1
|
Gaonkar R, Pritmani J, Datar M, Singh D, Balasinor N, Nishi K. Long-term effects of sub-chronic exposure to L-NAME on reproductive system of male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5303-5319. [PMID: 39545987 DOI: 10.1007/s00210-024-03609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Nω-nitro-l-arginine methyl ester (L-NAME) has been utilized as a nitric oxide synthase antagonist for many years in both basic and clinical research settings to assess its therapeutic potential. Though a number of studies have shown the effect of L-NAME on testicular function, the information regarding the reversibility of these effects upon L-NAME withdrawal is limited. In the present study, male rats (68-80 days old) divided randomly into three groups received different doses of L-NAME, i.e. 20 mg/kg bw (L20) and 10 mg/kg bw (L10) in drinking water, and drinking water only (control) through oral gavage daily for three weeks. The rats were monitored for and sacrificed after 60 days of L-NAME treatment termination. The animals had a significantly higher (p < 0.01) mean blood pressure compared to control. Aberrant histological changes were observed in the testes of L-NAME-treated rats. A significant reduction (p < 0.05) in the sperm count and an increase in abnormal sperm morphology (p < 0.05) was observed in L-NAME treated rats. Moreover, the spermatogenic cycle was found to be altered in L-NAME treated rats. No change was observed in serum estradiol levels, while serum testosterone levels were significantly increased (p < 0.05) in L10 and L20 animals. The intra-testicular testosterone was increased significantly (p < 0.01) in L20 animals. A significant decrease (p < 0.05) in superoxide dismutase activity was observed in L20 animals. The sub-chronic exposure to L-NAME resulted in higher mean arterial blood pressure and long-term testicular tissue damage, affecting sperm quality and spermatogenesis.
Collapse
Affiliation(s)
- Reshma Gaonkar
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Janvi Pritmani
- Sunandan Divatia School of Science, NMIMS, Mumbai, Maharashtra, 400056, India
| | - Mamata Datar
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Dipty Singh
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Nafisa Balasinor
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Kumari Nishi
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
2
|
Simultaneous imaging of hypochlorous acid and nitric oxide in live cells based on a dual-channel fluorescent probe. Anal Chim Acta 2021; 1183:338980. [PMID: 34627515 DOI: 10.1016/j.aca.2021.338980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/24/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022]
Abstract
Both reactive oxygen species (ROS) and reactive nitrogen species (RNS) are inevitably produced during normal human metabolism. Various ROS and RNS together form tangled networks that play important roles in many physiological and pathological processes. Here we used 1,8-naphthalene diamine as a reactive group to develop a fluorescent probe, N-[2-(6-phenylethynyl)quinolinylmethyl]-1,8-diamino naphthalene (QBN), for HOCl and NO. QBN showed a "turn-on" fluorescent response at 464 nm to HOCl in the range of 0-75 μM with rapid responding time (10 s) and detection limit (0.11 ± 0.03 μM). Furthermore, a "turn-on" fluorescent responses at 512 nm to NO in the range of 0-40 μM with responding time (20 s) and detection limit (25.7 ± 3.4 nM) was found. The response mechanisms of QBN to HOCl and NO were discussed based on mass analysis of the different products. The dual-channel probe was then successfully applied for simultaneous imaging of both exogenous and endogenous HOCl and NO in live cells.
Collapse
|
3
|
Martí I Líndez AA, Reith W. Arginine-dependent immune responses. Cell Mol Life Sci 2021; 78:5303-5324. [PMID: 34037806 PMCID: PMC8257534 DOI: 10.1007/s00018-021-03828-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
A growing body of evidence indicates that, over the course of evolution of the immune system, arginine has been selected as a node for the regulation of immune responses. An appropriate supply of arginine has long been associated with the improvement of immune responses. In addition to being a building block for protein synthesis, arginine serves as a substrate for distinct metabolic pathways that profoundly affect immune cell biology; especially macrophage, dendritic cell and T cell immunobiology. Arginine availability, synthesis, and catabolism are highly interrelated aspects of immune responses and their fine-tuning can dictate divergent pro-inflammatory or anti-inflammatory immune outcomes. Here, we review the organismal pathways of arginine metabolism in humans and rodents, as essential modulators of the availability of this semi-essential amino acid for immune cells. We subsequently review well-established and novel findings on the functional impact of arginine biosynthetic and catabolic pathways on the main immune cell lineages. Finally, as arginine has emerged as a molecule impacting on a plethora of immune functions, we integrate key notions on how the disruption or perversion of arginine metabolism is implicated in pathologies ranging from infectious diseases to autoimmunity and cancer.
