1
|
Ishiwata A, Shite Y, Kitahara K, Tanaka K, Ito Y, Fujita K. Structural analysis of (2 → 1)-β-d-fructofuranosides linked to a terminal difructose dianhydride III produced by Bacteroides endo-type inulin fructotransferase. Int J Biol Macromol 2025; 310:143064. [PMID: 40220837 DOI: 10.1016/j.ijbiomac.2025.143064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
The glycoside hydrolase (GH) family 91 inulin fructotransferase (IFTase) complexes from Bacteroides ovatus and B. caccae act as endo-type IFTases targeting inulin. However, their degradation mechanism remains unclear. Herein, the exact structure of the accumulated inulin-degradation product in a culture supernatant is revealed as linear oligo-(2 → 1)-β-d-fructofuranosides linked to difructose dianhydride III (DFA III) at the reducing end. Additionally, we developed a method to quantify endo-IFTase activity by measuring DFA III released from inulin after sequential treatment with endo-IFTase and GH32 β-d-fructofuranosidase. Using this approach, we investigated the effect of varying concentrations of endo-IFTase subunits 1 and 2 and found that an equimolar mixture of the two subunits exhibited the highest enzymatic activity, indicating that the active complex forms in a 1:1 ratio. The endo-IFTase accepts fructooligosaccharide DP7 (GF6) as the shortest substrate, suggesting that the complex recognizes the region between subsites +3 and - 3. This study provides insights into the understanding of inulin degradation by Bacteroides species and elucidates the molecular mechanisms underlying prebiotic effects of inulin.
Collapse
Affiliation(s)
| | - Yurina Shite
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Kanefumi Kitahara
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Katsunori Tanaka
- RIKEN Pioneering Research Institute, Wako, Saitama, Japan; Department of Chemical Science and Engineering, Institute of Science Tokyo, Meguro, Tokyo, Japan
| | - Yukishige Ito
- RIKEN Pioneering Research Institute, Wako, Saitama, Japan; Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan.
| |
Collapse
|
2
|
Zhou Y, Zhao J, Ross P, Stanton C, Chen W, Yang B. Streptococcus wuxiensis sp. nov., Streptococcus jiangnanensis sp. nov. and Streptococcus fermentans sp. nov.: three novel species of genus Streptococcus isolated from human breast milk. Int J Syst Evol Microbiol 2025; 75. [PMID: 39918554 DOI: 10.1099/ijsem.0.006674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Three novel coccoid-shaped strains, designated 21WXBC0057M1T, 21WXBC0044M1T and BJSWXB5TM5T, were isolated from human breast milk in Wuxi, Jiangsu Province, China. These strains were facultative anaerobes, catalase-negative and Gram-positive. Through a comprehensive analysis of rRNA genes, protein-coding housekeeping genes and genomic phylogeny, we identified these strains as belonging to the genus Streptococcus. Specifically, strain 21WXBC0057M1T was phylogenetically most closely related to Streptococcus infantis, strain 21WXBC0044M1T was most closely related to Streptococcus oralis and strain BJSWXB5TM5T displayed similarities to Streptococcus australis, Streptococcus peroris and S. infantis. The pairwise average nucleotide identity and digital DNA-DNA hybridization values for these three strains were below 95 and 70%, respectively, indicating that they occupied evolutionary branches distinct from all previously validly published Streptococcus species. Distinctive phenotypic characteristics discriminated these novel species from the type strains of their most closely related species. The major cellular fatty acids in the three strains were C16 : 0 and C18 : 0. Genome annotation and a thorough examination of carbohydrate-active enzyme distribution highlighted the observation that all strains possessed extensive capabilities for carbohydrate metabolism, particularly human milk oligosaccharides utilization. Thus, based on these findings, we proposed the classification of the strains as representing three novel species within the genus Streptococcus: Streptococcus wuxiensis sp. nov. (type strain 21WXBC0057M1T=GDMCC 1.4126T=KCTC 25760T), Streptococcus jiangnanensis sp. nov. (type strain 21WXBC0044M1T= GDMCC 1.4127T=KCTC 25762T) and Streptococcus fermentans sp. nov. (type strain BJSWXB5TM5T=GDMCC 1.4130T=KCTC 25759T).
Collapse
Affiliation(s)
- Ye Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Paul Ross
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, Jiangsu, PR China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, Jiangsu, PR China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
3
|
Castaldi S, Donadio G, Staiano I, Ricca E, Isticato R. The triterpenoid curcumene mediates the relative hydrophilicity of Bacillus subtilis spores. mBio 2025; 16:e0302424. [PMID: 39611687 PMCID: PMC11708026 DOI: 10.1128/mbio.03024-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
Spores of Bacillus subtilis are surrounded and protected by the coat and the crust, multi-layered structures mainly made of proteins and polysaccharides. These polysaccharides are covalently linked to some of the coat and crust proteins and influence some spore properties, such as surface adhesion and hydrophilicity. This study reports that a mutant strain lacking the spsA-L operon, encoding 11 enzymes involved in the synthesis of spore surface polysaccharides, produced spores exposing on their surface hydrophobic molecules that were responsible for the drastic reduction of hydrophilicity of the mutant spores. Biochemical and genetic data support the identification of the C35-terpenoid curcumene, a precursor of the spore-associated lipid sporulene, as the highly hydrophobic molecule present on the surface of mutant spores.IMPORTANCEBacterial spores are the most resistant cell forms on Earth. The metabolically quiescent spores withstand conditions that would be lethal for other cells, maintaining the capacity to sense the environment and respond to the presence of favorable conditions by germinating. Such remarkable resistance is also due to the complex layers that surround the spore cytoplasm and protect it against damaging factors. Altogether, the spore surface layers form a complex cell structure composed of proteins, polysaccharides, and, as highlighted by this study, also of lipids. Understanding the complexity of the spore surface and the specific molecules involved in its structure is an essential step for unraveling the mechanisms underlying the spore's resistance to environmental assaults.
Collapse
Affiliation(s)
- Stefany Castaldi
- Department of Biology, Complesso Universitario Monte S. Angelo, University of Naples Federico II, Naples, Italy
| | - Giuliana Donadio
- Department of Biology, Complesso Universitario Monte S. Angelo, University of Naples Federico II, Naples, Italy
| | - Ivana Staiano
- Department of Biology, Complesso Universitario Monte S. Angelo, University of Naples Federico II, Naples, Italy
| | - Ezio Ricca
- Department of Biology, Complesso Universitario Monte S. Angelo, University of Naples Federico II, Naples, Italy
| | - Rachele Isticato
- Department of Biology, Complesso Universitario Monte S. Angelo, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
4
|
Li M, Zhu P, Huang Z, Huang Y, Lv X, Zheng Q, Zhu Z, Fan Z, Yang Y, Shi P. Aspirin damages the cell wall of Saccharomyces cerevisiae by inhibiting the expression and activity of dolichol-phosphate mannose synthase 1. FEBS Lett 2022; 596:369-380. [PMID: 35028934 DOI: 10.1002/1873-3468.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/04/2021] [Accepted: 12/12/2021] [Indexed: 11/10/2022]
Abstract
Aspirin is a commonly used anti-inflammatory, analgesic and antithrombotic drug. It has attracted attention due to its potential antifungal therapeutic effect; however, the molecular mechanism is poorly understood. Here, the effects of aspirin on the cell wall of Saccharomyces cerevisiae were explored. We observed by scanning electron microscopy that aspirin could damage the cell wall ultrastructure. Meanwhile, a cellular surface hydrophobicity (CSH) assay showed that aspirin increased the hydrophobicity of the yeast cell surface. A drug sensitivity assay indicated that the overexpression of dolichol phosphate mannose synthase 1 (DPM1) reversed the cell wall damage and decreased the CSH induced by aspirin. Importantly, aspirin decreased the expression and enzyme activity of DPM1 in S. cerevisiae. Molecular docking results demonstrated that aspirin could directly bind to the Ser141 site of DPM1. Similarly, we found that aspirin damaged the cell wall and inhibited the expression of DPM1 in Candida albicans. These findings improve the current understanding of the action mode of aspirin and provide new strategies for antifungal drug design.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Pan Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Zhiwei Huang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Yunxia Huang
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoguang Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Ziting Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Zheyu Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Youjun Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| |
Collapse
|
5
|
Qureshi KA, Imtiaz M, Parvez A, Rai PK, Jaremko M, Emwas AH, Bholay AD, Fatmi MQ. In Vitro and In Silico Approaches for the Evaluation of Antimicrobial Activity, Time-Kill Kinetics, and Anti-Biofilm Potential of Thymoquinone (2-Methyl-5-propan-2-ylcyclohexa-2,5-diene-1,4-dione) against Selected Human Pathogens. Antibiotics (Basel) 2022; 11:antibiotics11010079. [PMID: 35052956 PMCID: PMC8773234 DOI: 10.3390/antibiotics11010079] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 11/17/2022] Open
Abstract
Thymoquinone (2-methyl-5-propan-2-ylcyclohexa-2,5-diene-1,4-dione; TQ), a principal bioactive phytoconstituent of Nigella sativa essential oil, has been reported to have high antimicrobial potential. Thus, the current study evaluated TQ’s antimicrobial potential against a range of selected human pathogens using in vitro assays, including time-kill kinetics and anti-biofilm activity. In silico molecular docking of TQ against several antimicrobial target proteins and a detailed intermolecular interaction analysis was performed, including binding energies and docking feasibility. Of the tested bacteria and fungi, S. epidermidis ATCC 12228 and Candida albicans ATCC 10231 were the most susceptible to TQ, with 50.3 ± 0.3 mm and 21.1 ± 0.1 mm zones of inhibition, respectively. Minimum inhibitory concentration (MIC) values of TQ are in the range of 12.5–50 µg/mL, while minimum biocidal concentration (MBC) values are in the range of 25–100 µg/mL against the tested organisms. Time-kill kinetics of TQ revealed that the killing time for the tested bacteria is in the range of 1–6 h with the MBC of TQ. Anti-biofilm activity results demonstrate that the minimum biofilm inhibitory concentration (MBIC) values of TQ are in the range of 25–50 µg/mL, while the minimum biofilm eradication concentration (MBEC) values are in the range of 25–100 µg/mL, for the tested bacteria. In silico molecular docking studies revealed four preferred antibacterial and antifungal target proteins for TQ: D-alanyl-D-alanine synthetase (Ddl) from Thermus thermophilus, transcriptional regulator qacR from Staphylococcus aureus, N-myristoyltransferase from Candida albicans, and NADPH-dependent D-xylose reductase from Candida tenuis. In contrast, the nitroreductase family protein from Bacillus cereus and spore coat polysaccharide biosynthesis protein from Bacillus subtilis and UDP-N-acetylglucosamine pyrophosphorylase from Aspergillus fumigatus are the least preferred antibacterial and antifungal target proteins for TQ, respectively. Molecular dynamics (MD) simulations revealed that TQ could bind to all four target proteins, with Ddl and NADPH-dependent D-xylose reductase being the most efficient. Our findings corroborate TQ’s high antimicrobial potential, suggesting it may be a promising drug candidate for multi-drug resistant (MDR) pathogens, notably Gram-positive bacteria and Candida albicans.
