1
|
Kurt KC, Kurt H, Tokuç E, Özbey D, Arabacı DN, Aydın S, Gönüllü N, Skurnik M, Tokman HB. Isolation and characterization of new lytic bacteriophage PSA-KC1 against Pseudomonas aeruginosa isolates from cystic fibrosis patients. Sci Rep 2025; 15:6551. [PMID: 39994360 PMCID: PMC11850609 DOI: 10.1038/s41598-025-91073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
A novel lytic bacteriophage, PSA-KC1, was isolated from wastewater. In this study, the whole genome of the bacteriophage PSA-KC1 was analyzed, and its lytic properties were assessed. PSA-KC1 has a linear double-stranded DNA genome with a total length of 43,237 base pairs and a GC content of 53.6%. In total, 65 genes were predicted, 46 of which were assigned functions as structural proteins involved in genome replication, packaging or phage lysis. PSA-KC1 belongs to the genus Septimatrevirus under the Caudoviricetes class. The aim of this study was to investigate the efficacy of the lytic bacteriophage PSA-KC1 and compare it with that of the Pyophage phage cocktail on 25 multi drug resistant (MDR) Pseudomonas aeruginosa strains isolated from sputum samples of cystic fibrosis patients. Seventeen of these strains were susceptible (68%) to the PSA-KC1 lytic phage we isolated, whereas eight clinical strains were resistant. However, 22 (88%) of the P. aeruginosa strains were susceptible to the Pyophage cocktail, and three (12%) were resistant to the Phage cocktail. At the end of our study, a new lytic phage active against multidrug-resistant P. aeruginosa strains from CF patients was isolated, and its genome was characterized. Since the PSA-KC1 phage does not contain virulence factors, toxins or integrase genes, it can be expected to be a therapeutic candidate with the potential to be used safely in phage therapy.
Collapse
Affiliation(s)
- Kübra Can Kurt
- Hamidiye Faculty of Dentistry, Department of Basic Medical Sciences, University of Health Sciences, Istanbul, Türkiye.
- Cerrahpasa Medical Faculty, Medical Microbiology Department, İstanbul University-Cerrahpasa, 34320, Istanbul, Türkiye, Turkey.
| | - Halil Kurt
- Medical Biology Department, University of Health Sciences, Hamidiye International School of Medicine, Istanbul, Türkiye, Turkey
| | - Edip Tokuç
- Cerrahpasa Medical Faculty, Medical Microbiology Department, İstanbul University-Cerrahpasa, 34320, Istanbul, Türkiye, Turkey
| | - Doğukan Özbey
- Faculty of Medicine, Medical Microbiology Department, Istanbul Okan University, Istanbul, Türkiye, Turkey
| | - Duygu Nur Arabacı
- Department of Genetics and Bioengineering, Nişantaşı University, Istanbul, Türkiye, Turkey
| | - Sevcan Aydın
- Faculty of Science, Department of Biology, Biotechnology Section, Istanbul University, Istanbul, Türkiye, Turkey
| | - Nevriye Gönüllü
- Cerrahpasa Medical Faculty, Medical Microbiology Department, İstanbul University-Cerrahpasa, 34320, Istanbul, Türkiye, Turkey
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Hrisi Bahar Tokman
- Cerrahpasa Medical Faculty, Medical Microbiology Department, İstanbul University-Cerrahpasa, 34320, Istanbul, Türkiye, Turkey
| |
Collapse
|
2
|
Cabral JE, Qiu Y, Heck AJR, McNulty R. Variable Assembly and Procapsid Binding of Bacteriophage P22 Terminase Subunits in Solution. Pathogens 2024; 13:1066. [PMID: 39770326 PMCID: PMC11728703 DOI: 10.3390/pathogens13121066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Concatemeric viral DNA is packaged into bacteriophage P22 procapsids via a headful packaging mechanism mediated by a molecular machine consisting of small (gp3) and large (gp2) terminase subunits. Although a negative stain reconstruction exists for the terminase holoenzyme, it is not clear how this complex binds the dodecameric portal protein located at a 5-fold mismatch vertex. Herein, we describe new assemblies for the holoenzyme. Both native mass spectrometry and transmission electron microscopy reveal that the P22 terminase complex adopts three main assemblies, which include a nonameric S-terminase bound to two L-terminase 1(gp3)9:2(gp2), two nonameric S-terminase bound to five L-terminase 2(gp3)9:5(gp2), and three nonameric S-terminase bound to seven L-terminase 3(gp3)9:7(gp2). Native agarose gel electrophoresis shows that the terminase complex interacts with procapsids with mild crosslinking. These results herein illustrate the P22 terminase complex can adopt a variety of conformations and assembly states.
Collapse
Affiliation(s)
- Julia Elise Cabral
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA 92697-3900, USA; (J.E.C.)
| | - Yanfei Qiu
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA 92697-3900, USA; (J.E.C.)
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Reginald McNulty
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA 92697-3900, USA; (J.E.C.)
- Department of Pharmaceutical Sciences, University of California Irvine, Steinhaus Hall, Irvine, CA 92697-3900, USA
| |
Collapse
|
3
|
Wei Z, Li X, Ai C, Dang H. Characterization and Genomic Analyses of dsDNA Vibriophage vB_VpaM_XM1, Representing a New Viral Family. Mar Drugs 2024; 22:429. [PMID: 39330310 PMCID: PMC11432961 DOI: 10.3390/md22090429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
A novel vibriophage vB_VpaM_XM1 (XM1) was described in the present study. Morphological analysis revealed that phage XM1 had Myovirus morphology, with an oblate icosahedral head and a long contractile tail. The genome size of XM1 is 46,056 bp, with a G + C content of 42.51%, encoding 69 open reading frames (ORFs). Moreover, XM1 showed a narrow host range, only lysing Vibrio xuii LMG 21346 (T) JL2919, Vibrio parahaemolyticus 1.1997, and V. parahaemolyticus MCCC 1H00029 among the tested bacteria. One-step growth curves showed that XM1 has a 20-min latent period and a burst size of 398 plaque-forming units (PFU)/cell. In addition, XM1 exhibited broad pH, thermal, and salinity stability, as well as strong lytic activity, even at a multiplicity of infection (MOI) of 0.001. Multiple genome comparisons and phylogenetic analyses showed that phage XM1 is grouped in a clade with three other phages, including Vibrio phages Rostov 7, X29, and phi 2, and is distinct from all known viral families that have ratified by the standard genomic analysis of the International Committee on Taxonomy of Viruses (ICTV). Therefore, the above four phages might represent a new viral family, tentatively named Weiviridae. The broad physiological adaptability of phage XM1 and its high lytic activity and host specificity indicated that this novel phage is a good candidate for being used as a therapeutic bioagent against infections caused by certain V. parahaemolyticus strains.
Collapse
Affiliation(s)
- Zuyun Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen 361102, China
| | - Xuejing Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen 361102, China
| | - Chunxiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Mariculture Breeding, Xiamen 361102, China
| | - Hongyue Dang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen 361102, China
| |
Collapse
|
4
|
Wang H, Zheng K, Wang M, Ma K, Ren L, Guo R, Ma L, Zhang H, Liu Y, Xiong Y, Wu M, Shao H, Sung YY, Mok WJ, Wong LL, McMinn A, Liang Y. Shewanella phage encoding a putative anti-CRISPR-like gene represents a novel potential viral family. Microbiol Spectr 2024; 12:e0336723. [PMID: 38214523 PMCID: PMC10846135 DOI: 10.1128/spectrum.03367-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
Shewanella is a prevalent bacterial genus in deep-sea environments including marine sediments, exhibiting diverse metabolic capabilities that indicate its significant contributions to the marine biogeochemical cycles. However, only a few Shewanella phages were isolated and deposited in the NCBI database. In this study, we report the isolation and characterization of a novel Shewanella phage, vB_SbaS_Y11, that infects Shewanella KR11 and was isolated from the sewage in Qingdao, China. Transmission electron microscopy revealed that vB_SbaS_Y11 has an icosahedral head and a long tail. The genome of vB_SbaS_Y11 is a linear, double-stranded DNA with a length of 62,799 bp and a G+C content of 46.9%, encoding 71 putative open reading frames. No tRNA genes or integrase-related feature genes were identified. An uncharacterized anti-CRISPR AcrVA2 gene was detected in its genome. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analyses indicate that vB_SbaS_Y11 has a novel genomic architecture and shares low similarity to Pseudomonas virus H66 and Pseudomonas phage F116. vB_SbaS_Y11 represents a potential new family-level virus cluster with eight metagenomic assembled viral genomes named Ranviridae.IMPORTANCEThe Gram-negative Shewanella bacterial genus currently includes about 80 species of mostly aquatic Gammaproteobacteria, which were isolated around the globe in a multitude of environments, such as freshwater, seawater, coastal sediments, and the deepest trenches. Here, we present a Shewanella phage vB_SbaS_Y11 that contains an uncharacterized anti-CRISPR AcrVA2 gene and belongs to a potential virus family, Ranviridae. This study will enhance the knowledge about the genome, diversity, taxonomic classification, and global distribution of Shewanella phage populations.
Collapse
Affiliation(s)
- Hongmin Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Keran Ma
- Haide College, Ocean University of China, Qingdao, China
| | - Linyi Ren
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ruizhe Guo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Lina Ma
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yao Xiong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Miaolan Wu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Universiti Malaysia Terengganu-Ocean Unversity of China Joint Centre for Marine Studies, Qingdao, China
| |
Collapse
|
5
|
Wang C, Wang Q, Mi Z, Zhao L, Bai C. Genomic analysis of K47-type Klebsiella pneumoniae phage IME305, a newly isolated member of the genus Teetrevirus. Arch Virol 2023; 168:280. [PMID: 37889322 DOI: 10.1007/s00705-023-05900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/05/2023] [Indexed: 10/28/2023]
Abstract
We isolated a K47-type Klebsiella pneumoniae phage from untreated hospital sewage: vB_KpnP_IME305 (GenBank no. OK149215). Next-generation sequencing (NGS) demonstrated that IME305 has a double-stranded DNA genome of 38,641 bp with 50.9% GC content. According to BLASTn comparisons, the IME305 genome sequence shares similarity with that of Klebsiella phage 6998 (97.37% identity and 95% coverage). IME305 contains 45 open reading frames (ORFs) and no rRNA, tRNA, or virulence-related gene sequences. Bioinformatic analysis showed that IME305 belongs to the phage subfamily Studiervirinae and genus Teetrevirus.
Collapse
Affiliation(s)
- Can Wang
- Department of Respiratory Medicine, Fuyang Hospital of Anhui Medical University, No.99 Huang Shan road, Yingzhou District Anhui province, 236000, Fuyang city, China
| | - Qiang Wang
- Department of Respiratory Medicine, Fuyang Hospital of Anhui Medical University, No.99 Huang Shan road, Yingzhou District Anhui province, 236000, Fuyang city, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Lei Zhao
- Department of Respiratory Medicine, Fuyang Hospital of Anhui Medical University, No.99 Huang Shan road, Yingzhou District Anhui province, 236000, Fuyang city, China.