Collapse
Affiliation(s)
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Exploiting S-nitrosylation for cancer therapy: facts and perspectives. Biochem J 2021; 477:3649-3672. [PMID: 33017470 DOI: 10.1042/bcj20200064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
S-nitrosylation, the post-translational modification of cysteines by nitric oxide, has been implicated in several cellular processes and tissue homeostasis. As a result, alterations in the mechanisms controlling the levels of S-nitrosylated proteins have been found in pathological states. In the last few years, a role in cancer has been proposed, supported by the evidence that various oncoproteins undergo gain- or loss-of-function modifications upon S-nitrosylation. Here, we aim at providing insight into the current knowledge about the role of S-nitrosylation in different aspects of cancer biology and report the main anticancer strategies based on: (i) reducing S-nitrosylation-mediated oncogenic effects, (ii) boosting S-nitrosylation to stimulate cell death, (iii) exploiting S-nitrosylation through synthetic lethality.
Collapse
|
5
|
Bach DH, Lee SK. The Potential Impacts of Tylophora Alkaloids and their Derivatives in Modulating Inflammation, Viral Infections, and Cancer. Curr Med Chem 2019; 26:4709-4725. [PMID: 30047325 DOI: 10.2174/0929867325666180726123339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/16/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
Abstract
Cancer chemotherapies or antitumor agents mainly remain the backbone of current treatment based on killing the rapidly dividing cancer cell such as tylophora alkaloids and their analogues which have also demonstrated anticancer potential through diverse biological pathways including regulation of the immune system. The introduction of durable clinically effective monoclonal antibodies, however, unmasked a new era of cancer immunotherapies. Therefore, the understanding of cancer pathogenesis will provide new possible treatment options, including cancer immunotherapy and targeted agents. Combining cytotoxic agents and immunotherapies may offer several unique advantages that are complementary to and potentially synergistic with biologic modalities. Herein, we highlight the dynamic mechanism of action of immune modulation in cancer and the immunological aspects of the orally active antitumor agents tylophora alkaloids and their analogues. We also suggest that future cancer treatments will rely on the development of combining tumor-targeted agents and biologic immunotherapies.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
6
|
Kacar S, Kar F, Hacioglu C, Kanbak G, Sahinturk V. The effects of L-NAME on DU145 human prostate cancer cell line: A cytotoxicity-based study. Hum Exp Toxicol 2019; 39:182-193. [PMID: 31610702 DOI: 10.1177/0960327119880591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Of all cancer types, prostate cancer is the second most common one with an age-standardized incidence rate of 29.3 per 100,000 men worldwide. Nitric oxide (NO) is both a radical and versatile messenger molecule involved in many physiological activities. NO was documented to be highly secreted and utilized by cancer cells. Nω-nitro-L-arginine methyl ester (L-NAME) is utilized for inhibiting NO synthase. Its worst long-term side effect is reported to be hypertension, hence less cytotoxic than chemotherapeutic agents. Herein, we carried out a cytotoxicity study on how different doses of L-NAME affect DU145 human prostate cancer cells. First, toxic doses of L-NAME were determined. Then, while antioxidant capacity was determined by glutathione and total antioxidant status, oxidative stress was evaluated by quantifying malondialdehyde, NO, and total oxidant status levels. Inflammatory effects of L-NAME were investigated by measuring tumor necrosis factor-α and interleukin-6 (IL-6) levels. Apoptotic effects of L-NAME were evaluated by measuring cytochrome C somatic and caspase 3 levels and by staining Bax protein. Finally, morphological analysis was performed. IC50 of L-NAME against DU145 cells was 12.2 mM. In L-NAME-treated DU145 cells, a dose-dependent increase in oxidative stress, inflammatory, and apoptotic marker proteins and decrease in antioxidant capacity were observed. While at the moderate dose of L-NAME, apoptotic changes were commonly observed, at higher doses, vacuolated and swollen cells were also recorded. We believe that the present study will encourage future studies by providing insights about dose and effects of L-NAME.
