1
|
Srinivas B, Alluri K, Fortuno P, Rizzi M, Suhail H, Rhaleb N, Matrougui K. Endothelial CHOP as a central mechanism in renovascular hypertension-induced vascular endothelial dysfunction and cardiac fibrosis. Cell Mol Life Sci 2025; 82:232. [PMID: 40512182 DOI: 10.1007/s00018-025-05741-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/07/2025] [Accepted: 05/05/2025] [Indexed: 06/16/2025]
Abstract
OBJECTIVE In this study, we sought to determine the significant impact of the vascular endothelial endoplasmic reticulum (ER) stress C/EBP homologous protein (CHOP) in renovascular hypertension-induced vascular endothelial dysfunction and cardiac fibrosis. APPROACH AND RESULTS Eight-week-old male and female CHOPflox/flox and ECCHOP-/- mice were randomly divided into eight groups with and without 2-Kidney-1-Clip (2K1C) surgery for four weeks. Body weight, systolic blood pressure, running performance, cardiac hypertrophy and fibrosis, lung edema, inflammation, vascular endothelial function, and signaling were assessed. For the mechanism, we utilized human coronary endothelial cells, both with and without CHOP down-regulation, and then stimulated them with and without angiotensin II ± ATP to determine eNOS phosphorylation level and the presence of inflammatory factors. Male and female CHOPflox/flox mice subjected to 2K1C for four weeks exhibited hypertension, cardiac hypertrophy and fibrosis, lung edema, impaired running performance, endothelium-dependent vascular relaxation dysfunction, reduction in eNOS phosphorylation, and inflammation induction. In contrast, male and female ECCHOP-/- mice subjected to 2K1C for four weeks were protected against the pathogenesis of renovascular hypertension. In vitro, data showed that deletion of CHOP in endothelial cells protected eNOS phosphorylation level and blunted the induction of inflammation in response to angiotensin II ± ATP. CONCLUSION Our research findings determined that CHOP is a central mechanism driving vascular endothelial dysfunction and cardiac fibrosis in renovascular hypertension. Therefore, targeting CHOP in endothelial cells could be a potential therapeutic approach to protect against the pathogenesis of renovascular hypertension.
Collapse
Affiliation(s)
- B Srinivas
- Department of Physiological Sciences, EVMS, Norfolk, VA, 23501, USA
| | - K Alluri
- Department of Physiological Sciences, EVMS, Norfolk, VA, 23501, USA
| | - P Fortuno
- Department of Physiological Sciences, EVMS, Norfolk, VA, 23501, USA
| | - M Rizzi
- Department of Physiological Sciences, EVMS, Norfolk, VA, 23501, USA
| | - H Suhail
- Department of Physiology, Wayne State University, Detroit, MI, 48202, USA
- Internal Medicine Department, Hypertension and Vascular Research, Henry Ford Health, Detroit, MI, 48202, USA
| | - N Rhaleb
- Department of Physiology, Wayne State University, Detroit, MI, 48202, USA
- Internal Medicine Department, Hypertension and Vascular Research, Henry Ford Health, Detroit, MI, 48202, USA
| | - K Matrougui
- Department of Physiological Sciences, EVMS, Norfolk, VA, 23501, USA.
| |
Collapse
|
2
|
Ismahel H, Docherty KF. The role of finerenone in heart failure. Trends Cardiovasc Med 2025:S1050-1738(25)00065-9. [PMID: 40383455 DOI: 10.1016/j.tcm.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/29/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Heart failure (HF) with mildly reduced or preserved ejection fraction (HFmrEF/HFpEF) represents approximately half of all HF cases, yet therapeutic options are limited. Mineralocorticoid receptor (MR) overactivation by aldosterone has long been recognized as a key driver of vascular inflammation, cardiac fibrosis, and cardiac hypertrophy, pathophysiological processes integral to the development and progression of HFmrEF/HFpEF. The non-steroidal MRA finerenone has been developed with a distinct pharmacological profile: potent and selective MR blockade with a reduced risk of off-target hormone-related side effects. Large, multicenter randomized placebo-controlled trials in chronic kidney disease and type 2 diabetes patients (FIDELIO-DKD, FIGARO-DKD) first highlighted finerenone's cardiorenal benefits, including a reduction in death from cardiovascular causes and hospitalization for HF. More recently, the FINEARTS-HF trial extended this evidence to patients with HFmrEF/HFpEF, demonstrating a significant reduction in the risk of worsening HF events and death from cardiovascular causes. Ongoing studies, such as REDEFINE-HF, CONFIRMATION-HF, and FINALITY-HF, will examine the potential role of finerenone in HF across a broad spectrum of ejection fractions and different clinical settings. This review synthesizes the evolving evidence supporting the role of finerenone as a new option in the management of HF.
Collapse
Affiliation(s)
- Hassan Ismahel
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, UK
| | - Kieran F Docherty
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
3
|
Papapostolou S, Iles L, O'Brien J, Gutman SJ, Ellims A, Hare J, Stub D, Moir S, Taylor AJ. The Antifibrotic Effects of Eplerenone in Hypertrophic Cardiomyopathy: A Randomized Clinical Trial. JACC. HEART FAILURE 2025:102415. [PMID: 40243979 DOI: 10.1016/j.jchf.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Fibrosis plays a central role in hypertrophic cardiomyopathy (HCM), contributing to symptoms via impaired systolic and diastolic function and ventricular arrhythmias. OBJECTIVES The aim of this study was to determine if eplerenone has an antifibrotic effect in nonobstructive HCM (resting left ventricular outflow tract gradient <30 mm Hg). METHODS This was a randomized, double-blind, placebo-controlled trial of eplerenone in 61 patients with nonobstructive HCM over 12 months. The primary endpoint was native T1 time on cardiac magnetic resonance as an index of diffuse fibrosis. Secondary endpoints included changes in diastolic function. RESULTS Thirty patients were randomized to 50 mg eplerenone and 31 to placebo. There was a reduction in native T1 time within the eplerenone group (1,315 ± 134 ms at baseline vs 1,259 ± 92 ms at 12 months; P = 0.041), with no significant change in the placebo group (1,234 ± 28 ms at baseline vs 1,238 ± 70 ms at 12 months; P = 0.854). This represents a 3.7% ± 9% reduction in native T1 with eplerenone compared with a 1.1% ± 9% increase with placebo (P = 0.07). There was no significant change in functional status or markers of diastolic function (such as E/e' ratio or mitral E/A ratio). CONCLUSIONS In patients with nonobstructive HCM, there was a reduction in myocardial T1 time with eplerenone, consistent with a reduction in diffuse myocardial fibrosis. Larger and longer trials are needed to confirm this finding and explore whether it translates into improved exercise capacity or a reduction in mortality over time. (Anti-fibrotic role of eplerenone on diffuse myocardial fibrosis and diastolic function in patients with hypertrophic cardiomyopathy; ACTRN12613000065796).
Collapse
Affiliation(s)
- Stavroula Papapostolou
- Department of Cardiovascular Medicine, The Alfred Hospital, Melbourne, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia; Department of Cardiology, Western Health, Melbourne, Australia
| | - Leah Iles
- Department of Cardiovascular Medicine, The Alfred Hospital, Melbourne, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Jessica O'Brien
- Department of Cardiovascular Medicine, The Alfred Hospital, Melbourne, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Sarah J Gutman
- Department of Cardiovascular Medicine, The Alfred Hospital, Melbourne, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia; Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Andris Ellims
- Department of Cardiovascular Medicine, The Alfred Hospital, Melbourne, Australia
| | - James Hare
- Department of Cardiovascular Medicine, The Alfred Hospital, Melbourne, Australia
| | - Dion Stub
- Department of Cardiovascular Medicine, The Alfred Hospital, Melbourne, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Stuart Moir
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia; Monash Victorian Heart Institute, Melbourne, Australia
| | - Andrew J Taylor
- Department of Cardiovascular Medicine, The Alfred Hospital, Melbourne, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia; Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia.
| |
Collapse
|
4
|
Khan LA, Jamil A, Greene SJ, Khan MS, Butler J. Aldosterone and Potassium in Heart Failure: Overcoming This Major Impediment in Clinical Practice. Card Fail Rev 2024; 10:e18. [PMID: 39872850 PMCID: PMC11770538 DOI: 10.15420/cfr.2024.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/05/2024] [Indexed: 01/30/2025] Open
Abstract
Aldosterone is a key regulator of fluid and electrolyte balance in the body. It is often dysregulated in heart failure (HF) and is a key driver of cardiac remodelling and worse clinical outcomes. Potassium regulation is essential for normal cardiac, gastrointestinal and neuromuscular function. Serum potassium fluctuations are largely determined by aldosterone, the final step of the renin-angiotensin-aldosterone system. Dyskalaemia (i.e. hypokalaemia and hyperkalaemia) is prevalent in HF because of the disease itself, its therapies and related comorbidities such as chronic kidney disease. Prognostic implications of abnormal serum potassium follow a U-shaped curve, where both hypokalaemia and hyperkalaemia are associated with adverse outcomes. Hypokalaemia is associated with increased mortality, starting from potassium <4.0 mmol/l but especially at potassium <3.5 mmol/l. Hyperkalaemia, along with increasing arrhythmia risk, limits the use of lifesaving renin-angiotensin- aldosterone system inhibitors, which may have long-term survival implications. The advent of novel potassium binders aims to manage chronic hyperkalaemia and may allow for uptitration and optimal dosing of guideline-recommended therapy. This review discusses the impacts of dyskalaemia in HF, along with management strategies, including the relevance of potassium binder use in optimising HF treatment. Current and potential future aldosterone-modulating therapies, such as non-steroidal mineralocorticoid receptor antagonists and aldosterone synthase inhibitors, are also discussed.
Collapse
Affiliation(s)
- Laibah Arshad Khan
- Department of Medicine, University of Mississippi Medical CenterJackson, MS, US
| | - Adeena Jamil
- Department of Medicine, Dow International Medical College, Dow University of Health SciencesKarachi, Pakistan
| | - Stephen J Greene
- Duke Clinical Research InstituteDurham, NC, US
- Division of Cardiology, Duke University Medical CenterDurham, NC, US
| | - Muhammad Shahzeb Khan
- Division of Cardiology, The Heart Hospital PlanoPlano, TX, US
- Department of Medicine, Baylor College of MedicineTemple, TX, US
- Baylor Scott and White Research InstituteDallas, TX, US
| | - Javed Butler
- Department of Medicine, University of Mississippi Medical CenterJackson, MS, US
- Baylor Scott and White Research InstituteDallas, TX, US
| |
Collapse
|
5
|
Ananda RA, Gwini S, Beilin LJ, Schlaich MP, Stowasser M, Young MJ, Adler B, Fuller PJ, Mori TA, Yang J. Relationship Between Renin, Aldosterone, Aldosterone-to-Renin Ratio and Arterial Stiffness and Left Ventricular Mass Index in Young Adults. Circulation 2024; 150:2019-2030. [PMID: 39351674 DOI: 10.1161/circulationaha.124.070039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/03/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Primary aldosteronism, characterized by renin-independent aldosterone production, is associated with adverse cardiovascular remodeling and outcomes. Elevated cardiovascular risk is observed even in subclinical forms of primary aldosteronism according to studies conducted primarily in middle-aged and elderly populations. This study aimed to assess whether early changes in primary aldosteronism biomarkers during young adulthood are associated with arterial stiffness and left ventricular mass index (LVMI) before the onset of overt disease. METHODS The Raine Study is a longitudinal, population-based cohort study in Western Australia that enrolled women during pregnancy. We analyzed the data from the offspring of these women at 17 (2006-2009) and 27 (2016-2018) years of age. Participants with elevated high-sensitivity C-reactive protein (>10 mg/L) and female participants who were on oral contraception were excluded. Pulse wave velocity and aortic augmentation index were measured by SphygmoCor Pulse Wave System at both ages, and aortic distensibility and LVMI were measured by cardiac magnetic resonance imaging at 27 years. Multivariable linear regression was used to examine the relationship between plasma renin, aldosterone, or aldosterone-to-renin ratio and arterial stiffness and LVMI. Mediation analysis was used to test the role of systolic blood pressure. RESULTS This study included 859 participants at 17 (38.0% female) and 758 participants at 27 (33.2% female) years of age. Females had lower renin concentration at both 17 (20.7 mU/L versus 25.7 mU/L; P<0.001) and 27 (12.0 mU/L versus 15.4 mU/L; P<0.001) years of age; hence, the aldosterone-to-renin ratio was significantly higher at both 17 (18.2 versus 13.5; P<0.001) and 27 (21.0 versus 15.6; P<0.001) years of age in females compared with males. At 27 years of age, a significant association was detected between aldosterone and LVMI in males (β=0.009 [95% CI, 0.001-0.017]; P=0.027) and between aldosterone-to-renin ratio and LVMI in females (β=0.098 [95% CI, 0.001-0.196]; P=0.050) independently of systolic blood pressure and other confounders. No association was found between primary aldosteronism biomarkers and measures of arterial stiffness (pulse wave velocity, aortic augmentation index, and aortic distensibility) at either age. CONCLUSIONS Aldosterone concentration and aldosterone-to-renin ratio were positively associated with the LVMI in young males and females, respectively, independently of systolic blood pressure. Long-term follow-up is required to determine whether the relationship persists over time, and clinical trials are needed to assess the cardiovascular benefits of early interventions to block aldosterone.