Collapse
Affiliation(s)
- Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
- Correspondence: (K.A.Q.); (M.Q.F.)
| | - Mahrukh Imtiaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45600, Pakistan;
| | - Adil Parvez
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi 110062, India;
| | - Pankaj K. Rai
- Department of Biotechnology, Faculty of Biosciences, Invertis University, Bareilly 243123, India;
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Avinash D. Bholay
- Department of Microbiology, KTHM College, Savitribai Phule Pune University (SPPU), Nashik 422002, India;
| | - Muhammad Qaiser Fatmi
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45600, Pakistan;
- Correspondence: (K.A.Q.); (M.Q.F.)
| |
Collapse
|
6
|
Qiao Z, Lampugnani ER, Yan XF, Khan GA, Saw WG, Hannah P, Qian F, Calabria J, Miao Y, Grüber G, Persson S, Gao YG. Structure of Arabidopsis CESA3 catalytic domain with its substrate UDP-glucose provides insight into the mechanism of cellulose synthesis. Proc Natl Acad Sci U S A 2021; 118:e2024015118. [PMID: 33729990 PMCID: PMC7980446 DOI: 10.1073/pnas.2024015118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cellulose is synthesized by cellulose synthases (CESAs) from the glycosyltransferase GT-2 family. In plants, the CESAs form a six-lobed rosette-shaped CESA complex (CSC). Here we report crystal structures of the catalytic domain of Arabidopsis thaliana CESA3 (AtCESA3CatD) in both apo and uridine diphosphate (UDP)-glucose (UDP-Glc)-bound forms. AtCESA3CatD has an overall GT-A fold core domain sandwiched between a plant-conserved region (P-CR) and a class-specific region (C-SR). By superimposing the structure of AtCESA3CatD onto the bacterial cellulose synthase BcsA, we found that the coordination of the UDP-Glc differs, indicating different substrate coordination during cellulose synthesis in plants and bacteria. Moreover, structural analyses revealed that AtCESA3CatD can form a homodimer mainly via interactions between specific beta strands. We confirmed the importance of specific amino acids on these strands for homodimerization through yeast and in planta assays using point-mutated full-length AtCESA3. Our work provides molecular insights into how the substrate UDP-Glc is coordinated in the CESAs and how the CESAs might dimerize to eventually assemble into CSCs in plants.
Collapse
Affiliation(s)
- Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798
| | - Edwin R Lampugnani
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Xin-Fu Yan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798
| | - Ghazanfar Abbas Khan
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Wuan Geok Saw
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Patrick Hannah
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Feng Qian
- Division of Molecular Biology, Shanghai Genomics, Inc., Shanghai 201202, China
| | - Jacob Calabria
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia;
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551;
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 639798
| |
Collapse
|
7
|
Riegert AS, Raushel FM. Functional and Structural Characterization of the UDP-Glucose Dehydrogenase Involved in Capsular Polysaccharide Biosynthesis from Campylobacter jejuni. Biochemistry 2021; 60:725-734. [PMID: 33621065 DOI: 10.1021/acs.biochem.0c00953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Campylobacter jejuni is a pathogenic organism that can cause campylobacteriosis in children and adults. Most commonly, campylobacter infection is brought on by consumption of raw or undercooked poultry, unsanitary drinking water, or pet feces. Surrounding the C. jejuni bacterium is a coat of sugar molecules known as the capsular polysaccharide (CPS). The capsular polysaccharide can be very diverse among the different strains of C. jejuni, and this diversity is considered important for evading the host immune system. Modifications to the CPS of C. jejuni NCTC 11168 include O-methylation, phosphoramidylation, and amidation of glucuronate with either serinol or ethanolamine. The enzymes responsible for amidation of glucuronate are currently unknown. In this study, Cj1441, an enzyme expressed from the CPS biosynthetic gene cluster in C. jejuni NCTC 11168, was shown to catalyze the oxidation of UDP-α-d-glucose into UDP-α-d-glucuronic acid with NAD+ as the cofactor. No amide products were found in an attempt to determine whether the putative thioester intermediate formed during the oxidation of UDP-glucose by Cj1441 could be captured in the presence of added amines. The three-dimensional crystal structure of Cj1441 was determined in the presence of NAD+ and UDP-glucose bound in the active site of the enzyme (Protein Data Bank entry 7KWS). A more thorough bioinformatic analysis of the CPS gene cluster suggests that the amidation activity is localized to the t-terminal half of Cj1438, a bifunctional enzyme that is currently annotated as a sugar transferase.
Collapse
Affiliation(s)
- Alexander S Riegert
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Frank M Raushel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, United States.,Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
8
|
Doane M, Haggerty JM, da Silva Lopes CR, Yates P, Edwards R, Dinsdale E, Lopes FAC, Bruce T. Latitude and chlorophyll a density drive the distribution of carbohydrate-active enzymes in the planktonic microbial fraction of the epipelagic zone. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:473-485. [PMID: 32608067 DOI: 10.1111/1758-2229.12865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/08/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Microbes drive the majority of the global carbon cycle. The effect of environmental conditions on selecting microbial functional diversity is well established, and recent studies have revealed the effects of geographic distances on selecting the functional components of marine microbial communities. Our study is the first attempt at establishing the effects of environmental factors on driving the marine carbohydrate-active enzyme (CAZyme) distribution. We characterized the diversity of CAZyme genes and investigated the correlations between their distributions and biogeographic parameters (latitude, longitude, distance from the equator, site depth, water depth, chlorophyll density, salinity and temperature). Therefore, we accessed a subset of surface water samples (38 metagenomes) from the Global Ocean Sampling project. Only chlorophyll and latitude altered the distribution patterns of CAZymes, revealing the existence of two latitudinal gradients (positive and negative) of marine CAZyme abundance. Considering the importance of carbohydrates in microbial life, characterization of the spatial patterns of the genetic repertoire involved in carbohydrate metabolism represents an important step in improving our understanding of the metabolic strategies associated with the microbial marine carbon cycle and their effects on the productivity of marine ecosystems.
Collapse
Affiliation(s)
- Michael Doane
- Biology Department, San Diego State University, 550 Campanile Drive, San Diego, CA, 92182, USA
- Sydney Institute of Marine Science, 19 Chowder Bay, Mosman, New South Wales, 2088, Australia
| | - John Matthew Haggerty
- Biology Department, San Diego State University, 550 Campanile Drive, San Diego, CA, 92182, USA
| | | | - Peter Yates
- Sydney Institute of Marine Science, 19 Chowder Bay, Mosman, New South Wales, 2088, Australia
| | - Rob Edwards
- Computational Science Department, San Diego State University, 550 Campanile Drive, San Diego, CA, 92182, USA
| | - Elizabeth Dinsdale
- Biology Department, San Diego State University, 550 Campanile Drive, San Diego, CA, 92182, USA
| | | | - Thiago Bruce
- Biology Department, San Diego State University, 550 Campanile Drive, San Diego, CA, 92182, USA
- Departamento de Biologia Celular, Laboratório de Enzimologia, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil
- Departamento de Microbiologia, Instituto de Biologia, Universidade Federal da Bahia, Campus Ondina, Salvador, BA, Brazil
| |
Collapse
|
9
|
The sps Genes Encode an Original Legionaminic Acid Pathway Required for Crust Assembly in Bacillus subtilis. mBio 2020; 11:mBio.01153-20. [PMID: 32817102 PMCID: PMC7439481 DOI: 10.1128/mbio.01153-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The crust is the outermost spore layer of most Bacillus strains devoid of an exosporium. This outermost layer, composed of both proteins and carbohydrates, plays a major role in the adhesion and spreading of spores into the environment. Recent studies have identified several crust proteins and have provided insights about their organization at the spore surface. However, although carbohydrates are known to participate in adhesion, little is known about their composition, structure, and localization. In this study, we showed that the spore surface of Bacillus subtilis is covered with legionaminic acid (Leg), a nine-carbon backbone nonulosonic acid known to decorate the flagellin of the human pathogens Helicobacter pylori and Campylobacter jejuni We demonstrated that the spsC, spsD, spsE, spsG, and spsM genes of Bacillus subtilis are required for Leg biosynthesis during sporulation, while the spsF gene is required for Leg transfer from the mother cell to the surface of the forespore. We also characterized the activity of SpsM and highlighted an original Leg biosynthesis pathway in B. subtilis Finally, we demonstrated that Leg is required for the assembly of the crust around the spores, and we showed that in the absence of Leg, spores were more adherent to stainless steel probably because of their reduced hydrophilicity and charge.IMPORTANCE Bacillus species are a major economic and food safety concern of the food industry because of their food spoilage-causing capability and persistence. Their persistence is mainly due to their ability to form highly resistant spores adhering to the surfaces of industrial equipment. Spores of the Bacillus subtilis group are surrounded by the crust, a superficial layer which plays a key role in their adhesion properties. However, knowledge of the composition and structure of this layer remains incomplete. Here, for the first time, we identified a nonulosonic acid (Leg) at the surfaces of bacterial spores (B. subtilis). We uncovered a novel Leg biosynthesis pathway, and we demonstrated that Leg is required for proper crust assembly. This work contributes to the description of the structure and composition of Bacillus spores which has been under way for decades, and it provides keys to understanding the importance of carbohydrates in Bacillus adhesion and persistence in the food industry.
