1
|
Quintana-Feliciano R, Kottur J, Ni M, Ghosh R, Salas-Estrada L, Ahlsen G, Rechkoblit O, Shapiro L, Filizola M, Fang G, Aggarwal AK. Burkholderia cenocepacia epigenetic regulator M.BceJIV simultaneously engages two DNA recognition sequences for methylation. Nat Commun 2024; 15:7839. [PMID: 39244607 PMCID: PMC11380664 DOI: 10.1038/s41467-024-52130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Burkholderia cenocepacia is an opportunistic and infective bacterium containing an orphan DNA methyltransferase called M.BceJIV with roles in regulating gene expression and motility of the bacterium. M.BceJIV recognizes a GTWWAC motif (where W can be an adenine or a thymine) and methylates N6 of the adenine at the fifth base position. Here, we present crystal structures of M.BceJIV/DNA/sinefungin ternary complex and allied biochemical, computational, and thermodynamic analyses. Remarkably, the structures show not one, but two DNA substrates bound to the M.BceJIV dimer, with each monomer contributing to the recognition of two recognition sequences. We also show that methylation at the two recognition sequences occurs independently, and that the GTWWAC motifs are enriched in intergenic regions in the genomes of B. cenocepacia strains. We further computationally assess the interactions underlying the affinities of different ligands (SAM, SAH, and sinefungin) for M.BceJIV, as a step towards developing selective inhibitors for limiting B. cenocepacia infection.
Collapse
Affiliation(s)
- Richard Quintana-Feliciano
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jithesh Kottur
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
- Department of Antiviral Drug Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India.
| | - Mi Ni
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rikhia Ghosh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Goran Ahlsen
- Department of Biochemistry and Molecular Biophysics Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Olga Rechkoblit
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
2
|
Wang Q, Rao GS, Marsic T, Aman R, Mahfouz M. Fusion of FokI and catalytically inactive prokaryotic Argonautes enables site-specific programmable DNA cleavage. J Biol Chem 2024; 300:107720. [PMID: 39214308 PMCID: PMC11421335 DOI: 10.1016/j.jbc.2024.107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Site-specific nucleases are crucial for genome engineering applications in medicine and agriculture. The ideal site-specific nucleases are easily reprogrammable, highly specific in target site recognition, and robust in nuclease activities. Prokaryotic Argonaute (pAgo) proteins have received much attention as biotechnological tools due to their ability to recognize specific target sequences without a protospacer adjacent motif, but their lack of intrinsic dsDNA unwinding activity limits their utility in key applications such as gene editing. Recently, we developed a pAgo-based system for site-specific DNA cleavage at physiological temperatures independently of the DNA form, using peptide nucleic acids (PNAs) to facilitate unwinding dsDNA targets. Here, we fused catalytically dead pAgos with the nuclease domain of the restriction endonuclease FokI and named this modified platform PNA-assisted FokI-(d)pAgo (PNFP) editors. In the PNFP system, catalytically inactive pAgo recognizes and binds to a specific target DNA sequence based on a programmable guide DNA sequence; upon binding to the target site, the FokI domains dimerize and introduce precise dsDNA breaks. We explored key parameters of the PNFP system including the requirements of PNA and guide DNAs, the specificity of PNA and guide DNA on target cleavage, the optimal concentration of different components, reaction time for invasion and cleavage, and ideal temperature and reaction buffer, to ensure efficient DNA editing in vitro. The results demonstrated robust site-specific target cleavage by PNFP system at optimal conditions in vitro. We envision that the PNFP system will provide higher editing efficiency and specificity with fewer off-target effects in vivo.
Collapse
Affiliation(s)
- Qiaochu Wang
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Saudi Arabia
| | - Gundra Sivakrishna Rao
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Saudi Arabia
| | - Tin Marsic
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Saudi Arabia
| | - Rashid Aman
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Saudi Arabia.
| |
Collapse
|
3
|
Li D, Cao Y, Xie L, He C, Jiao D, Ma M, Zuo Z, Zuo E, Yang X. FokI-RYdCas9 Mediates Nearly PAM-Less and High-Precise Gene Editing in Human Cells. Curr Issues Mol Biol 2024; 46:4021-4034. [PMID: 38785516 PMCID: PMC11119187 DOI: 10.3390/cimb46050248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The demand for high-precision CRISPR/Cas9 systems in biomedicine is experiencing a notable upsurge. The editing system fdCas9 employs a dual-sgRNA strategy to enhance editing accuracy. However, the application of fdCas9 is constrained by the stringent requirement for two protospacer adjacent motifs (PAMs) of Cas9. Here, we devised an optimized editor, fRYdCas9, by merging FokI with the nearly PAM-less RYdCas9 variant, and two fRYdCas9 systems formed a dimer in a proper spacer length to accomplish DNA cleavage. In comparison to fdCas9, fRYdCas9 demonstrates a substantial increase in the number of editable genomic sites, approximately 330-fold, while maintaining a comparable level of editing efficiency. Through meticulous experimental validation, we determined that the optimal spacer length between two FokI guided by RYdCas9 is 16 base pairs. Moreover, fRYdCas9 exhibits a near PAM-less feature, along with no on-target motif preference via the library screening. Meanwhile, fRYdCas9 effectively addresses the potential risks of off-targets, as analyzed through whole genome sequencing (WGS). Mouse embryonic editing shows fRYdCas9 has robust editing capabilities. This study introduces a potentially beneficial alternative for accurate gene editing in therapeutic applications and fundamental research.
Collapse
Affiliation(s)
- Di Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yaqi Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Long Xie
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Chenfei He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Danrong Jiao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Mengxue Ma
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Zhenrui Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Xiaogan Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Quintana-Feliciano R, Kottur J, Ni M, Ghosh R, Salas-Estrada L, Rechkoblit O, Filizola M, Fang G, Aggarwal AK. Burkholderia cenocepacia epigenetic regulator M.BceJIV simultaneously engages two DNA recognition sequences for methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576384. [PMID: 38328099 PMCID: PMC10849533 DOI: 10.1101/2024.01.20.576384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Burkholderia cenocepacia is an opportunistic and infective bacterium containing an orphan DNA methyltransferase (M.BceJIV) with roles in regulating gene expression and motility of the bacterium. M.BceJIV recognizes a GTWWAC motif (where W can be an adenine or a thymine) and methylates the N6 of the adenine at the fifth base position (GTWWAC). Here, we present a high-resolution crystal structure of M.BceJIV/DNA/sinefungin ternary complex and allied biochemical, computational, and thermodynamic analyses. Remarkably, the structure shows not one, but two DNA substrates bound to the M.BceJIV dimer, wherein each monomer contributes to the recognition of two recognition sequences. This unexpected mode of DNA binding and methylation has not been observed previously and sets a new precedent for a DNA methyltransferase. We also show that methylation at two recognition sequences occurs independently, and that GTWWAC motifs are enriched in intergenic regions of a strain of B. cenocepacia's genome. We further computationally assess the interactions underlying the affinities of different ligands (SAM, SAH, and sinefungin) for M.BceJIV, as a step towards developing selective inhibitors for limiting B. cenocepacia infection.
Collapse
Affiliation(s)
- Richard Quintana-Feliciano
- Department of Pharmacological Sciences Icahn School of Medicine at Mount Sinai 1425 Madison Avenue New York, New York, USA
| | - Jithesh Kottur
- Department of Pharmacological Sciences Icahn School of Medicine at Mount Sinai 1425 Madison Avenue New York, New York, USA
| | - Mi Ni
- Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai 1425 Madison Avenue New York, New York, USA
| | - Rikhia Ghosh
- Department of Pharmacological Sciences Icahn School of Medicine at Mount Sinai 1425 Madison Avenue New York, New York, USA
| | - Leslie Salas-Estrada
- Department of Pharmacological Sciences Icahn School of Medicine at Mount Sinai 1425 Madison Avenue New York, New York, USA
| | - Olga Rechkoblit
- Department of Pharmacological Sciences Icahn School of Medicine at Mount Sinai 1425 Madison Avenue New York, New York, USA
| | - Marta Filizola
- Department of Pharmacological Sciences Icahn School of Medicine at Mount Sinai 1425 Madison Avenue New York, New York, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai 1425 Madison Avenue New York, New York, USA
| | - Aneel K. Aggarwal
- Department of Pharmacological Sciences Icahn School of Medicine at Mount Sinai 1425 Madison Avenue New York, New York, USA
| |
Collapse
|
5
|
Kennedy MA, Hosford CJ, Azumaya CM, Luyten YA, Chen M, Morgan RD, Stoddard BL. Structures, activity and mechanism of the Type IIS restriction endonuclease PaqCI. Nucleic Acids Res 2023; 51:4467-4487. [PMID: 36987874 PMCID: PMC10201449 DOI: 10.1093/nar/gkad228] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Type IIS restriction endonucleases contain separate DNA recognition and catalytic domains and cleave their substrates at well-defined distances outside their target sequences. They are employed in biotechnology for a variety of purposes, including the creation of gene-targeting zinc finger and TAL effector nucleases and DNA synthesis applications such as Golden Gate assembly. The most thoroughly studied Type IIS enzyme, FokI, has been shown to require multimerization and engagement with multiple DNA targets for optimal cleavage activity; however, details of how it or similar enzymes forms a DNA-bound reaction complex have not been described at atomic resolution. Here we describe biochemical analyses of DNA cleavage by the Type IIS PaqCI restriction endonuclease and a series of molecular structures in the presence and absence of multiple bound DNA targets. The enzyme displays a similar tetrameric organization of target recognition domains in the absence or presence of bound substrate, with a significant repositioning of endonuclease domains in a trapped DNA-bound complex that is poised to deliver the first of a series of double-strand breaks. PaqCI and FokI share similar structural mechanisms of DNA cleavage, but considerable differences in their domain organization and quaternary architecture, facilitating comparisons between distinct Type IIS enzymes.