Collapse
Affiliation(s)
- Roshan A Ananda
- Endocrine Hypertension Group, Centre of Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia (R.A.A., P.J.F., J.Y.)
| | - StellaMay Gwini
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia (S.G.)
| | - Lawrence J Beilin
- Medical School (L.J.B., T.A.M.), Royal Perth Hospital Unit, University of Western Australia, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School (M.P.S.), Royal Perth Hospital Unit, University of Western Australia, Australia
| | - Michael Stowasser
- Endocrine Hypertension Research Centre, UQ Frazer Institute, Brisbane, Queensland, Australia (M.S.)
| | - Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.J.Y.)
- Department of Cardiovascular Health and Disease, Baker and University of Melbourne, Victoria, Australia (M.J.Y.)
| | - Brendan Adler
- Envision Medical Imaging, Perth, Western Australia, Australia (B.A.)
| | - Peter J Fuller
- Endocrine Hypertension Group, Centre of Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia (R.A.A., P.J.F., J.Y.)
| | - Trevor A Mori
- Medical School (L.J.B., T.A.M.), Royal Perth Hospital Unit, University of Western Australia, Australia
| | - Jun Yang
- Endocrine Hypertension Group, Centre of Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia (R.A.A., P.J.F., J.Y.)
- Department of Molecular and Translational Science (J.Y.), Monash University, Clayton, Victoria, Australia
- Department of Medicine (J.Y.), Monash University, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Lunde IG, Rypdal KB, Van Linthout S, Diez J, González A. Myocardial fibrosis from the perspective of the extracellular matrix: Mechanisms to clinical impact. Matrix Biol 2024; 134:1-22. [PMID: 39214156 DOI: 10.1016/j.matbio.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and constitutes a central pathophysiological process that underlies tissue dysfunction, across organs, in multiple chronic diseases and during aging. Myocardial fibrosis is a key contributor to dysfunction and failure in numerous diseases of the heart and is a strong predictor of poor clinical outcome and mortality. The excess structural and matricellular ECM proteins deposited by cardiac fibroblasts, is found between cardiomyocytes (interstitial fibrosis), in focal areas where cardiomyocytes have died (replacement fibrosis), and around vessels (perivascular fibrosis). Although myocardial fibrosis has important clinical prognostic value, access to cardiac tissue biopsies for histological evaluation is limited. Despite challenges with sensitivity and specificity, cardiac magnetic resonance imaging (CMR) is the most applicable diagnostic tool in the clinic, and the scientific community is currently actively searching for blood biomarkers reflecting myocardial fibrosis, to complement the imaging techniques. The lack of mechanistic insights into specific pro- and anti-fibrotic molecular pathways has hampered the development of effective treatments to prevent or reverse myocardial fibrosis. Development and implementation of anti-fibrotic therapies is expected to improve patient outcomes and is an urgent medical need. Here, we discuss the importance of the ECM in the heart, the central role of fibrosis in heart disease, and mechanistic pathways likely to impact clinical practice with regards to diagnostics of myocardial fibrosis, risk stratification of patients, and anti-fibrotic therapy.
Collapse
Affiliation(s)
- Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway.
| | - Karoline B Rypdal
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Javier Diez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
7
|
Mazzieri A, Timio F, Patera F, Trepiccione F, Bonomini M, Reboldi G. Aldosterone Synthase Inhibitors for Cardiorenal Protection: Ready for Prime Time? Kidney Blood Press Res 2024; 49:1041-1056. [PMID: 39557029 PMCID: PMC11844674 DOI: 10.1159/000542621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Aldosterone is the principal mineralocorticoid hormone and the final effector of the renin-angiotensin-aldosterone system. This hormone is primarily synthesized by the CYP11B2 enzyme and produced by the adrenal zona glomerulosa. Through genomic and non-genomic effects, it plays an important role in cardiovascular and renal disease. To counteract aldosterone-mediated damage, steroidal mineralocorticoid receptor antagonists are recommended by international guidelines, but endocrine side effects often limit their use in a substantial proportion of patients. Conversely, nonsteroidal mineralocorticoid receptor antagonists, with an improved selectivity and safety profile, are gaining a prominent position among therapeutic pillars. However, blocking the mineralocorticoid receptors does not completely inhibit aldosterone effects because of escape mechanisms and non-genomic activity. Thus, inhibiting aldosterone synthesis could be a promising strategy to prevent aldosterone-mediated cardiorenal damage. The limited specificity for CYP11B2 and side effects due to off-target activity hampered the development of first-generation aldosterone synthase inhibitors (ASIs). SUMMARY The development of highly specific ASIs led to successful clinical trials in patients with resistant and uncontrolled hypertension. Additionally, a recent randomized clinical trial showed a significant benefit of ASIs in patients with chronic kidney disease and albuminuria. KEY MESSAGES The strength of the clinical evidence collected so far is still limited, and larger outcome-based clinical trials are needed to confirm the promising role of ASIs in cardiorenal damage.
Collapse
Affiliation(s)
- Alessio Mazzieri
- Diabetes Clinic, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesca Timio
- Division of Nephrology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesco Patera
- Division of Nephrology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesco Trepiccione
- Department of Medical Translational Sciences, University of Campania, Naples, Italy
- Biogem, Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Mario Bonomini
- Nephrology and Dialysis Unit, Department of Medicine, G. D’Annunzio University, Chieti, Italy
- SS. Annunziata Hospital, Chieti, Italy
| | - Gianpaolo Reboldi
- Division of Nephrology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
8
|
Sabina M, Trube J, Shah S, Lurie A, Grimm M, Bizanti A. Finerenone: A Third-Generation MRA and Its Impact on Cardiovascular Health-Insights from Randomized Controlled Trials. J Clin Med 2024; 13:6398. [PMID: 39518537 PMCID: PMC11547165 DOI: 10.3390/jcm13216398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction: Finerenone, a third-generation non-steroidal mineralocorticoid receptor antagonist (MRA), offers a targeted approach to managing cardiovascular outcomes, particularly in patients with chronic kidney disease (CKD) and type 2 diabetes (T2D). Unlike traditional MRAs such as spironolactone and eplerenone, which can cause off-target hormonal side effects and hyperkalemia, Finerenone selectively binds to mineralocorticoid receptors, reducing these risks. Recent randomized controlled trials have demonstrated Finerenone's potential to improve cardiovascular outcomes, making it a promising alternative in the management of heart failure and other cardiovascular conditions associated with CKD and T2D. Methods: We conducted a scoping review using PRISMA guidelines. A search for "Finerenone" in the PubMed, Embase, and Cochrane Library databases included randomized controlled trials (RCTs), post hoc analyses, and relevant meta-analyses on cardiovascular outcomes. Data were synthesized narratively, assessing study quality through strengths and limitations. Discussion: Finerenone has shown significant benefits and a superior safety profile compared with traditional MRAs like spironolactone and eplerenone in managing CKD, T2D, and heart failure. It effectively reduces cardiovascular and renal events while minimizing risks such as hyperkalemia and hormonal side effects associated with steroidal MRAs. Future studies, including the REDEFINE-HF, FINALITY-HF, and CONFIRMATION-HF trials, will further explore Finerenone's potential across diverse heart failure phenotypes, including its role in heart failure with mildly reduced and preserved ejection fractions, potentially establishing it as a cornerstone therapy in heart failure management. Conclusions: Finerenone represents a significant advancement in MRA therapy, offering enhanced safety and efficacy in managing cardiovascular outcomes in CKD and T2D patients. The current evidence supports its use as a promising alternative to traditional MRAs, particularly in patients intolerant to steroidal MRAs. Further trials are needed to fully establish its potential across diverse patient populations, including those with varying heart failure phenotypes.
Collapse
Affiliation(s)
- Michael Sabina
- Lakeland Regional Health Medical Center, Lakeland, FL 33805, USA; (J.T.); (S.S.); (A.L.); (M.G.); (A.B.)
| | | | | | | | | | | |
Collapse
|
9
|
Verma S, Pandey A, Pandey AK, Butler J, Lee JS, Teoh H, Mazer CD, Kosiborod MN, Cosentino F, Anker SD, Connelly KA, Bhatt DL. Aldosterone and aldosterone synthase inhibitors in cardiorenal disease. Am J Physiol Heart Circ Physiol 2024; 326:H670-H688. [PMID: 38133623 DOI: 10.1152/ajpheart.00419.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Modulation of the renin-angiotensin-aldosterone system is a foundation of therapy for cardiovascular and kidney diseases. Excess aldosterone plays an important role in cardiovascular disease, contributing to inflammation, fibrosis, and dysfunction in the heart, kidneys, and vasculature through both genomic and mineralocorticoid receptor (MR)-mediated as well as nongenomic mechanisms. MR antagonists have been a key therapy for attenuating the pathologic effects of aldosterone but are associated with some side effects and may not always adequately attenuate the nongenomic effects of aldosterone. Aldosterone is primarily synthesized by the CYP11B2 aldosterone synthase enzyme, which is very similar in structure to other enzymes involved in steroid biosynthesis including CYP11B1, a key enzyme involved in glucocorticoid production. Lack of specificity for CYP11B2, off-target effects on the hypothalamic-pituitary-adrenal axis, and counterproductive increased levels of bioactive steroid intermediates such as 11-deoxycorticosterone have posed challenges in the development of early aldosterone synthase inhibitors such as osilodrostat. In early-phase clinical trials, newer aldosterone synthase inhibitors demonstrated promise in lowering blood pressure in patients with treatment-resistant and uncontrolled hypertension. It is therefore plausible that these agents offer protection in other disease states including heart failure or chronic kidney disease. Further clinical evaluation will be needed to clarify the role of aldosterone synthase inhibitors, a promising class of agents that represent a potentially major therapeutic advance.