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China.
| | - Changqing Bai
- Department of Respiratory and Critical Care Diseases, the fifth Medical Center, Chinese PLA General Hospital (Former 307th Hospital of PLA), No. 8 Dongda Street, Fengtai District, 100071, Beijing, China.
- Department of Respiratory and Critical Care Diseases, General Hospital of Shenzhen University, 518060, Guangdong province, China.
| |
Collapse
|
6
|
Characterization and genome analysis of Escherichia phage fBC-Eco01, isolated from wastewater in Tunisia. Arch Virol 2023; 168:44. [PMID: 36609878 PMCID: PMC9825357 DOI: 10.1007/s00705-022-05680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/01/2022] [Indexed: 01/09/2023]
Abstract
The rise of antibiotic resistance in bacterial strains has led to vigorous exploration for alternative treatments. To this end, phage therapy has been revisited, and it is gaining increasing attention, as it may represent an efficient alternative for treating multiresistant pathogenic bacteria. Phage therapy is considered safe, and phages do not infect eukaryotic cells. There have been many studies investigating phage-host bacteria interactions and the ability of phages to target specific hosts. Escherichia coli is the causative agent of a multitude of infections, ranging from urinary tract infections to sepsis, with growing antibiotic resistance. In this study, we characterized the Escherichia phage fBC-Eco01, which was isolated from a water sample collected at Oued, Tunis. Electron microscopy showed that fBC-Eco01 phage particles have siphovirus morphology, with an icosahedral head of 61 ± 3 nm in diameter and a non-contractile tail of 94 ± 2 nm in length and 12 ± 0.9 nm in width. The genome of fBC-Eco01 is a linear double-stranded DNA of 43.466 bp with a GC content of 50.4%. Comparison to databases allowed annotation of the functions to 39 of the 78 predicted gene products. A single-step growth curve revealed that fBC-Eco01 has a latent period of 30 minutes and a burst size of 175 plaque-forming units (PFU) per infected cell. Genomic analysis indicated that fBC-Eco01 is a member of the subfamily Guernseyvirinae. It is most closely related to a group of phages of the genus Kagunavirus that infect Enterobacter, Raoultella, and Escherichia strains.
Collapse
|
7
|
Fung HKH, Grimes S, Huet A, Duda RL, Chechik M, Gault J, Robinson C, Hendrix R, Jardine P, Conway J, Baumann C, Antson A. Structural basis of DNA packaging by a ring-type ATPase from an archetypal viral system. Nucleic Acids Res 2022; 50:8719-8732. [PMID: 35947691 PMCID: PMC9410871 DOI: 10.1093/nar/gkac647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/06/2022] [Accepted: 07/24/2022] [Indexed: 12/24/2022] Open
Abstract
Many essential cellular processes rely on substrate rotation or translocation by a multi-subunit, ring-type NTPase. A large number of double-stranded DNA viruses, including tailed bacteriophages and herpes viruses, use a homomeric ring ATPase to processively translocate viral genomic DNA into procapsids during assembly. Our current understanding of viral DNA packaging comes from three archetypal bacteriophage systems: cos, pac and phi29. Detailed mechanistic understanding exists for pac and phi29, but not for cos. Here, we reconstituted in vitro a cos packaging system based on bacteriophage HK97 and provided a detailed biochemical and structural description. We used a photobleaching-based, single-molecule assay to determine the stoichiometry of the DNA-translocating ATPase large terminase. Crystal structures of the large terminase and DNA-recruiting small terminase, a first for a biochemically defined cos system, reveal mechanistic similarities between cos and pac systems. At the same time, mutational and biochemical analyses indicate a new regulatory mechanism for ATPase multimerization and coordination in the HK97 system. This work therefore establishes a framework for studying the evolutionary relationships between ATP-dependent DNA translocation machineries in double-stranded DNA viruses.
Collapse
Affiliation(s)
- Herman K H Fung
- Department of Biology, University of York, York, YO10 5DD, UK
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Shelley Grimes
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexis Huet
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Robert L Duda
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Maria Chechik
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Joseph Gault
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| |
Collapse
|
8
|
Interactions between Jumbo Phage SA1 and Staphylococcus: A Global Transcriptomic Analysis. Microorganisms 2022; 10:microorganisms10081590. [PMID: 36014008 PMCID: PMC9414953 DOI: 10.3390/microorganisms10081590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is an important zoonotic pathogen that poses a serious health concern to humans and cattle worldwide. Although it has been proven that lytic phages may successfully kill S. aureus, the interaction between the host and the phage has yet to be thoroughly investigated, which will likely limit the clinical application of phage. Here, RNA sequencing (RNA-seq) was used to examine the transcriptomics of jumbo phage SA1 and Staphylococcus JTB1-3 during a high multiplicity of infection (MOI) and RT-qPCR was used to confirm the results. The RNA-seq analysis revealed that phage SA1 took over the transcriptional resources of the host cells and that the genes were categorized as early, middle, and late, based on the expression levels during infection. A minor portion of the resources of the host was employed to enable phage replication after infection because only 35.73% (997/2790) of the host genes were identified as differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the phage infection mainly affected the nucleotide metabolism, protein metabolism, and energy-related metabolism of the host. Moreover, the expression of the host genes involved in anti-phage systems, virulence, and drug resistance significantly changed during infection. This research gives a fresh understanding of the relationship between jumbo phages and their Gram-positive bacteria hosts and provides a reference for studying phage treatment and antibiotics.
Collapse
|
9
|
Yuanyuan N, Xiaobo Y, Shang W, Yutong Y, Hongrui Z, Chenyu L, Bin X, Xi Z, Chen Z, Zhiqiang S, Jingfeng W, Yun L, Pingfeng Y, Zhigang Q. Isolation and characterization of two homolog phages infecting Pseudomonas aeruginosa. Front Microbiol 2022; 13:946251. [PMID: 35935197 PMCID: PMC9348578 DOI: 10.3389/fmicb.2022.946251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Bacteriophages (phages) are capable of infecting specific bacteria, and therefore can be used as a biological control agent to control bacteria-induced animal, plant, and human diseases. In this study, two homolog phages (named PPAY and PPAT) that infect Pseudomonas aeruginosa PAO1 were isolated and characterized. The results of the phage plaque assay showed that PPAT plaques were transparent dots, while the PPAY plaques were translucent dots with a halo. Transmission electron microscopy results showed that PPAT (65 nm) and PPAY (60 nm) strains are similar in size and have an icosahedral head and a short tail. Therefore, these belong to the short-tailed phage family Podoviridae. One-step growth curves revealed the latent period of 20 min and burst time of 30 min for PPAT and PPAY. The burst size of PPAT (953 PFUs/infected cell) was higher than that of PPAY (457 PFUs/infected cell). Also, the adsorption rate constant of PPAT (5.97 × 10−7 ml/min) was higher than that of PPAY (1.32 × 10−7 ml/min) at 5 min. Whole-genome sequencing of phages was carried out using the Illumina HiSeq platform. The genomes of PPAT and PPAY have 54,888 and 50,154 bp, respectively. Only 17 of the 352 predicted ORFs of PPAT could be matched to homologous genes of known function. Likewise, among the 351 predicted ORFs of PPAY, only 18 ORFs could be matched to genes of established functions. Homology and evolutionary analysis indicated that PPAT and PPAY are closely related to PA11. The presence of tail fiber proteins in PPAY but not in PPAT may have contributed to the halo effect of its plaque spots. In all, PPAT and PPAY, newly discovered P. aeruginosa phages, showed growth inhibitory effects on bacteria and can be used for research and clinical purposes.
Collapse
Affiliation(s)
- Niu Yuanyuan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yang Xiaobo
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wang Shang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yang Yutong
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhou Hongrui
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Li Chenyu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xue Bin
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhang Xi
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhao Chen
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shen Zhiqiang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wang Jingfeng
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ling Yun
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- *Correspondence: Ling Yun,
| | - Yu Pingfeng
- College of Environment and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Qiu Zhigang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
- Qiu Zhigang,
| |
Collapse
|
10
|
Characterization and complete genome sequence analysis of a newly isolatedphage against Vibrio parahaemolyticus from sick shrimp in Qingdao, China. PLoS One 2022; 17:e0266683. [PMID: 35507581 PMCID: PMC9067683 DOI: 10.1371/journal.pone.0266683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/25/2022] [Indexed: 12/22/2022] Open
Abstract
Foodborne diseases have become a serious havoc, where antimicrobial resistance is throwing significant challenges on daily basis. With the increase of drug-resistant bacteria and food-borne infection associated with Vibrio parahaemolyticus, new and effective strategies were needed to control the emergence of vibriosis. Lytic bacteriophages come up as a promising way to resist the pathogenic population in various applications. In this study, a V. parahaemolyticus specific phage vB_VpS_PG28 was isolated from sewage in the seafood market. Results showed vB_VpS_PG28, is strictly a lytic bacteriophage and has a relatively large burst size of 103 plaque-forming units per infected cell. Comparative genomic and bioinformatic analyses proved that vB_VpS_PG28 is a new bacteriophage that had a homologous relation with Vibrio phages of family Siphoviridae, especially with phage VH2_2019, but transmission electron microscopy of vB_VpS_PG28 morphology characterized its morphology is similar to that of Myoviridae family. In silico analysis indicated that the vB_VpS_PG28 genome consists of 82712 bp (48.08% GC content) encoding 114 putative ORFs without tRNA,and any gene associated with resistance or virulence factors has not been found. The bacteriophage in the present study has shown significant outcomes in order to control bacterial growth under in vitro conditions. Thus, we are suggesting a beneficiary agent against foodborne pathogens. Further, to ensure the safe usage of phage oral toxicity testing is recommended.
Collapse
|
11
|
Gao M, Yi L, Wang Y, Gao J, Liu H, Zhang X, Pei G, Tong Y, Bai C. Characterization and Genomic Analysis of Bacteriophage vB_KpnM_IME346 Targeting Clinical Klebsiella pneumoniae Strain of the K63 Capsular Type. Curr Microbiol 2022; 79:160. [PMID: 35416546 PMCID: PMC9007800 DOI: 10.1007/s00284-022-02834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
A Klebsiella pneumoniae bacteriophage (vB_KpnM_IME346) was isolated from a hospital sewage sample. This bacteriophage specifically infects a clinical K. pneumoniae strain with a K63 capsular polysaccharide structure. The phage genome was evaluated by next-generation sequencing, which revealed a linear double-stranded DNA genome consisting of 49,482 base pairs with a G+C content of 49.1%. The latent period of vB_KpnM_IME346 was shown to be 20 min, and the burst size was 25–30 pfu (plaque-forming units)/infected cell. Transmission electron microscopy and phylogenetic analysis showed that the JD001-like phage belongs to the genus Jedunavirus of the family Myoviridae. The newly isolated vB_KpnM_IME346 shows infectivity in the clinical host K. pneumoniae KP576 strain, indicating that it is a promising alternative to antibacterial agents for removing K. pneumoniae from patients.