Collapse
Affiliation(s)
- Madison A Kennedy
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle,WA 98109, USA
| | | | - Caleigh M Azumaya
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle,WA 98109, USA
| | - Yvette A Luyten
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Minyong Chen
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle,WA 98109, USA
| |
Collapse
|
6
|
CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells 2022; 11:cells11223615. [PMID: 36429042 PMCID: PMC9688409 DOI: 10.3390/cells11223615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
This is a spectacular moment for genetics to evolve in genome editing, which encompasses the precise alteration of the cellular DNA sequences within various species. One of the most fascinating genome-editing technologies currently available is Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its associated protein 9 (CRISPR-Cas9), which have integrated deeply into the research field within a short period due to its effectiveness. It became a standard tool utilized in a broad spectrum of biological and therapeutic applications. Furthermore, reliable disease models are required to improve the quality of healthcare. CRISPR-Cas9 has the potential to diversify our knowledge in genetics by generating cellular models, which can mimic various human diseases to better understand the disease consequences and develop new treatments. Precision in genome editing offered by CRISPR-Cas9 is now paving the way for gene therapy to expand in clinical trials to treat several genetic diseases in a wide range of species. This review article will discuss genome-editing tools: CRISPR-Cas9, Zinc Finger Nucleases (ZFNs), and Transcription Activator-Like Effector Nucleases (TALENs). It will also encompass the importance of CRISPR-Cas9 technology in generating cellular disease models for novel therapeutics, its applications in gene therapy, and challenges with novel strategies to enhance its specificity.
Collapse
|
7
|
Zhou W, Yang J, Zhang Y, Hu X, Wang W. Current landscape of gene-editing technology in biomedicine: Applications, advantages, challenges, and perspectives. MedComm (Beijing) 2022; 3:e155. [PMID: 35845351 PMCID: PMC9283854 DOI: 10.1002/mco2.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
The expanding genome editing toolbox has revolutionized life science research ranging from the bench to the bedside. These "molecular scissors" have offered us unprecedented abilities to manipulate nucleic acid sequences precisely in living cells from diverse species. Continued advances in genome editing exponentially broaden our knowledge of human genetics, epigenetics, molecular biology, and pathology. Currently, gene editing-mediated therapies have led to impressive responses in patients with hematological diseases, including sickle cell disease and thalassemia. With the discovery of more efficient, precise and sophisticated gene-editing tools, more therapeutic gene-editing approaches will enter the clinic to treat various diseases, such as acquired immunodeficiency sydrome (AIDS), hematologic malignancies, and even severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These initial successes have spurred the further innovation and development of gene-editing technology. In this review, we will introduce the architecture and mechanism of the current gene-editing tools, including clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease-based tools and other protein-based DNA targeting systems, and we summarize the meaningful applications of diverse technologies in preclinical studies, focusing on the establishment of disease models and diagnostic techniques. Finally, we provide a comprehensive overview of clinical information using gene-editing therapeutics for treating various human diseases and emphasize the opportunities and challenges.
Collapse
Affiliation(s)
- Weilin Zhou
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| | - Jinrong Yang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
- Department of HematologyHematology Research LaboratoryState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanP. R. China
| | - Yalan Zhang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| | - Xiaoyi Hu
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
- Department of Gynecology and ObstetricsDevelopment and Related Disease of Women and Children Key Laboratory of Sichuan ProvinceKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second HospitalSichuan UniversityChengduP. R. China
| | - Wei Wang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| |
Collapse
|
8
|
Whitworth KM, Green JA, Redel BK, Geisert RD, Lee K, Telugu BP, Wells KD, Prather RS. Improvements in pig agriculture through gene editing. CABI AGRICULTURE AND BIOSCIENCE 2022; 3:41. [PMID: 35755158 PMCID: PMC9209828 DOI: 10.1186/s43170-022-00111-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/12/2022] [Indexed: 05/06/2023]
Abstract
Genetic modification of animals via selective breeding is the basis for modern agriculture. The current breeding paradigm however has limitations, chief among them is the requirement for the beneficial trait to exist within the population. Desirable alleles in geographically isolated breeds, or breeds selected for a different conformation and commercial application, and more importantly animals from different genera or species cannot be introgressed into the population via selective breeding. Additionally, linkage disequilibrium results in low heritability and necessitates breeding over successive generations to fix a beneficial trait within a population. Given the need to sustainably improve animal production to feed an anticipated 9 billion global population by 2030 against a backdrop of infectious diseases and a looming threat from climate change, there is a pressing need for responsive, precise, and agile breeding strategies. The availability of genome editing tools that allow for the introduction of precise genetic modification at a single nucleotide resolution, while also facilitating large transgene integration in the target population, offers a solution. Concordant with the developments in genomic sequencing approaches, progress among germline editing efforts is expected to reach feverish pace. The current manuscript reviews past and current developments in germline engineering in pigs, and the many advantages they confer for advancing animal agriculture.
Collapse
Affiliation(s)
- Kristin M. Whitworth
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Jonathan A. Green
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Bethany K. Redel
- United States Department of Agriculture – Agriculture Research Service, Plant Genetics Research Unit, Columbia, MO 65211 USA
| | - Rodney D. Geisert
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Kiho Lee
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Bhanu P. Telugu
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Kevin D. Wells
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Randall S. Prather
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| |
Collapse
|
9
|
Van Vu T, Das S, Hensel G, Kim JY. Genome editing and beyond: what does it mean for the future of plant breeding? PLANTA 2022; 255:130. [PMID: 35587292 PMCID: PMC9120101 DOI: 10.1007/s00425-022-03906-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/26/2022] [Indexed: 05/04/2023]
Abstract
MAIN CONCLUSION Genome editing offers revolutionized solutions for plant breeding to sustain food production to feed the world by 2050. Therefore, genome-edited products are increasingly recognized via more relaxed legislation and community adoption. The world population and food production are disproportionally growing in a manner that would have never matched each other under the current agricultural practices. The emerging crisis is more evident with the subtle changes in climate and the running-off of natural genetic resources that could be easily used in breeding in conventional ways. Under these circumstances, affordable CRISPR-Cas-based gene-editing technologies have brought hope and charged the old plant breeding machine with the most energetic and powerful fuel to address the challenges involved in feeding the world. What makes CRISPR-Cas the most powerful gene-editing technology? What are the differences between it and the other genetic engineering/breeding techniques? Would its products be labeled as "conventional" or "GMO"? There are so many questions to be answered, or that cannot be answered within the limitations of our current understanding. Therefore, we would like to discuss and answer some of the mentioned questions regarding recent progress in technology development. We hope this review will offer another view on the role of CRISPR-Cas technology in future of plant breeding for food production and beyond.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, km 02, Pham Van Dong Road, Co Nhue 1, Bac Tu Liem, Hanoi, 11917, Vietnam
| | - Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic.
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
10
|
Rasheed A, Barqawi AA, Mahmood A, Nawaz M, Shah AN, Bay DH, Alahdal MA, Hassan MU, Qari SH. CRISPR/Cas9 is a powerful tool for precise genome editing of legume crops: a review. Mol Biol Rep 2022; 49:5595-5609. [PMID: 35585381 DOI: 10.1007/s11033-022-07529-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Legumes are an imperative source of food and proteins across the globe. They also improve soil fertility through symbiotic nitrogen fixation (SNF). Genome editing (GE) is now a novel way of developing desirable traits in legume crops. Genome editing tools like clustered regularly interspaced short palindromic repeats (CRISPR) system permits a defined genome alteration to improve crop performance. This genome editing tool is reliable, cost-effective, and versatile, and it has to deepen in terms of use compared to other tools. Recently, many novel variations have drawn the attention of plant geneticists, and efforts are being made to develop trans-gene-free cultivars for ensuring biosafety measures. This review critically elaborates on the recent development in genome editing of major legumes crops. We hope this updated review will provide essential informations for the researchers working on legumes genome editing. In general, the CRISPR/Cas9 novel GE technique can be integrated with other techniques like omics approaches and next-generation tools to broaden the range of gene editing and develop any desired legumes traits. Regulatory ethics of CRISPR/Cas9 are also discussed.
Collapse
Affiliation(s)
- Adnan Rasheed
- Key Laboratory of Crops Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Aminah A Barqawi
- Department of Chemistry, Al-Leith University College, Umm Al Qura University, Makkah, Saudi Arabia
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Punjab, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Punjab, Pakistan.
| | - Daniyah H Bay
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maryam A Alahdal
- Biology Department Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia.
| |
Collapse
|
11
|
Hou Y, Zhang X, Sun X, Qin Q, Chen D, Jia M, Chen Y. Genetically modified rabbit models for cardiovascular medicine. Eur J Pharmacol 2022; 922:174890. [PMID: 35300995 DOI: 10.1016/j.ejphar.2022.174890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 01/19/2023]
Abstract
Genetically modified (GM) rabbits are outstanding animal models for studying human genetic and acquired diseases. As such, GM rabbits that express human genes have been extensively used as models of cardiovascular disease. Rabbits are genetically modified via prokaryotic microinjection. Through this process, genes are randomly integrated into the rabbit genome. Moreover, gene targeting in embryonic stem (ES) cells is a powerful tool for understanding gene function. However, rabbits lack stable ES cell lines. Therefore, ES-dependent gene targeting is not possible in rabbits. Nevertheless, the RNA interference technique is rapidly becoming a useful experimental tool that enables researchers to knock down specific gene expression, which leads to the genetic modification of rabbits. Recently, with the emergence of new genetic technology, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated protein 9 (CRISPR/Cas9), major breakthroughs have been made in rabbit gene targeting. Using these novel genetic techniques, researchers have successfully modified knockout (KO) rabbit models. In this paper, we aimed to review the recent advances in GM technology in rabbits and highlight their application as models for cardiovascular medicine.