Collapse
Affiliation(s)
- Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Avinash Pandey
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Arjun K Pandey
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, United States
- University of Mississippi, Jackson, Mississippi, United States
| | - John S Lee
- LJ Biosciences, LLC, Rockville, Maryland, United States
- PhaseBio Pharmaceuticals, Malvern, Pennsylvania, United States
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
| | - C David Mazer
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mikhail N Kosiborod
- Saint Luke's Mid America Heart Institute, Kansas City, Missouri, United States
- University of Missouri-Kansas City, Kansas City, Missouri, United States
| | | | - Stefan D Anker
- Department of Cardiology and Berlin Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Kim A Connelly
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology, St. Michael's Hospital-Unity Health Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart, Icahn School of Medicine at Mount Sinai Health System, New York, New York, United States
| |
Collapse
|
10
|
Ravassa S, López B, Treibel TA, San José G, Losada-Fuentenebro B, Tapia L, Bayés-Genís A, Díez J, González A. Cardiac Fibrosis in heart failure: Focus on non-invasive diagnosis and emerging therapeutic strategies. Mol Aspects Med 2023; 93:101194. [PMID: 37384998 DOI: 10.1016/j.mam.2023.101194] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Heart failure is a leading cause of mortality and hospitalization worldwide. Cardiac fibrosis, resulting from the excessive deposition of collagen fibers, is a common feature across the spectrum of conditions converging in heart failure. Eventually, either reparative or reactive in nature, in the long-term cardiac fibrosis contributes to heart failure development and progression and is associated with poor clinical outcomes. Despite this, specific cardiac antifibrotic therapies are lacking, making cardiac fibrosis an urgent unmet medical need. In this context, a better patient phenotyping is needed to characterize the heterogenous features of cardiac fibrosis to advance toward its personalized management. In this review, we will describe the different phenotypes associated with cardiac fibrosis in heart failure and we will focus on the potential usefulness of imaging techniques and circulating biomarkers for the non-invasive characterization and phenotyping of this condition and for tracking its clinical impact. We will also recapitulate the cardiac antifibrotic effects of existing heart failure and non-heart failure drugs and we will discuss potential strategies under preclinical development targeting the activation of cardiac fibroblasts at different levels, as well as targeting additional extracardiac processes.
Collapse
Affiliation(s)
- Susana Ravassa
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Begoña López
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, UK; Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Gorka San José
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Blanca Losada-Fuentenebro
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Leire Tapia
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Antoni Bayés-Genís
- CIBERCV, Carlos III Institute of Health, Madrid, Spain; Servei de Cardiologia i Unitat d'Insuficiència Cardíaca, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
11
|
Carvalho A, Ji Z, Zhang R, Zuo W, Qu Y, Chen X, Tao Z, Ji J, Yao Y, Ma G. Inhibition of miR-195-3p protects against cardiac dysfunction and fibrosis after myocardial infarction. Int J Cardiol 2023; 387:131128. [PMID: 37356730 DOI: 10.1016/j.ijcard.2023.131128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Cardiac fibrosis following myocardial infarction is a major risk factor for heart failure. Recent evidence suggests that miR-195-3p is up-regulated in fibrotic diseases, including kidney and liver fibrosis. However, its function and underlying mechanisms in cardiac fibrosis after MI remain unknown. To investigate the role of miR-195-3p in MI-induced cardiac fibrosis, we established acute MI models by ligating adult C57B/L6 mice LAD coronary artery while sham-operated mice were used as controls. In vivo inhibition of miR-195-3p was conducted by intramyocardial injection of AAV9-anti-miR-195-3p. In vitro overexpression and inhibition of miR-195-3p were performed by transfecting cultured Cardiac Fibroblasts (CFs) with synthetic miRNA mimic and inhibitor. Our results showed that MI induced the expression of miR-195-3p and that inhibition of miR-195-3p reduced myofibroblast differentiation and collagen deposition and protected cardiac function. In vitro stimulation of CFs with TGF-β1 resulted in a significant increase in miR-195-3p expression. Inhibition of miR-195-3p attenuated the TGF-β1-induced expression of ECM proteins, migration, and proliferation. PTEN expression was significantly reduced in the hearts of MI mice, in activated CFs, and in CFs transfected with miR-195-3p mimic. Inhibition of miR-195-3p markedly restored PTEN expression in MI mice and TGF-β1-treated CFs. In conclusion, this study highlights the crucial role of miR-195-3p in promoting cardiac fibrosis and dysfunction after MI. Inhibiting miR-195-3p could be a promising therapeutic strategy for preventing cardiac fibrosis and preserving cardiac function after MI. Additionally, the study sheds light on the mechanisms underlying the effects of miR-195-3p on fibrosis, including its regulation of PTEN/AKT pathway.
Collapse
Affiliation(s)
- Abdlay Carvalho
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Rui Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Yangyang Qu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Xi Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Zaixiao Tao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Jingjing Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
12
|
Mao Y, Fu Q, Su F, Zhang W, Zhang Z, Zhou Y, Yang C. Trends in worldwide research on cardiac fibrosis over the period 1989-2022: a bibliometric study. Front Cardiovasc Med 2023; 10:1182606. [PMID: 37342441 PMCID: PMC10277498 DOI: 10.3389/fcvm.2023.1182606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Background Cardiac fibrosis is a hallmark of various end-stage cardiovascular diseases (CVDs) and a potent contributor to adverse cardiovascular events. During the past decades, extensive publications on this topic have emerged worldwide, while a bibliometric analysis of the current status and research trends is still lacking. Methods We retrieved relevant 13,446 articles on cardiac fibrosis published between 1989 and 2022 from the Web of Science Core Collection (WoSCC). Bibliometrix was used for science mapping of the literature, while VOSviewer and CiteSpace were applied to visualize co-authorship, co-citation, co-occurrence, and bibliographic coupling networks. Results We identified four major research trends: (1) pathophysiological mechanisms; (2) treatment strategies; (3) cardiac fibrosis and related CVDs; (4) early diagnostic methods. The most recent and important research themes such as left ventricular dysfunction, transgenic mice, and matrix metalloproteinase were generated by burst analysis of keywords. The reference with the most citations was a contemporary review summarizing the role of cardiac fibroblasts and fibrogenic molecules in promoting fibrogenesis following myocardial injury. The top 3 most influential countries were the United States, China, and Germany, while the most cited institution was Shanghai Jiao Tong University, followed by Nanjing Medical University and Capital Medical University. Conclusions The number and impact of global publications on cardiac fibrosis has expanded rapidly over the past 30 years. These results are in favor of paving the way for future research on the pathogenesis, diagnosis, and treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Yukang Mao
- Department of Cardiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiangqiang Fu
- Department of General Practice, Clinical Research Center for General Practice, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Su
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjia Zhang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhong Zhang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yimeng Zhou
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuanxi Yang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Wang N, Li JY, Zeng B, Chen GL. Sphingosine-1-Phosphate Signaling in Cardiovascular Diseases. Biomolecules 2023; 13:biom13050818. [PMID: 37238688 DOI: 10.3390/biom13050818] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is an important sphingolipid molecule involved in regulating cardiovascular functions in physiological and pathological conditions by binding and activating the three G protein-coupled receptors (S1PR1, S1PR2, and S1PR3) expressed in endothelial and smooth muscle cells, as well as cardiomyocytes and fibroblasts. It exerts its actions through various downstream signaling pathways mediating cell proliferation, migration, differentiation, and apoptosis. S1P is essential for the development of the cardiovascular system, and abnormal S1P content in the circulation is involved in the pathogenesis of cardiovascular disorders. This article reviews the effects of S1P on cardiovascular function and signaling mechanisms in different cell types in the heart and blood vessels under diseased conditions. Finally, we look forward to more clinical findings with approved S1PR modulators and the development of S1P-based therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
14
|
Liu H, Huang Y, Zhao Y, Kang GJ, Feng F, Wang X, Liu M, Shi G, Revelo X, Bernlohr D, Dudley SC. Inflammatory Macrophage Interleukin-1β Mediates High-Fat Diet-Induced Heart Failure With Preserved Ejection Fraction. JACC Basic Transl Sci 2023; 8:174-185. [PMID: 36908663 PMCID: PMC9998610 DOI: 10.1016/j.jacbts.2022.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022]
Abstract
Diabetes mellitus (DM) is a main risk factor for diastolic dysfunction (DD) and heart failure with preserved ejection fraction. High-fat diet (HFD) mice presented with diabetes mellitus, DD, higher cardiac interleukin (IL)-1β levels, and proinflammatory cardiac macrophage accumulation. DD was significantly ameliorated by suppressing IL-1β signaling or depleting macrophages. Mice with macrophages unable to adopt a proinflammatory phenotype were low in cardiac IL-1β levels and were resistant to HFD-induced DD. IL-1β enhanced mitochondrial reactive oxygen species (mitoROS) in cardiomyocytes, and scavenging mitoROS improved HFD-induced DD. In conclusion, macrophage-mediated inflammation contributed to HFD-associated DD through IL-1β and mitoROS production.
Collapse
Key Words
- CCR2, C-C motif chemokine receptor 2
- CM, cardiomyocyte
- DD, diastolic dysfunction
- DM, diabetes mellitus
- EF, ejection fraction
- FABP4, fatty acid binding protein 4
- HF, heart failure
- HFD, high-fat diet
- HFpEF
- HFpEF, heart failure with preserved ejection fraction
- IL, interleukin
- IL-1β
- IL1RA, interleukin 1 receptor antagonist
- KO, knockout
- MCP, monocyte chemoattractant protein
- MyBP-C, myosin binding protein C
- TGF, transforming growth factor
- TNF, tumor necrosis factor
- Timd4, T cell immunoglobulin and mucin domain containing 4
- WT, wild-type
- diabetes
- diastolic dysfunction
- inflammation
- macrophage
- mitoROS, mitochondrial reactive oxygen species
- mitochondria
Collapse
Affiliation(s)
- Hong Liu
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yimao Huang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yang Zhao
- Division of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, China
| | - Gyeoung-Jin Kang
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Feng Feng
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaodan Wang
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Man Liu
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Guangbin Shi
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Xavier Revelo
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Samuel C. Dudley
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
15
|
Humeres C, Venugopal H, Frangogiannis NG. The Role of Mechanosensitive Signaling Cascades in Repair and Fibrotic Remodeling of the Infarcted Heart. CARDIAC AND VASCULAR BIOLOGY 2023:61-100. [DOI: 10.1007/978-3-031-23965-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Chen X, Xia X, Dong T, Lin Z, Du L, Zhou H. Trimetazidine Reduces Cardiac Fibrosis in Rats by Inhibiting NOX2-Mediated Endothelial-to-Mesenchymal Transition. Drug Des Devel Ther 2022; 16:2517-2527. [PMID: 35946039 PMCID: PMC9357386 DOI: 10.2147/dddt.s360283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/23/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Xingxing Chen
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xue Xia
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Tiancheng Dong
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Zhiwei Lin
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Leilei Du
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Hao Zhou
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Correspondence: Hao Zhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang Avenue, Ouhai District, Wenzhou, 325000, People’s Republic of China, Tel +86 1 396 880 1939, Fax +86 577 555 79796, Email
| |
Collapse
|
17
|
Circulating Galectin-3 and Aldosterone for Predicting Atrial Fibrillation Recurrence after Radiofrequency Catheter Ablation. Cardiovasc Ther 2022; 2022:6993904. [PMID: 35692374 PMCID: PMC9151002 DOI: 10.1155/2022/6993904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 12/29/2022] Open
Abstract
Background Circulating galectin-3 (Gal-3) and aldosterone (ALD) are involved in fibrosis and inflammation. However, their potential value as predictors of atrial fibrillation (AF) recurrence after radiofrequency catheter ablation (RFCA) is unknown or controversial. Therefore, the aim of this study was to assess the relationship between baseline Gal-3, ALD levels, and AF recurrence in patients performing RFCA. Methods 153 consecutive patients undergoing RFCA were included. Gal-3 and ALD were measured at baseline. Univariate and multivariate Cox regressions were performed to determine the predictors of AF recurrence. Receiver operating characteristic (ROC) curve and Kaplan-Meier (K-M) curve were used to assess the value of predictors. Results There were 35 (22.88%) cases of AF recurrence after RFCA. The recurrence group had significantly higher preoperative serum levels of Gal-3 and ALD than the nonrecurrence group. Univariate and multivariate analysis showed that Gal-3 (HR = 1.28, 95% CI: 1.04-1.56, p = 0.02) and ALD (OR = 1.02, 95% CI: 1.00-1.03, p < 0.03) were significantly associated with AF recurrence after RFCA. The area under the curve (AUC) of preoperative serum Gal-3, ALD, and 2 combined to predict the recurrence of AF patients after RFCA was 0.636, 0.798, and 0.893, respectively, while sensitivity was 65.32%, 71.69%, and 88.61%, respectively and specificity was 77.46%, 78.53%, and 86.0%, respectively. Patients with Gal-3 above the cutoff value of 14.57 pg/ml had higher frequent AF recurrence than the patients with Gal − 3 ≤ 14.57 pg/ml (35% vs. 12%, p < 0.001) during a follow-up. Meanwhile, patients with ALD above the cutoff value of 243.61 pg/ml also had a higher AF recurrence rate than those with ALD ≤ 243.61 pg/ml (37% vs. 11%, p < 0.001) during a follow-up. The recurrence rate in patients with Gal − 3 > 14.57 pg/ml + ALD > 243.61 pg/ml was higher than that in patients with baseline Gal − 3 > 14.57 pg/ml or ALD > 243.61 pg/ml and patients with Gal − 3 ≤ 14.57 pg/ml + ALD ≤ 243.61 pg/ml (57% vs. 14% vs. 9%, p < 0.01, respectively). Conclusion AF recurrence after RFCA had higher baseline Gal-3 and ALD levels, and higher preoperative circulating Gal-3 and ALD levels were independent predictors of AF recurrence for patients undergoing RFCA, while combination of preoperative Gal-3 and ALD levels has higher prediction accuracy.