Collapse
Affiliation(s)
- S Kacar
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - F Kar
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - C Hacioglu
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey
| | - G Kanbak
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - V Sahinturk
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
7
|
Wang Q, Ye S, Chen X, Xu P, Li K, Zeng S, Huang M, Gao W, Chen J, Zhang Q, Zhong Z, Liu Q. Mitochondrial NOS1 suppresses apoptosis in colon cancer cells through increasing SIRT3 activity. Biochem Biophys Res Commun 2019; 515:517-523. [PMID: 31153640 DOI: 10.1016/j.bbrc.2019.05.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 01/10/2023]
Abstract
Previous studies have suggested that nitric oxide (NO) which is synthetized by nitric oxide synthase (NOS) is closely related to the carcinogenesis and progression of colon cancer. However, the precise physiopathological role of NO on colon cancer remains unclear, and a lot of related studies focused on NOS2 and NOS3, but little on NOS1. Here, stable overexpression NOS1 of colon cancer cells were constructed to investigate whether NOS1 plays a special role in colon cancer. We observed that NOS1 protein was presented in mitochondria. Both the basal and cisplatin-induced mitochondrial superoxide were inhibited by NOS1, and the cisplatin-induced apoptosis was also inhibited by NOS1. Geldanamycin, a Hsp90 N-terminal inhibitor, was able to impede NOS1 translocation into mitochondria and reverse NOS1-induced apoptosis resistance. Importantly, SIRT3 activity was enhanced by NOS1, which contributes to the low level of mitochondrial superoxide and apoptosis resistance. Our data suggest a link between NOS1 and apoptosis resistance in colon cancer cells through mtNOS1-SIRT3-SOD2 axis. Furthermore, NOS1-induced apoptosis resistance could be reversed by inhibiting mitochondrial translocation of NOS1.
Collapse
Affiliation(s)
- Qianli Wang
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Guangzhou, 510515, China; Guangzhou Key Laboratory of Tumor Immunology Research, Southern Medical University, Guangzhou, 510515, China
| | - Shuangyan Ye
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Xi Chen
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Pengfei Xu
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Keyi Li
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Sisi Zeng
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Mengqiu Huang
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Wenwen Gao
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Chen
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Qianbin Zhang
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Zhuo Zhong
- Department of Oncology, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510800, China
| | - Qiuzhen Liu
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research, Guangzhou, 510515, China; Guangzhou Key Laboratory of Tumor Immunology Research, Southern Medical University, Guangzhou, 510515, China; Shunde Hospital, Southern Medical University, Foshan, 528300, China.
| |
Collapse
|
8
|
Yu S, Yin Y, Wang Q, Wang L. Dual gene deficient models of Apc Min/+ mouse in assessing molecular mechanisms of intestinal carcinogenesis. Biomed Pharmacother 2018; 108:600-609. [PMID: 30243094 DOI: 10.1016/j.biopha.2018.09.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/08/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
The ApcMin/+ mouse, carrying an inactivated allele of the adenomatous polyposis coli (Apc) gene, is a widely used animal model of human colorectal tumorigenesis. While crossed with other gene knockout or knock-in mice, these mice possess advantages in investigation of human intestinal tumorigenesis. Intestinal tumor pathogenesis involves multiple gene alterations; thus, various double gene deficiency models could provide novel insights into molecular mechanisms of tumor biology, as well as gene-gene interactions involved in intestinal tumor development and assessment of novel strategies for preventing and treating intestinal cancer. This review discusses approximately 100 double gene deficient mice and their associated intestinal tumor development and progression phenotypes. The dual gene knockouts based on the Apc mutation background consist of inflammation and immune-related, cell cycle-related, Wnt/β-catenin signaling-related, tumor growth factor (TGF)-signaling-related, drug metabolism-related, and transcription factor genes, as well as some oncogenes and tumor suppressors. Future studies should focus on conditional or inducible dual or multiple mouse gene knockout models to investigate the molecular mechanisms underlying intestinal tumor development, as well as potential drug targets.