Collapse
Affiliation(s)
- Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xia Sun
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
12
|
Abrosimova LA, Kuznetsov NA, Astafurova NA, Samsonova AR, Karpov AS, Perevyazova TA, Oretskaya TS, Fedorova OS, Kubareva EA. Kinetic Analysis of the Interaction of Nicking Endonuclease BspD6I with DNA. Biomolecules 2021; 11:1420. [PMID: 34680052 PMCID: PMC8533099 DOI: 10.3390/biom11101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/03/2022] Open
Abstract
Nicking endonucleases (NEs) are enzymes that incise only one strand of the duplex to produce a DNA molecule that is 'nicked' rather than cleaved in two. Since these precision tools are used in genetic engineering and genome editing, information about their mechanism of action at all stages of DNA recognition and phosphodiester bond hydrolysis is essential. For the first time, fast kinetics of the Nt.BspD6I interaction with DNA were studied by the stopped-flow technique, and changes of optical characteristics were registered for the enzyme or DNA molecules. The role of divalent metal cations was estimated at all steps of Nt.BspD6I-DNA complex formation. It was demonstrated that divalent metal ions are not required for the formation of a non-specific complex of the protein with DNA. Nt.BspD6I bound five-fold more efficiently to its recognition site in DNA than to a random DNA. DNA bending was confirmed during the specific binding of Nt.BspD6I to a substrate. The optimal size of Nt.BspD6I's binding site in DNA as determined in this work should be taken into account in methods of detection of nucleic acid sequences and/or even various base modifications by means of NEs.
Collapse
Affiliation(s)
- Liudmila A. Abrosimova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (N.A.A.); (A.S.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia;
| | - Natalia A. Astafurova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (N.A.A.); (A.S.K.)
| | | | - Andrey S. Karpov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (N.A.A.); (A.S.K.)
| | - Tatiana A. Perevyazova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str. 3, 142290 Puschino, Russia;
| | - Tatiana S. Oretskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (T.S.O.); (E.A.K.)
| | - Olga S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia;
| | - Elena A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (T.S.O.); (E.A.K.)
| |
Collapse
|
13
|
|
14
|
Bourges AC, Torres Montaguth OE, Tadesse W, Labesse G, Aertsen A, Royer CA, Declerck N. An oligomeric switch controls the Mrr-induced SOS response in E. coli. DNA Repair (Amst) 2020; 97:103009. [PMID: 33220536 DOI: 10.1016/j.dnarep.2020.103009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/05/2020] [Accepted: 11/01/2020] [Indexed: 11/26/2022]
Abstract
Mrr from Escherichia coli K12 is a type IV restriction endonuclease whose role is to recognize and cleave foreign methylated DNA. Beyond this protective role, Mrr can inflict chromosomal DNA damage that elicits the SOS response in the host cell upon heterologous expression of specific methyltransferases such as M.HhaII, or after exposure to high pressure (HP). Activation of Mrr in response to these perturbations involves an oligomeric switch that dissociates inactive homo-tetramers into active dimers. Here we used scanning number and brightness (sN&B) analysis to determine in vivo the stoichiometry of a constitutively active Mrr mutant predicted to be dimeric and examine other GFP-Mrr mutants compromised in their response to either M.HhaII activity or HP shock. We also observed in vitro the direct pressure-induced tetramer dissociation by HP fluorescence correlation spectroscopy of purified GFP-Mrr. To shed light on the linkages between subunit interactions and activity of Mrr and its variants, we built a structural model of the full-length tetramer bound to DNA. Similar to functionally related endonucleases, the conserved DNA cleavage domain would be sequestered by the DNA recognition domain in the Mrr inactive tetramer, dissociating into an enzymatically active dimer upon interaction with multiple DNA sites.
Collapse
Affiliation(s)
- Anaïs C Bourges
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090, Montpellier, France
| | | | - Wubishet Tadesse
- Department of Microbial and Molecular Systems, KU Leuven, B-3001, Leuven, Belgium
| | - Gilles Labesse
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090, Montpellier, France
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, B-3001, Leuven, Belgium
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Nathalie Declerck
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090, Montpellier, France; Département MICA, INRA, 78350 Jouy-en-Josas, France.
| |
Collapse
|
15
|
Duarte F, Déglon N. Genome Editing for CNS Disorders. Front Neurosci 2020; 14:579062. [PMID: 33192264 PMCID: PMC7642486 DOI: 10.3389/fnins.2020.579062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) disorders have a social and economic burden on modern societies, and the development of effective therapies is urgently required. Gene editing may prevent or cure a disease by inducing genetic changes at endogenous loci. Genome editing includes not only the insertion, deletion or replacement of nucleotides, but also the modulation of gene expression and epigenetic editing. Emerging technologies based on ZFs, TALEs, and CRISPR/Cas systems have extended the boundaries of genome manipulation and promoted genome editing approaches to the level of promising strategies for counteracting genetic diseases. The parallel development of efficient delivery systems has also increased our access to the CNS. In this review, we describe the various tools available for genome editing and summarize in vivo preclinical studies of CNS genome editing, whilst considering current limitations and alternative approaches to overcome some bottlenecks.
Collapse
Affiliation(s)
- Fábio Duarte
- Laboratory of Neurotherapies and NeuroModulation, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.,Laboratory of Neurotherapies and NeuroModulation, Neuroscience Research Center, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Nicole Déglon
- Laboratory of Neurotherapies and NeuroModulation, Department of Clinical Neurosciences, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.,Laboratory of Neurotherapies and NeuroModulation, Neuroscience Research Center, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
16
|
Hosseini N, Khanahmad H, Esfahani BN, Bandehpour M, Shariati L, Zahedi N, Kazemi B. Targeting of cholera toxin A ( ctxA) gene by zinc finger nuclease: pitfalls of using gene editing tools in prokaryotes. Res Pharm Sci 2020; 15:182-190. [PMID: 32582358 PMCID: PMC7306252 DOI: 10.4103/1735-5362.283818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/22/2019] [Accepted: 04/29/2020] [Indexed: 01/14/2023] Open
Abstract
Background and purpose: The study was launched to use zinc finger nuclease (ZFN) technology to disrupt the cholera toxin gene (ctxA) for inhibiting CT toxin production in Vibrio cholera (V. cholera). Experimental approach: An engineered ZFN was designed to target the catalytic site of the ctxA gene. The coding sequence of ZFN was cloned to pKD46, pTZ57R T/A vector, and E2-crimson plasmid and transformed to Escherichia coli (E. coli) Top10 and V. cholera. The efficiency of ZFN was evaluated by colony counting. Findings/Results: No expression was observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting in transformed E. coli. The ctxA gene sequencing did not show any mutation. Polymerase chain reaction on pKD46-ZFN plasmid had negative results. Transformation of E. coli Top10 with T/A vectors containing whole ZFN sequence led to 7 colonies all of which contained bacteria with self-ligated vector. Transformation with left array ZFN led to 24 colonies of which 6 contained bacteria with self-ligated vector and 18 of them contained bacteria with vector/left array. Transformation of V. cholera with E2-crimson vectors containing whole ZFN did not produce any colonies. Transformation with left array vectors led to 17 colonies containing bacteria with vector/left array. Left array protein band was captured using western blot assay. Conclusions and implications: ZFN might have off target on bacterial genome causing lethal double-strand DNA break due to lack of non-homologous end joining (NHEJ) mechanism. It is recommended to develop ZFNs against bacterial genes, engineered packaging host with NHEJ repair system is essential.
Collapse
Affiliation(s)
- Nafiseh Hosseini
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Bahram Nasr Esfahani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Laleh Shariati
- Biosensor Research Center, Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Nushin Zahedi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Bahram Kazemi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
17
|
Razzaq A, Saleem F, Kanwal M, Mustafa G, Yousaf S, Imran Arshad HM, Hameed MK, Khan MS, Joyia FA. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox. Int J Mol Sci 2019; 20:E4045. [PMID: 31430902 PMCID: PMC6720679 DOI: 10.3390/ijms20164045] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
Increasing agricultural productivity via modern breeding strategies is of prime interest to attain global food security. An array of biotic and abiotic stressors affect productivity as well as the quality of crop plants, and it is a primary need to develop crops with improved adaptability, high productivity, and resilience against these biotic/abiotic stressors. Conventional approaches to genetic engineering involve tedious procedures. State-of-the-art OMICS approaches reinforced with next-generation sequencing and the latest developments in genome editing tools have paved the way for targeted mutagenesis, opening new horizons for precise genome engineering. Various genome editing tools such as transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and meganucleases (MNs) have enabled plant scientists to manipulate desired genes in crop plants. However, these approaches are expensive and laborious involving complex procedures for successful editing. Conversely, CRISPR/Cas9 is an entrancing, easy-to-design, cost-effective, and versatile tool for precise and efficient plant genome editing. In recent years, the CRISPR/Cas9 system has emerged as a powerful tool for targeted mutagenesis, including single base substitution, multiplex gene editing, gene knockouts, and regulation of gene transcription in plants. Thus, CRISPR/Cas9-based genome editing has demonstrated great potential for crop improvement but regulation of genome-edited crops is still in its infancy. Here, we extensively reviewed the availability of CRISPR/Cas9 genome editing tools for plant biotechnologists to target desired genes and its vast applications in crop breeding research.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan
| | - Mehak Kanwal
- Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box 128, Faisalabad 38000, Pakistan
| | - Ghulam Mustafa
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan
| | - Sumaira Yousaf
- Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box 128, Faisalabad 38000, Pakistan
| | | | - Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Sarwar Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan
| | - Faiz Ahmad Joyia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan.