Collapse
|
18
|
Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells 2022; 11:cells11091386. [PMID: 35563692 PMCID: PMC9102016 DOI: 10.3390/cells11091386] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 12/14/2022] Open
Abstract
The adult mammalian heart contains abundant interstitial and perivascular fibroblasts that expand following injury and play a reparative role but also contribute to maladaptive fibrotic remodeling. Following myocardial infarction, cardiac fibroblasts undergo dynamic phenotypic transitions, contributing to the regulation of inflammatory, reparative, and angiogenic responses. This review manuscript discusses the mechanisms of regulation, roles and fate of fibroblasts in the infarcted heart. During the inflammatory phase of infarct healing, the release of alarmins by necrotic cells promotes a pro-inflammatory and matrix-degrading fibroblast phenotype that may contribute to leukocyte recruitment. The clearance of dead cells and matrix debris from the infarct stimulates anti-inflammatory pathways and activates transforming growth factor (TGF)-β cascades, resulting in the conversion of fibroblasts to α-smooth muscle actin (α-SMA)-expressing myofibroblasts. Activated myofibroblasts secrete large amounts of matrix proteins and form a collagen-based scar that protects the infarcted ventricle from catastrophic complications, such as cardiac rupture. Moreover, infarct fibroblasts may also contribute to cardiac repair by stimulating angiogenesis. During scar maturation, fibroblasts disassemble α-SMA+ stress fibers and convert to specialized cells that may serve in scar maintenance. The prolonged activation of fibroblasts and myofibroblasts in the infarct border zone and in the remote remodeling myocardium may contribute to adverse remodeling and to the pathogenesis of heart failure. In addition to their phenotypic plasticity, fibroblasts exhibit remarkable heterogeneity. Subsets with distinct phenotypic profiles may be responsible for the wide range of functions of fibroblast populations in infarcted and remodeling hearts.
Collapse
|
19
|
Evaluation of the Cardiometabolic Disorders after Spinal Cord Injury in Mice. BIOLOGY 2022; 11:biology11040495. [PMID: 35453695 PMCID: PMC9027794 DOI: 10.3390/biology11040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/16/2022]
Abstract
Changes in cardiometabolic functions contribute to increased morbidity and mortality after chronic spinal cord injury. Despite many advancements in discovering SCI-induced pathologies, the cardiometabolic risks and divergences in severity-related responses have yet to be elucidated. Here, we examined the effects of SCI severity on functional recovery and cardiometabolic functions following moderate (50 kdyn) and severe (75 kdyn) contusions in the thoracic-8 (T8) vertebrae in mice using imaging, morphometric, and molecular analyses. Both severities reduced hindlimbs motor functions, body weight (g), and total body fat (%) at all-time points up to 20 weeks post-injury (PI), while only severe SCI reduced the total body lean (%). Severe SCI increased liver echogenicity starting from 12 weeks PI, with an increase in liver fibrosis in both moderate and severe SCI. Severe SCI mice showed a significant reduction in left ventricular internal diameters and LV volume at 20 weeks PI, associated with increased LV ejection fraction as well as cardiac fibrosis. These cardiometabolic dysfunctions were accompanied by changes in the inflammation profile, varying with the severity of the injury, but not in the lipid profile nor cardiac or hepatic tyrosine hydroxylase innervation changes, suggesting that systemic inflammation may be involved in these SCI-induced health complications.
Collapse
|
20
|
Wu H, Lam TYC, Shum TF, Tsai TY, Chiou J. Hypotensive effect of captopril on deoxycorticosterone acetate-salt-induced hypertensive rat is associated with gut microbiota alteration. Hypertens Res 2022; 45:270-282. [PMID: 34857899 PMCID: PMC8766282 DOI: 10.1038/s41440-021-00796-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
The role of the gut microbiota in various metabolic diseases has been widely studied. This study aims to test the hypothesis that gut microbiota dysbiosis is associated with DOCA-salt-induced hypertension, while captopril, an antihypertensive drug, is able to rebalance the gut microbiota alterations caused by hypertension. Treatment with captopril resulted in an approximate 32 mmHg reduction in systolic blood pressure (162.57 vs. 194.61 mmHg) in DOCA-salt-induced hypertensive rats, although it was significantly higher than that in SHAM rats (136.10 mmHg). Moreover, the nitric oxide (NO) level was significantly increased (20.60 vs. 6.42 µM) while the angiotensin II (Ang II) content (42.40 vs. 59.47 pg/ml) was attenuated nonsignificantly by captopril treatment in comparison to those of DOCA-salt-induced hypertensive rats. The introduction of captopril significantly decreased the levels of tumor necrosis factor-α (TNF-ɑ) and interleukin-6 (IL-6). Hypertrophy and fibrosis in kidneys and hearts were also significantly attenuated by captopril. Furthermore, gut microbiota dysbiosis was observed in DOCA-salt-induced hypertensive rats. The abundances of several phyla and genera, including Proteobacteria, Cyanobacteria, Escherichia-Shigella, Eubacterium nodatum and Ruminococcus, were higher in DOCA-salt-induced hypertensive rats than in SHAM rats, while these changes were reversed by captopril treatment. Of particular interest, the genera Bifidobacterium and Akkermansia, reported as beneficial bacteria in the gut, were abundant in only hypertensive rats treated with captopril. These results provide evidence that captopril has the potential to rebalance the dysbiotic gut microbiota of DOCA-salt-induced hypertensive rats, suggesting that the alteration of the gut flora by captopril may contribute to the hypotensive effect of this drug.
Collapse
Affiliation(s)
- Haicui Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Theo Y C Lam
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Tim-Fat Shum
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Jiachi Chiou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
21
|
Dehe L, Mousa SA, Aboryag N, Shaqura M, Beyer A, Schäfer M, Treskatsch S. Identification of Mineralocorticoid Receptors, Aldosterone, and Its Processing Enzyme CYP11B2 on Parasympathetic and Sympathetic Neurons in Rat Intracardiac Ganglia. Front Neuroanat 2022; 15:802359. [PMID: 35087382 PMCID: PMC8786913 DOI: 10.3389/fnana.2021.802359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Recent interest has focused on the mineralocorticoid receptor (MR) and its impact on the myocardium and the performance of the heart. However, there is a lack of evidence about MR expression and its endogenous ligand aldosterone synthesis with specific regard to the intrinsic cardiac nervous system. Therefore, we looked for evidence of MR and aldosterone in sympathetic and parasympathetic neurons of intracardiac ganglia. Tissue samples from rat heart atria were subjected to conventional reverse-transcriptase polymerase chain reaction (PCR), Western blot, and double immunofluorescence confocal analysis of MR, corticosterone-inactivating enzyme 11β-hydroxysteroid-dehydrogenase-2 (11β-HSD2), aldosterone, and its processing enzyme CYP11B2 together with the neuronal markers vesicular acetylcholine transporter (VAChT) and tyrosine hydroxylase (TH). Our results demonstrated MR, 11β-HSD2, and CYP11B2 specific mRNA and protein bands in rat heart atria. Double immunofluorescence labeling revealed coexpression of MR immunoreactivity with VAChT in large diameter parasympathetic principal neurons. In addition, MR immunoreactivity was identified in TH-immunoreactive small intensely fluorescent (SIF) cells and in nearby VAChT- and TH-immunoreactive nerve terminals. Interestingly, the aldosterone and its synthesizing enzyme CYP11B2 and 11β-HSD2 colocalized in MR– immunoreactive neurons of intracardiac ganglia. Overall, this study provides first evidence for the existence of not only local expression of MR, but also of 11β-HSD2 and aldosterone with its processing enzyme CYP11B2 in the neurons of the cardiac autonomic nervous system, suggesting a possible modulatory role of the mineralocorticoid system on the endogenous neuronal activity on heart performance.
Collapse
Affiliation(s)
- Lukas Dehe
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
| | - Shaaban A. Mousa
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
- *Correspondence: Shaaban A. Mousa,
| | - Noureddin Aboryag
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
| | - Mohammed Shaqura
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
| | - Antje Beyer
- Department of Anaesthesiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Schäfer
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
| | - Sascha Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
22
|
Lim OZ, Yeoh BS, Omar N, Mohamed M, Zin AAM, Ahmad R. Stingless bee propolis, metformin, and their combination alleviate diabetic cardiomyopathy. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Oon Zhi Lim
- Universiti Sains Malaysia, Malaysia; Hospital Sultan Abdul Halim, Malaysia
| | | | | | | | | | | |
Collapse
|
23
|
Gordon B, González-Fernández V, Dos-Subirà L. Myocardial fibrosis in congenital heart disease. Front Pediatr 2022; 10:965204. [PMID: 36467466 PMCID: PMC9715985 DOI: 10.3389/fped.2022.965204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
Myocardial fibrosis resulting from the excessive deposition of collagen fibers through the myocardium is a common histopathologic finding in a wide range of cardiovascular diseases, including congenital anomalies. Interstitial fibrosis has been identified as a major cause of myocardial dysfunction since it distorts the normal architecture of the myocardium and impairs the biological function and properties of the interstitium. This review summarizes current knowledge on the mechanisms and detrimental consequences of myocardial fibrosis in heart failure and arrhythmias, discusses the usefulness of available imaging techniques and circulating biomarkers to assess this entity and reviews the current body of evidence regarding myocardial fibrosis in the different subsets of congenital heart diseases with implications in research and treatment.