Collapse
Affiliation(s)
- Shuwen Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| | - Yanhui Yin
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Qian Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| |
Collapse
|
9
|
Treatment with the nitric oxide synthase inhibitor L-NAME provides a survival advantage in a mouse model of Kras mutation-positive, non-small cell lung cancer. Oncotarget 2018; 7:42385-42392. [PMID: 27285753 PMCID: PMC5173142 DOI: 10.18632/oncotarget.9874] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/12/2016] [Indexed: 01/09/2023] Open
Abstract
Oncogenic mutations in the gene KRAS are commonly detected in non-small cell lung cancer (NSCLC). This disease is inherently difficult to treat, and combinations involving platinum-based drugs remain the therapeutic mainstay. In terms of novel, pharmacologically actionable targets, nitric oxide synthases (NOS) have been implicated in the etiology of KRAS-driven cancers, including lung cancer, and small molecular weight NOS inhibitors have been developed for the treatment of other diseases. Thus, we evaluated the anti-neoplastic activity of the oral NOS inhibitor L-NAME in a randomized preclinical trial using a genetically engineered mouse model of Kras and p53 mutation-positive NSCLC. We report here that L-NAME decreased lung tumor growth in vivo, as assessed by sequential radiological imaging, and provided a survival advantage, perhaps the most difficult clinical parameter to improve upon. Moreover, L-NAME enhanced the therapeutic benefit afforded by carboplatin chemotherapy, provided it was administered as maintenance therapy after carboplatin. Collectively, these results support the clinical evaluation of L-NAME for the treatment of KRAS mutation-positive NSCLC.
Collapse
|
10
|
Ricciuti B, Foglietta J, Bianconi V, Sahebkar A, Pirro M. Enzymes involved in tumor-driven angiogenesis: A valuable target for anticancer therapy. Semin Cancer Biol 2017; 56:87-99. [PMID: 29128510 DOI: 10.1016/j.semcancer.2017.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 02/07/2023]
Abstract
Angiogenesis plays a pivotal role in cancer progression and is required for tissue invasion and metastasis. Starting with Folkman's initial observations in 1971, basic research continued to shed new molecular insight into this multifaceted process, leading to the development of several anti-angiogenic drugs. To date, anti-vascular endothelial growth factor monoclonal antibodies, such as bevacizumab and ramucirumab, and receptor tyrosine kinase inhibitors (e.g., sorafenib, sunitinib, regorafenib and axitinib) have had a profound impact on the way we treat patients with advanced cancer, providing in some cases unprecedented clinical benefit. The molecular mechanisms underlying tumor-driven angiogenesis have been explored extensively and have unveiled a number of potential clinically relevant targets, including several novel enzymes. In this review, we summarized the current strategies to target tumor-driven angiogenesis through the inhibition of relevant and selected classes of enzymes involved in this process.
Collapse
Affiliation(s)
- Biagio Ricciuti
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, Piazzale L. Severi n. 1, 06132, Perugia, Italy
| | - Jennifer Foglietta
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, Piazzale L. Severi n. 1, 06132, Perugia, Italy
| | - Vanessa Bianconi
- Department of Medicine, University of Perugia, Piazzale L. Severi n. 1, 06132, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Department of Medicine, University of Perugia, Piazzale L. Severi n. 1, 06132, Perugia, Italy.