Collapse
Affiliation(s)
- Mingming Gao
- Department of Critical Care Medicine, PLA Strategic Support Characteristic Medical Center, Beijing, 100101, China
| | - Lingxian Yi
- Department of Critical Care Medicine, PLA Strategic Support Characteristic Medical Center, Beijing, 100101, China
| | - Yuan Wang
- Department of Critical Care Medicine, PLA Strategic Support Characteristic Medical Center, Beijing, 100101, China
| | - Jie Gao
- Department of Critical Care Medicine, PLA Strategic Support Characteristic Medical Center, Beijing, 100101, China
| | - Huiying Liu
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center, Chinese General Hospital of the PLA, Beijing, 100071, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Guangqian Pei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changqing Bai
- Department of Respiratory and Critical Care Diseases, The Fifth Medical Center, Chinese General Hospital of the PLA, Beijing, 100071, China.
| |
Collapse
|
12
|
Badawy S, Baka ZAM, Abou-Dobara MI, El-Sayed AKA, Skurnik M. Biological and molecular characterization of fEg-Eco19, a lytic bacteriophage active against an antibiotic-resistant clinical Escherichia coli isolate. Arch Virol 2022; 167:1333-1341. [PMID: 35399144 PMCID: PMC9038960 DOI: 10.1007/s00705-022-05426-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/12/2022] [Indexed: 12/30/2022]
Abstract
Characterization of bacteriophages facilitates better understanding of their biology, host specificity, genomic diversity, and adaptation to their bacterial hosts. This, in turn, is important for the exploitation of phages for therapeutic purposes, as the use of uncharacterized phages may lead to treatment failure. The present study describes the isolation and characterization of a bacteriophage effective against the important clinical pathogen Escherichia coli, which shows increasing accumulation of antibiotic resistance. Phage fEg-Eco19, which is specific for a clinical E. coli strain, was isolated from an Egyptian sewage sample. Phage fEg-Eco19 formed clear, sharp-edged, round plaques. Electron microscopy showed that the isolated phage is tailed and therefore belongs to the order Caudovirales, and morphologically, it resembles siphoviruses. The diameter of the icosahedral head of fEg-Eco19 is 68 ± 2 nm, and the non-contractile tail length and diameter are 118 ± 0.2 and 13 ± 0.6 nm, respectively. The host range of the phage was found to be narrow, as it infected only two out of 137 clinical E. coli strains tested. The phage genome is 45,805 bp in length with a GC content of 50.3% and contains 76 predicted genes. Comparison of predicted and experimental restriction digestion patterns allowed rough mapping of the physical ends of the phage genome, which was confirmed using the PhageTerm tool. Annotation of the predicted genes revealed gene products belonging to several functional groups, including regulatory proteins, DNA packaging and phage structural proteins, host lysis proteins, and proteins involved in DNA/RNA metabolism and replication.
Collapse
Affiliation(s)
- Shimaa Badawy
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517 Egypt
| | - Zakaria A. M. Baka
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517 Egypt
| | - Mohamed I. Abou-Dobara
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517 Egypt
| | - Ahmed K. A. El-Sayed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517 Egypt
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00290 Helsinki, Finland
| |
Collapse
|
13
|
Isolation, characterization, and comparative genomic analysis of vB_PlaM_Pd22F, a new bacteriophage of the family Myoviridae. Arch Virol 2022; 167:1269-1284. [PMID: 35366103 DOI: 10.1007/s00705-022-05429-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/26/2022] [Indexed: 11/02/2022]
Abstract
The use of phage and phage-based products for the prevention and treatment of bee disease is one of the promising natural alternatives to chemical or antibiotic treatments in beekeeping. A novel lysogenic bacteriophage, phage Pd22F (vB_PlaM_Pd22F), was isolated from Paenibacillus dendritiformis by the prophage induction method. This phage, which is capable of infecting Paenibacillus larvae and P. dendritiformis strains, was characterized by microbiological and comparative genomic analysis. Transmission electron microscopy images showed that phage Pd22F had the morphology of a myovirus. Whole-genome sequencing results showed that vB_Pla M_Pd22F has an 86,388-bp linear dsDNA genome with a GC content of 50.68%. This genome has 124 coding sequences (CDSs), 53% of which encode functionally unknown proteins and 57 of which encode proteins that show similarity to known proteins. In addition, one tRNA gene was found. The phage Pd22F genome does not contain any antimicrobial resistance genes. The similarity between the genome sequence of phage Pd22F and the whole genome sequences of other Paenibacillus phages available in the NCBI Virus Database was found to be below 50% (42%), indicating that phage Pd22F differs greatly from previously characterized phages at the DNA level. The results of comparative genomics and phylogenetic analysis revealed that Pd22F is a new phage belonging to the family Myoviridae, order Caudovirales. This is the first report of genomic and morphological characterization of a Paenibacillus dendritiformis prophage.
Collapse
|
14
|
Melo LDR, Monteiro R, Pires DP, Azeredo J. Phage-Host Interaction Analysis by Flow Cytometry Allows for Rapid and Efficient Screening of Phages. Antibiotics (Basel) 2022; 11:antibiotics11020164. [PMID: 35203767 PMCID: PMC8868278 DOI: 10.3390/antibiotics11020164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Recently, phages have become popular as an alternative to antibiotics. This increased demand for phage therapy needs rapid and efficient methods to screen phages infecting specific hosts. Existing methods are time-consuming, and for clinical purposes, novel, quick, and reliable screening methods are highly needed. Flow cytometry (FC) allows a quick differentiation and enumeration of bacterial cell populations and has been used to assess in vitro the activity of antimicrobial compounds. In this work, we propose FC as a rapid and reliable method to assess the susceptibility of a bacterial population to phage infection. For that, the interaction of phages vB_PaeM_CEB_DP1 and vB_PaeP_PE3 with Pseudomonas aeruginosa PAO1 was characterized by FC. Synchronous infection assays were performed, and samples were collected at different time points and stained with SYTO BC and PI before analysis. Part of the collected samples was used to characterize the expression of early, middle, and late genes by qPCR. Both FC and qPCR results were correlated with phage propagation assays. Results showed that SYTO BC median fluorescence intensity (MFI) values increased in the first 25 min of PE3 and DP1 infection. The increase of fluorescence is due to the expression of phage genes observed by qPCR. Since SYTO BC MFI values increase with gene expression, it allows the determination of host susceptibility to a phage in a short period of time, avoiding false positives caused by lysis from without. In conclusion, this method may allow for a quick and high-throughput real-time screening of different phages to a specific host, which can be crucial for a quick phage selection in clinical practice.
Collapse
Affiliation(s)
- Luís D. R. Melo
- LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4700-057 Braga, Portugal; (R.M.); (D.P.P.)
- LABBELS—Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
- Correspondence: (L.D.R.M.); (J.A.); Tel.: +351-253-601-989 (L.D.R.M.); +351-253-604-414 (J.A.)
| | - Rodrigo Monteiro
- LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4700-057 Braga, Portugal; (R.M.); (D.P.P.)
- LABBELS—Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
| | - Diana P. Pires
- LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4700-057 Braga, Portugal; (R.M.); (D.P.P.)
- LABBELS—Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
| | - Joana Azeredo
- LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4700-057 Braga, Portugal; (R.M.); (D.P.P.)
- LABBELS—Associate Laboratory, Braga, 4800-122 Guimarães, Portugal
- Correspondence: (L.D.R.M.); (J.A.); Tel.: +351-253-601-989 (L.D.R.M.); +351-253-604-414 (J.A.)
| |
Collapse
|
15
|
Nale JY, Al-Tayawi TS, Heaphy S, Clokie MRJ. Impact of Phage CDHS-1 on the Transcription, Physiology and Pathogenicity of a Clostridioides difficile Ribotype 027 Strain, R20291. Viruses 2021; 13:v13112262. [PMID: 34835068 PMCID: PMC8619979 DOI: 10.3390/v13112262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 01/05/2023] Open
Abstract
All known Clostridioides difficile phages encode integrases rendering them potentially able to lyse or lysogenise bacterial strains. Here, we observed the infection of the siphovirus, CDHS-1 on a ribotype 027 strain, R20291 and determined the phage and bacterial gene expression profiles, and impacts of phage infection on bacterial physiology and pathogenicity. Using RNA-seq and RT-qPCR we analysed transcriptomic changes during early, mid-log and late phases of phage replication at an MOI of 10. The phage has a 20 min latent period, takes 80 min to lyse cells and a burst size of ~37. All phage genes are highly expressed during at least one time point. The Cro/C1-transcriptional regulator, ssDNA binding protein and helicase are expressed early, the holin is expressed during the mid-log phase and structural proteins are expressed from mid-log to late phase. Most bacterial genes, particularly the metabolism and toxin production/regulatory genes, were downregulated from early phage replication. Phage-resistant strains and lysogens showed reduced virulence during Galleria mellonella colonization as ascertained by the larval survival and expression of growth (10), reproduction (2) and infection (2) marker genes. These data suggest that phage infection both reduces colonization and negatively impacts bacterial pathogenicity, providing encouraging data to support the development of this phage for therapy to treat C. difficile infection.
Collapse
|
16
|
Abstract
Although the process of genome encapsidation is highly conserved in tailed bacteriophages and eukaryotic double-stranded DNA viruses, there are two distinct packaging pathways that these viruses use to catalyze ATP-driven translocation of the viral genome into a preassembled procapsid shell. One pathway is used by ϕ29-like phages and adenoviruses, which replicate and subsequently package a monomeric, unit-length genome covalently attached to a virus/phage-encoded protein at each 5'-end of the dsDNA genome. In a second, more ubiquitous packaging pathway characterized by phage lambda and the herpesviruses, the viral DNA is replicated as multigenome concatemers linked in a head-to-tail fashion. Genome packaging in these viruses thus requires excision of individual genomes from the concatemer that are then translocated into a preassembled procapsid. Hence, the ATPases that power packaging in these viruses also possess nuclease activities that cut the genome from the concatemer at the beginning and end of packaging. This review focuses on proposed mechanisms of genome packaging in the dsDNA viruses using unit-length ϕ29 and concatemeric λ genome packaging motors as representative model systems.
Collapse
Affiliation(s)
- Carlos E Catalano
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States.