Collapse
|
10
|
Wang DD, Kim YJ, Baek NI, Mathiyalagan R, Wang C, Jin Y, Xu XY, Yang DC. Glycosyltransformation of ginsenoside Rh2 into two novel ginsenosides using recombinant glycosyltransferase from Lactobacillus rhamnosus and its in vitro applications. J Ginseng Res 2019; 45:48-57. [PMID: 33437156 PMCID: PMC7790896 DOI: 10.1016/j.jgr.2019.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 11/30/2022] Open
Abstract
Background Ginsenoside Rh2 is well known for many pharmacological activities, such as anticancer, antidiabetes, antiinflammatory, and antiobesity properties. Glycosyltransferases (GTs) are ubiquitous enzymes present in nature and are widely used for the synthesis of oligosaccharides, polysaccharides, glycoconjugates, and novel derivatives. We aimed to synthesize new ginsenosides from Rh2 using the recombinant GT enzyme and investigate its cytotoxicity with diverse cell lines. Methods We have used a GT gene with 1,224-bp gene sequence cloned from Lactobacillus rhamnosus (LRGT) and then expressed in Escherichia coli BL21 (DE3). The recombinant GT protein was purified and demonstrated to transform Rh2 into two novel ginsenosides, and they were characterized by nuclear magnetic resonance (NMR) techniques and evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay. Results Two novel ginsenosides with an additional glucopyranosyl (6→1) and two additional glucopyranosyl (6→1) linked with the C-3 position of the substrate Rh2 were synthesized, respectively. Cell viability assay in the lung cancer (A549) cell line showed that glucosyl ginsenoside Rh2 inhibited cell viability more potently than ginsenoside Rg3 and Rh2 at a concentration of 10 μM. Furthermore, glucosyl ginsenoside Rh2 did not exhibit any cytotoxic effect in murine macrophage cells (RAW264.7), mouse embryo fibroblasts cells (3T3-L1), and skin cells (B16BL6) at a concentration of 10 μM compared with ginsenoside Rh2 and Rg3. Conclusion This is the first report on the synthesis of two novel ginsenosides, namely, glucosyl ginsenoside Rh2 and diglucosyl ginsenoside Rh2 from Rh2 by using recombinant GT isolated from L. rhamnosus. Moreover, diglucosyl ginsenoside Rh2 might be a new candidate for treatment of inflammation, obesity, and skin whiting, and especially for anticancer.
Collapse
Affiliation(s)
- Dan-Dan Wang
- School of Life Sciences, Yantai University, Yantai, China
| | - Yeon-Ju Kim
- Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, Republic of Korea.,Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin Republic of Korea
| | - Nam In Baek
- Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin Republic of Korea
| | - Chao Wang
- Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Yan Jin
- Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Xing Yue Xu
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin Republic of Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology, Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, Republic of Korea.,Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin Republic of Korea
| |
Collapse
|
11
|
Kelly SD, Clarke BR, Ovchinnikova OG, Sweeney RP, Williamson ML, Lowary TL, Whitfield C. Klebsiella pneumoniae O1 and O2ac antigens provide prototypes for an unusual strategy for polysaccharide antigen diversification. J Biol Chem 2019; 294:10863-10876. [PMID: 31138653 DOI: 10.1074/jbc.ra119.008969] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/21/2019] [Indexed: 12/17/2022] Open
Abstract
A limited range of different structures is observed in O-antigenic polysaccharides (OPSs) from Klebsiella pneumoniae lipopolysaccharides. Among these, several are based on modifications of a conserved core element of serotype O2a OPS, which has a disaccharide repeat structure [→3)-α-d-Galp-(1→3)-β-d-Galf-(1→]. Here, we describe the enzymatic pathways for a highly unusual modification strategy involving the attachment of a second glycan repeat-unit structure to the nonreducing terminus of O2a. This occurs by the addition of the O1 [→3)-α-d-Galp-(1→3)-β-d-Galp-(1→] or O2c [→3)-β-d-GlcpNAc-(1→5)-β-d-Galf-(1→] antigens. The organization of the enzyme activities performing these modifications differs, with the enzyme WbbY possessing two glycosyltransferase catalytic sites solely responsible for O1 antigen polymerization and forming a complex with the O2a glycosyltransferase WbbM. In contrast, O2c polymerization requires glycosyltransferases WbmV and WbmW, which interact with one another but apparently not with WbbM. Using defined synthetic acceptors and site-directed mutants to assign the activities of the WbbY catalytic sites, we found that the C-terminal WbbY domain is a UDP-Galp-dependent GT-A galactosyltransferase adding β-(1→3)-linked d-Galp, whereas the WbbY N terminus includes a GT-B enzyme adding α-(1→3)-linked d-Galp These activities build the O1 antigen on a terminal Galp in the O2a domain. Using similar approaches, we identified WbmV as the UDP-GlcNAc transferase and noted that WbmW represents a UDP-Galf-dependent enzyme and that both are GT-A members. WbmVW polymerizes the O2c antigen on a terminal Galf. Our results provide mechanistic and conceptual insights into an important strategy for polysaccharide antigen diversification in bacteria.
Collapse
Affiliation(s)
- Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1 and
| | - Bradley R Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1 and
| | - Olga G Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1 and
| | - Ryan P Sweeney
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Monica L Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1 and
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1 and.
| |
Collapse
|
12
|
Dynamic Function of DPMS Is Essential for Angiogenesis and Cancer Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 30637701 DOI: 10.1007/978-981-13-3065-0_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2023]
Abstract
Dolichol phosphate mannose synthase (DPMS) is an inverting GT-A-folded enzyme and classified as GT2 by CAZy. DPMS sequence carries a metal-binding DXD motif, a PKA motif, and a variable number of hydrophobic domains. Human and bovine DPMS possess a single transmembrane domain, whereas that from S. cerevisiae and A. thaliana carry multiple transmembrane domains and are superimposable. The catalytic activity of DPMS is documented in all spheres of life, and the 32kDa protein is uniquely regulated by protein phosphorylation. Intracellular activation of DPMS by cAMP signaling is truly due to the activation of the enzyme and not due to increased Dol-P level. The sequence of DPMS in some species also carries a protein N-glycosylation motif (Asn-X-Ser/Thr). Apart from participating in N-glycan biosynthesis, DPMS is essential for the synthesis of GPI anchor as well as for O- and C-mannosylation of proteins. Because of the dynamic nature, DPMS actively participates in cellular proliferation enhancing angiogenesis and breast tumor progression. In fact, overexpression of DPMS in capillary endothelial cells supports increased N-glycosylation, cellular proliferation, and enhanced chemotactic activity. These are expected to be completely absent in congenital disorders of glycosylation (CDGs) due to the silence of DPMS catalytic activity. DPMS has also been found to be involved in the cross talk with N-acetylglucosaminyl 1-phosphate transferase (GPT). Inhibition of GPT with tunicamycin downregulates the DPMS catalytic activity quantitatively. The result is impairment of surface N-glycan expression, inhibition of angiogenesis, proliferation of human breast cancer cells, and induction of apoptosis. Interestingly, nano-formulated tunicamycin is three times more potent in inhibiting the cell cycle progression than the native tunicamycin and is supported by downregulation of the ratio of phospho-p53 to total-p53 as well as phospho-Rb to total Rb. DPMS expression is also reduced significantly. However, nano-formulated tunicamycin does not induce apoptosis. We, therefore, conclude that DPMS could become a novel target for developing glycotherapy treating breast tumor in the clinic.
Collapse
|
13
|
Sawitri WD, Afidah SN, Nakagawa A, Hase T, Sugiharto B. Identification of UDP-glucose binding site in glycosyltransferase domain of sucrose phosphate synthase from sugarcane (Saccharum officinarum) by structure-based site-directed mutagenesis. Biophys Rev 2018; 10:293-298. [PMID: 29222806 PMCID: PMC5899720 DOI: 10.1007/s12551-017-0360-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022] Open
Abstract
Sucrose phosphate synthase (SPS) is believed to be the key enzyme for controlling the biosynthesis of sucrose. SPSs consist of a functional glycosyltransferase domain that shares conserved residues with the glycosyltransferase domain of sucrose biosynthesis-related protein. The formation of sucrose-6-phosphate is catalyzed by SPS with the transfer of a glycosyl group of uridine diphosphate glucose (UDP-G) as an activated donor sugar to a fructose-6-phosphate as a sugar acceptor. However, understanding of the mechanism of catalytic and substrate binding in SPS is very limited. Based on amino acid sequence alignments with several enzymes that belong to the glycosyltransferase family, the UDP-G binding sites that might be critical for catalytic mechanism were identified. Here, we report that single point mutation of R496, D498, and V570 located in the proposed UDP-G binding site led to less active or complete loss of enzyme activity. Through structure-based site-directed mutagenesis and biochemical studies, the results indicated that these residues contribute to the catalytic activity of plant SPS. Moreover, understanding of the UDP-G binding site provides an insight into new strategies for enzyme engineering and redesigning a catalytic mechanism for UDP.
Collapse
Affiliation(s)
- Widhi Dyah Sawitri
- Center for Development of Advanced Science and Technology (CDAST), University of Jember, Jl. Kalimantan 37, Jember, 68121, Indonesia
- Postgraduate Program in Biotechnology, Jember University, J1. Kalimantan 37, Jember, 68121, Indonesia
| | - Siti Nurul Afidah
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Jember, Jl. Kalimantan 37, Jember, 68121, Indonesia
| | - Atsushi Nakagawa
- Research Center for State-of-the-art Functional Protein Analysis, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiharu Hase
- Division of Protein Chemistry, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Bambang Sugiharto
- Center for Development of Advanced Science and Technology (CDAST), University of Jember, Jl. Kalimantan 37, Jember, 68121, Indonesia.
- Postgraduate Program in Biotechnology, Jember University, J1. Kalimantan 37, Jember, 68121, Indonesia.
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Jember, Jl. Kalimantan 37, Jember, 68121, Indonesia.
| |
Collapse
|
14
|
Dean RJ, Clarke SJ, Rogiers SY, Stait-Gardner T, Price WS. Solute transport within grape berries inferred from the paramagnetic properties of manganese. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:969-977. [PMID: 32480625 DOI: 10.1071/fp16406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 05/28/2017] [Indexed: 05/26/2023]
Abstract
Tracer compounds used for studying solute transport should ideally have identical functions and transport properties to the molecules they are designed to mimic. Unfortunately, the xylem-mobile tracer compounds currently used to infer solute transport mechanisms in botanical specimens such as the fruit of the grapevine, Vitis vinifera L., are typically xenobiotic and have difficulty exiting the xylem during berry ripening. Here it is demonstrated that the transport of paramagnetic Mn ions can be indirectly observed within the grape berry, using relaxation magnetic resonance imaging (MRI). Mn ions from a 10mM Mn chloride solution were taken up into the grape berry via the pedicel and moved through the peripheral vasculature before exiting into surrounding pericarp tissue. Mn did not exit evenly across the berry, implying that the berry xylem influences which sites Mn exits the vasculature 'downstream' of the berry pedicel. It was also found that when the cellular membranes of pericarp tissues were disrupted, the distribution of Mn through the pericarp tissue became noticeably more homogenous. This indicates that the cellular membranes of extra-vascular cells affect the spatial distribution of Mn across the berry extra-vascular pericarp tissue upon exiting the grape berry vasculature.