| |
Collapse
|
11
|
Lee SH, Park JW, Go DM, Kim HK, Kwon HJ, Han SU, Kim DY. Ablation of osteopontin suppresses N-methyl-N-nitrosourea and Helicobacter pylori-induced gastric cancer development in mice. Carcinogenesis 2015; 36:1550-60. [PMID: 26438603 DOI: 10.1093/carcin/bgv144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/27/2015] [Indexed: 12/14/2022] Open
Abstract
Several clinical studies have reported increased expression of osteopontin (OPN) in various types of human cancer, including gastric cancer. However, the precise mechanisms underlying tumor development remain unclear. In the present study, we investigated the pathogenic roles of OPN in Helicobacter pylori-induced gastric cancer development. Wild-type (WT) and OPN knockout (KO) mice were treated with N-methyl-N-nitrosourea (MNU) and infected with H.pylori. Mice were killed 50 weeks after treatment, and stomach tissues were assessed by histopathological examination, immunohistochemistry, quantitative real-time RT-PCR and western blotting. To clarify the carcinogenic effects of OPN, we also conducted an in vitro study using AGS human gastric cancer cell line and THP-1 human monocytic cell line. The overall incidence of gastric tumors was significantly decreased in OPN KO mice compared with WT mice. Apoptotic cell death was significantly enhanced in OPN KO mice and was accompanied by upregulation of signal transducer and activator of transcription 1 (STAT1) and inducible nitric oxide synthase (iNOS). In vitro study, OPN suppression also caused STAT1 upregulation and iNOS overexpression in AGS and THP-1 cells, which resulted in apoptosis of AGS cells. In addition, a negative correlation was clearly identified between expression of OPN and iNOS in human gastric cancer tissues. Our data demonstrate that loss of OPN decreases H.pylori-induced gastric carcinogenesis by suppressing proinflammatory immune response and augmenting STAT1 and iNOS-mediated apoptosis of gastric epithelial cells. An important implication of these findings is that OPN actually contributes to the development of gastric cancer.
Collapse
Affiliation(s)
| | - Jun-Won Park
- Biomolecular Function Research Branch, National Cancer Center, Goyang, Gyeonggi 410-769, South Korea
| | | | - Hark Kyun Kim
- Biomolecular Function Research Branch, National Cancer Center, Goyang, Gyeonggi 410-769, South Korea
| | - Hyo-Jung Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, South Korea and
| | - Sang-Uk Han
- Department of Surgery, Ajou University Medical Center, Ajou University School of Medicine, Suwon 443-749, South Korea
| | | |
Collapse
|
12
|
Vasudevan D, Thomas DD. Insights into the diverse effects of nitric oxide on tumor biology. VITAMINS AND HORMONES 2015; 96:265-98. [PMID: 25189391 DOI: 10.1016/b978-0-12-800254-4.00011-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Among its many roles in cellular biology, nitric oxide (·NO) has long been associated with cancers both as a protumorigenic and as an antitumorigenic agent. The dual nature of this signaling molecule in varied settings is attributable to its temporal and concentration-dependent effects that produce different phenotypes. The steady-state ·NO concentration within the cell is a balance between its rate of enzymatic synthesis from the three nitric oxide synthase (NOS) isoforms and consumption via numerous metabolic pathways and demonstrates strong dependence on the tissue oxygen concentration. NOS expression and ·NO production are often deregulated and associated with numerous types of cancers with dissimilar prognostic outcomes. ·NO influences several facets of tumor initiation and progression including DNA damage, chronic inflammation, angiogenesis, epithelial-mesenchymal transition, and metastasis, to name a few. The role of ·NO as an epigenetic modulator has also recently emerged and has potentially important mechanistic implications in regulating transcription of oncogenes and tumor-suppressor genes. ·NO-derived cellular adducts such as dinitrosyliron complexes and the formation of higher nitrogen oxides further alter its cellular behavior. Among anticancer strategies, the use of NOS as a prognostic biomarker and modulation of ·NO production for therapeutic benefit have gained importance over the past decade. Numerous ·NO-releasing drugs and NOS inhibitors have been evaluated in preclinical and clinical settings to arrest tumor growth. Taken together, ·NO affects various arms of cancer signaling networks. An overview of this complex interplay is provided in this chapter.