| |
Collapse
|
18
|
Zechiedrich L, Fogg JM. BIOPHYSICS MEETS GENE THERAPY: HOW EXPLORING SUPERCOILING-DEPENDENT STRUCTURAL CHANGES IN DNA LED TO THE DEVELOPMENT OF MINIVECTOR DNA. TECHNOLOGY AND INNOVATION 2019; 20:427-439. [PMID: 33815681 DOI: 10.21300/20.4.2019.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Supercoiling affects every aspect of DNA function (replication, transcription, repair, recombination, etc.), yet the vast majority of studies on DNA and crystal structures of the molecule utilize short linear duplex DNA, which cannot be supercoiled. To study how supercoiling drives DNA biology, we developed and patented methods to make milligram quantities of tiny supercoiled circles of DNA called minicircles. We used a collaborative and multidisciplinary approach, including computational simulations (both atomistic and coarse-grained), biochemical experimentation, and biophysical methods to study these minicircles. By determining the three-dimensional conformations of individual supercoiled DNA minicircles, we revealed the structural diversity of supercoiled DNA and its highly dynamic nature. We uncovered profound structural changes, including sequence-specific base-flipping (where the DNA base flips out into the solvent), bending, and denaturing in negatively supercoiled minicircles. Counterintuitively, exposed DNA bases emerged in the positively supercoiled minicircles, which may result from inside-out DNA (Pauling-like, or "P-DNA"). These structural changes strongly influence how enzymes interact with or act on DNA. We hypothesized that, because of their small size and lack of bacterial sequences, these small supercoiled DNA circles may be efficient at delivering DNA into cells for gene therapy applications. "Minivectors," as we named them for this application, have proven to have therapeutic potential. We discovered that minivectors efficiently transfect a wide range of cell types, including many clinically important cell lines that are refractory to transfection with conventional plasmid vectors. Minivectors can be aerosolized for delivery to lungs and transfect human cells in culture to express RNA or genes. Importantly, minivectors demonstrate no obvious vector-associated toxicity. Minivectors can be repeatedly delivered and are long-lasting without integrating into the genome. Requests from colleagues around the world for minicircle and minivector DNA revealed a demand for our invention. We successfully obtained start-up funding for Twister Biotech, Inc. to help fulfill this demand, providing DNA for those who needed it, with a long-term goal of developing human therapeutics. In summary, what started as a tool for studying DNA structure has taken us in new and unanticipated directions.
Collapse
Affiliation(s)
- Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan M Fogg
- Department of Molecular Virology and Microbiology, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
19
|
|
20
|
Porter SN, Levine RM, Pruett-Miller SM. A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. Compr Physiol 2019; 9:665-714. [PMID: 30873595 DOI: 10.1002/cphy.c180022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome engineering using programmable nucleases is a rapidly evolving technique that enables precise genetic manipulations within complex genomes. Although this technology first surfaced with the creation of meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases, CRISPR-Cas9 has been the most widely adopted platform because of its ease of use. This comprehensive review presents a basic overview of genome engineering and discusses the major technological advances in the field. In addition to nucleases, we discuss CRISPR-derived base editors and epigenetic modifiers. We also delve into practical applications of these tools, including creating custom-edited cell and animal models as well as performing genetic screens. Finally, we discuss the potential for therapeutic applications and ethical considerations related to employing this technology in humans. © 2019 American Physiological Society. Compr Physiol 9:665-714, 2019.
Collapse
Affiliation(s)
- Shaina N Porter
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shondra M Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
21
|
Onodera H, Shingu S, Ohnuma M, Horie T, Kihira M, Kusano H, Teramura H, Shimada H. Establishment of a conditional TALEN system using the translational enhancer dMac3 and an inducible promoter activated by glucocorticoid treatment to increase the frequency of targeted mutagenesis in plants. PLoS One 2018; 13:e0208959. [PMID: 30586438 PMCID: PMC6306166 DOI: 10.1371/journal.pone.0208959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 11/30/2022] Open
Abstract
Transcription activator-like effector nuclease (TALEN) is an artificial nuclease that causes DNA cleavage at the target site and induces few off-target reactions because of its high sequence specificity. Powerful and variable tools using TALENs can be used in practical applications and may facilitate the molecular breeding of many plant species. We have developed a convenient construction system for a plant TALEN vector named the Emerald Gateway TALEN system. In this study, we added new properties to this system, which led to an increase in the efficiency of targeted mutagenesis. Rice dMac3 is a translational enhancer that highly increases the efficiency of translation of the downstream ORF. We inserted dMac3 into the 5' untranslated region of the TALEN gene. In the cultured rice cells to which the TALEN gene was introduced, the frequency of targeted mutagenesis was highly increased compared with those altered using the conventional system. Next, the promoter for the TALEN gene was replaced with iPromoter, and its expression was stringently controlled by a GVG transcription factor that was activated in the presence of glucocorticoid. This conditional expression system worked effectively and led to a higher frequency of targeted mutagenesis than that by the constitutive expression system, while no mutagenesis was detected without glucocorticoid treatment. These results suggest that our system can be applied to genome editing to create the desired mutation.
Collapse
Affiliation(s)
- Hitomi Onodera
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo, Japan
| | - Saeko Shingu
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo, Japan
| | - Mariko Ohnuma
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo, Japan
| | - Takaaki Horie
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo, Japan
| | - Miho Kihira
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo, Japan
| | - Hiroaki Kusano
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo, Japan
| | - Hiroshi Teramura
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Tokyo, Japan
- * E-mail:
| |
Collapse
|
22
|
Lone BA, Karna SKL, Ahmad F, Shahi N, Pokharel YR. CRISPR/Cas9 System: A Bacterial Tailor for Genomic Engineering. GENETICS RESEARCH INTERNATIONAL 2018; 2018:3797214. [PMID: 30319822 PMCID: PMC6167567 DOI: 10.1155/2018/3797214] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/19/2018] [Indexed: 12/26/2022]
Abstract
Microbes use diverse defence strategies that allow them to withstand exposure to a variety of genome invaders such as bacteriophages and plasmids. One such defence strategy is the use of RNA guided endonuclease called CRISPR-associated (Cas) 9 protein. The Cas9 protein, derived from type II CRISPR/Cas system, has been adapted as a versatile tool for genome targeting and engineering due to its simplicity and high efficiency over the earlier tools such as ZFNs and TALENs. With recent advancements, CRISPR/Cas9 technology has emerged as a revolutionary tool for modulating the genome in living cells and inspires innovative translational applications in different fields. In this paper we review the developments and its potential uses in the CRISPR/Cas9 technology as well as recent advancements in genome engineering using CRISPR/Cas9.
Collapse
Affiliation(s)
- Bilal Ahmad Lone
- Faculty of Life science and Biotechnology, South Asian University, Akbar Bhawan Chanakyapuri, New Delhi 110021, India
| | - Shibendra Kumar Lal Karna
- Faculty of Life science and Biotechnology, South Asian University, Akbar Bhawan Chanakyapuri, New Delhi 110021, India
| | - Faiz Ahmad
- Faculty of Life science and Biotechnology, South Asian University, Akbar Bhawan Chanakyapuri, New Delhi 110021, India
| | - Nerina Shahi
- Faculty of Life science and Biotechnology, South Asian University, Akbar Bhawan Chanakyapuri, New Delhi 110021, India
| | - Yuba Raj Pokharel
- Faculty of Life science and Biotechnology, South Asian University, Akbar Bhawan Chanakyapuri, New Delhi 110021, India
| |
Collapse
|
23
|
Lee JG, Sung YH, Baek IJ. Generation of genetically-engineered animals using engineered endonucleases. Arch Pharm Res 2018; 41:885-897. [PMID: 29777358 PMCID: PMC6153862 DOI: 10.1007/s12272-018-1037-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
The key to successful drug discovery and development is to find the most suitable animal model of human diseases for the preclinical studies. The recent emergence of engineered endonucleases is allowing for efficient and precise genome editing, which can be used to develop potentially useful animal models for human diseases. In particular, zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat systems are revolutionizing the generation of diverse genetically-engineered experimental animals including mice, rats, rabbits, dogs, pigs, and even non-human primates that are commonly used for preclinical studies of the drug discovery. Here, we describe recent advances in engineered endonucleases and their application in various laboratory animals. We also discuss the importance of genome editing in animal models for more closely mimicking human diseases.
Collapse
Affiliation(s)
- Jong Geol Lee
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Young Hoon Sung
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Convergence Medicine, ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - In-Jeoung Baek
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea.