Collapse
Affiliation(s)
- Ryan J Dean
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, NSW 2751, Australia
| | - Simon J Clarke
- National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | - Suzy Y Rogiers
- National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | - Timothy Stait-Gardner
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, NSW 2751, Australia
| | - William S Price
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
15
|
Dolichol phosphate mannose synthase: a Glycosyltransferase with Unity in molecular diversities. Glycoconj J 2017; 34:467-479. [PMID: 28616799 DOI: 10.1007/s10719-017-9777-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/20/2017] [Accepted: 05/18/2017] [Indexed: 10/19/2022]
Abstract
N-glycans provide structural and functional stability to asparagine-linked (N-linked) glycoproteins, and add flexibility. Glycan biosynthesis is elaborative, multi-compartmental and involves many glycosyltransferases. Failure to assemble N-glycans leads to phenotypic changes developing infection, cancer, congenital disorders of glycosylation (CDGs) among others. Biosynthesis of N-glycans begins at the endoplasmic reticulum (ER) with the assembly of dolichol-linked tetra-decasaccharide (Glc3Man9GlcNAc2-PP-Dol) where dolichol phosphate mannose synthase (DPMS) plays a central role. DPMS is also essential for GPI anchor biosynthesis as well as for O- and C-mannosylation of proteins in yeast and in mammalian cells. DPMS has been purified from several sources and its gene has been cloned from 39 species (e.g., from protozoan parasite to human). It is an inverting GT-A folded enzyme and classified as GT2 by CAZy (carbohydrate active enZyme; http://www.cazy.org ). The sequence alignment detects the presence of a metal binding DAD signature in DPMS from all 39 species but finds cAMP-dependent protein phosphorylation motif (PKA motif) in only 38 species. DPMS also has hydrophobic region(s). Hydropathy analysis of amino acid sequences from bovine, human, S. crevisiae and A. thaliana DPMS show PKA motif is present between the hydrophobic domains. The location of PKA motif as well as the hydrophobic domain(s) in the DPMS sequence vary from species to species. For example, the domain(s) could be located at the center or more towards the C-terminus. Irrespective of their catalytic similarity, the DNA sequence, the amino acid identity, and the lack of a stretch of hydrophobic amino acid residues at the C-terminus, DPMS is still classified as Type I and Type II enzyme. Because of an apparent bio-sensing ability, extracellular signaling and microenvironment regulate DPMS catalytic activity. In this review, we highlight some important features and the molecular diversities of DPMS.
Collapse
|
16
|
Zhang H, Zhou M, Yang T, Haslam SM, Dell A, Wu H. New Helical Binding Domain Mediates a Glycosyltransferase Activity of a Bifunctional Protein. J Biol Chem 2016; 291:22106-22117. [PMID: 27539847 PMCID: PMC5063993 DOI: 10.1074/jbc.m116.731695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/08/2022] Open
Abstract
Serine-rich repeat glycoproteins (SRRPs) conserved in streptococci and staphylococci are important for bacterial colonization and pathogenesis. Fap1, a well studied SRRP is a major surface constituent of Streptococcus parasanguinis and is required for bacterial adhesion and biofilm formation. Biogenesis of Fap1 is a multistep process that involves both glycosylation and secretion. A series of glycosyltransferases catalyze sequential glycosylation of Fap1. We have identified a unique hybrid protein dGT1 (dual glycosyltransferase 1) that contains two distinct domains. N-terminal DUF1792 is a novel GT-D-type glycosyltransferase, transferring Glc residues to Glc-GlcNAc-modified Fap1. C-terminal dGT1 (CgT) is predicted to possess a typical GT-A-type glycosyltransferase, however, the activity remains unknown. In this study, we determine that CgT is a distinct glycosyltransferase, transferring GlcNAc residues to Glc-Glc-GlcNAc-modified Fap1. A 2.4-Å x-ray crystal structure reveals that CgT has a unique binding domain consisting of three α helices in addition to a typical GT-A-type glycosyltransferase domain. The helical domain is crucial for the oligomerization of CgT. Structural and biochemical studies revealed that the helix domain is required for the protein-protein interaction and crucial for the glycosyltransferase activity of CgT in vitro and in vivo. As the helix domain presents a novel structural fold, we conclude that CgT represents a new member of GT-A-type glycosyltransferases.
Collapse
Affiliation(s)
- Hua Zhang
- From the Departments of Pediatric Dentistry and Microbiology, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Meixian Zhou
- From the Departments of Pediatric Dentistry and Microbiology, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Tiandi Yang
- the Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Stuart M Haslam
- the Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Anne Dell
- the Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Hui Wu
- From the Departments of Pediatric Dentistry and Microbiology, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| |
Collapse
|
17
|
Ardiccioni C, Clarke OB, Tomasek D, Issa HA, von Alpen DC, Pond HL, Banerjee S, Rajashankar KR, Liu Q, Guan Z, Li C, Kloss B, Bruni R, Kloppmann E, Rost B, Manzini MC, Shapiro L, Mancia F. Structure of the polyisoprenyl-phosphate glycosyltransferase GtrB and insights into the mechanism of catalysis. Nat Commun 2016; 7:10175. [PMID: 26729507 PMCID: PMC4728340 DOI: 10.1038/ncomms10175] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/11/2015] [Indexed: 11/08/2022] Open
Abstract
The attachment of a sugar to a hydrophobic polyisoprenyl carrier is the first step for all extracellular glycosylation processes. The enzymes that perform these reactions, polyisoprenyl-glycosyltransferases (PI-GTs) include dolichol phosphate mannose synthase (DPMS), which generates the mannose donor for glycosylation in the endoplasmic reticulum. Here we report the 3.0 Å resolution crystal structure of GtrB, a glucose-specific PI-GT from Synechocystis, showing a tetramer in which each protomer contributes two helices to a membrane-spanning bundle. The active site is 15 Å from the membrane, raising the question of how water-soluble and membrane-embedded substrates are brought into apposition for catalysis. A conserved juxtamembrane domain harbours disease mutations, which compromised activity in GtrB in vitro and in human DPM1 tested in zebrafish. We hypothesize a role of this domain in shielding the polyisoprenyl-phosphate for transport to the active site. Our results reveal the basis of PI-GT function, and provide a potential molecular explanation for DPM1-related disease.
Collapse
Affiliation(s)
- Chiara Ardiccioni
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Oliver B. Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - David Tomasek
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Habon A. Issa
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia 20037, USA
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia 20037, USA
| | - Desiree C. von Alpen
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia 20037, USA
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia 20037, USA
| | - Heather L. Pond
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia 20037, USA
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia 20037, USA
| | - Surajit Banerjee
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Kanagalaghatta R. Rajashankar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Qun Liu
- New York Structural Biology Center, X4 Beamlines, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Chijun Li
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, New York 10027, USA
| | - Renato Bruni
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, New York 10027, USA
| | - Edda Kloppmann
- Department of Informatics, Bioinformatics and Computational Biology, Garching 85748, Germany
- Institute for Advanced Study (TUM-IAS), TUM (Technische Universität München), Garching 85748, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology, Garching 85748, Germany
- Institute for Advanced Study (TUM-IAS), TUM (Technische Universität München), Garching 85748, Germany
| | - M. Chiara Manzini
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia 20037, USA
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia 20037, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| |
Collapse
|
18
|
Guo Z, Li J, Qin H, Wang M, Lv X, Li X, Chen Y. Biosynthesis of the CarbamoylatedD-Gulosamine Moiety of Streptothricins: Involvement of a Guanidino-N-glycosyltransferase and anN-Acetyl-D-gulosamine Deacetylase. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Guo Z, Li J, Qin H, Wang M, Lv X, Li X, Chen Y. Biosynthesis of the CarbamoylatedD-Gulosamine Moiety of Streptothricins: Involvement of a Guanidino-N-glycosyltransferase and anN-Acetyl-D-gulosamine Deacetylase. Angew Chem Int Ed Engl 2015; 54:5175-8. [DOI: 10.1002/anie.201412190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 11/06/2022]
|
20
|
Li Q, Pan Z, Deng G, Long H, Li Z, Deng X, Liang J, Tang Y, Zeng X, Tashi N, Yu M. Effect of wide variation of the Waxy gene on starch properties in hull-less barley from Qinghai-Tibet plateau in China. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11369-11385. [PMID: 25345815 DOI: 10.1021/jf5026746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Granule-bound starch synthase I (GBSS I) plays an important role in the synthesis of amylose and in the determination of starch properties in barley grains. Genomic DNAs for the Waxy gene encoding GBSS I protein were sequenced from 34 barley accessions or lines from Qinghai-Tibet plateau in China, to identify Waxy gene nucleotide variations and study the roles of polymorphic sites of the Waxy gene on expression levels of Waxy transcripts and GBSS I proteins and on resulting starch properties. A total of 116 DNA polymorphic sites were identified within the barley Waxy gene, which divided the studied accessions into 11 haplotypes. Among 33 nucleotide polymorphic sites in coding regions, 5 SNPs in three exons were found to play different roles on the expression level of the Waxy transcript and the GBSS I protein and on the amylose content and starch properties. One SNP G(3935)-to-T substitution in the 10th exon in the accession Z999 (HP II-2) caused a high expression level of the Waxy transcript and the GBSS I protein and the amylose free phenotype. The other SNP alteration was a C(2453)-to-T in the fifth exon in the accession Z1191 (HP I-5), which drastically reduced the expression level of the Waxy transcript and the GBSS I protein and, finally, produced the amylose free phenotype. Three SNPs in the seventh exon in the accession Z1337 (HP I-6) did not significantly change the level of Waxy transcript, the GBSS I protein, and starch properties, except obviously reducing the breakdown value of starch viscosity and extending the peak time. A total of 84 DNA polymorphic sites were found in the noncoding regions. A 403 bp deletion at 5'UTR in the accession Z1979 (HP I-3) had low transcript level, low GBSS I protein level, and low amylose content due to the deletion of cis-acting DNA regulatory elements. A 191 bp insertion and a 15 bp insertion in the first intron and second exons, respectively, may be closely related to a higher transcript level of the Waxy gene and significant differences in some starch properties of the Waxy I DNA group as compared to the Waxy II DNA group. This study indicates the specific variations of the Waxy gene have a great effect on amylose synthesis and starch properties of hull-less barley, which could be very useful to produce new barley with variable starch properties.