Collapse
Affiliation(s)
- Blanca Gordon
- Integrated Adult Congenital Heart Disease Unit, Vall d'Hebron University Hospital-Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | - Víctor González-Fernández
- Integrated Adult Congenital Heart Disease Unit, Vall d'Hebron University Hospital-Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | - Laura Dos-Subirà
- Integrated Adult Congenital Heart Disease Unit, Vall d'Hebron University Hospital-Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| |
Collapse
|
24
|
Grassinger JM, Henrich M, Echevarría AC, März I, Henrich E, Bartel A, Schneider M, Aupperle-Lellbach H. Correlation of Histopathological Changes in the Left Atrium and Left Atrial Appendage with the Degree of Dilation in Cats. J Comp Pathol 2021; 189:8-25. [PMID: 34886990 DOI: 10.1016/j.jcpa.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/12/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Although atrial dilation is a common finding in feline cardiac disease, detailed investigations of atrial pathology are rare in cats. The aim of the study was to investigate the correlation between pathohistological findings, morphometric data and the degree of dilation of the left atrial appendage (LAA) in 53 cats. Based on the LAA volume, the samples were grouped into normal/control (group 0, ≤1 ml [n = 9]), mildly dilated (group 1, >1 to ≤2 ml [n = 16]), moderately dilated (group 2, >2 to ≤3 ml [n = 14]) and markedly dilated (group 3, >3 ml [n = 14]) groups, independent of the underlying disease. Samples from the LAA and the left atrium (LA) were histologically evaluated using haematoxylin and eosin- and Picrosirius red-stained sections, and morphometrically analysed using an image analysis system. The degree of endo-, myo- and epicardial fibrosis was directly correlated with increased LAA dilation. Due to cardiomyocyte hyperplasia and hypertrophy, the mean thickness of the atrial wall was significantly greater in groups 1 and 2 than in group 0. Conversely, group 3 had a lower mean atrial wall thickness than groups 1 and 2, which was attributed to increased transmural fibrosis and cardiomyocyte atrophy. These findings reflect intensive dynamic remodelling processes during LA and LAA dilation, indicating that reversibility appears to be limited in cases of severe left atrial dilation.
Collapse
Affiliation(s)
- Julia M Grassinger
- LABOKLIN GmbH & Co. KG, Labor für Klinische Diagnostik, Bad Kissingen, Berlin, Germany.
| | - Manfred Henrich
- Institut für Veterinär-Pathologie, Veterinärmedizinische Fakultät der Justus-Liebig-Universität Gießen, Gießen, Berlin, Germany
| | - Argine C Echevarría
- LABOKLIN GmbH & Co. KG, Labor für Klinische Diagnostik, Bad Kissingen, Berlin, Germany
| | - Imke März
- Tierklinik Hofheim, Hofheim, Berlin, Germany
| | - Estelle Henrich
- Klinik für Kleintiere, Veterinärmedizinische Fakultät der Justus-Liebig-Universität Gießen, Gießen, Berlin, Germany
| | - Alexander Bartel
- Institut für Veterinär-Epidemiologie und Biometrie, Freie Universität Berlin, Berlin, Germany
| | - Matthias Schneider
- Klinik für Kleintiere, Veterinärmedizinische Fakultät der Justus-Liebig-Universität Gießen, Gießen, Berlin, Germany
| | | |
Collapse
|
25
|
Chirindoth SS, Cancarevic I. Role of Hydrogen Sulfide in the Treatment of Fibrosis. Cureus 2021; 13:e18088. [PMID: 34692303 PMCID: PMC8525665 DOI: 10.7759/cureus.18088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/18/2021] [Indexed: 12/29/2022] Open
Abstract
Hydrogen sulfide (H2S) is a biological gas, the abnormal metabolism of which has associations with the pathogenesis of fibrosis. The purpose of this paper was to determine the potential of H2S in the prevention and treatment of fibrosis. The data is obtained mainly from articles found in the PubMed database using the keywords “fibrosis” and “hydrogen sulfide,” limiting the results to those published within the last 10 years. Some additional resources have also been used, such as books and articles within journals. Evidence of decreased H2S enzyme levels in animal models with fibrotic diseases has been found. The protective role of H2S has been validated by the administration of exogenous H2S donors in animal models with fibrosis. It is also evident that H2S is involved in complex signaling pathways and ion channels that inhibit fibrosis development. These findings support the role of H2S in the treatment of a variety of fibrotic diseases. A randomized controlled trial in fibrosis patients comparing the efficacy of exogenous H2S and placebo in addition to standard of care can be implemented to validate this further.
Collapse
Affiliation(s)
- Swathy S Chirindoth
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ivan Cancarevic
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
26
|
Sadoughi F, Hallajzadeh J, Mirsafaei L, Asemi Z, Zahedi M, Mansournia MA, Yousefi B. Cardiac fibrosis and curcumin: a novel perspective on this natural medicine. Mol Biol Rep 2021; 48:7597-7608. [PMID: 34648140 DOI: 10.1007/s11033-021-06768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND According to WHO statistics, cardiovascular disease are the leading causes of death in the world. One of the main factors which is causing heart failure, systolic and diastolic dysfunction, and arrythmias is a condition named cardiac fibrosis. This condition is defined by the accumulation of fibroblast-produced ECM in myocardium layer of the heart. OBJECTIVE Accordingly, the current review aims to depict the role of curcumin in the regulation of different signaling pathways that are involved in cardiac fibrosis. RESULTS A great number of cellular and molecular mechanisms such as oxidative stress, inflammation, and mechanical stress are acknowledged to be involved in cardiac fibrosis. Despite the available therapeutic procedures which are designed to target these mechanisms in order to prevent cardiac fibrosis, still, effective therapeutic methods are needed. Curcumin is a natural Chinese medicine which currently has been declared to have therapeutic properties such as anti-oxidant and immunomodulatory activities. In this review, we have gathered several experimental studies in order to represent diverse impacts of this turmeric derivative on pathogenic factors of cardiac fibrosis. CONCLUSION Curcumin might open new avenues in the field of cardiovascular treatment.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Liaosadat Mirsafaei
- Department of Cardiology, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mahdi Zahedi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgān, Iran.
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Antioxidant Potential of Adiponectin and Full PPAR- γ Agonist in Correcting Streptozotocin-Induced Vascular Abnormality in Spontaneously Hypertensive Rats. PPAR Res 2021; 2021:6661181. [PMID: 34691163 PMCID: PMC8531825 DOI: 10.1155/2021/6661181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/15/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress, which is associated with metabolic and anthropometric perturbations, leads to reactive oxygen species production and decrease in plasma adiponectin concentration. We investigated pharmacodynamically the pathophysiological role and potential implication of exogenously administered adiponectin with full and partial peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonists on modulation of oxidative stress, metabolic dysregulation, and antioxidant potential in streptozotocin-induced spontaneously hypertensive rats (SHR). Group I (WKY) serves as the normotensive control, whereas 42 male SHRs were randomized equally into 7 groups (n = 6); group II serves as the SHR control, group III serves as the SHR diabetic control, and groups IV, V, and VI are treated with irbesartan (30 mg/kg), pioglitazone (10 mg/kg), and adiponectin (2.5 μg/kg), whereas groups VII and VIII received cotreatments as irbesartan+adiponectin and pioglitazone+adiponectin, respectively. Diabetes was induced using an intraperitoneal injection of streptozotocin (40 mg/kg). Plasma adiponectin, lipid contents, and arterial stiffness with oxidative stress biomarkers were measured using an in vitro and in vivo analysis. Diabetic SHRs exhibited hyperglycemia, hypertriglyceridemia, hypercholesterolemia, and increased arterial stiffness with reduced plasma adiponectin and antioxidant enzymatic levels (P < 0.05). Diabetic SHRs pretreated with pioglitazone and adiponectin separately exerted improvements in antioxidant enzyme activities, abrogated arterial stiffness, and offset the increased production of reactive oxygen species and dyslipidemic effects of STZ, whereas the blood pressure values were significantly reduced in the irbesartan-treated groups (all P < 0.05). The combined treatment of exogenously administered adiponectin with full PPAR-γ agonist augmented the improvement in lipid contents and adiponectin concentration and restored arterial stiffness with antioxidant potential effects, indicating the degree of synergism between adiponectin and full PPAR-γ agonists (pioglitazone).
Collapse
|
28
|
Prado LG, Barbosa AS. Understanding the Renal Fibrotic Process in Leptospirosis. Int J Mol Sci 2021; 22:ijms221910779. [PMID: 34639117 PMCID: PMC8509513 DOI: 10.3390/ijms221910779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Leptospirosis is a neglected infectious disease caused by pathogenic species of the genus Leptospira. The acute disease is well-described, and, although it resembles other tropical diseases, it can be diagnosed through the use of serological and molecular methods. While the chronic renal disease, carrier state, and kidney fibrosis due to Leptospira infection in humans have been the subject of discussion by researchers, the mechanisms involved in these processes are still overlooked, and relatively little is known about the establishment and maintenance of the chronic status underlying this infectious disease. In this review, we highlight recent findings regarding the cellular communication pathways involved in the renal fibrotic process, as well as the relationship between renal fibrosis due to leptospirosis and CKD/CKDu.
Collapse
Affiliation(s)
- Luan Gavião Prado
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil;
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Angela Silva Barbosa
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil;
- Correspondence:
| |
Collapse
|
29
|
Dumeny L, Vardeny O, Edelmann F, Pieske B, Duarte JD, Cavallari LH. NR3C2 genotype is associated with response to spironolactone in diastolic heart failure patients from the Aldo-DHF trial. Pharmacotherapy 2021; 41:978-987. [PMID: 34569641 DOI: 10.1002/phar.2626] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/21/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023]
Abstract
STUDY OBJECTIVE This study aimed to determine if variants in NR3C2, which codes the target protein of spironolactone, or CYP11B2, which is involved in aldosterone synthesis, were associated with spironolactone response, focused on the primary end point of diastolic function (E/e'), in Aldosterone Receptor Blockade in Diastolic Heart Failure (Aldo-DHF) participants. DESIGN Post-hoc genetic analysis. DATA SOURCE Data and samples were derived from the multi-center, randomized, double-blind, placebo-controlled Aldo-DHF trial. PATIENTS Aldo-DHF participants treated with spironolactone (n = 184) or placebo (n = 178) were included. INTERVENTION Participants were genotyped for NR3C2 rs5522, NR3C2 rs2070951 and CYP11B2 rs1799998 via pyrosequencing. MEASUREMENTS In the placebo and spironolactone arms, separate multivariable linear regression analyses were performed for change in E/e' with each single nucleotide polymorphism (SNP), adjusted for age, sex, and baseline E/e'. To discern potential mechanisms of a genotype effect, associated SNPs were further examined for their association with change in blood pressure, circulating procollagen type III N-terminal peptide (PIIINP), and left atrial area. MAIN RESULTS Carriers of the rs5522 G allele in the placebo arm had a greater increase in E/e' over the 12-month course of the trial compared to noncarriers (β = 1.10; 95% confidence interval [CI]: 0.05-2.16; p = 0.04). No corresponding E/e' worsening by rs5522 genotype was observed in the spironolactone arm. None of the other genotypes were associated with change in E/e'. Compared to noncarriers, rs5522 G carriers also had a greater increase in left atrial area with placebo (β = 0.83; 95% CI: 0.17-1.48; p = 0.01) and a greater reduction in diastolic blood pressure with spironolactone (β = -3.56; 95% CI: -6.73 to -0.39; p = 0.03). Serum PIIINP levels were similar across rs5522 genotypes. CONCLUSIONS Our results suggest that spironolactone attenuates progression of diastolic dysfunction associated with the NR3C2 rs5522 G allele. Validation of our findings is needed.