- Department of Convergence Medicine, ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Cho GY, Schaefer KA, Bassuk AG, Tsang SH, Mahajan VB. CRISPR GENOME SURGERY IN THE RETINA IN LIGHT OF OFF-TARGETING. Retina 2018; 38:1443-1455. [PMID: 29746416 PMCID: PMC6054556 DOI: 10.1097/iae.0000000000002197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Recent concerns regarding the clinical utilization of clustered regularly interspaced short palindromic repeats (CRISPR) involve uncertainties about the potential detrimental effects that many arise due to unintended genetic changes, as in off-target mutagenesis, during CRISPR genome surgery. This review gives an overview of off-targeting detection methods and CRISPR's place in the clinical setting, specifically in the field of ophthalmology. RESULTS As CRISPR utilization in the laboratory setting has increased, knowledge regarding CRISPR mechanisms including its off-target effects has also increased. Although a perfect method for achieving 100% specificity is yet to be determined, the past few years have seen many developments in off-targeting detection and in increasing efficacy of CRISPR tools. CONCLUSION The CRISPR system has high potential to be an invaluable therapeutic tool as it has the ability to modify and repair pathogenic retinal lesions. Although it is not yet a perfect system, with further efforts to improve its specificity and efficacy along with careful screening of off-target mutations, CRISPR-mediated genome surgery potential can become maximized and applied to patients.
Collapse
Affiliation(s)
- Galaxy Y. Cho
- Institute of Human Nutrition, Columbia Stem Cell Initiative, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Jonas Children’s Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, New York, NY, USA
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Kellie A. Schaefer
- Omics Lab, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | | | - Stephen H. Tsang
- Institute of Human Nutrition, Columbia Stem Cell Initiative, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Jonas Children’s Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, New York, NY, USA
- Department of Ophthalmology, Columbia University, New York, NY, USA
- Department of Cell Biology & Pathology, Columbia University, New York, NY, USA
| | - Vinit B. Mahajan
- Omics Lab, Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| |
Collapse
|
25
|
Yu L, Tian X, Gao C, Wu P, Wang L, Feng B, Li X, Wang H, Ma D, Hu Z. Genome editing for the treatment of tumorigenic viral infections and virus-related carcinomas. Front Med 2018; 12:497-508. [PMID: 29651774 PMCID: PMC7088620 DOI: 10.1007/s11684-017-0572-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/22/2017] [Indexed: 02/06/2023]
Abstract
Viral infections cause at least 10%-15% of all human carcinomas. Over the last century, the elucidation of viral oncogenic roles in many cancer types has provided fundamental knowledge on carcinogenetic mechanisms and established a basis for the early intervention of virus-related cancers. Meanwhile, rapidly evolving genome-editing techniques targeting viral DNA/RNA have emerged as novel therapeutic strategies for treating virus-related carcinogenesis and have begun showing promising results. This review discusses the recent advances of genome-editing tools for treating tumorigenic viruses and their corresponding cancers, the challenges that must be overcome before clinically applying such genome-editing technologies, and more importantly, the potential solutions to these challenges.
Collapse
Affiliation(s)
- Lan Yu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Gynecology and Obstetrics, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xun Tian
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chun Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liming Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bei Feng
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomin Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ding Ma
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zheng Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Gynecological Oncology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
26
|
Huang N, Huang Z, Gao M, Luo Z, Zhou F, Liu L, Xiao Q, Wang X, Feng W. Induction of apoptosis in imatinib sensitive and resistant chronic myeloid leukemia cells by efficient disruption of bcr-abl oncogene with zinc finger nucleases. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:62. [PMID: 29554925 PMCID: PMC5859405 DOI: 10.1186/s13046-018-0732-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
Background The bcr-abl fusion gene is the pathological origin of chronic myeloid leukemia (CML) and plays a critical role in the resistance of imatinib. Thus, bcr-abl disruption-based novel therapeutic strategy may warrant exploration. In our study, we were surprised to find that the characteristics of bcr-abl sequences met the design requirements of zinc finger nucleases (ZFNs). Methods We constructed the ZFNs targeting bcr-abl with high specificity through simple modular assembly approach. Western blotting was conducted to detect the expression of BCR-ABL and phosphorylation of its downstream STAT5, ERK and CRKL in CML cells. CCK8 assay, colony-forming assay and flow cytometry (FCM) were used to evaluate the effect of the ZFNs on the viablity and apoptosis of CML cells and CML CD34+ cells. Moreover, mice model was used to determine the ability of ZFNs in disrupting the leukemogenesis of bcr-abl in vivo. Results The ZFNs skillfully mediated 8-base NotI enzyme cutting site addition in bcr-abl gene of imatinib sensitive and resistant CML cells by homology-directed repair (HDR), which led to a stop codon and terminated the translation of BCR-ABL protein. As expected, the disruption of bcr-abl gene induced cell apoptosis and inhibited cell proliferation. Notably, we obtained similar result in CD34+ cells from CML patients. Moreover, the ZFNs significantly reduced the oncogenicity of CML cells in mice. Conclusion These results reveal that the bcr-abl gene disruption based on ZFNs may provide a treatment choice for imatinib resistant or intolerant CML patients. Electronic supplementary material The online version of this article (10.1186/s13046-018-0732-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ningshu Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Zhenglan Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Miao Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhenhong Luo
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Fangzhu Zhou
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qing Xiao
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenli Feng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
27
|
Huang N, Huang Z, Gao M, Luo Z, Zhou F, Liu L, Xiao Q, Wang X, Feng W. Induction of apoptosis in imatinib sensitive and resistant chronic myeloid leukemia cells by efficient disruption of bcr-abl oncogene with zinc finger nucleases. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018. [PMID: 29554925 DOI: 10.1186/s13046-018-0732-4.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The bcr-abl fusion gene is the pathological origin of chronic myeloid leukemia (CML) and plays a critical role in the resistance of imatinib. Thus, bcr-abl disruption-based novel therapeutic strategy may warrant exploration. In our study, we were surprised to find that the characteristics of bcr-abl sequences met the design requirements of zinc finger nucleases (ZFNs). METHODS We constructed the ZFNs targeting bcr-abl with high specificity through simple modular assembly approach. Western blotting was conducted to detect the expression of BCR-ABL and phosphorylation of its downstream STAT5, ERK and CRKL in CML cells. CCK8 assay, colony-forming assay and flow cytometry (FCM) were used to evaluate the effect of the ZFNs on the viablity and apoptosis of CML cells and CML CD34+ cells. Moreover, mice model was used to determine the ability of ZFNs in disrupting the leukemogenesis of bcr-abl in vivo. RESULTS The ZFNs skillfully mediated 8-base NotI enzyme cutting site addition in bcr-abl gene of imatinib sensitive and resistant CML cells by homology-directed repair (HDR), which led to a stop codon and terminated the translation of BCR-ABL protein. As expected, the disruption of bcr-abl gene induced cell apoptosis and inhibited cell proliferation. Notably, we obtained similar result in CD34+ cells from CML patients. Moreover, the ZFNs significantly reduced the oncogenicity of CML cells in mice. CONCLUSION These results reveal that the bcr-abl gene disruption based on ZFNs may provide a treatment choice for imatinib resistant or intolerant CML patients.
Collapse
Affiliation(s)
- Ningshu Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Zhenglan Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Miao Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhenhong Luo
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Fangzhu Zhou
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qing Xiao
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenli Feng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
28
|
Abstract
The system-level identification and analysis of molecular networks in mammals can be accelerated by 'next-generation' genetics, defined as genetics that does not require crossing of multiple generations of animals in order to achieve the desired genetic makeup. We have established a highly efficient procedure for producing knock-in (KI) mice within a single generation, by optimizing the genome-editing protocol for KI embryonic stem (ES) cells and the protocol for the generation of fully ES-cell-derived mice (ES mice). Using this protocol, the production of chimeric mice is eliminated, and, therefore, there is no requirement for the crossing of chimeric mice to produce mice that carry the KI gene in all cells of the body. Our procedure thus shortens the time required to produce KI ES mice from about a year to ∼3 months. Various kinds of KI ES mice can be produced with a minimized amount of work, facilitating the elucidation of organism-level phenomena using a systems biology approach. In this report, we describe the basic technologies and protocols for this procedure, and discuss the current challenges for next-generation mammalian genetics in organism-level systems biology studies.
Collapse
|
29
|
Trevisan M, Palù G, Barzon L. Genome editing technologies to fight infectious diseases. Expert Rev Anti Infect Ther 2017; 15:1001-1013. [PMID: 29090592 DOI: 10.1080/14787210.2017.1400379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Genome editing by programmable nucleases represents a promising tool that could be exploited to develop new therapeutic strategies to fight infectious diseases. These nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) and homing endonucleases, are molecular scissors that can be targeted at predetermined loci in order to modify the genome sequence of an organism. Areas covered: By perturbing genomic DNA at predetermined loci, programmable nucleases can be used as antiviral and antimicrobial treatment. This approach includes targeting of essential viral genes or viral sequences able, once mutated, to inhibit viral replication; repurposing of CRISPR-Cas9 system for lethal self-targeting of bacteria; targeting antibiotic-resistance and virulence genes in bacteria, fungi, and parasites; engineering arthropod vectors to prevent vector-borne infections. Expert commentary: While progress has been done in demonstrating the feasibility of using genome editing as antimicrobial strategy, there are still many hurdles to overcome, such as the risk of off-target mutations, the raising of escape mutants, and the inefficiency of delivery methods, before translating results from preclinical studies into clinical applications.