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
17
|
Wangchuk J, Chatterjee A, Patil S, Madugula SK, Kondabagil K. The coevolution of large and small terminases of bacteriophages is a result of purifying selection leading to phenotypic stabilization. Virology 2021; 564:13-25. [PMID: 34598064 DOI: 10.1016/j.virol.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Genome packaging in many dsDNA phages requires a series of precisely coordinated actions of two phage-coded proteins, namely, large terminase (TerL) and small terminase (TerS) with DNA and ATP, and with each other. Despite the strict functional conservation, TerL and TerS homologs exhibit large sequence variations. We investigated the sequence variability across eight phage types and observed a coevolutionary framework wherein the genealogy of TerL homologs mirrored that of the corresponding TerS homologs. Furthermore, a high purifying selection observed (dN/dS«1) indicated strong structural constraints on both TerL and TerS, and identify coevolving residues in TerL and TerS of phage T4 and lambda. Using the highly coevolving (correlation coefficient of 0.99) TerL and TerS of phage N4, we show that their biochemical features are similar to the phylogenetically divergent phage λ terminases. We also demonstrate using the Surface Plasma Resonance (SPR) technique that phage N4 TerL transiently interacts with TerS.
Collapse
Affiliation(s)
- Jigme Wangchuk
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Anirvan Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Supriya Patil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Santhosh Kumar Madugula
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
18
|
Bozdeveci A, Akpınar R, Karaoğlu ŞA. Isolation, characterization, and comparative genomic analysis of vB_PlaP_SV21, new bacteriophage of Paenibacillus larvae. Virus Res 2021; 305:198571. [PMID: 34555441 DOI: 10.1016/j.virusres.2021.198571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Paenibacillus larvae cause an American foulbrood disease (AFB) that is responsible for the extinction of honeybee colonies and is a honeybee bacterial disease that has to be obligatory notified worldwide. Recently, bacteriophage studies targeting Paenibacillus larvae have emerged as a promising alternative treatment method. The inability of bacteria to create resistance against bacteriophages makes this method advantageous. As a consequence, this study was conducted to describe the genome and biological characteristics of a novel phage capable of lysing Paenibacillus larvae samples isolated from honeybee larva samples in Turkey. The Paenibacillus phage SV21 (vB_PlaP_SV21) was isolated by inducing Paenibacillus larvae strain SV21 with Mitomycin-C. Whole-genome sequencing, comparative genomics, and phylogenetic analysis of vB_PlaP_SV21 were performed. Transmission electron microscopy images showed that vB_PlaP_SV21 phage was a Podovirus morphology. The vB_PlaP_SV21 phage specific for Paenibacillus larvae was determined to belong to the Podoviridae family. Host range and specificity, burst size, lytic activity, and morphological characteristics of the phage were determined. Bioinformatic analysis of the Paenibacillus phage SV21 showed 77 coding sequences in its linear 44,949 bp dsDNA genome with a GC content of 39.33%. In this study, we analysed the genomes of all of the currently sequenced P. larvae phage genomes and classified them into five clusters and a singleton. According to molecular, morphological, and bioinformatics results, ıt was observed that API480 (podovirus), which was reported as a singleton in previous studies and public databases, and Paenibacillus phage SV21 phage could form a new cluster together.
Collapse
Affiliation(s)
- Arif Bozdeveci
- Biology Department, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, Turkey
| | - Rahşan Akpınar
- Veterınary Control Instıtute, Bee Diseases, Samsun, Turkey
| | - Şengül Alpay Karaoğlu
- Biology Department, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, Turkey.
| |
Collapse
|
19
|
Badawy S, Pajunen MI, Haiko J, Baka ZAM, Abou-Dobara MI, El-Sayed AKA, Skurnik M. Identification and Functional Analysis of Temperate Siphoviridae Bacteriophages of Acinetobacter baumannii. Viruses 2020; 12:v12060604. [PMID: 32486497 PMCID: PMC7354433 DOI: 10.3390/v12060604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen that presents a serious clinical challenge due to its increasing resistance to all available antibiotics. Phage therapy has been introduced recently to treat antibiotic-incurable A. baumannii infections. In search for new A. baumannii specific bacteriophages, 20 clinical A. baumannii strains were used in two pools in an attempt to enrich phages from sewage. The enrichment resulted in induction of resident prophage(s) and three temperate bacteriophages, named vB_AbaS_fEg-Aba01, vB_AbaS_fLi-Aba02 and vB_AbaS_fLi-Aba03, all able to infect only one strain (#6597) of the 20 clinical strains, were isolated. Morphological characteristics obtained by transmission electron microscopy together with the genomic information revealed that the phages belong to the family Siphoviridae. The ca. 35 kb genomic sequences of the phages were >99% identical to each other. The linear ds DNA genomes of the phages contained 10 nt cohesive end termini, 52–54 predicted genes, an attP site and one tRNA gene each. A database search revealed an >99% identical prophage in the genome of A. baumannii strain AbPK1 (acc. no. CP024576.1). Over 99% identical prophages were also identified from two of the original 20 clinical strains (#5707 and #5920) and both were shown to be spontaneously inducible, thus very likely being the origins of the isolated phages. The phage vB_AbaS_fEg-Aba01 was also able to lysogenize the susceptible strain #6597 demonstrating that it was fully functional. The phages showed a very narrow host range infecting only two A. baumannii strains. In conclusion, we have isolated and characterized three novel temperate Siphoviridae phages that infect A.baumannii.
Collapse
Affiliation(s)
- Shimaa Badawy
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland; (S.B.); (M.I.P.)
- Department of Botany and Microbiology, Faculty of Science, Damietta University, 34511 New Damietta, Egypt; (Z.A.M.B.); (M.I.A.-D.); (A.K.A.E.-S.)
| | - Maria I. Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland; (S.B.); (M.I.P.)
| | - Johanna Haiko
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00290 Helsinki, Finland;
| | - Zakaria A. M. Baka
- Department of Botany and Microbiology, Faculty of Science, Damietta University, 34511 New Damietta, Egypt; (Z.A.M.B.); (M.I.A.-D.); (A.K.A.E.-S.)
| | - Mohamed I. Abou-Dobara
- Department of Botany and Microbiology, Faculty of Science, Damietta University, 34511 New Damietta, Egypt; (Z.A.M.B.); (M.I.A.-D.); (A.K.A.E.-S.)
| | - Ahmed K. A. El-Sayed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, 34511 New Damietta, Egypt; (Z.A.M.B.); (M.I.A.-D.); (A.K.A.E.-S.)
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland; (S.B.); (M.I.P.)
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00290 Helsinki, Finland;
- Correspondence: ; Tel.: +358-2941-26464
| |
Collapse
|
20
|
delToro D, Ortiz D, Ordyan M, Pajak J, Sippy J, Catala A, Oh CS, Vu A, Arya G, Smith DE, Catalano CE, Feiss M. Functional Dissection of a Viral DNA Packaging Machine's Walker B Motif. J Mol Biol 2019; 431:4455-4474. [PMID: 31473160 PMCID: PMC7416571 DOI: 10.1016/j.jmb.2019.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 11/30/2022]
Abstract
Many viruses employ ATP-powered motors for genome packaging. We combined genetic, biochemical, and single-molecule techniques to confirm the predicted Walker-B ATP-binding motif in the phage λ motor and to investigate the roles of the conserved residues. Most changes of the conserved hydrophobic residues resulted in >107-fold decrease in phage yield, but we identified nine mutants with partial activity. Several were cold-sensitive, suggesting that mobility of the residues is important. Single-molecule measurements showed that the partially active A175L exhibits a small reduction in motor velocity and increase in slipping, consistent with a slowed ATP binding transition, whereas G176S exhibits decreased slipping, consistent with an accelerated transition. All changes to the conserved D178, predicted to coordinate Mg2+•ATP, were lethal except conservative change D178E. Biochemical interrogation of the inactive D178N protein found no folding or assembly defects and near-normal endonuclease activity, but a ∼200-fold reduction in steady-state ATPase activity, a lag in the single-turnover ATPase time course, and no DNA packaging, consistent with a critical role in ATP-coupled DNA translocation. Molecular dynamics simulations of related enzymes suggest that the aspartate plays an important role in enhancing the catalytic activity of the motor by bridging the Walker motifs and precisely contributing its charged group to help polarize the bound nucleotide. Supporting this prediction, single-molecule measurements revealed that change D178E reduces motor velocity without increasing slipping, consistent with a slowed hydrolysis step. Our studies thus illuminate the mechanistic roles of Walker-B residues in ATP binding, hydrolysis, and DNA translocation by this powerful motor.
Collapse
Affiliation(s)
- Damian delToro
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Ortiz
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Mariam Ordyan
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Pajak
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Jean Sippy
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alexis Catala
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Choon-Seok Oh
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Amber Vu
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Carlos E Catalano
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
21
|
Arens JS, Duffy C, Feiss M. Acidic residues and a predicted, highly conserved α-helix are critical for the endonuclease/strand separation functions of bacteriophage λ's TerL. Mol Microbiol 2019; 112:1483-1498. [PMID: 31430408 DOI: 10.1111/mmi.14373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2019] [Indexed: 01/10/2023]
Abstract
Complementation, endonuclease, strand separation, and packaging assays using mutant TerLλ 's, coupled with bioinformatic information and modeling of its endonuclease, identified five residues, D401, E408, D465, E563, and E586, as critical acidic residues of TerLλ 's endonuclease. Studies of phage and viral TerL nucleases indicate acidic residues participate in metal ion-binding, part of a two-ion metal catalysis mechanism, where metal ion A activates a water for DNA backbone hydrolysis. Modeling places D401, D465, and E586 in locations analogous to those of the metal-binding residues of many phage and viral TerLs. Our work leads to a model of TerLλ 's endonuclease domain where at least three acidic residues from a ~185 residue segment (D401 to E586) are near each other in the structure, forming the endonuclease catalytic center at cosN, the nicking site. DNA interactions required to bring the rotationally symmetric cosN precisely to the catalytic center are proposed to rely on an ~60 residue region that includes a conserved α-helix for dimerization. Metal ion A, positioned by TerLλ 's acidic D401 and E586, would be placed at cosN for water activation, ensuring high accuracy for DNA backbone hydrolysis.