Collapse
Affiliation(s)
- Leanne Dumeny
- Center for Pharmacogenomics and Precision Medicine and Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA.,Genetics and Genomics, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Orly Vardeny
- Center for Care Delivery and Outcomes Research, Minneapolis Veteran Affairs Health Care System, Minneapolis, Minnesota, USA
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Julio D Duarte
- Center for Pharmacogenomics and Precision Medicine and Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA.,Genetics and Genomics, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Larisa H Cavallari
- Center for Pharmacogenomics and Precision Medicine and Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA.,Genetics and Genomics, Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
30
|
Watson K, Kukin A, Wasik AK, Shulenberger CE. Nonsteroidal Mineralocorticoid Receptor Antagonists: Exploring Role in Cardiovascular Disease. J Cardiovasc Pharmacol 2021; 77:685-698. [PMID: 34057158 DOI: 10.1097/fjc.0000000000000990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022]
Abstract
ABSTRACT Aldosterone, a mineralocorticoid hormone, plays a role in the pathophysiology of many cardiovascular disease states. Mineralocorticoid receptor antagonists (MRAs) have been shown to improve clinical outcomes in select patient populations. However, use of available steroidal receptor antagonists, eplerenone and spironolactone, is often limited by the risk or development of hyperkalemia. Nonsteroidal MRAs have been designed to overcome this limitation. The nonsteroidal MRAs have been studied in patients with heart failure with reduced ejection fraction, hypertension, and to lower the risk of cardiac and renal outcomes in those with type 2 diabetes and renal disease. In this review, the pharmacology of the MRAs is compared, the data evaluating the use of nonsteroidal MRAs are examined, and the place of this new generation of therapy is discussed. At this time, it seems that there could be a future role for nonsteroidal MRAs to reduce the risk of renal outcomes in high-risk individuals.
Collapse
Affiliation(s)
- Kristin Watson
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, MD
- ATRIUM Cardiology Collaborative, Baltimore, MD
| | - Alina Kukin
- Department of Pharmacy, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Allie K Wasik
- Department of Pharmacy, Northwestern Memorial Hospital Bluhm Cardiovascular Institute, Chicago, IL; and
| | | |
Collapse
|
31
|
Lin DW, Jiang F, Wu C, Li YG, Zhang X, Wang YS. Association of furosemide or hydrochlorothiazide use with risk of atrial fibrillation post pacemaker implantation among elderly patients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:855. [PMID: 34164489 PMCID: PMC8184456 DOI: 10.21037/atm-21-1792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Atrial fibrillation (AF) induced by artificial pacing is directly related to atrial remodeling. Previous basic research has shown that furosemide aggravates pathologic myocardial remodeling while hydrochlorothiazide alleviates it. However, whether furosemide or hydrochlorothiazide plays a role in developing AF after pacemaker implantation remains unknown. The study aims to investigate the association between oral furosemide or hydrochlorothiazide and the risk of developing AF after pacemaker implantation. Methods After a review of electronic medical records, elderly patients with pacemaker implantation and without a known baseline history of AF were included and information on their use of daily oral furosemide or hydrochlorothiazide was extracted. New incident AF cases were confirmed via the records of outpatient visits. A Cox proportional-hazards model was used to evaluate the association between daily oral furosemide or hydrochlorothiazide and risk of developing AF after pacemaker implantation, after adjustment for potential confounders. Results Among a total of 551 patients aged more than 65 years, 157 AF cases were identified after pacemaker implantation during a maximum follow up of 3.0±1.6 years. Of these, 242 had used furosemide and 97 had used hydrochlorothiazide therapy. Patients taking daily oral furosemide had a relatively higher risk of AF after pacemaker implantation [hazard ratio (HR): 1.507, 95% confidence interval (CI): 1.036–2.192; P=0.032] after being adjusted for related disease and prescribed medications, while oral taking of hydrochlorothiazide was shown to be a non-effective factor (HR: 0.666, 95% CI: 0.413–1.074), which had no statistical significance. Conclusions Daily oral furosemide might increase the risk of developing AF after pacemaker implantation in elderly patients, while hydrochlorothiazide has no detrimental effect.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Jiang
- Chongming Branch, Clinical Research & Innovation Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Wu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Zhang
- Clinical Research & Innovation Unit, Xinhua Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao-Sheng Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical Research & Innovation Unit, Xinhua Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Abstract
Diffuse myocardial fibrosis resulting from the excessive deposition of collagen fibres through the entire myocardium is encountered in a number of chronic cardiac diseases. This lesion results from alterations in the regulation of fibrillary collagen turnover by fibroblasts, facilitating the excessive deposition of type I and type III collagen fibres within the myocardial interstitium and around intramyocardial vessels. The available evidence suggests that, beyond the extent of fibrous deposits, collagen composition and the physicochemical properties of the fibres are also relevant in the detrimental effects of diffuse myocardial fibrosis on cardiac function and clinical outcomes in patients with heart failure. In this regard, findings from the past 20 years suggest that various clinicopathological phenotypes of diffuse myocardial fibrosis exist in patients with heart failure. In this Review, we summarize the current knowledge on the mechanisms and detrimental consequences of diffuse myocardial fibrosis in heart failure. Furthermore, we discuss the validity and usefulness of available imaging techniques and circulating biomarkers to assess the clinicopathological variation in this lesion and to track its clinical evolution. Finally, we highlight the currently available and potential future therapeutic strategies aimed at personalizing the prevention and reversal of diffuse myocardial fibrosis in patients with heart failure.
Collapse
|
33
|
Narasimhan B, Aravinthkumar R, Correa A, Aronow WS. Pharmacotherapeutic principles of fluid management in heart failure. Expert Opin Pharmacother 2021; 22:595-610. [PMID: 33560159 DOI: 10.1080/14656566.2020.1850694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Heart failure is a major public health concern that is expected to increase over the decades to come. Despite significant advances, fluid overload and congestion remain a major therapeutic challenge. Vascular congestion and neurohormonal activation are intricately linked and the goal of therapy fundamentally aims to reduce both.Areas covered: The authors briefly review a number of core concepts that elucidate the link between fluid overload and neuro-hormonal activation. This is followed by a review of heart-kidney interactions and the impact of diuresis in this setting. Following an in-depth review of currently available pharmacological agents, the rationale and evidence behind their use, the authors end with a brief note on novel agents/approaches to aid volume management in HF.Expert opinion: A number of non-pharmacological advances in the management of volume overload in heart failure, though promising - are associated with a number of shortcomings. Pharmacological therapy remains the cornerstone of volume management. A number of novel approaches, utilizing existing therapies as well as the emergence of new agents over the past decade bode well for the vulnerable HF population.
Collapse
Affiliation(s)
- Bharat Narasimhan
- Department of Medicine, Mount Sinai Morningside, Mount Sinai West, New York, NY
| | | | - Ashish Correa
- Department of Cardiology, Mount Sinai Morningside, Mount Sinai West, Icahn School of Medicine at Mount Sinai
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical center/New York Medical College, Valhalla, NY
| |
Collapse
|
34
|
Zhou F, Wu T, Wang W, Cheng W, Wan S, Tian H, Chen T, Sun J, Ren Y. CMR-Verified Myocardial Fibrosis Is Associated With Subclinical Diastolic Dysfunction in Primary Aldosteronism Patients. Front Endocrinol (Lausanne) 2021; 12:672557. [PMID: 34054733 PMCID: PMC8160454 DOI: 10.3389/fendo.2021.672557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The main cardiac features of primary aldosteronism (PA) are impaired left ventricular (LV) diastolic function, and some articles also reported more cardiac fibrosis in PA patients. However, the correlation between LV dysfunction and diffuse myocardial fibrosis in PA remains unknown. METHODS We enrolled 84 PA patients and 28 essential hypertension (EH) patients in West China Hospital. Cardiac magnetic resonance imaging (CMR) contrast enhancement was arranged for all subjects. Postcontrast T1 time and left ventricular myocardial strains and strain rates were measured. RESULTS 76 PA patients and 27 essential hypertension (EH) patients were included in the final analysis. Blood pressure, LV mass indexes, and LV ejection fractions were comparable in both groups, while the global circumferential peak diastolic strain rate (PDSR) was lower (0.9 ± 0.3 vs. 1.1 ± 0.4, p <0.01) and the postcontrast T1 time was shorter (520 ± 38 vs. 538 ± 27, p = 0.01) in PA patients than those in EH patients. Postcontrast T1 time (p = 0.01) was independently related to global circumferential PDSR after adjusting for age and duration of hypertension in PA patients. Furthermore, plasma aldosterone concentration was negatively associated with postcontrast T1 time (R = -0.253, p = 0.028) in PA patients. CONCLUSIONS The global circumferential PDSR derived by CMR is decreased, and the diffuse myocardial fibrosis is increased in PA patients compared to those in blood pressure matched EH patients. The severity of cardiac diastolic dysfunction independently relates to the degree of diffuse myocardial fibrosis in PA patients, and the diffuse myocardial fibrosis may be caused by high PAC level. CLINICAL TRIAL REGISTRATION http://www.chictr.org.cn/listbycreater.asp, identifier ChiCTR2000031792.
Collapse
Affiliation(s)
- Fangli Zhou
- Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wu
- Departments of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Cheng
- Departments of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Wan
- Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Haoming Tian
- Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Chen
- Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayu Sun
- Departments of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Ren
- Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yan Ren,
| |
Collapse
|
35
|
Kang GJ, Kim EJ, Lee CH. Therapeutic Effects of Specialized Pro-Resolving Lipids Mediators on Cardiac Fibrosis via NRF2 Activation. Antioxidants (Basel) 2020; 9:antiox9121259. [PMID: 33321955 PMCID: PMC7764646 DOI: 10.3390/antiox9121259] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Heart disease is the number one mortality disease in the world. In particular, cardiac fibrosis is considered as a major factor causing myocardial infarction and heart failure. In particular, oxidative stress is a major cause of heart fibrosis. In order to control such oxidative stress, the importance of nuclear factor erythropoietin 2 related factor 2 (NRF2) has recently been highlighted. In this review, we will discuss the activation of NRF2 by docosahexanoic acid (DHA), eicosapentaenoic acid (EPA), and the specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated lipids, including DHA and EPA. Additionally, we will discuss their effects on cardiac fibrosis via NRF2 activation.
Collapse
Affiliation(s)
- Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
- Correspondence: ; Tel.: +82-31-961-5213
| |
Collapse
|
36
|
Abstract
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
37
|
Effect of high-intensity interval training on cardiac structure and function in rats with acute myocardial infarct. Biomed Pharmacother 2020; 131:110690. [PMID: 32890969 DOI: 10.1016/j.biopha.2020.110690] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Exercise training is beneficial for cardiac rehabilitation. Nevertheless, few study focused on the role of high-intensity interval training (HIIT) in cardiac repair. The current study aimed to elucidate the effect of HIIT on cardiac rehabilitation and the involved mechanisms after acute myocardial infarction (MI). METHODS A total of 65 male rats underwent coronary ligation or sham operation and were randomly assigned to 4 groups: sham (n = 10), sedentary (MI-Sed, n = 12), moderate-intensity continuous training (MI-MCT, n = 12) and HIIT (MI-HIIT, n = 12). One week after MI induction, adaptive training starts follow by formal training. After the experiment, cardiac functions were determined by echocardiography and hemodynamic measurements. Changes in infarct size, collagen accumulation, myofibroblasts, angiogenesis, inflammation level, endothelin-1 (ET-1), and renin-angiotensin-aldosterone system (RAAS) activities were measured. Data were analyzed by one-way ANOVA. RESULTS After MI, cardiac structure and function were significantly deteriorated. However, post-MI HIIT for 8 weeks had significantly ameliorated left ventricular end-diastolic pressure (LVEDP), LV systolic pressure (LVSP), and maximum peak velocities of relaxation (-dP/dtmax). Moreover, it preserved cardiac functions, reduced infarct size, protected the myocardium structure, increased angiogenesis and decreased the myofibroblasts and collagen accumulation. HIIT for 4 weeks had no effect on LVEDP, -dP/dtmax, infarct size and angiogenesis. Additionally, it induced inflammation response and repressed ET-1 and RAAS activities were found in myocardium and peripheral circulation after HIIT. CONCLUSION Our results suggested that post-MI HIIT had a positive role in cardiac repair, which might be linked with the induction of inflammation and inhibition of ET-1 and RAAS activities.