Collapse
Affiliation(s)
- Marta Trevisan
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Giorgio Palù
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Luisa Barzon
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| |
Collapse
|
30
|
Yadav R, Kumar V, Baweja M, Shukla P. Gene editing and genetic engineering approaches for advanced probiotics: A review. Crit Rev Food Sci Nutr 2017; 58:1735-1746. [PMID: 28071925 DOI: 10.1080/10408398.2016.1274877] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The applications of probiotics are significant and thus resulted in need of genome analysis of probiotic strains. Various omics methods and systems biology approaches enables us to understand and optimize the metabolic processes. These techniques have increased the researcher's attention towards gut microbiome and provided a new source for the revelation of uncharacterized biosynthetic pathways which enables novel metabolic engineering approaches. In recent years, the broad and quantitative analysis of modified strains relies on systems biology tools such as in silico design which are commonly used methods for improving strain performance. The genetic manipulation of probiotic microorganisms is crucial for defining their role in intestinal microbiota and exploring their beneficial properties. This review describes an overview of gene editing and systems biology approaches, highlighting the advent of omics methods which allows the study of new routes for studying probiotic bacteria. We have also summarized gene editing tools like TALEN, ZFNs and CRISPR-Cas that edits or cleave the specific target DNA. Furthermore, in this review an overview of proposed design of advanced customized probiotic is also hypothesized to improvise the probiotics.
Collapse
Affiliation(s)
- Ruby Yadav
- a Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , Haryana , India
| | - Vishal Kumar
- a Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , Haryana , India
| | - Mehak Baweja
- a Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , Haryana , India
| | - Pratyoosh Shukla
- a Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , Haryana , India
| |
Collapse
|
31
|
Abstract
Organism-level systems biology in mammals aims to identify, analyze, control, and design molecular and cellular networks executing various biological functions in mammals. In particular, system-level identification and analysis of molecular and cellular networks can be accelerated by next-generation mammalian genetics. Mammalian genetics without crossing, where all production and phenotyping studies of genome-edited animals are completed within a single generation drastically reduce the time, space, and effort of conducting the systems research. Next-generation mammalian genetics is based on recent technological advancements in genome editing and developmental engineering. The process begins with introduction of double-strand breaks into genomic DNA by using site-specific endonucleases, which results in highly efficient genome editing in mammalian zygotes or embryonic stem cells. By using nuclease-mediated genome editing in zygotes, or ~100% embryonic stem cell-derived mouse technology, whole-body knock-out and knock-in mice can be produced within a single generation. These emerging technologies allow us to produce multiple knock-out or knock-in strains in high-throughput manner. In this review, we discuss the basic concepts and related technologies as well as current challenges and future opportunities for next-generation mammalian genetics in organism-level systems biology.
Collapse
Affiliation(s)
- Etsuo A Susaki
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, , Bunkyo-ku, Tokyo 113-0033 Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, , Suita, Osaka 565-0871 Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, , Kawaguchi, Saitama 332-0012 Japan
| | - Hideki Ukai
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, , Suita, Osaka 565-0871 Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, , Bunkyo-ku, Tokyo 113-0033 Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, , Suita, Osaka 565-0871 Japan
| |
Collapse
|
32
|
Chen KY, Knoepfler PS. To CRISPR and beyond: the evolution of genome editing in stem cells. Regen Med 2016; 11:801-816. [PMID: 27905217 PMCID: PMC5221123 DOI: 10.2217/rme-2016-0107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/11/2016] [Indexed: 12/17/2022] Open
Abstract
The goal of editing the genomes of stem cells to generate model organisms and cell lines for genetic and biological studies has been pursued for decades. There is also exciting potential for future clinical impact in humans. While recent, rapid advances in targeted nuclease technologies have led to unprecedented accessibility and ease of gene editing, biology has benefited from past directed gene modification via homologous recombination, gene traps and other transgenic methodologies. Here we review the history of genome editing in stem cells (including via zinc finger nucleases, transcription activator-like effector nucleases and CRISPR-Cas9), discuss recent developments leading to the implementation of stem cell gene therapies in clinical trials and consider the prospects for future advances in this rapidly evolving field.
Collapse
Affiliation(s)
- Kuang-Yui Chen
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA, USA
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA, USA
- Genome Center, University of California Davis, Davis, CA, USA
| | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA, USA
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, CA, USA
- Genome Center, University of California Davis, Davis, CA, USA
| |
Collapse
|
33
|
Hilioti Z, Ganopoulos I, Ajith S, Bossis I, Tsaftaris A. A novel arrangement of zinc finger nuclease system for in vivo targeted genome engineering: the tomato LEC1-LIKE4 gene case. PLANT CELL REPORTS 2016; 35:2241-2255. [PMID: 27473525 DOI: 10.1007/s00299-016-2031-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
A selection-free, highly efficient targeted mutagenesis approach based on a novel ZFN monomer arrangement for genome engineering in tomato reveals plant trait modifications. How to achieve precise gene targeting in plants and especially in crops remains a long-sought goal for elucidating gene function and advancing molecular breeding. To address this issue, zinc finger nuclease (ZFN)-based technology was developed for the Solanum lycopersicum seed system. A ZFN architecture design with an intronic sequence between the two DNA recognition sites was evaluated for its efficiency in targeted gene mutagenesis. Custom engineered ZFNs for the developmental regulator LEAFY-COTYLEDON1-LIKE4 (L1L4) coding for the β subunit of nuclear factor Y, when transiently expressed in tomato seeds, cleaved the target site and stimulated imperfect repair driven by nonhomologous end-joining, thus, introducing mutations into the endogenous target site. The successful in planta application of the ZFN platform resulted in L1L4 mutations which conferred heterochronic phenotypes during development. Our results revealed that sequence changes upstream of the DNA binding domain of L1L4 can lead to phenotypic diversity including fruit organ. These results underscore the utility of engineered ZFN approach in targeted mutagenesis of tomato plant which may accelerate translational research and tomato breeding.
Collapse
Affiliation(s)
- Zoe Hilioti
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, 57001, Greece.
| | - Ioannis Ganopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, 57001, Greece
| | - Sabna Ajith
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, 57001, Greece
| | - Ioannis Bossis
- Animal Science Department, Agricultural University of Athens, Athens, 11855, Greece
| | - Athanasios Tsaftaris
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thermi, Thessaloniki, 57001, Greece
| |
Collapse
|
34
|
Kumar V, Baweja M, Singh PK, Shukla P. Recent Developments in Systems Biology and Metabolic Engineering of Plant-Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:1421. [PMID: 27725824 PMCID: PMC5035732 DOI: 10.3389/fpls.2016.01421] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/06/2016] [Indexed: 05/07/2023]
Abstract
Microorganisms play a crucial role in the sustainability of the various ecosystems. The characterization of various interactions between microorganisms and other biotic factors is a necessary footstep to understand the association and functions of microbial communities. Among the different microbial interactions in an ecosystem, plant-microbe interaction plays an important role to balance the ecosystem. The present review explores plant-microbe interactions using gene editing and system biology tools toward the comprehension in improvement of plant traits. Further, system biology tools like FBA (flux balance analysis), OptKnock, and constraint-based modeling helps in understanding such interactions as a whole. In addition, various gene editing tools have been summarized and a strategy has been hypothesized for the development of disease free plants. Furthermore, we have tried to summarize the predictions through data retrieved from various types of sources such as high throughput sequencing data (e.g., single nucleotide polymorphism detection, RNA-seq, proteomics) and metabolic models have been reconstructed from such sequences for species communities. It is well known fact that systems biology approaches and modeling of biological networks will enable us to learn the insight of such network and will also help further in understanding these interactions.
Collapse
Affiliation(s)
| | | | | | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| |
Collapse
|
35
|
Peculiarities of the interaction of the restriction endonuclease BspD6I with DNA containing its recognition site. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1072-1082. [PMID: 27216152 DOI: 10.1016/j.bbapap.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/08/2016] [Accepted: 05/19/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nicking endonucleases are enzymes that recognize specific sites in double-stranded DNA and cleave only one strand at a predetermined position. These enzymes are involved in DNA replication and repair; they can also function as subunits of bacterial heterodimeric restriction endonucleases. One example of such a proteins is the restriction endonuclease BspD6I (R.BspD6I) from Bacillus species strain D6, which consists of the large subunit - nicking endonuclease BspD6I (Nt.BspD6I), and the small subunit (ss.BspD6I). Nt.BspD6I can function independently. Similar enzymes are now widely used in numerous biotechnological applications. The aim of this study was to investigate the fundamental properties of two subunits of R.BspD6I and their interdependence in the course of R.BspD6I activity. METHODS The binding and hydrolysis of DNA duplexes by R.BspD6I are primary analyzed by gel electrophoresis. To elucidate the difference between Nt.BspD6I interaction with the substrate and product of hydrolysis, the thickness shear mode acoustic method is used. RESULTS AND CONCLUSIONS The thermodynamic and kinetic parameters of the Nt.BspD6I interaction with DNA are determined. For the first time we demonstrated that Nt.BspD6I bends the DNA during complex formation. Nt.BspD6I is able to form complexes with the product nicked in the top strand and ss.BspD6I cleaves the bottom strand of the DNA consecutively. Furthermore, the influence of dA methylation in the R.BspD6I recognition site on ss.BspD6I activity is analyzed. GENERAL SIGNIFICANCE The obtained results provide evidence that Nt.BspD6I coordinates the activity of R.BspD6I by strictly coupling of the bottom strand cleavage by ss.BspD6I to the top strand cleavage.