Collapse
Affiliation(s)
- Jean Sippy Arens
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Carol Duffy
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Michael Feiss
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
22
|
Ortiz D, delToro D, Ordyan M, Pajak J, Sippy J, Catala A, Oh CS, Vu A, Arya G, Feiss M, Smith DE, Catalano CE. Evidence that a catalytic glutamate and an 'Arginine Toggle' act in concert to mediate ATP hydrolysis and mechanochemical coupling in a viral DNA packaging motor. Nucleic Acids Res 2019; 47:1404-1415. [PMID: 30541105 PMCID: PMC6379665 DOI: 10.1093/nar/gky1217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/09/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023] Open
Abstract
ASCE ATPases include ring-translocases such as cellular helicases and viral DNA packaging motors (terminases). These motors have conserved Walker A and B motifs that bind Mg2+-ATP and a catalytic carboxylate that activates water for hydrolysis. Here we demonstrate that Glu179 serves as the catalytic carboxylate in bacteriophage λ terminase and probe its mechanistic role. All changes of Glu179 are lethal: non-conservative changes abrogate ATP hydrolysis and DNA translocation, while the conservative E179D change attenuates ATP hydrolysis and alters single molecule translocation dynamics, consistent with a slowed chemical hydrolysis step. Molecular dynamics simulations of several homologous terminases suggest a novel mechanism, supported by experiments, wherein the conserved Walker A arginine ‘toggles’ between interacting with a glutamate residue in the ‘lid’ subdomain and the catalytic glutamate upon ATP binding; this switch helps mediate a transition from an ‘open’ state to a ‘closed’ state that tightly binds nucleotide and DNA, and also positions the catalytic glutamate next to the γ-phosphate to align the hydrolysis transition state. Concomitant reorientation of the lid subdomain may mediate mechanochemical coupling of ATP hydrolysis and DNA translocation. Given the strong conservation of these structural elements in terminase enzymes, this mechanism may be universal for viral packaging motors.
Collapse
Affiliation(s)
- David Ortiz
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Damian delToro
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mariam Ordyan
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Pajak
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Jean Sippy
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alexis Catala
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Choon-Seok Oh
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Amber Vu
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carlos E Catalano
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
23
|
vB_LspM-01: a novel myovirus displaying pseudolysogeny in Lysinibacillus sphaericus C3-41. Appl Microbiol Biotechnol 2018; 102:10691-10702. [PMID: 30362075 DOI: 10.1007/s00253-018-9424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/22/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Lysinibacillus sphaericus has great application potential not only in the biocontrol of mosquitoes but also in the bioremediation of toxic metals. Phages contribute to the genetic diversity and niche adaptation of bacteria, playing essential roles in their life cycle, but may also cause economic damage for industrially important bacteria through phage contamination during fermentation. In this study, the L. sphaericus phage vB_LspM-01, which belongs to the Myoviridae family, was isolated and characterized. Results showed that vB_LspM-01 could specifically infect most tested L. sphaericus isolates but was not active against isolates belonging to other species. Furthermore, phage-born endolysin exhibited a broader antimicrobial spectrum than the host range of the phage. The vB_LspM-01 genome had no obvious similarity with that of its host, and ca. 22.6% of putative ORFs could not get a match with the public databases. Phylogenic analysis based on the putative terminase large subunit showed high similarity with the phages identified with pac-type headful packaging. The vB_LspM-01 encoding genes were only detected in a tiny percentage of L. sphaericus C3-41 individual cells in the wild population, whereas they showed much higher frequency in the resistant population grown within the plaques; however, the phage genes could not be stably inherited during host cell division. Additionally, the vB_LspM-01 encoding genes were only detected in the host population during the logarithmic growth phase. The mitomycin C induction helped the propagation and lysogeny-lysis switch of vB_LspM-01. The study demonstrated that vB_LspM-01 can be present in a pseudolysogenic state in L. sphaericus C3-41 populations.
Collapse
|
24
|
Characterization of Sinorhizobium sp. LM21 Prophages and Virus-Encoded DNA Methyltransferases in the Light of Comparative Genomic Analyses of the Sinorhizobial Virome. Viruses 2017; 9:v9070161. [PMID: 28672885 PMCID: PMC5537653 DOI: 10.3390/v9070161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023] Open
Abstract
The genus Sinorhizobium/Ensifer mostly groups nitrogen-fixing bacteria that create root or stem nodules on leguminous plants and transform atmospheric nitrogen into ammonia, which improves the productivity of the plants. Although these biotechnologically-important bacteria are commonly found in various soil environments, little is known about their phages. In this study, the genome of Sinorhizobium sp. LM21 isolated from a heavy-metal-contaminated copper mine in Poland was investigated for the presence of prophages and DNA methyltransferase-encoding genes. In addition to the previously identified temperate phage, ΦLM21, and the phage-plasmid, pLM21S1, the analysis revealed the presence of three prophage regions. Moreover, four novel phage-encoded DNA methyltransferase (MTase) genes were identified and the enzymes were characterized. It was shown that two of the identified viral MTases methylated the same target sequence (GANTC) as cell cycle-regulated methyltransferase (CcrM) of the bacterial host strain, LM21. This discovery was recognized as an example of the evolutionary convergence between enzymes of sinorhizobial viruses and their host, which may play an important role in virus cycle. In the last part of the study, thorough comparative analyses of 31 sinorhizobial (pro)phages (including active sinorhizobial phages and novel putative prophages retrieved and manually re-annotated from Sinorhizobium spp. genomes) were performed. The networking analysis revealed the presence of highly conserved proteins (e.g., holins and endolysins) and a high diversity of viral integrases. The analysis also revealed a large number of viral DNA MTases, whose genes were frequently located within the predicted replication modules of analyzed prophages, which may suggest their important regulatory role. Summarizing, complex analysis of the phage protein similarity network enabled a new insight into overall sinorhizobial virome diversity.
Collapse
|
25
|
Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides bacteriophages: Genomics and cross-species host ranges. Int J Food Microbiol 2017. [PMID: 28651078 DOI: 10.1016/j.ijfoodmicro.2017.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Unveiling virus-host interactions are relevant for understanding the biology and evolution of microbes globally, but in particular, it has also a paramount impact on the manufacture of fermented dairy products. In this study, we aim at characterizing phages infecting the commonly used heterofermentative Leuconostoc spp. on the basis of host range patterns and genome analysis. Host range of six Leuconostoc phages was investigated using three methods (efficiency of plaquing, spot and turbidity tests) against Ln. mesenteroides and Ln. pseudomesenteroides strains. Complete genome sequencing from four out of the six studied Leuconostoc phages were obtained in this work, while the remaining two have been sequenced previously. According to our results, cross-species host specificity was demonstrated, as all phages tested were capable of infecting both Ln. pseudomesenteroides and Ln. mesenteroides strains, although with different efficiency of plaquing (EOP). Phage adsorption rates and ability of low-EOP host strains to propagate phages by crossing the Leuconostoc species' barrier confirm results. At the genome level, phages CHA, CHB, Ln-7, Ln-8 and Ln-9 revealed high similarity with previously characterized phages infecting mostly Ln. mesenteroides strains, while phage LDG was highly similar to phages infecting Ln. pseudomesenteroides. Additionally, correlation between receptor binding protein (RBP) and host range patterns allowed us to unveil a finer clustering of Leuconostoc phages studied into four groups. This is the first report of overlapped phage host ranges between Leuconostoc species.
Collapse
|
26
|
Wirjon IA, Lau NS, Arip YM. Complete Genome Sequence of Proteus mirabilis Phage pPM_01 Isolated from Raw Sewage. Intervirology 2017; 59:243-253. [PMID: 28384626 DOI: 10.1159/000468987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/02/2017] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES Phage pPM_01 was previously isolated from a raw sewage treatment facility located in Batu Maung, Penang, Malaysia, and it was highly lytic against Proteus mirabilis, which causes urinary tract infections in humans. In this paper, we characterize the biology and complete genome sequence of the phage. METHODS AND RESULTS Transmission electron microscopy revealed phage pPM_01 to be a siphovirus (the first reported virus to infect P. mirabilis), with its complete genome sequence successfully determined. The genome was sequenced using Illumina technology and the reads obtained were assembled using CLC Genomic Workbench v.7.0.3. The whole genome contains a total of 58,546 bp of linear double-stranded DNA with a G+C content of 46.9%. Seventy putative genes were identified and annotated using various bioinformatics tools including RAST, Geneious v.R7, National Center for Biotechnology Information (NCBI) BLAST, and tRNAscan-SE-v1.3 Search. Functional clusters of related potential genes were defined (structural, lytic, packaging, replication, modification, and modulatory). The whole genome sequence showed a low similarity to known phages (i.e., Enterobacter phage Enc34 and Enterobacteria phage Chi). Host range determination and SDS-PAGE analysis were also performed. CONCLUSIONS The inability to lysogenize a host, the absence of endotoxin genes in the annotated genome, and the lytic behavior suggest phage pPM_01 as a possible safe biological candidate to control P. mirabilis infection.
Collapse
Affiliation(s)
- Ira Aryani Wirjon
- School of Biological Sciences, University Sains Malaysia, Sains@USM, Bayan Lepas, Penang, Malaysia
| | | | | |
Collapse
|
27
|
Hilbert BJ, Hayes JA, Stone NP, Xu RG, Kelch BA. The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain. Nucleic Acids Res 2017; 45:3591-3605. [PMID: 28082398 PMCID: PMC5389665 DOI: 10.1093/nar/gkw1356] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/05/2017] [Indexed: 01/07/2023] Open
Abstract
Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the adenosine triphosphatase (ATPase) that powers DNA translocation and an endonuclease that cleaves the concatemeric genome at both initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage remains mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nuclease activity. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of DNA cleavage suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the capsid upon completion of packaging unlocks the nuclease domains to cleave DNA.
Collapse
Affiliation(s)
- Brendan J. Hilbert
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Janelle A. Hayes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nicholas P. Stone
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rui-Gang Xu
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Brian A. Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA,To whom correspondence should be addressed. Tel: +1 508 856 8322; Fax: +1 508 856 6464;
| |
Collapse
|
28
|
Gambelli L, Cremers G, Mesman R, Guerrero S, Dutilh BE, Jetten MSM, Op den Camp HJM, van Niftrik L. Ultrastructure and Viral Metagenome of Bacteriophages from an Anaerobic Methane Oxidizing Methylomirabilis Bioreactor Enrichment Culture. Front Microbiol 2016; 7:1740. [PMID: 27877158 PMCID: PMC5099504 DOI: 10.3389/fmicb.2016.01740] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/18/2016] [Indexed: 01/21/2023] Open
Abstract
With its capacity for anaerobic methane oxidation and denitrification, the bacterium Methylomirabilis oxyfera plays an important role in natural ecosystems. Its unique physiology can be exploited for more sustainable wastewater treatment technologies. However, operational stability of full-scale bioreactors can experience setbacks due to, for example, bacteriophage blooms. By shaping microbial communities through mortality, horizontal gene transfer, and metabolic reprogramming, bacteriophages are important players in most ecosystems. Here, we analyzed an infected Methylomirabilis sp. bioreactor enrichment culture using (advanced) electron microscopy, viral metagenomics and bioinformatics. Electron micrographs revealed four different viral morphotypes, one of which was observed to infect Methylomirabilis cells. The infected cells contained densely packed ~55 nm icosahedral bacteriophage particles with a putative internal membrane. Various stages of virion assembly were observed. Moreover, during the bacteriophage replication, the host cytoplasmic membrane appeared extremely patchy, which suggests that the bacteriophages may use host bacterial lipids to build their own putative internal membrane. The viral metagenome contained 1.87 million base pairs of assembled viral sequences, from which five putative complete viral genomes were assembled and manually annotated. Using bioinformatics analyses, we could not identify which viral genome belonged to the Methylomirabilis- infecting bacteriophage, in part because the obtained viral genome sequences were novel and unique to this reactor system. Taken together these results show that new bacteriophages can be detected in anaerobic cultivation systems and that the effect of bacteriophages on the microbial community in these systems is a topic for further study.