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences , No. 9 Section 4, Renmin South Road, Chengdu 610041, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The sps Gene Products Affect the Germination, Hydrophobicity, and Protein Adsorption of Bacillus subtilis Spores. Appl Environ Microbiol 2014; 80:7293-302. [PMID: 25239894 DOI: 10.1128/aem.02893-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/13/2014] [Indexed: 11/20/2022] Open
Abstract
The multilayered surface of the Bacillus subtilis spore is composed of proteins and glycans. While over 70 different proteins have been identified as surface components, carbohydrates associated with the spore surface have not been characterized in detail yet. Bioinformatic data suggest that the 11 products of the sps operon are involved in the synthesis of polysaccharides present on the spore surface, but an experimental validation is available only for the four distal genes of the operon. Here, we report a transcriptional analysis of the sps operon and a functional study performed by constructing and analyzing two null mutants lacking either all or only the promoter-proximal gene of the operon. Our results show that both sps mutant spores apparently have normal coat and crust but have a small germination defect and are more hydrophobic than wild-type spores. We also show that spores lacking all Sps proteins are highly adhesive and form extensive clumps. In addition, sps mutant spores have an increased efficiency in adsorbing a heterologous enzyme, suggesting that hydrophobic force is a major determinant of spore adsorption and indicating that a deep understanding of the surface properties of the spore is essential for its full development as a surface display platform.
Collapse
|
22
|
The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold. Nat Commun 2014; 5:4339. [PMID: 25023666 PMCID: PMC4352575 DOI: 10.1038/ncomms5339] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/07/2014] [Indexed: 01/23/2023] Open
Abstract
More than 33,000 glycosyltransferases have been identified. Structural studies, however, have only revealed two distinct glycosyltransferase (GT) folds, GT-A and GT-B. Here we report a 1.34-Å resolution X-ray crystallographic structure of a previously uncharacterized 'domain of unknown function' 1792 (DUF1792) and show that the domain adopts a new fold and is required for glycosylation of a family of serine-rich repeat streptococcal adhesins. Biochemical studies reveal that the domain is a glucosyltransferase, and it catalyses the transfer of glucose to the branch point of the hexasaccharide O-linked to the serine-rich repeat of the bacterial adhesin, Fap1 of Streptococcus parasanguinis. DUF1792 homologues from both Gram-positive and Gram-negative bacteria also exhibit the activity. Thus, DUF1792 represents a new family of glycosyltransferases; therefore, we designate it as a GT-D glycosyltransferase fold. As the domain is highly conserved in bacteria and not found in eukaryotes, it can be explored as a new antibacterial target.
Collapse
|
23
|
Structure-function features of a Mycoplasma glycolipid synthase derived from structural data integration, molecular simulations, and mutational analysis. PLoS One 2013; 8:e81990. [PMID: 24312618 PMCID: PMC3849446 DOI: 10.1371/journal.pone.0081990] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/18/2013] [Indexed: 11/19/2022] Open
Abstract
Glycoglycerolipids are structural components of mycoplasma membranes with a fundamental role in membrane properties and stability. Their biosynthesis is mediated by glycosyltransferases (GT) that catalyze the transfer of glycosyl units from a sugar nucleotide donor to diacylglycerol. The essential function of glycolipid synthases in mycoplasma viability, and the absence of glycoglycerolipids in animal host cells make these GT enzymes a target for drug discovery by designing specific inhibitors. However, rational drug design has been hampered by the lack of structural information for any mycoplasma GT. Most of the annotated GTs in pathogenic mycoplasmas belong to family GT2. We had previously shown that MG517 in Mycoplasma genitalium is a GT-A family GT2 membrane-associated glycolipid synthase. We present here a series of structural models of MG517 obtained by homology modeling following a multiple-template approach. The models have been validated by mutational analysis and refined by long scale molecular dynamics simulations. Based on the models, key structure-function relationships have been identified: The N-terminal GT domain has a GT-A topology that includes a non-conserved variable region involved in acceptor substrate binding. Glu193 is proposed as the catalytic base in the GT mechanism, and Asp40, Tyr126, Tyr169, Ile170 and Tyr218 define the substrates binding site. Mutation Y169F increases the enzyme activity and significantly alters the processivity (or sequential transferase activity) of the enzyme. This is the first structural model of a GT-A glycoglycerolipid synthase and provides preliminary insights into structure and function relationships in this family of enzymes.
Collapse
|
24
|
Luke-Marshall NR, Edwards KJ, Sauberan S, St Michael F, Vinogradov EV, Cox AD, Campagnari AA. Characterization of a trifunctional glucosyltransferase essential for Moraxella catarrhalis lipooligosaccharide assembly. Glycobiology 2013; 23:1013-21. [PMID: 23720461 DOI: 10.1093/glycob/cwt042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human respiratory tract pathogen Moraxella catarrhalis expresses lipooligosaccharides (LOS), glycolipid surface moieties that are associated with enhanced colonization and virulence. Recent studies have delineated the major steps required for the biosynthesis and assembly of the M. catarrhalis LOS molecule. We previously demonstrated that the glucosyltransferase enzyme Lgt3 is responsible for the addition of at least one glucose (Glc) molecule, at the β-(1-4) position, to the inner core of the LOS molecule. Our data further suggested a potential multifunctional role for Lgt3 in LOS biosynthesis. The studies reported here demonstrate that the Lgt3 enzyme possesses two glycosyltransferase domains (A1 and A2) similar to that of other bifunctional glycosyltransferase enzymes involved in surface polysaccharide biosynthesis in Escherichia coli, Pasteurella multocida and Streptococcus pyogenes. Each Lgt3 domain contains a conserved DXD motif, shown to be involved in the catalytic activity of other glycosyltransferases. To determine the function of each domain, A1 (N-terminal), A2 (C-terminal) and double A1A2 site-directed DAD to AAA mutants were constructed and the resulting LOS phenotypes of these modified strains were analyzed. Our studies indicate that the Lgt3 N-terminal A1 catalytic domain is responsible for the addition of the first β-(1-3) Glc to the first Glc on the inner core. The C-terminal catalytic domain A2 then adds the β-(1-4) Glc and the β-(1-6) Glc, confirming the bifunctional nature of this domain. The results from these experiments demonstrate that Lgt3 is a novel, multifunctional transferase responsible for the addition of three Glcs with differing linkages onto the inner core of M. catarrhalis LOS.
Collapse
Affiliation(s)
- Nicole R Luke-Marshall
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
A putative bactoprenol glycosyltransferase, CsbB, in Bacillus subtilis activates SigM in the absence of co-transcribed YfhO. Biochem Biophys Res Commun 2013; 436:6-11. [PMID: 23632331 DOI: 10.1016/j.bbrc.2013.04.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 11/21/2022]
Abstract
Bacteria are equipped with complex cell surface structures, such as cell walls. How they maintain cell surface integrity through cell wall metabolism during growth and adaptation to unfavorable environmental conditions is still elusive. In the Gram-positive soil bacterium Bacillus subtilis, one extracytoplasmic function (ECF) sigma factor, SigM, is believed to play a primary role in cell surface integrity. Here, we find that expression of CsbB, which is known to be involved in the extracellular stress response, causes constitutive activation of SigM when YfhO, a membrane protein with unknown function, is lost. CsbB has similarity with the well-characterized bactoprenol glucosyltransferase GtrB found in Gram-negative bacteria. Substitution of a single amino acid residue at the putative catalytic site of CsbB abolishes this constitutive activation, and expression of Escherichia coli GtrB in B. subtilis causes similar effects as expression of CsbB, suggesting that SigM is activated by the glycosyltransferase activity of CsbB. A comparison with the Gtr system in Gram-negative bacteria suggests that accumulation of glycosylated bactoprenol catalyzed by CsbB reduces the bactoprenol pool in the absence of YfhO. Reduction of bactoprenol synthesis causes similar effects as expression of CsbB. We propose that it is the shortage of available bactoprenol within a cell that induces SigM activity.
Collapse
|
26
|
Klein G, Müller-Loennies S, Lindner B, Kobylak N, Brade H, Raina S. Molecular and structural basis of inner core lipopolysaccharide alterations in Escherichia coli: incorporation of glucuronic acid and phosphoethanolamine in the heptose region. J Biol Chem 2013; 288:8111-8127. [PMID: 23372159 DOI: 10.1074/jbc.m112.445981] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is well established that lipopolysaccharide (LPS) often carries nonstoichiometric substitutions in lipid A and in the inner core. In this work, the molecular basis of inner core alterations and their physiological significance are addressed. A new inner core modification of LPS is described, which arises due to the addition of glucuronic acid on the third heptose with a concomitant loss of phosphate on the second heptose. This was shown by chemical and structural analyses. Furthermore, the gene whose product is responsible for the addition of this sugar was identified in all Escherichia coli core types and in Salmonella and was designated waaH. Its deduced amino acid sequence exhibits homology to glycosyltransferase family 2. The transcription of the waaH gene is positively regulated by the PhoB/R two-component system in a growth phase-dependent manner, which is coordinated with the transcription of the ugd gene explaining the genetic basis of this modification. Glucuronic acid modification was observed in E. coli B, K12, R2, and R4 core types and in Salmonella. We also show that the phosphoethanolamine (P-EtN) addition on heptose I in E. coli K12 requires the product of the ORF yijP, a new gene designated as eptC. Incorporation of P-EtN is also positively regulated by PhoB/R, although it can occur at a basal level without a requirement for any regulatory inducible systems. This P-EtN modification is essential for resistance to a variety of factors, which destabilize the outer membrane like the addition of SDS or challenge to sublethal concentrations of Zn(2+).