Collapse
Affiliation(s)
- Divya Vasudevan
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Douglas D Thomas
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
13
|
Application of the ApcMin/+ mouse model for studying inflammation-associated intestinal tumor. Biomed Pharmacother 2015; 71:216-21. [DOI: 10.1016/j.biopha.2015.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/15/2015] [Indexed: 12/16/2022] Open
|
14
|
Granados-Principal S, Liu Y, Guevara ML, Blanco E, Choi DS, Qian W, Patel T, Rodriguez AA, Cusimano J, Weiss HL, Zhao H, Landis MD, Dave B, Gross SS, Chang JC. Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer. Breast Cancer Res 2015; 17:25. [PMID: 25849745 PMCID: PMC4384389 DOI: 10.1186/s13058-015-0527-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/29/2015] [Indexed: 12/28/2022] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer with no effective targeted therapy. Inducible nitric oxide synthase (iNOS) is associated with poor survival in patients with breast cancer by increasing tumor aggressiveness. This work aimed to investigate the potential of iNOS inhibitors as a targeted therapy for TNBC. We hypothesized that inhibition of endogenous iNOS would decrease TNBC aggressiveness by reducing tumor initiation and metastasis through modulation of epithelial-mesenchymal transition (EMT)-inducing factors. Methods iNOS protein levels were determined in 83 human TNBC tissues and correlated with clinical outcome. Proliferation, mammosphere-forming efficiency, migration, and EMT transcription factors were assessed in vitro after iNOS inhibition. Endogenous iNOS targeting was evaluated as a potential therapy in TNBC mouse models. Results High endogenous iNOS expression was associated with worse prognosis in patients with TNBC by gene expression as well as immunohistochemical analysis. Selective iNOS (1400 W) and pan-NOS (L-NMMA and L-NAME) inhibitors diminished cell proliferation, cancer stem cell self-renewal, and cell migration in vitro, together with inhibition of EMT transcription factors (Snail, Slug, Twist1, and Zeb1). Impairment of hypoxia-inducible factor 1α, endoplasmic reticulum stress (IRE1α/XBP1), and the crosstalk between activating transcription factor 3/activating transcription factor 4 and transforming growth factor β was observed. iNOS inhibition significantly reduced tumor growth, the number of lung metastases, tumor initiation, and self-renewal. Conclusions Considering the effectiveness of L-NMMA in decreasing tumor growth and enhancing survival rate in TNBC, we propose a targeted therapeutic clinical trial by re-purposing the pan-NOS inhibitor L-NMMA, which has been extensively investigated for cardiogenic shock as an anti-cancer therapeutic. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0527-x) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Erbaş H, Bal O, Çakır E. Effect of rosuvastatin on arginase enzyme activity and polyamine production in experimental breast cancer. Balkan Med J 2015; 32:89-95. [PMID: 25759778 DOI: 10.5152/balkanmedj.2015.15611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/08/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Breast cancer is the most common malignant tumour of women around the world. As a key enzyme of the urea cycle, arginase leads to the formation of urea and ornithine from L-arginine. In the patients with several different cancers, arginase has been found to be higher and reported to be a useful biological marker. AIMS The aim of this study was to investigate the effect of rosuvastatin on serum and cancer tissue arginase enzyme activity, and ornithine and polyamine (putrescine, spermidine, spermine) levels. STUDY DESIGN Animal experiment. METHODS In this study, 50 male Balb/c mice were used. Erchlich acid tumour cells were injected into the subcutaneous part of their left foot. The mice were divided into five groups: healthy control group, healthy treatment, tumour control, treatment 1 and treatment 2. Then, 1 mg/kg and 20 mg/kg doses of rosuvastatin were given intraperitoneally. Serum and tissue arginase enzyme activities and tissue ornithine levels were determined spectrophotometrically. HPLC measurement of polyamines were applied. RESULTS Increased serum arginase activity and polyamine levels were significantly decreased with rosuvastatin treatment. In the tumour tissue, arginase activity and ornithine levels were significantly decreased in treatment groups compared to the tumour group. Tissue polyamine levels also decreased with rosuvastatin treatment. CONCLUSION We suggest that rosuvastatin may have some protective effects on breast cancer development as it inhibits arginase enzyme activity and ornithine levels, precursors of polyamines, and also polyamine levels. This protective effect may be through the induction of nitric oxide (NO) production via nitric oxide synthase (NOS). As a promising anticancer agent, the net effects of rosuvastatin in this mechanism should be supported with more advanced studies and new parameters.
