 capsomeres, i.e., pentameric subunits of the virus capsid, within organic glasses formed by lyophilization. Lyophilized glass and liquid vaccine formulations were incubated at 50°C for 12weeks, and then analyzed for retention of capsomere conformational integrity and the ability to elicit neutralizing antibody responses after immunization of BALB/c mice. Capsomeres in glassy-state vaccines retained tertiary and quaternary structure, and critical conformational epitopes. Moreover, glassy formulations adjuvanted with aluminum hydroxide or aluminum hydroxide and glycopyranoside lipid A were not only as immunogenic as the commercially available HPV vaccine Cervarix®, but also retained complete neutralizing immunogenicity after high-temperature storage. The thermal stability of such adjuvanted vaccine powder preparations may thus eliminate the need for the cold chain.
Collapse
Affiliation(s)
- Kimberly J Hassett
- Center for Pharmaceutical Biotechnology, Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Natalie M Meinerz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, United States; The Bio Frontiers Institute, University of Colorado, Boulder, CO 80309, United States
| | - Florian Semmelmann
- Center for Pharmaceutical Biotechnology, Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Megan C Cousins
- Center for Pharmaceutical Biotechnology, Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Robert L Garcea
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, United States; The Bio Frontiers Institute, University of Colorado, Boulder, CO 80309, United States
| | - Theodore W Randolph
- Center for Pharmaceutical Biotechnology, Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States.
| |
Collapse
|
50
|
Development of an IP-Free Biotechnology Platform for Constitutive Production of HPV16 L1 Capsid Protein Using the Pichia pastoris PGK1 Promoter. BIOMED RESEARCH INTERNATIONAL 2015; 2015:594120. [PMID: 26090426 PMCID: PMC4450287 DOI: 10.1155/2015/594120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/18/2014] [Accepted: 01/05/2015] [Indexed: 01/07/2023]
Abstract
The human papillomavirus (HPV) L1 major capsid protein, which forms the basis of the currently available vaccines against cervical cancer, self-assembles into virus-like particles (VLPs) when expressed heterologously. We report the development of a biotechnology platform for HPV16 L1 protein expression based on the constitutive PGK1 promoter (PPGK1) from the methylotrophic yeast Pichia pastoris. The L1 gene was cloned under regulation of PPGK1 into pPGKΔ3 expression vector to achieve intracellular expression. In parallel, secretion of the L1 protein was obtained through the use of an alternative vector called pPGKΔ3α, in which a codon optimized α-factor signal sequence was inserted. We devised a work-flow based on the detection of the L1 protein by dot blot, colony blot, and western blot to classify the positive clones. Finally, intracellular HPV VLPs assembly was demonstrated for the first time in yeast cells. This study opens up perspectives for the establishment of an innovative platform for the production of HPV VLPs or other viral antigens for vaccination purposes, based on constitutive expression in P. pastoris.
Collapse
|