Collapse
Affiliation(s)
- Gracjana Klein
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, 23845 Borstel, Germany; Department of Microbiology, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Sven Müller-Loennies
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, 23845 Borstel, Germany
| | - Buko Lindner
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, 23845 Borstel, Germany
| | - Natalia Kobylak
- Department of Microbiology, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Helmut Brade
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, 23845 Borstel, Germany
| | - Satish Raina
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, 23845 Borstel, Germany; Department of Microbiology, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
27
|
Kooy FK, Beeftink HH, Eppink MHM, Tramper J, Eggink G, Boeriu CG. Structural and functional evidence for two separate oligosaccharide binding sites of Pasteurella multocida hyaluronan synthase. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aer.2013.14011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Li J, Wang N. The gpsX gene encoding a glycosyltransferase is important for polysaccharide production and required for full virulence in Xanthomonas citri subsp. citri. BMC Microbiol 2012; 12:31. [PMID: 22404966 PMCID: PMC3364877 DOI: 10.1186/1471-2180-12-31] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/09/2012] [Indexed: 02/08/2023] Open
Abstract
Background The Gram-negative bacterium Xanthomonas citri subsp. citri (Xac) causes citrus canker, one of the most destructive diseases of citrus worldwide. In our previous work, a transposon mutant of Xac strain 306 with an insertion in the XAC3110 locus was isolated in a screening that aimed at identifying genes related to biofilm formation. The XAC3110 locus was named as bdp24 for biofilm-defective phenotype and the mutant was observed to be affected in extracellular polysaccharide (EPS) and lipopolysaccharide (LPS) biosynthesis and cell motility. In this study, we further characterized the bdp24 (XAC3110) gene (designated as gpsX) using genetic complementation assays and expanded the knowledge about the function of the gpsX gene in Xac pathogenesis by investigating the roles of gpsX in EPS and LPS production, cell motility, biofilm formation on host leaves, stress tolerance, growth in planta, and host virulence of the citrus canker bacterium. Results The gpsX gene encodes a putative glycosyltransferase, which is highly conserved in the sequenced strains of Xanthomonas. Mutation of gpsX resulted in a significant reduction of the amount of EPS and loss of two LPS bands visualized on sodium dodecylsulphate- polyacrylamide gels. Biofilm assays revealed that the gpsX mutation affected biofilm formation by Xac on abiotic and biotic surfaces. The gpsX mutant showed delayed bacterial growth and caused reduced development of disease symptoms in susceptible citrus leaves. The gpsX mutant was more sensitive than the wild-type strain to various stresses, including the H2O2 oxidative stress. The mutant also showed attenuated ability in cell motility but not in flagellar formation. Quantitative reverse transcription-PCR assays indicated that mutation of gpsX did not affect the expression of virulence genes such as pthA in Xac strain 306. The affected phenotypes of the gpsX mutant could be complemented to wild-type levels by the intact gpsX gene. Conclusions Taken together, our data confirm that the gpsX gene is involved in EPS and LPS synthesis and biofilm formation in Xac and suggest that the gpsX gene contributes to the adaptation of Xac to the host microenvironments at early stage of infection and thus is required for full virulence on host plants.
Collapse
Affiliation(s)
- Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, IFAS, Lake Alfred, 33850, USA
| | | |
Collapse
|
29
|
Pak JE, Satkunarajah M, Seetharaman J, Rini JM. Structural and Mechanistic Characterization of Leukocyte-Type Core 2 β1,6-N-Acetylglucosaminyltransferase: A Metal-Ion-Independent GT-A Glycosyltransferase. J Mol Biol 2011; 414:798-811. [DOI: 10.1016/j.jmb.2011.10.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/14/2011] [Accepted: 10/21/2011] [Indexed: 10/15/2022]
|
30
|
Cheng PW, Radhakrishnan P. Mucin O-glycan branching enzymes: structure, function, and gene regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:465-92. [PMID: 21618125 DOI: 10.1007/978-1-4419-7877-6_25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pi-Wan Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine and Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | |
Collapse
|
31
|
Guttenplan SB, Blair KM, Kearns DB. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLoS Genet 2010; 6:e1001243. [PMID: 21170308 PMCID: PMC3000366 DOI: 10.1371/journal.pgen.1001243] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/08/2010] [Indexed: 11/24/2022] Open
Abstract
Many bacteria inhibit motility concomitant with the synthesis of an extracellular polysaccharide matrix and the formation of biofilm aggregates. In Bacillus subtilis biofilms, motility is inhibited by EpsE, which acts as a clutch on the flagella rotor to inhibit motility, and which is encoded within the 15 gene eps operon required for EPS production. EpsE shows sequence similarity to the glycosyltransferase family of enzymes, and we demonstrate that the conserved active site motif is required for EPS biosynthesis. We also screen for residues specifically required for either clutch or enzymatic activity and demonstrate that the two functions are genetically separable. Finally, we show that, whereas EPS synthesis activity is dominant for biofilm formation, both functions of EpsE synergize to stabilize cell aggregates and relieve selective pressure to abolish motility by genetic mutation. Thus, the transition from motility to biofilm formation may be governed by a single bifunctional enzyme. Bacteria form persistent and antibiotic-resistant cell aggregates known as biofilms. Biofilms can form in environmental settings on plant and animal tissues, in industrial settings on pipes and the hulls of ships, and in clinical settings on catheters and medical devices. Biofilms are characterized by two features: the cells within the aggregates are non-motile, and they produce an extracellular polysaccharide (EPS) matrix. We have found a bifunctional enzyme EpsE that contributes to both features of biofilm formation in Bacillus subtilis. EpsE interacts with the flagella rotor to inhibit motility and also cooperates with other enzymes to synthesize the EPS matrix. Thus, the transition from motility to biofilm formation may be governed by a single bifunctional protein. In the past decade, research on biofilms has been focused on biofilm eradication. Understanding how cells transition into the biofilm state may provide additional approaches of preventing the formation of a biofilm in the first place.
Collapse
Affiliation(s)
- Sarah B. Guttenplan
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Kris M. Blair
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
32
|
Hu SQ, Gao YG, Tajima K, Sunagawa N, Zhou Y, Kawano S, Fujiwara T, Yoda T, Shimura D, Satoh Y, Munekata M, Tanaka I, Yao M. Structure of bacterial cellulose synthase subunit D octamer with four inner passageways. Proc Natl Acad Sci U S A 2010; 107:17957-61. [PMID: 20921370 PMCID: PMC2964256 DOI: 10.1073/pnas.1000601107] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cellulose synthesizing terminal complex consisting of subunits A, B, C, and D in Acetobacter xylinum spans the outer and inner cell membranes to synthesize and extrude glucan chains, which are assembled into subelementary fibrils and further into a ribbon. We determined the structures of subunit D (AxCeSD/AxBcsD) with both N- and C-terminal His(6) tags, and in complex with cellopentaose. The structure of AxCeSD shows an exquisite cylinder shape (height: ∼65 Å, outer diameter: ∼90 Å, and inner diameter: ∼25 Å) with a right-hand twisted dimer interface on the cylinder wall, formed by octamer as a functional unit. All N termini of the octamer are positioned inside the AxCeSD cylinder and create four passageways. The location of cellopentaoses in the complex structure suggests that four glucan chains are extruded individually through their own passageway along the dimer interface in a twisted manner. The complex structure also shows that the N-terminal loop, especially residue Lys6, seems to be important for cellulose production, as confirmed by in vivo assay using mutant cells with axcesD gene disruption and N-terminus truncation. Taking all results together, a model of the bacterial terminal complex is discussed.
Collapse
Affiliation(s)
- Song-Qing Hu
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; and
| | - Yong-Gui Gao
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; and
| | - Kenji Tajima
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Naoki Sunagawa
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yong Zhou
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; and
| | - Shin Kawano
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takaaki Fujiwara
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; and
| | - Takanori Yoda
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Daisuke Shimura
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Yasuharu Satoh
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Masanobu Munekata
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; and
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; and
| |
Collapse
|
33
|
Moraxella catarrhalis Lgt2, a galactosyltransferase with broad acceptor substrate specificity. Carbohydr Res 2010; 345:2151-6. [PMID: 20832776 DOI: 10.1016/j.carres.2010.07.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/23/2010] [Accepted: 07/30/2010] [Indexed: 11/23/2022]
Abstract
The genetic basis of lipo-oligosaccharide (LOS) biosynthesis for the bacterium Moraxella catarrhalis has been elucidated and functions suggested for each of the glycosyltransferases. In this study we have expressed and characterised one of these enzymes, the putative galactosyltransferase Lgt2(B/C). The lgt2(B/C) gene was amplified from M. catarrhalis, expressed in Escherichia coli, and Lgt2(B/C) was purified. Analysis of its glycosyltransferase catalytic activity ascertained the pH and temperature optima. The donor specificity and acceptor specificity were examined and they showed that Lgt2(B/C) is a galactosyltransferase with relatively broad acceptor specificity with optimal activity in the presence of exogenous Mg(2+).
Collapse
|
34
|
Challenges and advances in systems biology analysis of Bacillus spore physiology; molecular differences between an extreme heat resistant spore forming Bacillus subtilis food isolate and a laboratory strain. Food Microbiol 2010; 28:221-7. [PMID: 21315977 DOI: 10.1016/j.fm.2010.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 06/02/2010] [Accepted: 06/24/2010] [Indexed: 01/13/2023]
Abstract
Bacterial spore formers are prime organisms of concern in the food industry. Spores from the genus Bacillus are extremely stress resistant, most notably exemplified by high thermotolerance. This sometimes allows surviving spores to germinate and grow out to vegetative cells causing food spoilage and possible intoxication. Similar issues though more pending toward spore toxigenicity are observed for the anaerobic Clostridia. The paper indicates the nature of stress resistance and highlights contemporary molecular approaches to analyze the mechanistic basis of it in Bacilli. A molecular comparison between a laboratory strain and a food borne isolate, very similar at the genomic level to the laboratory strain but generating extremely heat resistant spores, is discussed. The approaches cover genome-wide genotyping, proteomics and genome-wide expression analyses studies. The analyses aim at gathering sufficient molecular information to be able to put together an initial framework for dynamic modelling of spore germination and outgrowth behaviour. Such emerging models should be developed both at the population and at the single spore level. Tools and challenges in achieving the latter are succinctly discussed.
Collapse
|
35
|
Mercier KA, Cort JR, Kennedy MA, Lockert EE, Ni S, Shortridge MD, Powers R. Structure and function of Pseudomonas aeruginosa protein PA1324 (21-170). Protein Sci 2009; 18:606-18. [PMID: 19241370 DOI: 10.1002/pro.62] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pseudomonas aeruginosa is the prototypical biofilm-forming gram-negative opportunistic human pathogen. P. aeruginosa is causatively associated with nosocomial infections and with cystic fibrosis. Antibiotic resistance in some strains adds to the inherent difficulties that result from biofilm formation when treating P. aeruginosa infections. Transcriptional profiling studies suggest widespread changes in the proteome during quorum sensing and biofilm development. Many of the proteins found to be upregulated during these processes are poorly characterized from a functional standpoint. Here, we report the solution NMR structure of PA1324, a protein of unknown function identified in these studies, and provide a putative biological functional assignment based on the observed prealbumin-like fold and FAST-NMR ligand screening studies. PA1324 is postulated to be involved in the binding and transport of sugars or polysaccharides associated with the peptidoglycan matrix during biofilm formation.