Collapse
Affiliation(s)
- Lavinia Gambelli
- Department of Microbiology, Faculty of Science, Institute for Water and Wetland Research, Radboud University Nijmegen, Netherlands
| | - Geert Cremers
- Department of Microbiology, Faculty of Science, Institute for Water and Wetland Research, Radboud University Nijmegen, Netherlands
| | - Rob Mesman
- Department of Microbiology, Faculty of Science, Institute for Water and Wetland Research, Radboud University Nijmegen, Netherlands
| | - Simon Guerrero
- Department of Microbiology, Faculty of Science, Institute for Water and Wetland Research, Radboud University Nijmegen, Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht UniversityUtrecht, Netherlands; Centre for Molecular and Biomolecular Informatics, Radboud University Medical CentreNijmegen, Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Faculty of Science, Institute for Water and Wetland Research, Radboud University Nijmegen, Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Faculty of Science, Institute for Water and Wetland Research, Radboud University Nijmegen, Netherlands
| | - Laura van Niftrik
- Department of Microbiology, Faculty of Science, Institute for Water and Wetland Research, Radboud University Nijmegen, Netherlands
| |
Collapse
|
29
|
Abstract
Inteins are self-splicing protein elements that are mobile at the DNA level and are sporadically distributed across microbial genomes. Inteins appear to be horizontally transferred, and it has been speculated that phages may play a role in intein distribution. Our attention turns to mycobacteriophages, which infect mycobacteria, where both phage and host harbor inteins. Using bioinformatics, mycobacteriophage genomes were mined for inteins. This study reveals that these mobile elements are present across multiple mycobacteriophage clusters and are pervasive in certain genes, like the large terminase subunit TerL and a RecB-like nuclease, with the majority of intein-containing genes being phage specific. Strikingly, despite this phage specificity, inteins localize to functional motifs shared with bacteria, such that intein-containing genes have similar roles, like hydrolase activity and nucleic acid binding, indicating a global commonality among intein-hosting proteins. Additionally, there are multiple insertion points within active centers, implying independent invasion events, with regulatory implications. Several phage inteins were shown to be splicing competent and to encode functional homing endonucleases, important for mobility. Further, bioinformatic analysis supports the potential for phages as facilitators of intein movement among mycobacteria and related genera. Analysis of catalytic intein residues finds the highly conserved penultimate histidine inconsistently maintained among mycobacteriophages. Biochemical characterization of a noncanonical phage intein shows that this residue influences precursor accumulation, suggesting that splicing has been tuned in phages to modulate generation of important proteins. Together, this work expands our understanding of phage-based intein dissemination and evolution and implies that phages provide a context for evolution of splicing-based regulation. Inteins are mobile protein splicing elements found in critical genes across all domains of life. Mycobacterial inteins are of particular interest because of their occurrence in pathogenic species, such as Mycobacterium tuberculosis and Mycobacterium leprae, which harbor inteins in important proteins. We have discovered a similarity in activities of intein-containing proteins among mycobacteriophages and their intein-rich actinobacterial hosts, with implications for both posttranslational regulation by inteins and phages participating in horizontal intein transfer. Our demonstration of multiple insertion points within active centers of phage proteins implies independent invasion events, indicating the importance of intein maintenance at specific functional sites. The variable conservation of a catalytic splicing residue, leading to profoundly altered splicing rates, points to the regulatory potential of inteins and to mycobacteriophages playing a role in intein evolution. Collectively, these results suggest inteins as posttranslational regulators and mycobacteriophages as both vehicles for intein distribution and incubators for intein evolution.
Collapse
|
30
|
delToro D, Ortiz D, Ordyan M, Sippy J, Oh CS, Keller N, Feiss M, Catalano CE, Smith DE. Walker-A Motif Acts to Coordinate ATP Hydrolysis with Motor Output in Viral DNA Packaging. J Mol Biol 2016; 428:2709-29. [PMID: 27139643 PMCID: PMC4905814 DOI: 10.1016/j.jmb.2016.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/15/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
Abstract
During the assembly of many viruses, a powerful ATP-driven motor translocates DNA into a preformed procapsid. A Walker-A "P-loop" motif is proposed to coordinate ATP binding and hydrolysis with DNA translocation. We use genetic, biochemical, and biophysical techniques to survey the roles of P-loop residues in bacteriophage lambda motor function. We identify 55 point mutations that reduce virus yield to below detectable levels in a highly sensitive genetic complementation assay and 33 that cause varying reductions in yield. Most changes in the predicted conserved residues K76, R79, G81, and S83 produce no detectable yield. Biochemical analyses show that R79A and S83A mutant proteins fold, assemble, and display genome maturation activity similar to wild-type (WT) but exhibit little ATPase or DNA packaging activity. Kinetic DNA cleavage and ATPase measurements implicate R79 in motor ring assembly on DNA, supporting recent structural models that locate the P-loop at the interface between motor subunits. Single-molecule measurements detect no translocation for K76A and K76R, while G81A and S83A exhibit strong impairments, consistent with their predicted roles in ATP binding. We identify eight residue changes spanning A78-K84 that yield impaired translocation phenotypes and show that Walker-A residues play important roles in determining motor velocity, pausing, and processivity. The efficiency of initiation of packaging correlates strongly with motor velocity. Frequent pausing and slipping caused by changes A78V and R79K suggest that these residues are important for ATP alignment and coupling of ATP binding to DNA gripping. Our findings support recent structural models implicating the P-loop arginine in ATP hydrolysis and mechanochemical coupling.
Collapse
Affiliation(s)
- Damian delToro
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Ortiz
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Mariam Ordyan
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jean Sippy
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Choon-Seok Oh
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nicholas Keller
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Carlos E Catalano
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
31
|
Abstract
Translocation of viral double-stranded DNA (dsDNA) into the icosahedral prohead shell is catalyzed by TerL, a motor protein that has ATPase, endonuclease, and translocase activities. TerL, following endonucleolytic cleavage of immature viral DNA concatemer recognized by TerS, assembles into a pentameric ring motor on the prohead's portal vertex and uses ATP hydrolysis energy for DNA translocation. TerL's N-terminal ATPase is connected by a hinge to the C-terminal endonuclease. Inchworm models propose that modest domain motions accompanying ATP hydrolysis are amplified, through changes in electrostatic interactions, into larger movements of the C-terminal domain bound to DNA. In phage ϕ29, four of the five TerL subunits sequentially hydrolyze ATP, each powering translocation of 2.5 bp. After one viral genome is encapsidated, the internal pressure signals termination of packaging and ejection of the motor. Current focus is on the structures of packaging complexes and the dynamics of TerL during DNA packaging, endonuclease regulation, and motor mechanics.
Collapse
Affiliation(s)
- Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC 20064;
| | - Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| |
Collapse
|
32
|
Feiss M, Geyer H, Klingberg F, Moreno N, Forystek A, Maluf NK, Sippy J. Novel DNA packaging recognition in the unusual bacteriophage N15. Virology 2015; 482:260-8. [PMID: 25956737 PMCID: PMC4461450 DOI: 10.1016/j.virol.2015.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/16/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
Phage lambda's cosB packaging recognition site is tripartite, consisting of 3 TerS binding sites, called R sequences. TerS binding to the critical R3 site positions the TerL endonuclease for nicking cosN to generate cohesive ends. The N15 cos (cos(N15)) is closely related to cos(λ), but whereas the cosB(N15) subsite has R3, it lacks the R2 and R1 sites and the IHF binding site of cosB(λ). A bioinformatic study of N15-like phages indicates that cosB(N15) also has an accessory, remote rR2 site, which is proposed to increase packaging efficiency, like R2 and R1 of lambda. N15 plus five prophages all have the rR2 sequence, which is located in the TerS-encoding 1 gene, approximately 200 bp distal to R3. An additional set of four highly related prophages, exemplified by Monarch, has R3 sequence, but also has R2 and R1 sequences characteristic of cosB-λ. The DNA binding domain of TerS-N15 is a dimer.
Collapse
Affiliation(s)
- Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Henriette Geyer
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany; Division of Viral Infections, Robert Koch Institute, Berlin, Germany.
| | - Franco Klingberg
- Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt, Germany; Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt, Germany.
| | - Norma Moreno
- Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, United States.; Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, United States..
| | - Amanda Forystek
- Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt, Germany; Room # 2911 JPP, Dept. of Psychiatry, The University of Iowa, 200 Hawkins Drive, Iowa City, Iowa, 52242.
| | - Nasib Karl Maluf
- Flow Cytometry, Imaging & Microscopy, Thermo Fisher Scientific, Frankfurter Strasse 129B 64293 Darmstadt, Germany; Alliance Protein Laboratories, Inc. 6042 Cornerstone Court West, Suite ASan Diego, CA 92121, USA..
| | - Jean Sippy
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
33
|
Casjens SR, Hendrix RW. Bacteriophage lambda: Early pioneer and still relevant. Virology 2015; 479-480:310-30. [PMID: 25742714 PMCID: PMC4424060 DOI: 10.1016/j.virol.2015.02.010] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/13/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
Abstract
Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid-1950s to mid-1980s was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives has continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT 84112, USA; Biology Department, University of Utah, Salt Lake City, UT 84112, USA.
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
34
|
Leavitt JC, Gilcrease EB, Wilson K, Casjens SR. Function and horizontal transfer of the small terminase subunit of the tailed bacteriophage Sf6 DNA packaging nanomotor. Virology 2013; 440:117-33. [PMID: 23562538 DOI: 10.1016/j.virol.2013.02.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 11/27/2022]
Abstract
Bacteriophage Sf6 DNA packaging series initiate at many locations across a 2kbp region. Our in vivo studies show that Sf6 small terminase subunit (TerS) protein recognizes a specific packaging (pac) site near the center of this region, that this site lies within the portion of the Sf6 gene that encodes the DNA-binding domain of TerS protein, that this domain of the TerS protein is responsible for the imprecision in Sf6 packaging initiation, and that the DNA-binding domain of TerS must be covalently attached to the domain that interacts with the rest of the packaging motor. The TerS DNA-binding domain is self-contained in that it apparently does not interact closely with the rest of the motor and it binds to a recognition site that lies within the DNA that encodes the domain. This arrangement has allowed the horizontal exchange of terS genes among phages to be very successful.