Collapse
|
38
|
Taylor MJ, Ullenbruch MR, Frucci EC, Rege J, Ansorge MS, Gomez-Sanchez CE, Begum S, Laufer E, Breault DT, Rainey WE. Chemogenetic activation of adrenocortical Gq signaling causes hyperaldosteronism and disrupts functional zonation. J Clin Invest 2020; 130:83-93. [PMID: 31738186 DOI: 10.1172/jci127429] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/18/2019] [Indexed: 02/04/2023] Open
Abstract
The mineralocorticoid aldosterone is produced in the adrenal zona glomerulosa (ZG) under the control of the renin-angiotensin II (AngII) system. Primary aldosteronism (PA) results from renin-independent production of aldosterone and is a common cause of hypertension. PA is caused by dysregulated localization of the enzyme aldosterone synthase (Cyp11b2), which is normally restricted to the ZG. Cyp11b2 transcription and aldosterone production are predominantly regulated by AngII activation of the Gq signaling pathway. Here, we report the generation of transgenic mice with Gq-coupled designer receptors exclusively activated by designer drugs (DREADDs) specifically in the adrenal cortex. We show that adrenal-wide ligand activation of Gq DREADD receptors triggered disorganization of adrenal functional zonation, with induction of Cyp11b2 in glucocorticoid-producing zona fasciculata cells. This result was consistent with increased renin-independent aldosterone production and hypertension. All parameters were reversible following termination of DREADD-mediated Gq signaling. These findings demonstrate that Gq signaling is sufficient for adrenocortical aldosterone production and implicate this pathway in the determination of zone-specific steroid production within the adrenal cortex. This transgenic mouse also provides an inducible and reversible model of hyperaldosteronism to investigate PA therapeutics and the mechanisms leading to the damaging effects of aldosterone on the cardiovascular system.
Collapse
Affiliation(s)
- Matthew J Taylor
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew R Ullenbruch
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily C Frucci
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mark S Ansorge
- The Sackler Institute for Developmental Psychobiology, Columbia University, New York, New York, USA
| | - Celso E Gomez-Sanchez
- Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center and the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Salma Begum
- Department of Obstetrics, Gynecology and Women's Health, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Edward Laufer
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - David T Breault
- Department of Pediatrics, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA.,Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
39
|
AlQudah M, Hale TM, Czubryt MP. Targeting the renin-angiotensin-aldosterone system in fibrosis. Matrix Biol 2020; 91-92:92-108. [PMID: 32422329 DOI: 10.1016/j.matbio.2020.04.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by excessive deposition of extracellular matrix components such as collagen in tissues or organs. Fibrosis can develop in the heart, kidneys, liver, skin or any other body organ in response to injury or maladaptive reparative processes, reducing overall function and leading eventually to organ failure. A variety of cellular and molecular signaling mechanisms are involved in the pathogenesis of fibrosis. The renin-angiotensin-aldosterone system (RAAS) interacts with the potent Transforming Growth Factor β (TGFβ) pro-fibrotic pathway to mediate fibrosis in many cell and tissue types. RAAS consists of both classical and alternative pathways, which act to potentiate or antagonize fibrotic signaling mechanisms, respectively. This review provides an overview of recent literature describing the roles of RAAS in the pathogenesis of fibrosis, particularly in the liver, heart, kidney and skin, and with a focus on RAAS interactions with TGFβ signaling. Targeting RAAS to combat fibrosis represents a promising therapeutic approach, particularly given the lack of strategies for treating fibrosis as its own entity, thus animal and clinical studies to examine the impact of natural and synthetic substances to alter RAAS signaling as a means to treat fibrosis are reviewed as well.
Collapse
Affiliation(s)
- Mohammad AlQudah
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada; Department of Physiology and Biochemistry, College of Medicine, Jordan University of Science and Technology, Jordan
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, United States
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada.
| |
Collapse
|
40
|
Aldosterone Synthase in Peripheral Sensory Neurons Contributes to Mechanical Hypersensitivity during Local Inflammation in Rats. Anesthesiology 2020; 132:867-880. [DOI: 10.1097/aln.0000000000003127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Background
Recent emerging evidence suggests that extra-adrenal synthesis of aldosterone occurs (e.g., within the failing heart and in certain brain areas). In this study, the authors investigated evidence for a local endogenous aldosterone production through its key processing enzyme aldosterone synthase within peripheral nociceptive neurons.
Methods
In male Wistar rats (n = 5 to 8 per group) with Freund’s complete adjuvant hind paw inflammation, the authors examined aldosterone, aldosterone synthase, and mineralocorticoid receptor expression in peripheral sensory neurons using quantitative reverse transcriptase–polymerase chain reaction, Western blot, immunohistochemistry, and immunoprecipitation. Moreover, the authors explored the nociceptive behavioral changes after selective mineralocorticoid receptor antagonist, canrenoate-K, or specific aldosterone synthase inhibitor application.
Results
In rats with Freund’s complete adjuvant–induced hind paw inflammation subcutaneous and intrathecal application of mineralocorticoid receptor antagonist, canrenoate-K, rapidly and dose-dependently attenuated nociceptive behavior (94 and 48% reduction in mean paw pressure thresholds, respectively), suggesting a tonic activation of neuronal mineralocorticoid receptors by an endogenous ligand. Indeed, aldosterone immunoreactivity was abundant in peptidergic nociceptive neurons of dorsal root ganglia and colocalized predominantly with its processing enzyme aldosterone synthase and mineralocorticoid receptors. Moreover, aldosterone and its synthesizing enzyme were significantly upregulated in peripheral sensory neurons under inflammatory conditions. The membrane mineralocorticoid receptor consistently coimmunoprecipitated with endogenous aldosterone, confirming a functional link between mineralocorticoid receptors and its endogenous ligand. Importantly, inhibition of endogenous aldosterone production in peripheral sensory neurons by a specific aldosterone synthase inhibitor attenuated nociceptive behavior after hind paw inflammation (a 32% reduction in paw pressure thresholds; inflammation, 47 ± 2 [mean ± SD] vs. inflammation + aldosterone synthase inhibitor, 62 ± 2).
Conclusions
Local production of aldosterone by its processing enzyme aldosterone synthase within peripheral sensory neurons contributes to ongoing mechanical hypersensitivity during local inflammation via intrinsic activation of neuronal mineralocorticoid receptors.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
41
|
Nakano I, Tsuda M, Kinugawa S, Fukushima A, Kakutani N, Takada S, Yokota T. Loop diuretic use is associated with skeletal muscle wasting in patients with heart failure. J Cardiol 2020; 76:109-114. [PMID: 32001074 DOI: 10.1016/j.jjcc.2020.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/13/2019] [Accepted: 01/04/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Loop diuretics are widely used for the management of fluid retention in patients with heart failure (HF). Sarcopenia, defined as decreased skeletal muscle mass, is frequently present in patients with HF and is associated with poor prognosis. The effects of loop diuretics on skeletal muscle in HF patients have not been fully elucidated. Here, we investigated the impact of loop diuretics on the skeletal muscle mass in patients with HF. METHODS We conducted a subanalysis of a cross-sectional study from 10 hospitals evaluating 155 patients with HF (age 67 ± 13 yrs, 69% men). RESULTS We compared the HF patients who were treated with loop diuretics (n = 120) with the patients who were not (n = 35). The thigh and arm circumferences were significantly small in the group treated with loop diuretics compared to those not so treated (39.9 ± 4.8 vs. 43.5 ± 6.9 cm, p < 0.001 and 26.7 ± 3.5 vs. 28.9 ± 6.2 cm, p < 0.001, respectively). In a univariate analysis, higher age, lower body mass index, lower hemoglobin, and loop diuretic use were significantly associated with smaller thigh circumference. In a multivariable analysis, the use of loop diuretics was independently associated with smaller thigh circumference (β = -0.51, 95% confidence interval -0.98 to -0.046, p = 0.032). CONCLUSION Loop diuretics are associated with decreased thigh and arm circumferences in patients with HF, independent of the severity of HF. Our findings revealed for the first time the adverse effects of loop diuretics on skeletal muscle wasting. These findings will have a significant impact in clinical practice regarding the frequent use of loop diuretics in HF patients.
Collapse
Affiliation(s)
- Ippei Nakano
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Tsuda
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
42
|
Henning RJ. Diagnosis and treatment of heart failure with preserved left ventricular ejection fraction. World J Cardiol 2020; 12:7-25. [PMID: 31984124 PMCID: PMC6952725 DOI: 10.4330/wjc.v12.i1.7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/17/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Nearly six million people in United States have heart failure. Fifty percent of these people have normal left ventricular (LV) systolic heart function but abnormal diastolic function due to increased LV myocardial stiffness. Most commonly, these patients are elderly women with hypertension, ischemic heart disease, atrial fibrillation, obesity, diabetes mellitus, renal disease, or obstructive lung disease. The annual mortality rate of these patients is 8%-12% per year. The diagnosis is based on the history, physical examination, laboratory data, echocardiography, and, when necessary, by cardiac catheterization. Patients with obesity, hypertension, atrial fibrillation, and volume overload require weight reduction, an exercise program, aggressive control of blood pressure and heart rate, and diuretics. Miniature devices inserted into patients for pulmonary artery pressure monitoring provide early warning of increased pulmonary pressure and congestion. If significant coronary heart disease is present, coronary revascularization should be considered.
Collapse
Affiliation(s)
- Robert J Henning
- College of Public Health, University of South Florida, Tampa, FL33612, United States
| |
Collapse
|
43
|
Huang KH, Chen YH, Lee LC, Tai MC, Chung CH, Chen JT, Liang CM, Chien WC, Chen CL. Relationship between heart failure and central serous chorioretinopathy: A cohort study in Taiwan. J Chin Med Assoc 2019; 82:941-947. [PMID: 31805017 DOI: 10.1097/jcma.0000000000000207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Both central serous chorioretinopathy (CSCR) and heart failure (HF) are disorders with a complex pathogenesis, whereas the two diseases might share similar pathogenesis. This study aimed to evaluate whether patients with HF are exposed to potential risk of CSCR by using the National Health Insurance Research Database (NHIRD). METHODS Data were collected from the NHIRD over a 14-year period. Variables were analyzed with the Pearson chi-square test and Fisher's exact test. The risk factors for disease development were examined by adjusted hazard ratio (aHR). Kaplan-Meier analysis was performed to compare the cumulative incidence of CSCR. RESULTS A total of 24 426 patients with HF were enrolled in the study cohort, and there were 24 426 patients without HF in the control cohort. The incidence rate of CSCR was higher in the study cohort than in the control cohort (aHR = 4.572, p < 0.001). CSCR occurred more commonly in males than in females. The overall incidence of CSCR was 30.07 per 100 000 person-years in the study cohort and 23.06 per 100 000 person-years in the control cohort. Besides, subgroup analysis revealed that no matter in gender or age group, HF patients were in an increased risk of CSCR diagnosis (male/female, aHR = 3.268/7.701; 20-59 years/≥60 years, aHR = 3.405/5.501, p < 0.001). CONCLUSION HF is a significant indicator for CSCR. Patients with HF should stay alert for potential disorder of visual impairment. Further prospective studies to investigate the relationship between HF and CSCR could provide more information.