Collapse
Affiliation(s)
- Kelly A Mercier
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Seibel J, Jördening HJ, Buchholz K. Glycosylation with activated sugars using glycosyltransferases and transglycosidases. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420600986811] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Remminghorst U, Hay ID, Rehm BHA. Molecular characterization of Alg8, a putative glycosyltransferase, involved in alginate polymerisation. J Biotechnol 2009; 140:176-83. [PMID: 19428712 DOI: 10.1016/j.jbiotec.2009.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 02/04/2009] [Accepted: 02/06/2009] [Indexed: 11/28/2022]
Abstract
The topology of Alg8, the proposed catalytic subunit of the alginate polymerase, was assessed using PhoA and LacZ fusion protein analysis. This analysis suggested that the periplasmic loop comprises only three amino acid residues with the adjacent transmembrane helices at positions 361-387 and 393-416. Accordingly, the extended cytosolic loop could be located at positions 71-361 and was proposed to contain important catalytic residues. Further experimental evidence for this cytosolic domain was obtained by independently demonstrating this protein region as purified soluble protein domain. The soluble protein domain was identified by MALDI-TOF/MS and presumably represents the cytosolic catalytic domain of Alg8. Site-directed mutagenesis of 11 conserved residues in the cytosolic loop showed that D-188/D-190 (DXD motif), D-295/D-296 (acid-base catalysts) and K-297 were each essential for in vivo polymerase activity, whereas D-179/D-181 (DXD motif), C-244, R-263, D-279, and E-282 were not directly involved in the polymerisation reaction. The role of these amino acid residues with respect to the catalysed alginate polymerisation reaction was discussed with the aid of the recently developed structural model of Alg8.
Collapse
Affiliation(s)
- Uwe Remminghorst
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | |
Collapse
|
38
|
Thibodeaux C, Melançon C, Liu HW. Biosynthese von Naturstoffzuckern und enzymatische Glycodiversifizierung. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801204] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Stern R, Jedrzejas MJ. Carbohydrate Polymers at the Center of Life’s Origins: The Importance of Molecular Processivity. Chem Rev 2008; 108:5061-85. [DOI: 10.1021/cr078240l] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Robert Stern
- Department of Pathology and Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, California 94143, Microdesign Institute, 29 Kingwood Rd., Oakland, California 94619, and Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, California 94609
| | - Mark J. Jedrzejas
- Department of Pathology and Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, California 94143, Microdesign Institute, 29 Kingwood Rd., Oakland, California 94619, and Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, California 94609
| |
Collapse
|
40
|
Sobhany M, Kakuta Y, Sugiura N, Kimata K, Negishi M. The chondroitin polymerase K4CP and the molecular mechanism of selective bindings of donor substrates to two active sites. J Biol Chem 2008; 283:32328-33. [PMID: 18806260 DOI: 10.1074/jbc.m804332200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial chondroitin polymerase K4CP is a multifunctional enzyme with two active sites. K4CP catalyzes alternative transfers of glucoronic acid (GlcA) and N-acetylgalactosamine (GalNAc) to elongate a chain consisting of the repeated disaccharide sequence GlcAbeta1-3GalNAcbeta1-4. Unlike the polymerization reactions of DNA and RNA and polypeptide synthesis, which depend upon templates, the monosaccharide polymerization by K4CP does not. To investigate the catalytic mechanism of this reaction, we have used isothermal titration calorimetry to determine the binding of the donor substrates UDP-GlcA and UDP-GalNAc to purified K4CP protein and its mutants. Only one donor molecule bound to one molecule of K4CP at a time. UDP-GlcA bound only to the C-terminal active site at a high affinity (K(d)=6.81 microm), thus initiating the polymerization reaction. UDP-GalNAc could bind to either the N-terminal or C-terminal active sites at a low affinity (K(d)=266-283 microm) but not to both sites at the same time. The binding affinity of UDP-GalNAc to a K4CP N-terminal fragment (residues 58-357) was profoundly decreased, yielding the average K(d) value of 23.77 microm, closer to the previously reported K(m) value for the UDP-GalNAc transfer reaction that takes place at the N-terminal active site. Thus, the first step of the reaction appears to be the binding of UDP-GlcA to the C-terminal active site, whereas the second step involves the C-terminal region of the K4CP molecule regulating the binding of UDP-GalNAc to only the N-terminal active site. Alternation of these two specific bindings advances the polymerization reaction by K4CP.
Collapse
Affiliation(s)
- Mack Sobhany
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
41
|
Lairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 2008; 77:521-55. [PMID: 18518825 DOI: 10.1146/annurev.biochem.76.061005.092322] [Citation(s) in RCA: 1452] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycosyltransferases catalyze glycosidic bond formation using sugar donors containing a nucleoside phosphate or a lipid phosphate leaving group. Only two structural folds, GT-A and GT-B, have been identified for the nucleotide sugar-dependent enzymes, but other folds are now appearing for the soluble domains of lipid phosphosugar-dependent glycosyl transferases. Structural and kinetic studies have provided new insights. Inverting glycosyltransferases utilize a direct displacement S(N)2-like mechanism involving an enzymatic base catalyst. Leaving group departure in GT-A fold enzymes is typically facilitated via a coordinated divalent cation, whereas GT-B fold enzymes instead use positively charged side chains and/or hydroxyls and helix dipoles. The mechanism of retaining glycosyltransferases is less clear. The expected two-step double-displacement mechanism is rendered less likely by the lack of conserved architecture in the region where a catalytic nucleophile would be expected. A mechanism involving a short-lived oxocarbenium ion intermediate now seems the most likely, with the leaving phosphate serving as the base.
Collapse
Affiliation(s)
- L L Lairson
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
42
|
Fulton Z, McAlister A, Wilce MCJ, Brammananth R, Zaker-Tabrizi L, Perugini MA, Bottomley SP, Coppel RL, Crellin PK, Rossjohn J, Beddoe T. Crystal structure of a UDP-glucose-specific glycosyltransferase from a Mycobacterium species. J Biol Chem 2008; 283:27881-27890. [PMID: 18667419 DOI: 10.1074/jbc.m801853200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosyltransferases (GTs) are a large and ubiquitous family of enzymes that specifically transfer sugar moieties to a range of substrates. Mycobacterium tuberculosis contains a large number of GTs, many of which are implicated in cell wall synthesis, yet the majority of these GTs remain poorly characterized. Here, we report the high resolution crystal structures of an essential GT (MAP2569c) from Mycobacterium avium subsp. paratuberculosis (a close homologue of Rv1208 from M. tuberculosis) in its apo- and ligand-bound forms. The structure adopted the GT-A fold and possessed the characteristic DXD motif that coordinated an Mn(2+) ion. Atypical of most GTs characterized to date, MAP2569c exhibited specificity toward the donor substrate, UDP-glucose. The structure of this ligated complex revealed an induced fit binding mechanism and provided a basis for this unique specificity. Collectively, the structural features suggested that MAP2569c may adopt a "retaining" enzymatic mechanism, which has implications for the classification of other GTs in this large superfamily.
Collapse
Affiliation(s)
- Zara Fulton
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800; Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria 3800
| | - Adrian McAlister
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800
| | - Matthew C J Wilce
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800
| | - Rajini Brammananth
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria 3800; Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800
| | - Leyla Zaker-Tabrizi
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800; Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria 3800
| | - Matthew A Perugini
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010
| | - Stephen P Bottomley
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Ross L Coppel
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria 3800; Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800
| | - Paul K Crellin
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria 3800; Department of Microbiology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800
| | - Jamie Rossjohn
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800; Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria 3800.
| | - Travis Beddoe
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800; Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria 3800.
| |
Collapse
|
43
|
Steiner K, Novotny R, Werz DB, Zarschler K, Seeberger PH, Hofinger A, Kosma P, Schäffer C, Messner P. Molecular basis of S-layer glycoprotein glycan biosynthesis in Geobacillus stearothermophilus. J Biol Chem 2008; 283:21120-33. [PMID: 18515358 PMCID: PMC3258933 DOI: 10.1074/jbc.m801833200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/23/2008] [Indexed: 12/22/2022] Open
Abstract
The Gram-positive bacterium Geobacillus stearothermophilus NRS 2004/3a possesses a cell wall containing an oblique surface layer (S-layer) composed of glycoprotein subunits. O-Glycans with the structure [-->2)-alpha-L-Rhap-(1-->3)-beta-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->](n) (= 13-18), a2-O-methyl group capping the terminal repeating unit at the nonreducing end and a -->2)-alpha-L-Rhap-[(1-->3)-alpha-L-Rhap](n) (= 1-2)(1-->3)- adaptor are linked via a beta-D-Galp residue to distinct sites of the S-layer protein SgsE. S-layer glycan biosynthesis is encoded by a polycistronic slg (surface layer glycosylation) gene cluster. Four assigned glycosyltransferases named WsaC-WsaF, were investigated by a combined biochemical and NMR approach, starting from synthetic octyl-linked saccharide precursors. We demonstrate that three of the enzymes are rhamnosyltransferases that are responsible for the transfer of L-rhamnose from a dTDP-beta-L-Rha precursor to the nascent S-layer glycan, catalyzing the formation of the alpha1,3- (WsaC and WsaD) and beta1,2-linkages (WsaF) present in the adaptor saccharide and in the repeating units of the mature S-layer glycan, respectively. These enzymes work in concert with a multifunctional methylrhamnosyltransferase (WsaE). The N-terminal portion of WsaE is responsible for the S-adenosylmethionine-dependent methylation reaction of the terminal alpha1,3-linked L-rhamnose residue, and the central and C-terminal portions are involved in the transfer of L-rhamnose from dTDP-beta-L-rhamnose to the adaptor saccharide to form the alpha1,2- and alpha1,3-linkages during S-layer glycan chain elongation, with the methylation and the glycosylation reactions occurring independently. Characterization of these enzymes thus reveals the complete molecular basis for S-layer glycan biosynthesis.