Collapse
Affiliation(s)
- Justin C Leavitt
- Biology Department, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
35
|
Strong subunit coordination drives a powerful viral DNA packaging motor. Proc Natl Acad Sci U S A 2013; 110:5909-14. [PMID: 23530228 DOI: 10.1073/pnas.1222820110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Terminase enzymes are viral motors that package DNA into a preformed capsid and are of interest both therapeutically and as potential nano-machines. The enzymes excise a single genome from a concatemeric precursor (genome maturation) and then package the duplex to near-crystalline density (genome packaging). The functional motors are oligomers of protomeric subunits and are the most powerful motors currently known. Here, we present mechanistic studies on the terminase motor from bacteriophage λ. We identify a mutant (K76R) that is specifically deficient in packaging activity. Biochemical analysis of this enzyme provides insight into the linkage between ATP hydrolysis and motor translocation. We further use this mutant to assemble chimeric motors with WT enzyme and characterize the catalytic activity of the complexes. The data demonstrate that strong coordination between the motor protomers is required for DNA packaging and that incorporation of even a single mutant protomer poisons motor activity. Significant coordination is similarly observed in the genome maturation reaction; however, although the motor is composed of a symmetric tetramer of protomers, the maturation complex is better described as a "dimer-of-dimers" with half-site reactivity. We describe a model for how the motor alternates between a stable genome maturation complex and a dynamic genome packaging complex. The fundamental features of coordinated ATP hydrolysis, DNA movement, and tight association between the motor and the duplex during translocation are recapitulated in all of the viral motors. This work is thus of relevance to all terminase enzymes, both prokaryotic and eukaryotic.
Collapse
|
36
|
Shen X, Li M, Zeng Y, Hu X, Tan Y, Rao X, Jin X, Li S, Zhu J, Zhang K, Hu F. Functional identification of the DNA packaging terminase from Pseudomonas aeruginosa phage PaP3. Arch Virol 2012; 157:2133-41. [PMID: 23011306 PMCID: PMC3488191 DOI: 10.1007/s00705-012-1409-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/26/2012] [Indexed: 12/01/2022]
Abstract
Terminase proteins are responsible for DNA recognition and initiation of DNA packaging in phages. We previously reported the genomic sequence of a temperate Pseudomonas aeruginosa phage, PaP3, and determined its precise integration site in the host bacterial chromosome. In this study, we present a detailed functional identification of the DNA packaging terminase for phage PaP3. The purified large subunit p03 was demonstrated to possess ATPase and nuclease activities, as well as the ability to bind to specific DNA when it is unassembled. In addition, a small terminase subunit (p01) of a new type was found and shown to bind specifically to cos-containing DNA and stimulate the cos-cleavage and ATPase activities of p03. The results presented here suggest that PaP3 utilizes a typical cos site mechanism for DNA packaging and provide a first step towards understanding the molecular mechanism of the PaP3 DNA packaging reaction.
Collapse
Affiliation(s)
- Xiaodong Shen
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Roy A, Bhardwaj A, Datta P, Lander GC, Cingolani G. Small terminase couples viral DNA binding to genome-packaging ATPase activity. Structure 2012; 20:1403-13. [PMID: 22771211 DOI: 10.1016/j.str.2012.05.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 04/30/2012] [Accepted: 05/19/2012] [Indexed: 11/26/2022]
Abstract
Packaging of viral genomes into empty procapsids is powered by a large DNA-packaging motor. In most viruses, this machine is composed of a large (L) and a small (S) terminase subunit complexed with a dodecamer of portal protein. Here we describe the 1.75 Å crystal structure of the bacteriophage P22 S-terminase in a nonameric conformation. The structure presents a central channel ∼23 Å in diameter, sufficiently large to accommodate hydrated B-DNA. The last 23 residues of S-terminase are essential for binding to DNA and assembly to L-terminase. Upon binding to its own DNA, S-terminase functions as a specific activator of L-terminase ATPase activity. The DNA-dependent stimulation of ATPase activity thus rationalizes the exclusive specificity of genome-packaging motors for viral DNA in the crowd of host DNA, ensuring fidelity of packaging and avoiding wasteful ATP hydrolysis. This posits a model for DNA-dependent activation of genome-packaging motors of general interest in virology.
Collapse
Affiliation(s)
- Ankoor Roy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
38
|
Chemla YR, Smith DE. Single-molecule studies of viral DNA packaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:549-84. [PMID: 22297530 DOI: 10.1007/978-1-4614-0980-9_24] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Many double-stranded DNA bacteriophages and viruses use specialized ATP-driven molecular machines to package their genomes into tightly confined procapsid shells. Over the last decade, single-molecule approaches - and in particular, optical tweezers - have made key contributions to our understanding of this remarkable process. In this chapter, we review these advances and the insights they have provided on the packaging mechanisms of three bacteriophages: φ 29, λ, and T4.
Collapse
Affiliation(s)
- Yann R Chemla
- Department of Physics, University of Illinois, Urbana-Champaign, IL 61801, USA.
| | | |
Collapse
|
39
|
Feiss M, Rao VB. The Bacteriophage DNA Packaging Machine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:489-509. [DOI: 10.1007/978-1-4614-0980-9_22] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Häuser R, Blasche S, Dokland T, Haggård-Ljungquist E, von Brunn A, Salas M, Casjens S, Molineux I, Uetz P. Bacteriophage protein-protein interactions. Adv Virus Res 2012; 83:219-98. [PMID: 22748812 PMCID: PMC3461333 DOI: 10.1016/b978-0-12-394438-2.00006-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology.
Collapse
Affiliation(s)
- Roman Häuser
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sonja Blasche
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Albrecht von Brunn
- Max-von-Pettenkofer-Institut, Lehrstuhl Virologie, Ludwig-Maximilians-Universität, München, Germany
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Sherwood Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ian Molineux
- Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas–Austin, Austin, Texas, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
41
|
Chang JR, Andrews BT, Catalano CE. Energy-independent helicase activity of a viral genome packaging motor. Biochemistry 2011; 51:391-400. [PMID: 22191393 DOI: 10.1021/bi201604b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The assembly of complex double-stranded DNA viruses includes a genome packaging step where viral DNA is translocated into the confines of a preformed procapsid shell. In most cases, the preferred packaging substrate is a linear concatemer of viral genomes linked head-to-tail. Viral terminase enzymes are responsible for both excision of an individual genome from the concatemer (DNA maturation) and translocation of the duplex into the capsid (DNA packaging). Bacteriophage λ terminase site-specifically nicks viral DNA at the cos site in a concatemer and then physically separates the nicked, annealed strands to mature the genome in preparation for packaging. Here we present biochemical studies on the so-called helicase activity of λ terminase. Previous studies reported that ATP is required for strand separation, and it has been presumed that ATP hydrolysis is required to drive the reaction. We show that ADP and nonhydrolyzable ATP analogues also support strand separation at low (micromolar) concentrations. In addition, the Escherichia coli integration host factor protein (IHF) strongly stimulates the reaction in a nucleotide-independent manner. Finally, we show that elevated concentrations of nucleotide inhibit both ATP- and IHF-stimulated strand separation by λ terminase. We present a model where nucleotide and IHF interact with the large terminase subunit and viral DNA, respectively, to engender a site-specifically bound, catalytically competent genome maturation complex. In contrast, binding of nucleotide to the low-affinity ATP binding site in the small terminase subunit mediates a conformational switch that down-regulates maturation activities and activates the DNA packaging activity of the enzyme. This affords a motor complex that binds tightly, but nonspecifically, to DNA as it translocates the duplex into the capsid shell. These studies have yielded mechanistic insight into the assembly of the maturation complex on viral DNA and its transition to a mobile packaging motor that may be common to all of the complex double-stranded DNA viruses.
Collapse
Affiliation(s)
- Jenny R Chang
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98195-7610, United States
| | | | | |
Collapse
|
42
|
Rajagopala SV, Casjens S, Uetz P. The protein interaction map of bacteriophage lambda. BMC Microbiol 2011; 11:213. [PMID: 21943085 PMCID: PMC3224144 DOI: 10.1186/1471-2180-11-213] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/26/2011] [Indexed: 11/25/2022] Open
Abstract
Background Bacteriophage lambda is a model phage for most other dsDNA phages and has been studied for over 60 years. Although it is probably the best-characterized phage there are still about 20 poorly understood open reading frames in its 48-kb genome. For a complete understanding we need to know all interactions among its proteins. We have manually curated the lambda literature and compiled a total of 33 interactions that have been found among lambda proteins. We set out to find out how many protein-protein interactions remain to be found in this phage. Results In order to map lambda's interactions, we have cloned 68 out of 73 lambda open reading frames (the "ORFeome") into Gateway vectors and systematically tested all proteins for interactions using exhaustive array-based yeast two-hybrid screens. These screens identified 97 interactions. We found 16 out of 30 previously published interactions (53%). We have also found at least 18 new plausible interactions among functionally related proteins. All previously found and new interactions are combined into structural and network models of phage lambda. Conclusions Phage lambda serves as a benchmark for future studies of protein interactions among phage, viruses in general, or large protein assemblies. We conclude that we could not find all the known interactions because they require chaperones, post-translational modifications, or multiple proteins for their interactions. The lambda protein network connects 12 proteins of unknown function with well characterized proteins, which should shed light on the functional associations of these uncharacterized proteins.
Collapse
|
43
|
Abstract
Tailed bacteriophages use nanomotors, or molecular machines that convert chemical energy into physical movement of molecules, to insert their double-stranded DNA genomes into virus particles. These viral nanomotors are powered by ATP hydrolysis and pump the DNA into a preformed protein container called a procapsid. As a result, the virions contain very highly compacted chromosomes. Here, I review recent progress in obtaining structural information for virions, procapsids and the individual motor protein components, and discuss single-molecule in vitro packaging reactions, which have yielded important new information about the mechanism by which these powerful molecular machines translocate DNA.
Collapse
|
44
|
Smith DE. Single-molecule studies of viral DNA packaging. Curr Opin Virol 2011; 1:134-41. [PMID: 22440623 DOI: 10.1016/j.coviro.2011.05.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/27/2011] [Indexed: 11/30/2022]
Abstract
Assembly of many dsDNA viruses involves packaging of DNA molecules into pre-assembled procapsids by portal molecular motor complexes. Techniques have recently been developed using optical tweezers to directly measure the packaging of single DNA molecules into single procapsids in real time and the forces generated by the molecular motor. Three different viruses, phages phi29, lambda, and T4, have been studied, revealing interesting similarities and differences in packaging dynamics. Single-molecule fluorescence methods have also been used to measure packaging kinetics and motor conformations. Here we review recent discoveries made using these new techniques.