Collapse
|
36
|
Hung SSC, McCaughey T, Swann O, Pébay A, Hewitt AW. Genome engineering in ophthalmology: Application of CRISPR/Cas to the treatment of eye disease. Prog Retin Eye Res 2016; 53:1-20. [PMID: 27181583 DOI: 10.1016/j.preteyeres.2016.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/30/2016] [Accepted: 05/04/2016] [Indexed: 12/12/2022]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) and CRISPR-associated protein (Cas) system has enabled an accurate and efficient means to edit the human genome. Rapid advances in this technology could results in imminent clinical application, and with favourable anatomical and immunological profiles, ophthalmic disease will be at the forefront of such work. There have been a number of breakthroughs improving the specificity and efficacy of CRISPR/Cas-mediated genome editing. Similarly, better methods to identify off-target cleavage sites have also been developed. With the impending clinical utility of CRISPR/Cas technology, complex ethical issues related to the regulation and management of the precise applications of human gene editing must be considered. This review discusses the current progress and recent breakthroughs in CRISPR/Cas-based gene engineering, and outlines some of the technical issues that must be addressed before gene correction, be it in vivo or in vitro, is integrated into ophthalmic care. We outline a clinical pipeline for CRISPR-based treatments of inherited eye diseases and provide an overview of the important ethical implications of gene editing and how these may influence the future of this technology.
Collapse
Affiliation(s)
- Sandy S C Hung
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Tristan McCaughey
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Surgery, Monash University, Victoria, Australia
| | - Olivia Swann
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Australia
| | - Alice Pébay
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Australia.
| |
Collapse
|
37
|
Salient Features of Endonuclease Platforms for Therapeutic Genome Editing. Mol Ther 2016; 24:422-9. [PMID: 26796671 DOI: 10.1038/mt.2016.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Emerging gene-editing technologies are nearing a revolutionary phase in genetic medicine: precisely modifying or repairing causal genetic defects. This may include any number of DNA sequence manipulations, such as knocking out a deleterious gene, introducing a particular mutation, or directly repairing a defective sequence by site-specific recombination. All of these edits can currently be achieved via programmable rare-cutting endonucleases to create targeted DNA breaks that can engage and exploit endogenous DNA repair pathways to impart site-specific genetic changes. Over the past decade, several distinct technologies for introducing site-specific DNA breaks have been developed, yet the different biological origins of these gene-editing technologies bring along inherent differences in parameters that impact clinical implementation. This review aims to provide an accessible overview of the various endonuclease-based gene-editing platforms, highlighting the strengths and weakness of each with respect to therapeutic applications.
Collapse
|
38
|
Lu JW, Ho YJ, Yang YJ, Liao HA, Ciou SC, Lin LI, Ou DL. Zebrafish as a disease model for studying human hepatocellular carcinoma. World J Gastroenterol 2015; 21:12042-12058. [PMID: 26576090 PMCID: PMC4641123 DOI: 10.3748/wjg.v21.i42.12042] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/28/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the world’s most common cancers and the second leading cause of cancer deaths. Hepatocellular carcinoma (HCC), a primary hepatic cancer, accounts for 90%-95% of liver cancer cases. The pathogenesis of HCC consists of a stepwise process of liver damage that extends over decades, due to hepatitis, fatty liver, fibrosis, and cirrhosis before developing fully into HCC. Multiple risk factors are highly correlated with HCC, including infection with the hepatitis B or C viruses, alcohol abuse, aflatoxin exposure, and metabolic diseases. Over the last decade, genetic alterations, which include the regulation of multiple oncogenes or tumor suppressor genes and the activation of tumorigenesis-related pathways, have also been identified as important factors in HCC. Recently, zebrafish have become an important living vertebrate model organism, especially for translational medical research. In studies focusing on the biology of cancer, carcinogen induced tumors in zebrafish were found to have many similarities to human tumors. Several zebrafish models have therefore been developed to provide insight into the pathogenesis of liver cancer and the related drug discovery and toxicology, and to enable the evaluation of novel small-molecule inhibitors. This review will focus on illustrative examples involving the application of zebrafish models to the study of human liver disease and HCC, through transgenesis, genome editing technology, xenografts, drug discovery, and drug-induced toxic liver injury.
Collapse
|
39
|
Schaeffer SM, Nakata PA. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:130-42. [PMID: 26475194 DOI: 10.1016/j.plantsci.2015.09.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 05/22/2023]
Abstract
The CRISPR/Cas9 genome engineering system has ignited and swept through the scientific community like wildfire. Owing largely to its efficiency, specificity, and flexibility, the CRISPR/Cas9 system has quickly become the preferred genome-editing tool of plant scientists. In plants, much of the early CRISPR/Cas9 work has been limited to proof of concept and functional studies in model systems. These studies, along with those in other fields of biology, have led to the development of several utilities of CRISPR/Cas9 beyond single gene editing. Such utilities include multiplexing for inducing multiple cleavage events, controlling gene expression, and site specific transgene insertion. With much of the conceptual CRISPR/Cas9 work nearly complete, plant researchers are beginning to apply this gene editing technology for crop trait improvement. Before rational strategies can be designed to implement this technology to engineer a wide array of crops there is a need to expand the availability of crop-specific vectors, genome resources, and transformation protocols. We anticipate that these challenges will be met along with the continued evolution of the CRISPR/Cas9 system particularly in the areas of manipulation of large genomic regions, transgene-free genetic modification, development of breeding resources, discovery of gene function, and improvements upon CRISPR/Cas9 components. The CRISPR/Cas9 editing system appears poised to transform crop trait improvement.
Collapse
Affiliation(s)
- Scott M Schaeffer
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030-2600, United States
| | - Paul A Nakata
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030-2600, United States.
| |
Collapse
|
40
|
Chandrasegaran S, Carroll D. Origins of Programmable Nucleases for Genome Engineering. J Mol Biol 2015; 428:963-89. [PMID: 26506267 DOI: 10.1016/j.jmb.2015.10.014] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023]
Abstract
Genome engineering with programmable nucleases depends on cellular responses to a targeted double-strand break (DSB). The first truly targetable reagents were the zinc finger nucleases (ZFNs) showing that arbitrary DNA sequences could be addressed for cleavage by protein engineering, ushering in the breakthrough in genome manipulation. ZFNs resulted from basic research on zinc finger proteins and the FokI restriction enzyme (which revealed a bipartite structure with a separable DNA-binding domain and a non-specific cleavage domain). Studies on the mechanism of cleavage by 3-finger ZFNs established that the preferred substrates were paired binding sites, which doubled the size of the target sequence recognition from 9 to 18bp, long enough to specify a unique genomic locus in plant and mammalian cells. Soon afterwards, a ZFN-induced DSB was shown to stimulate homologous recombination in cells. Transcription activator-like effector nucleases (TALENs) that are based on bacterial TALEs fused to the FokI cleavage domain expanded this capability. The fact that ZFNs and TALENs have been used for genome modification of more than 40 different organisms and cell types attests to the success of protein engineering. The most recent technology platform for delivering a targeted DSB to cellular genomes is that of the RNA-guided nucleases, which are based on the naturally occurring Type II prokaryotic CRISPR-Cas9 system. Unlike ZFNs and TALENs that use protein motifs for DNA sequence recognition, CRISPR-Cas9 depends on RNA-DNA recognition. The advantages of the CRISPR-Cas9 system-the ease of RNA design for new targets and the dependence on a single, constant Cas9 protein-have led to its wide adoption by research laboratories around the world. These technology platforms have equipped scientists with an unprecedented ability to modify cells and organisms almost at will, with wide-ranging implications across biology and medicine. However, these nucleases have also been shown to cut at off-target sites with mutagenic consequences. Therefore, issues such as efficacy, specificity and delivery are likely to drive selection of reagents for particular purposes. Human therapeutic applications of these technologies will ultimately depend on risk versus benefit analysis and informed consent.
Collapse
Affiliation(s)
- Srinivasan Chandrasegaran
- Department of Environmental Health Sciences, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
41
|
Abstract
Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances.
Collapse
Affiliation(s)
- Isaac B Hilton
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA; Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
42
|
Abstract
Over the last few years, the technology to create targeted knockout and knockin zebrafish animals has exploded. We have gained the ability to create targeted knockouts through the use of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR associated system (CRISPR/Cas). Furthermore, using the high-efficiency TALEN system, we were able to create knockin zebrafish using a single-stranded DNA (ssDNA) protocol described here. Through the use of these technologies, the zebrafish has become a valuable vertebrate model and an excellent bridge between the invertebrate and mammalian model systems for the study of human disease.
Collapse
|
43
|
Zou B, Mittal R, Grati M, Lu Z, Shu Y, Tao Y, Feng Y, Xie D, Kong W, Yang S, Chen ZY, Liu X. The application of genome editing in studying hearing loss. Hear Res 2015; 327:102-8. [PMID: 25987504 DOI: 10.1016/j.heares.2015.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/06/2015] [Accepted: 04/29/2015] [Indexed: 12/26/2022]
Abstract
Targeted genome editing mediated by clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) technology has emerged as one of the most powerful tools to study gene functions, and with potential to treat genetic disorders. Hearing loss is one of the most common sensory disorders, affecting approximately 1 in 500 newborns with no treatment. Mutations of inner ear genes contribute to the largest portion of genetic deafness. The simplicity and robustness of CRISPR/Cas9-directed genome editing in human cells and model organisms such as zebrafish, mice and primates make it a promising technology in hearing research. With CRISPR/Cas9 technology, functions of inner ear genes can be studied efficiently by the disruption of normal gene alleles through non-homologous-end-joining (NHEJ) mechanism. For genetic hearing loss, CRISPR/Cas9 has potential to repair gene mutations by homology-directed-repair (HDR) or to disrupt dominant mutations by NHEJ, which could restore hearing. Our recent work has shown CRISPR/Cas9-mediated genome editing can be efficiently performed in the mammalian inner ear in vivo. Thus, application of CRISPR/Cas9 in hearing research will open up new avenues for understanding the pathology of genetic hearing loss and provide new routes in the development of treatment to restore hearing. In this review, we describe major methodologies currently used for genome editing. We will highlight applications of these technologies in studies of genetic disorders and discuss issues pertaining to applications of CRISPR/Cas9 in auditory systems implicated in genetic hearing loss.