Collapse
Affiliation(s)
- Kerstin Steiner
- Center for NanoBiotechnology
and the Department of Chemistry,
University of Natural Resources and Applied Life Sciences, Wien, Austria, and
the Laboratory for Organic Chemistry,
Swiss Federal Institute of Technology, Zürich, Switzerland
| | - René Novotny
- Center for NanoBiotechnology
and the Department of Chemistry,
University of Natural Resources and Applied Life Sciences, Wien, Austria, and
the Laboratory for Organic Chemistry,
Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Daniel B. Werz
- Center for NanoBiotechnology
and the Department of Chemistry,
University of Natural Resources and Applied Life Sciences, Wien, Austria, and
the Laboratory for Organic Chemistry,
Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Kristof Zarschler
- Center for NanoBiotechnology
and the Department of Chemistry,
University of Natural Resources and Applied Life Sciences, Wien, Austria, and
the Laboratory for Organic Chemistry,
Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Peter H. Seeberger
- Center for NanoBiotechnology
and the Department of Chemistry,
University of Natural Resources and Applied Life Sciences, Wien, Austria, and
the Laboratory for Organic Chemistry,
Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Andreas Hofinger
- Center for NanoBiotechnology
and the Department of Chemistry,
University of Natural Resources and Applied Life Sciences, Wien, Austria, and
the Laboratory for Organic Chemistry,
Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Paul Kosma
- Center for NanoBiotechnology
and the Department of Chemistry,
University of Natural Resources and Applied Life Sciences, Wien, Austria, and
the Laboratory for Organic Chemistry,
Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Christina Schäffer
- Center for NanoBiotechnology
and the Department of Chemistry,
University of Natural Resources and Applied Life Sciences, Wien, Austria, and
the Laboratory for Organic Chemistry,
Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Paul Messner
- Center for NanoBiotechnology
and the Department of Chemistry,
University of Natural Resources and Applied Life Sciences, Wien, Austria, and
the Laboratory for Organic Chemistry,
Swiss Federal Institute of Technology, Zürich, Switzerland
| |
Collapse
|
44
|
Xu H, Minagawa K, Bai L, Deng Z, Mahmud T. Catalytic analysis of the validamycin glycosyltransferase (ValG) and enzymatic production of 4''-epi-validamycin A. JOURNAL OF NATURAL PRODUCTS 2008; 71:1233-6. [PMID: 18563934 PMCID: PMC2574543 DOI: 10.1021/np800185k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ValG is a glycosyltransferase (GT) that is responsible for the glucosylation of validoxylamine A to validamycin A. To explore the potential utilization of ValG as a tool for the production of validamycin analogues, a number of nucleotidyldiphosphate-sugars were evaluated as alternative substrates for ValG. The results indicated that in addition to its natural substrate, UDP-glucose, ValG also efficiently utilized UDP-galactose as sugar donor and resulted in the production of an unnatural compound, 4''-epi-validamycin A. The new compound demonstrated a moderate growth inhibitory activity against the plant fungal pathogen Rhizoctonia solani (= Pellicularia sasakii). A comparative analysis of ValG with its homologous proteins revealed that ValG contains an unusual DTG motif, in place of the DXD motif proposed for metal ion binding and/or NDP-sugar binding and commonly found in other glycosyltransferases. Site-directed mutagenesis of the DTG motif of ValG to DCD altered its preferences for metal ion binding, but did not seem to affect its substrate specificity.
Collapse
Affiliation(s)
- Hui Xu
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, USA
| | | | | | | | | |
Collapse
|
45
|
Maeda Y, Kinoshita T. Dolichol-phosphate mannose synthase: Structure, function and regulation. Biochim Biophys Acta Gen Subj 2008; 1780:861-8. [DOI: 10.1016/j.bbagen.2008.03.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/11/2008] [Accepted: 03/06/2008] [Indexed: 11/30/2022]
|
46
|
Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol Adv 2008; 26:436-56. [PMID: 18565714 DOI: 10.1016/j.biotechadv.2008.05.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 02/14/2008] [Accepted: 05/09/2008] [Indexed: 02/07/2023]
Abstract
Mammalian cell surfaces are all covered with bioactive oligosaccharides which play an important role in molecular recognition events such as immune recognition, cell-cell communication and initiation of microbial pathogenesis. Consequently, bioactive oligosaccharides have been recognized as a medicinally relevant class of biomolecules for which the interest is growing. For the preparation of complex and highly pure oligosaccharides, methods based on the application of glycosyltransferases are currently recognized as being the most effective. The present paper reviews the potential of glycosyltransferases as synthetic tools in oligosaccharide synthesis. Reaction mechanisms and selected characteristics of these enzymes are described in relation to the stereochemistry of the transfer reaction and the requirements of sugar nucleotide donors. For the application of glycosyltransferases, accepted substrate profiles are summarized and the whole-cell approach versus isolated enzyme methodology is compared. Sialyltransferase-catalyzed syntheses of gangliosides and other sialylated oligosaccharides are described in more detail in view of the prominent role of these compounds in biological recognition.
Collapse
|
47
|
Thibodeaux CJ, Melançon CE, Liu HW. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem Int Ed Engl 2008; 47:9814-59. [PMID: 19058170 PMCID: PMC2796923 DOI: 10.1002/anie.200801204] [Citation(s) in RCA: 335] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many biologically active small-molecule natural products produced by microorganisms derive their activities from sugar substituents. Changing the structures of these sugars can have a profound impact on the biological properties of the parent compounds. This realization has inspired attempts to derivatize the sugar moieties of these natural products through exploitation of the sugar biosynthetic machinery. This approach requires an understanding of the biosynthetic pathway of each target sugar and detailed mechanistic knowledge of the key enzymes. Scientists have begun to unravel the biosynthetic logic behind the assembly of many glycosylated natural products and have found that a core set of enzyme activities is mixed and matched to synthesize the diverse sugar structures observed in nature. Remarkably, many of these sugar biosynthetic enzymes and glycosyltransferases also exhibit relaxed substrate specificity. The promiscuity of these enzymes has prompted efforts to modify the sugar structures and alter the glycosylation patterns of natural products through metabolic pathway engineering and enzymatic glycodiversification. In applied biomedical research, these studies will enable the development of new glycosylation tools and generate novel glycoforms of secondary metabolites with useful biological activity.
Collapse
Affiliation(s)
- Christopher J. Thibodeaux
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Charles E. Melançon
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| |
Collapse
|
48
|
Angulo J, Langpap B, Blume A, Biet T, Meyer B, Krishna NR, Peters H, Palcic MM, Peters T. Blood group B galactosyltransferase: insights into substrate binding from NMR experiments. J Am Chem Soc 2007; 128:13529-38. [PMID: 17031966 DOI: 10.1021/ja063550r] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biosynthesis of human blood group B antigens is accomplished by a highly specific galactosyltransferase (GTB). On the basis of NMR experiments, we propose a "molecular tweezers mechanism" that accounts for the exquisite stereoselectivity of donor substrate selection. Transferred NOE experiments for the first time reveal the bioactive conformation of the donor substrate UDP-galactose (UDP-Gal) and of its enzymatically inactive analogue, UDP-glucose (UDP-Glc). Both bind to GTB in a folded conformation that is sparsely populated in solution, whereas acceptor ligands bind in a conformation that predominates in solution. The bound conformations of UDP-Gal and UDP-Glc are identical within experimental error. Therefore, GTB must discriminate between the two activated sugars on the basis of a hitherto unknown transition state that can only be formed in the case of UDP-Gal. A full relaxation and exchange matrix analysis of STD NMR experiments reveals that acceptor substrates dissociate significantly faster (k(off) > 100 Hz) from the binding pocket than donor substrates (k(off) approximately 10 Hz). STD NMR experiments also directly show that proper recognition of the hexopyranose rings of the UDP sugars requires bivalent metal cations. At the same time, this analysis furnishes the complete three-dimensional structure of the enzyme with its bound donor substrate UDP-Gal on the basis of a prior crystal structure analysis. We propose that, upon acceptor binding, GTB uses the Asp 302 and Glu 303 side chains as "molecular tweezers" to promote bound UDP-Gal but not UDP-Glc into a transition state that leads to product formation.
Collapse
Affiliation(s)
- Jesus Angulo
- Institute of Chemistry, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bernatchez S, Gilbert M, Blanchard MC, Karwaski MF, Li J, Defrees S, Wakarchuk WW. Variants of the β1,3-Galactosyltransferase CgtB from the Bacterium Campylobacter Jejuni have Distinct Acceptor Specificities. Glycobiology 2007; 17:1333-43. [PMID: 17766267 DOI: 10.1093/glycob/cwm090] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The gene clusters encoding the lipooligosaccharide biosynthesis glycosyltransferases from Campylobacter jejuni have previously been divided in eight classes based on their genetic organization. Here, three variants of the beta1,3-galactosyltransferase CgtB from two classes were purified as fusions with the maltose-binding protein (MalE) from Escherichia coli and their acceptor preference was determined. The acceptor preference of each CgtB variant was directly related to the presence or absence of sialic acid in the acceptor, which correlated with the core oligosaccharide structure in vivo. The three variants were evaluated for their ability to use a derivitized monosaccharide, a GM2 ganglioside mimic, a GA2 ganglioside mimic as well as a peptide containing alpha-linked GalNAc. This characterization shows the flexibility of these galactosyltransferases for diverse acceptors. The CgtB variants were engineered via carboxy-terminal deletions and inversion of the gene fusion order. The combination of a 20 to 30 aa deletion in CgtB followed by MalE at its carboxy terminus significantly improved the glycosyltransferase activity (up to a 51.8-fold increase of activity compared to the full length enzyme) in all cases regardless of the acceptor tested. The improved enzyme CgtB(OH4384)DeltaC-MalE was used to galactosylate a glyco-peptide acceptor based on the interferon alpha2b protein O-linked glycosylation site as confirmed by the CE-MS analysis of the reaction products. This improved enzyme was also used successfully to galactosylate the human therapeutic protein IFNalpha2b[GalNAcalpha]. This constitutes the first report of the in vitro synthesis of the O-linked T-antigen glycan on a human protein by a bacterial glycosyltransferase and illustrates the potential of bacterial glycosyltransferases as tools for in vitro glycosylation of human proteins of therapeutic value.
Collapse
Affiliation(s)
- Stéphane Bernatchez
- Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Thibodeaux CJ, Melançon CE, Liu HW. Unusual sugar biosynthesis and natural product glycodiversification. Nature 2007; 446:1008-16. [PMID: 17460661 DOI: 10.1038/nature05814] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The enzymes involved in the biosynthesis of carbohydrates and the attachment of sugar units to biological acceptor molecules catalyse an array of chemical transformations and coupling reactions. In prokaryotes, both common sugar precursors and their enzymatically modified derivatives often become substituents of biologically active natural products through the action of glycosyltransferases. Recently, researchers have begun to harness the power of these biological catalysts to alter the sugar structures and glycosylation patterns of natural products both in vivo and in vitro. Biochemical and structural studies of sugar biosynthetic enzymes and glycosyltransferases, coupled with advances in bioengineering methodology, have ushered in a new era of drug development.
Collapse
Affiliation(s)
- Christopher J Thibodeaux
- Institute for Cellular and Molecular Biology, 1 University Station A4810, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|