Collapse
Affiliation(s)
- Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, United States.
| |
Collapse
|
45
|
Carrias A, Welch TJ, Waldbieser GC, Mead DA, Terhune JS, Liles MR. Comparative genomic analysis of bacteriophages specific to the channel catfish pathogen Edwardsiella ictaluri. Virol J 2011; 8:6. [PMID: 21214923 PMCID: PMC3025963 DOI: 10.1186/1743-422x-8-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 01/07/2011] [Indexed: 11/16/2022] Open
Abstract
Background The bacterial pathogen Edwardsiella ictaluri is a primary cause of mortality in channel catfish raised commercially in aquaculture farms. Additional treatment and diagnostic regimes are needed for this enteric pathogen, motivating the discovery and characterization of bacteriophages specific to E. ictaluri. Results The genomes of three Edwardsiella ictaluri-specific bacteriophages isolated from geographically distant aquaculture ponds, at different times, were sequenced and analyzed. The genomes for phages eiAU, eiDWF, and eiMSLS are 42.80 kbp, 42.12 kbp, and 42.69 kbp, respectively, and are greater than 95% identical to each other at the nucleotide level. Nucleotide differences were mostly observed in non-coding regions and in structural proteins, with significant variability in the sequences of putative tail fiber proteins. The genome organization of these phages exhibit a pattern shared by other Siphoviridae. Conclusions These E. ictaluri-specific phage genomes reveal considerable conservation of genomic architecture and sequence identity, even with considerable temporal and spatial divergence in their isolation. Their genomic homogeneity is similarly observed among E. ictaluri bacterial isolates. The genomic analysis of these phages supports the conclusion that these are virulent phages, lacking the capacity for lysogeny or expression of virulence genes. This study contributes to our knowledge of phage genomic diversity and facilitates studies on the diagnostic and therapeutic applications of these phages.
Collapse
Affiliation(s)
- Abel Carrias
- Department of Fisheries and Allied Aquaculture, Auburn University, USA
| | | | | | | | | | | |
Collapse
|
46
|
Tsay JM, Sippy J, delToro D, Andrews BT, Draper B, Rao V, Catalano CE, Feiss M, Smith DE. Mutations altering a structurally conserved loop-helix-loop region of a viral packaging motor change DNA translocation velocity and processivity. J Biol Chem 2010; 285:24282-9. [PMID: 20525695 PMCID: PMC2911301 DOI: 10.1074/jbc.m110.129395] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/03/2010] [Indexed: 11/06/2022] Open
Abstract
Many double-stranded DNA viruses employ ATP-driven motors to translocate their genomes into small, preformed viral capsids against large forces resisting confinement. Here, we show via direct single-molecule measurements that a mutation T194M downstream of the Walker B motif in the phage lambda gpA packaging motor causes an 8-fold reduction in translocation velocity without substantially changing processivity or force dependence, whereas the mutation G212S in the putative C (coupling) motif causes a 3-fold reduction in velocity and a 6-fold reduction in processivity. Meanwhile a T194M pseudorevertant (T194V) showed a near restoration of the wild-type dynamics. Structural comparisons and modeling show that these mutations are in a loop-helix-loop region that positions the key residues of the catalytic motifs, Walker B and C, in the ATPase center and is structurally homologous with analogous regions in chromosome transporters and SF2 RNA helicases. Together with recently published studies of SpoIIIE chromosome transporter and Ded1 RNA helicase mutants, these findings suggest the presence of a structurally conserved region that may be a part of the mechanism that determines motor velocity and processivity in several different types of nucleic acid translocases.
Collapse
Affiliation(s)
- James M. Tsay
- From the Department of Physics, University of California at San Diego, La Jolla, California 92093
| | - Jean Sippy
- the Department of Microbiology, University of Iowa, Iowa City, Iowa 52242
| | - Damian delToro
- From the Department of Physics, University of California at San Diego, La Jolla, California 92093
| | - Benjamin T. Andrews
- the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, and
| | - Bonnie Draper
- the Department of Biology, Catholic University of America, Washington, D. C. 20064
| | - Venigalla Rao
- the Department of Biology, Catholic University of America, Washington, D. C. 20064
| | - Carlos E. Catalano
- the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, and
| | - Michael Feiss
- the Department of Microbiology, University of Iowa, Iowa City, Iowa 52242
| | - Douglas E. Smith
- From the Department of Physics, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
47
|
DNA packaging-associated hyper-capsid expansion of bacteriophage t3. J Mol Biol 2010; 397:361-74. [PMID: 20122936 DOI: 10.1016/j.jmb.2010.01.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/20/2010] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
Abstract
Evidence that in vivo bacteriophage T3 DNA packaging includes capsid hyper-expansion that is triggered by lengthening of incompletely packaged DNA (ipDNA) is presented here. This evidence includes observation that some of the longer ipDNAs in T3-infected cells are packaged in ipDNA-containing capsids with hyper-expanded outer shells (HE ipDNA-capsids). In addition, artificially induced hyper-expansion is observed for the outer shell of a DNA-free capsid. Detection and characterization of HE ipDNA-capsids are based on two-dimensional, non-denaturing agarose gel electrophoresis, followed by structure determination with electron microscopy and protein identification with SDS-PAGE/mass spectrometry. After expulsion from HE ipDNA-capsids, ipDNA forms sharp bands during gel electrophoresis. The following hypotheses are presented: (1) T3 has evolved feedback-initiated, ATP-driven capsid contraction/hyper-expansion cycles that accelerate DNA packaging when packaging is slowed by increase in the packaging-resisting force of the ipDNA and (2) each gel electrophoretic ipDNA band reflects a contraction/hyper-expansion cycle.
Collapse
|
48
|
Sequence analysis of Leuconostoc mesenteroides bacteriophage Phi1-A4 isolated from an industrial vegetable fermentation. Appl Environ Microbiol 2010; 76:1955-66. [PMID: 20118355 DOI: 10.1128/aem.02126-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vegetable fermentations rely on the proper succession of a variety of lactic acid bacteria (LAB). Leuconostoc mesenteroides initiates fermentation. As fermentation proceeds, L. mesenteroides dies off and other LAB complete the fermentation. Phages infecting L. mesenteroides may significantly influence the die-off of L. mesenteroides. However, no L. mesenteroides phages have been previously genetically characterized. Knowledge of more phage genome sequences may provide new insights into phage genomics, phage evolution, and phage-host interactions. We have determined the complete genome sequence of L. mesenteroides phage Phi1-A4, isolated from an industrial sauerkraut fermentation. The phage possesses a linear, double-stranded DNA genome consisting of 29,508 bp with a G+C content of 36%. Fifty open reading frames (ORFs) were predicted. Putative functions were assigned to 26 ORFs (52%), including 5 ORFs of structural proteins. The phage genome was modularly organized, containing DNA replication, DNA-packaging, head and tail morphogenesis, cell lysis, and DNA regulation/modification modules. In silico analyses showed that Phi1-A4 is a unique lytic phage with a large-scale genome inversion ( approximately 30% of the genome). The genome inversion encompassed the lysis module, part of the structural protein module, and a cos site. The endolysin gene was flanked by two holin genes. The tail morphogenesis module was interspersed with cell lysis genes and other genes with unknown functions. The predicted amino acid sequences of the phage proteins showed little similarity to other phages, but functional analyses showed that Phi1-A4 clusters with several Lactococcus phages. To our knowledge, Phi1-A4 is the first genetically characterized L. mesenteroides phage.
Collapse
|
49
|
Yang Q, Catalano CE, Maluf NK. Kinetic analysis of the genome packaging reaction in bacteriophage lambda. Biochemistry 2009; 48:10705-15. [PMID: 19788336 DOI: 10.1021/bi901016n] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteriophage lambda is a double-stranded DNA virus that infects the Escherichia coli bacterium. lambda genomic DNA is replicated via rolling circle replication, resulting in multiple genomes linked head to tail at the cos site. To insert a single lambda genome into the viral capsid, the lambda terminase enzyme introduces symmetric nicks, 12 bp apart, at the cos site, and then promotes a strand separation reaction, releasing the tail end of the previous genome and leaving a binary complex consisting of lambda terminase bound to the head end of the adjacent genome. Next, the genome is translocated into the interior of the capsid particle, in a process that requires ATP hydrolysis by lambda terminase. Even though DNA packaging has been studied extensively, currently no bulk assays are available that have been optimized to report directly on DNA translocation. Rather, these assays are sensitive to assembly steps reflecting formation of the active, DNA packaging machine. In this work, we have modified the DNase protection assay commonly used to study DNA packaging in several bacteriophage systems, such that it reports directly on the kinetics of the DNA packaging reaction. We have analyzed our DNA packaging data according to an N-step sequential minimal kinetic model and have estimated an overall packaging rate of 119 +/- 8 bp/s, at 4 degrees C and 1 mM ATP. Furthermore, we have measured an apparent step size for the this reaction (m(obs)) of 410 +/- 150 bp. The magnitude of this value indicates that our assay is most likely sensitive to both mechanical steps associated with DNA insertion as well as occasional slow steps that are repeated every >410 bp. These slow steps may be reflective of the pausing events observed in recent single-molecule studies of DNA packaging in bacteriophage lambda [Fuller, D. N., et al. (2007) J. Mol. Biol. 373, 1113-1122]. Finally, we show that either ATP or ADP is required for terminase cutting at cos, to generate the active, DNA packaging complex.
Collapse
Affiliation(s)
- Qin Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, C238-P15, 12700 East 19th Avenue, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
50
|
The Q motif of a viral packaging motor governs its force generation and communicates ATP recognition to DNA interaction. Proc Natl Acad Sci U S A 2009; 106:14355-60. [PMID: 19706522 DOI: 10.1073/pnas.0904364106] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A key step in the assembly of many viruses is the packaging of DNA into preformed procapsids by an ATP-powered molecular motor. To shed light on the motor mechanism we used single-molecule optical tweezers measurements to study the effect of mutations in the large terminase subunit in bacteriophage lambda on packaging motor dynamics. A mutation, K84A, in the putative ATPase domain driving DNA translocation was found to decrease motor velocity by approximately 40% but did not change the force dependence or decrease processivity substantially. These findings support the hypothesis that a deviant "Walker A-like" phosphate-binding motif lies adjacent to residue 84. Another mutation, Y46F, was also found to decrease motor velocity by approximately 40% but also increase slipping during DNA translocation by >10-fold. These findings support the hypothesis that viral DNA packaging motors contain an adenine-binding motif that regulates ATP hydrolysis and substrate affinity analogous to the "Q motif" recently identified in DEAD-box RNA helicases. We also find impaired force generation for the Y46F mutant, which shows that the Q motif plays an important role in determining the power and efficiency of the packaging motor.
Collapse
|