Collapse
Affiliation(s)
- Ke-Hao Huang
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- Department of Ophthalmology, Song-Shan Branch of Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Lung-Chi Lee
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ming-Cheng Tai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan, ROC
| | - Jiann-Torng Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chang-Min Liang
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ching-Long Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
44
|
Loss of secretin results in systemic and pulmonary hypertension with cardiopulmonary pathologies in mice. Sci Rep 2019; 9:14211. [PMID: 31578376 PMCID: PMC6775067 DOI: 10.1038/s41598-019-50634-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
More than 1 billion people globally are suffering from hypertension, which is a long-term incurable medical condition that can further lead to dangerous complications and death if left untreated. In earlier studies, the brain-gut peptide secretin (SCT) was found to be able to control blood pressure by its cardiovascular and pulmonary effects. For example, serum SCT in patients with congestive heart failure was one-third of the normal level. These observations strongly suggest that SCT has a causal role in blood pressure control, and in this report, we used constitutive SCT knockout (SCT−/−) mice and control C57BL/6N mice to investigate differences in the morphology, function, underlying mechanisms and response to SCT treatment. We found that SCT−/− mice suffer from systemic and pulmonary hypertension with increased fibrosis in the lungs and heart. Small airway remodelling and pulmonary inflammation were also found in SCT−/− mice. Serum NO and VEGF levels were reduced and plasma aldosterone levels were increased in SCT−/− mice. Elevated cardiac aldosterone and decreased VEGF in the lungs were observed in the SCT−/− mice. More interestingly, SCT replacement in SCT−/− mice could prevent the development of heart and lung pathologies compared to the untreated group. Taken together, we comprehensively demonstrated the critical role of SCT in the cardiovascular and pulmonary systems and provide new insight into the potential role of SCT in the pathological development of cardiopulmonary and cardiovascular diseases.
Collapse
|
45
|
FGF23-Mediated Activation of Local RAAS Promotes Cardiac Hypertrophy and Fibrosis. Int J Mol Sci 2019; 20:ijms20184634. [PMID: 31540546 PMCID: PMC6770314 DOI: 10.3390/ijms20184634] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are prone to developing cardiac hypertrophy and fibrosis, which is associated with increased fibroblast growth factor 23 (FGF23) serum levels. Elevated circulating FGF23 was shown to induce left ventricular hypertrophy (LVH) via the calcineurin/NFAT pathway and contributed to cardiac fibrosis by stimulation of profibrotic factors. We hypothesized that FGF23 may also stimulate the local renin–angiotensin–aldosterone system (RAAS) in the heart, thereby further promoting the progression of FGF23-mediated cardiac pathologies. We evaluated LVH and fibrosis in association with cardiac FGF23 and activation of RAAS in heart tissue of 5/6 nephrectomized (5/6Nx) rats compared to sham-operated animals followed by in vitro studies with isolated neonatal rat ventricular myocytes and fibroblast (NRVM, NRCF), respectively. Uremic rats showed enhanced cardiomyocyte size and cardiac fibrosis compared with sham. The cardiac expression of Fgf23 and RAAS genes were increased in 5/6Nx rats and correlated with the degree of cardiac fibrosis. In NRVM and NRCF, FGF23 stimulated the expression of RAAS genes and induced Ngal indicating mineralocorticoid receptor activation. The FGF23-mediated hypertrophic growth of NRVM and induction of NFAT target genes were attenuated by cyclosporine A, losartan and spironolactone. In NRCF, FGF23 induced Tgfb and Ctgf, which were suppressed by losartan and spironolactone, only. Our data suggest that FGF23-mediated activation of local RAAS in the heart promotes cardiac hypertrophy and fibrosis.
Collapse
|
46
|
Yamashita K, Morimoto S, Seki Y, Watanabe D, Ichihara A. Serum-soluble (pro)renin receptor concentration as a biomarker for organ damage in primary aldosteronism. Hypertens Res 2019; 42:1951-1960. [PMID: 31409916 DOI: 10.1038/s41440-019-0312-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/23/2019] [Accepted: 07/16/2019] [Indexed: 12/28/2022]
Abstract
Primary aldosteronism is characterized by inappropriate overproduction of aldosterone by adrenal lesions and leads to hypertension. Excess aldosterone causes organ damage; therefore, finding a biomarker for organ damage risk is vital. The (pro)renin receptor regulates the tissue renin-angiotensin-aldosterone system. The blood soluble (pro)renin receptor concentration is a candidate biomarker that reflects the activity of the tissue renin-angiotensin-aldosterone system. This study investigated the relationships between serum soluble (pro)renin receptor concentrations and indices of organ damage in patients with primary aldosteronism. We examined plasma aldosterone and serum soluble (pro)renin receptor concentrations in patients with primary aldosteronism and evaluated the relationships between these values and organ damage indices, such as the cardio-ankle vascular index, urinary albumin excretion, estimated glomerular filtration rate, and high-sensitivity C-reactive protein levels. We enrolled 121 patients with primary aldosteronism (46 males, 54.9 ± 12.2 years of age). Serum soluble (pro)renin receptor concentrations were significantly positively correlated with the cardio-ankle vascular index, urinary albumin excretion, and high-sensitivity C-reactive protein levels and negatively associated with estimated glomerular filtration rates, independent of other factors. Plasma aldosterone concentrations showed no significant relationships with these indices. In patients with primary aldosteronism, serum soluble (pro)renin receptor concentrations, but not plasma aldosterone concentrations, showed significant associations with organ damage, suggesting that the serum soluble (pro)renin receptor level could be a high-risk biomarker of organ damage.
Collapse
Affiliation(s)
- Kaoru Yamashita
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Satoshi Morimoto
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan.
| | - Yasufumi Seki
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Daisuke Watanabe
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
47
|
Cardiac fibrosis: potential therapeutic targets. Transl Res 2019; 209:121-137. [PMID: 30930180 PMCID: PMC6545256 DOI: 10.1016/j.trsl.2019.03.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 01/14/2023]
Abstract
Cardiovascular disease is a leading cause of mortality in the world and is exacerbated by the presence of cardiac fibrosis, defined by the accumulation of noncontractile extracellular matrix proteins. Cardiac fibrosis is directly linked to cardiac dysfunction and increased risk of arrhythmia. Despite its prevalence, there is a lack of efficacious therapies for inhibiting or reversing cardiac fibrosis, largely due to the complexity of the cell types and signaling pathways involved. Ongoing research has aimed to understand the mechanisms of cardiac fibrosis and develop new therapies for treating scar formation. Major approaches include preventing the formation of scar tissue and replacing fibrous tissue with functional cardiomyocytes. While targeting the renin-angiotensin-aldosterone system is currently used as the standard line of therapy for heart failure, there has been increased interest in inhibiting the transforming growth factor-β signaling pathway due its established role in cardiac fibrosis. Significant advances in cell transplantation therapy and biomaterials engineering have also demonstrated potential in regenerating the myocardium. Novel techniques, such as cellular direct reprogramming, and molecular targets, such as noncoding RNAs and epigenetic modifiers, are uncovering novel therapeutic options targeting fibrosis. This review provides an overview of current approaches and discuss future directions for treating cardiac fibrosis.
Collapse
|
48
|
Humeres C, Frangogiannis NG. Fibroblasts in the Infarcted, Remodeling, and Failing Heart. JACC Basic Transl Sci 2019; 4:449-467. [PMID: 31312768 PMCID: PMC6610002 DOI: 10.1016/j.jacbts.2019.02.006] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Expansion and activation of fibroblasts following cardiac injury is important for repair but may also contribute to fibrosis, remodeling, and dysfunction. The authors discuss the dynamic alterations of fibroblasts in failing and remodeling myocardium. Emerging concepts suggest that fibroblasts are not unidimensional cells that act exclusively by secreting extracellular matrix proteins, thus promoting fibrosis and diastolic dysfunction. In addition to their involvement in extracellular matrix expansion, activated fibroblasts may also exert protective actions, preserving the cardiac extracellular matrix, transducing survival signals to cardiomyocytes, and regulating inflammation and angiogenesis. The functional diversity of cardiac fibroblasts may reflect their phenotypic heterogeneity.
Collapse
Key Words
- AT1, angiotensin type 1
- ECM, extracellular matrix
- FAK, focal adhesion kinase
- FGF, fibroblast growth factor
- IL, interleukin
- MAPK, mitogen-activated protein kinase
- MRTF, myocardin-related transcription factor
- PDGF, platelet-derived growth factor
- RNA, ribonucleic acid
- ROCK, Rho-associated coiled-coil containing kinase
- ROS, reactive oxygen species
- SMA, smooth muscle actin
- TGF, transforming growth factor
- TRP, transient receptor potential
- cytokines
- extracellular matrix
- fibroblast
- infarction
- lncRNA, long noncoding ribonucleic acid
- miRNA, micro–ribonucleic acid
- remodeling
Collapse
Affiliation(s)
- Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
49
|
Sparks ER, Beavers JC. Evaluation of a Pharmacist-Driven Aldosterone Antagonist Stewardship Program in Patients With Heart Failure. J Pharm Pract 2019; 32:158-162. [DOI: 10.1177/0897190017747083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective: To evaluate the impact of a pharmacist-driven initiative to optimize aldosterone antagonist use in patients with heart failure with reduced ejection fraction (HFrEF) at a large community hospital. Methods: This single-center, retrospective cohort study compared patients with heart failure before and after the implementation of the initiative. Data for pre- and postinitiative patients were retrospectively collected to assess patient characteristics and aldosterone antagonist use. The primary outcome was a composite of eligible patients with heart failure discharged on aldosterone antagonist therapy or with a documented reason for ineligibility before and after commencement of pharmacist-driven aldosterone antagonist initiative. Results: The preinitiative cohort included 96 patients and the postinitiative cohort contained 92 patients. When the 3 month pre- and postinitiative groups were assessed, the primary outcome was noted in 60 (63%) of 96 patients in the preinitiative group and 87 (95%) of 92 patients in the postinitiative group ( P < .0001). Conclusion: In patients with HFrEF, a pharmacist-driven aldosterone antagonist optimization initiative significantly increased appropriate prescribing and documentation for aldosterone antagonist therapy.
Collapse
Affiliation(s)
- Eric R. Sparks
- New Hanover Regional Medical Center, Wilmington, NC, USA
| | | |
Collapse
|
50
|
Abstract
Many cardiac therapeutics lack significant evidence of benefit in the horse, and in many cases their use is based on extrapolation of evidence from other species. In recent years there has been a push to develop a better understanding of both the pharmacodynamics and pharmacokinetics of these drugs. Recent data have described the use of antiarrhythmic agents including sotalol, flecainide, and amiodarone. Data about the use of ACE inhibitors in the management of congestive heart failure are encouraging and support their use in certain cases, wheras evidence for other medicines, such as pimobendan, remain speculative.
Collapse
Affiliation(s)
- Adam Redpath
- Oakham Veterinary Hospital, University of Nottingham, School of Veterinary Medicine and Science, Sutton Bonington, LE12 5RD, UK.
| | - Mark Bowen
- Oakham Veterinary Hospital, University of Nottingham, School of Veterinary Medicine and Science, Sutton Bonington, LE12 5RD, UK
| |
Collapse
|