Collapse
Affiliation(s)
- Bing Zou
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zhongmin Lu
- Department of Biology, University of Miami, Miami, FL 33146, USA
| | - Yilai Shu
- Department of Otology and Laryngology, Harvard Medical School and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston 02114, USA; Department of Otology and Skull Base Surgery, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong Tao
- Department of Otology and Laryngology, Harvard Medical School and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston 02114, USA; Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youg Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dinghua Xie
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Weijia Kong
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
| | - Zheng-Yi Chen
- Department of Otology and Laryngology, Harvard Medical School and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston 02114, USA.
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital Central South University, Changsha, Hunan, China; Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
44
|
Jabalameli HR, Zahednasab H, Karimi-Moghaddam A, Jabalameli MR. Zinc finger nuclease technology: Advances and obstacles in modelling and treating genetic disorders. Gene 2015; 558:1-5. [DOI: 10.1016/j.gene.2014.12.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 12/09/2014] [Accepted: 12/19/2014] [Indexed: 12/23/2022]
|
45
|
Lundin S, Jemt A, Terje-Hegge F, Foam N, Pettersson E, Käller M, Wirta V, Lexow P, Lundeberg J. Endonuclease specificity and sequence dependence of type IIS restriction enzymes. PLoS One 2015; 10:e0117059. [PMID: 25629514 PMCID: PMC4309577 DOI: 10.1371/journal.pone.0117059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/17/2014] [Indexed: 11/23/2022] Open
Abstract
Restriction enzymes that recognize specific sequences but cleave unknown sequence outside the recognition site are extensively utilized tools in molecular biology. Despite this, systematic functional categorization of cleavage performance has largely been lacking. We established a simple and automatable model system to assay cleavage distance variation (termed slippage) and the sequence dependence thereof. We coupled this to massively parallel sequencing in order to provide sensitive and accurate measurement. With this system 14 enzymes were assayed (AcuI, BbvI, BpmI, BpuEI, BseRI, BsgI, Eco57I, Eco57MI, EcoP15I, FauI, FokI, GsuI, MmeI and SmuI). We report significant variation of slippage ranging from 1–54%, variations in sequence context dependence, as well as variation between isoschizomers. We believe this largely overlooked property of enzymes with shifted cleavage would benefit from further large scale classification and engineering efforts seeking to improve performance. The gained insights of in-vitro performance may also aid the in-vivo understanding of these enzymes.
Collapse
Affiliation(s)
- Sverker Lundin
- Science for Life Laboratory, KTH, Gene Technology, Solna, 171 65, Sweden
| | - Anders Jemt
- Science for Life Laboratory, KTH, Gene Technology, Solna, 171 65, Sweden
| | | | | | | | | | | | | | - Joakim Lundeberg
- Science for Life Laboratory, KTH, Gene Technology, Solna, 171 65, Sweden
- * E-mail:
| |
Collapse
|
46
|
Ul Ain Q, Chung JY, Kim YH. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release 2014; 205:120-7. [PMID: 25553825 DOI: 10.1016/j.jconrel.2014.12.036] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/19/2014] [Accepted: 12/24/2014] [Indexed: 12/14/2022]
Abstract
Gene therapy by engineered nucleases is a genetic intervention being investigated for curing the hereditary disorders by targeting selected genes with specific nucleotides for establishment, suppression, abolishment of a function or correction of mutation. Here, we review the fast developing technology of targeted genome engineering using site specific programmable nucleases zinc finger nucleases (ZFNs), transcription activator like nucleases (TALENs) and cluster regulatory interspaced short palindromic repeat/CRISPR associated proteins (CRISPR/Cas) based RNA-guided DNA endonucleases (RGENs) and their different characteristics including pros and cons of genome modifications by these nucleases. We have further discussed different types of delivery methods to induce gene editing, novel development in genetic engineering other than nucleases and future prospects.
Collapse
Affiliation(s)
- Qurrat Ul Ain
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791 Seoul, Republic of Korea
| | - Jee Young Chung
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791 Seoul, Republic of Korea
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791 Seoul, Republic of Korea.
| |
Collapse
|
47
|
Gartzke D, Delzer J, Laplanche L, Uchida Y, Hoshi Y, Tachikawa M, Terasaki T, Sydor J, Fricker G. Genomic Knockout of Endogenous Canine P-Glycoprotein in Wild-Type, Human P-Glycoprotein and Human BCRP Transfected MDCKII Cell Lines by Zinc Finger Nucleases. Pharm Res 2014; 32:2060-71. [DOI: 10.1007/s11095-014-1599-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023]
|
48
|
Horton JR, Wang H, Mabuchi MY, Zhang X, Roberts RJ, Zheng Y, Wilson GG, Cheng X. Modification-dependent restriction endonuclease, MspJI, flips 5-methylcytosine out of the DNA helix. Nucleic Acids Res 2014; 42:12092-101. [PMID: 25262349 PMCID: PMC4231741 DOI: 10.1093/nar/gku871] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
MspJI belongs to a family of restriction enzymes that cleave DNA containing 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC). MspJI is specific for the sequence 5(h)mC-N-N-G or A and cleaves with some variability 9/13 nucleotides downstream. Earlier, we reported the crystal structure of MspJI without DNA and proposed how it might recognize this sequence and catalyze cleavage. Here we report its co-crystal structure with a 27-base pair oligonucleotide containing 5mC. This structure confirms that MspJI acts as a homotetramer and that the modified cytosine is flipped from the DNA helix into an SRA-like-binding pocket. We expected the structure to reveal two DNA molecules bound specifically to the tetramer and engaged with the enzyme's two DNA-cleavage sites. A coincidence of crystal packing precluded this organization, however. We found that each DNA molecule interacted with two adjacent tetramers, binding one specifically and the other non-specifically. The latter interaction, which prevented cleavage-site engagement, also involved base flipping and might represent the sequence-interrogation phase that precedes specific recognition. MspJI is unusual in that DNA molecules are recognized and cleaved by different subunits. Such interchange of function might explain how other complex multimeric restriction enzymes act.
Collapse
Affiliation(s)
- John R Horton
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Hua Wang
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | | - Yu Zheng
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
49
|
Single molecular investigation of DNA looping and aggregation by restriction endonuclease BspMI. Sci Rep 2014; 4:5897. [PMID: 25077775 PMCID: PMC4116625 DOI: 10.1038/srep05897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/15/2014] [Indexed: 11/09/2022] Open
Abstract
DNA looping and aggregation induced by restriction endonuclease BspMI are studied by atomic force microscopy (AFM) and magnetic tweezers (MT). With Ca(2+) substituted for the normal enzyme cofactor Mg(2+) and enzyme concentration below the critical concentration of 6 units/mL, AFM images of DNA-BspMI complex show that the number of binding and looping events increases with enzyme concentration. At the critical concentration 6 of units/mL, all the BspMI binding sites are saturated. It is worth noting that nonspecific BspMI binding to DNA at saturation concentration represents more than 8% of the total BspMI-DNA complexes directly observed in AFM images. Furthermore, we used MT to prove that additional loops can form when enzyme concentration is higher than its saturation valueand the complex is incubated for a long time (>2 hrs). We ascribe this phenomenon to the aggregation of enzymes. The force spectroscopy of the BspMI-DNA complex shows that the pulling force required to open the loop of the complex at less than saturation concentration has a peak at about 3 pN, which is lower than the force required to open additional loops due to enzyme aggregation at higher than saturation concentration (>6 pN).
Collapse
|
50
|
Wolfs JM, DaSilva M, Meister SE, Wang X, Schild-Poulter C, Edgell DR. MegaTevs: single-chain dual nucleases for efficient gene disruption. Nucleic Acids Res 2014; 42:8816-29. [PMID: 25013171 PMCID: PMC4117789 DOI: 10.1093/nar/gku573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Targeting gene disruptions in complex genomes relies on imprecise repair by the non-homologous end-joining DNA pathway, creating mutagenic insertions or deletions (indels) at the break point. DNA end-processing enzymes are often co-expressed with genome-editing nucleases to enhance the frequency of indels, as the compatible cohesive ends generated by the nucleases can be precisely repaired, leading to a cycle of cleavage and non-mutagenic repair. Here, we present an alternative strategy to bias repair toward gene disruption by fusing two different nuclease active sites from I-TevI (a GIY-YIG enzyme) and I-OnuI E2 (an engineered meganuclease) into a single polypeptide chain. In vitro, the MegaTev enzyme generates two double-strand breaks to excise an intervening 30-bp fragment. In HEK 293 cells, we observe a high frequency of gene disruption without co-expression of DNA end-processing enzymes. Deep sequencing of disrupted target sites revealed minimal processing, consistent with the MegaTev sequestering the double-strand breaks from the DNA repair machinery. Off-target profiling revealed no detectable cleavage at sites where the I-TevI CNNNG cleavage motif is not appropriately spaced from the I-OnuI binding site. The MegaTev enzyme represents a small, programmable nuclease platform for extremely specific genome-engineering applications.
Collapse
Affiliation(s)
- Jason M Wolfs
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Matthew DaSilva
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Sarah E Meister
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Xu Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5B7, Canada
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| |
Collapse
|