Collapse
Affiliation(s)
- Hakan Erbaş
- Department of Medical Biochemistry, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Oğuz Bal
- Department of Medical Biochemistry, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Erol Çakır
- Department of Medical Biochemistry, Trakya University Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
16
|
El-Sayed AS, Shindia AA, Diab AA, Rady AM. Purification and immobilization of L-arginase from thermotolerant Penicillium chrysogenum KJ185377.1; with unique kinetic properties as thermostable anticancer enzyme. Arch Pharm Res 2014. [PMID: 25322968 DOI: 10.1007/s12272-014-0498-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
Abstract
L-Arginase, hydrolyzing L-arginine to L-ornithine and urea, is a powerful anticancer, L-arginine-depleting agent, against argininosuccinate synthase expressing tumors. Otherwise, the higher antigenicity and lower thermal stability of this enzyme was the main biochemical hurdles. Since, the intrinsic thermal stability of enzymes follow the physiological temperature of their producer, thus, characterization of L-arginase from thermotolerant Penicillium chrysogenum was the objective of this study. L-Arginase (Arg) was purified to its homogeneity from P. chrysogenum by 10.1-fold, with 37.0 kDa under denaturing PAGE, optimum reaction at 50 °C, pH stability (6.8-7.9), with highest molar ratio of constitutional arginine, glutamic acid, lysine and aspartic acid. The purified enzyme was PEGylated and immobilized on chitosan, with 41.9 and 22.1 % yield of immobilization. At 40 °C, the T1/2 value of free-Arg, PEG-Arg and Chit-Arg was 10.4, 15.6, 20.5 h, respectively. The free-Arg and Chit-Arg have a higher affinity to L-arginine (K m 4.8 mM), while, PEG-Arg affinity was decreased by about 3 fold (K m 15.2 mM). The inhibitory constants to the free and PEG-Arg were relatively similar towards HA and PPG. The IC50 for the free enzyme against HEPG-2 and A549 tumor cells was 0.136 and 0.165 U/ml, comparing to 0.232 and 0.496 U/ml for PEG-Arg, respectively. The in vivo T1/2 to the free Arg and PEG-Arg was 16.4 and 20.4 h, respectively as holo-enzyme. The residual L-arginine level upon using free Arg was 156.9 and 144.5 µM, after 6 and 8 h, respectively, regarding to initials at 253.6 µM, while for Peg-Arg the level of L-arginine was nil till 7 h of initial dosing. The titer of IgG was induced by 10-15 % in response to free-Arg after 28 days comparing to IgG titer for PEG-Arg.
Collapse
Affiliation(s)
- Ashraf S El-Sayed
- Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt,
| | | | | | | |
Collapse
|
17
|
Carmona-Cortés J, Rodríguez-Gómez I, Wangensteen R, Banegas I, García-Lora ÁM, Quesada A, Osuna A, Vargas F. Effect of thyroid hormone–nitric oxide interaction on tumor growth, angiogenesis, and aminopeptidase activity in mice. Tumour Biol 2014; 35:5519-26. [DOI: 10.1007/s13277-014-1726-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/04/2014] [Indexed: 11/24/2022] Open
|
18
|
Tan J, Zeng Q, Jiang XZ, He LY, Wang JR, Yao K, Wang CH. Apoptosis of bladder transitional cell carcinoma T24 cells induced by adenovirus-mediated inducible nitric oxide synthase gene transfection. Chin J Cancer Res 2013; 25:593-9. [PMID: 24255584 DOI: 10.3978/j.issn.1000-9604.2013.10.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/28/2013] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES To investigate the effects of adenovirus-mediated inducible nitric oxide synthase gene transfection on bladder transitional cell carcinoma T24 cells, and to provide novel insights and approaches to clinical therapies against bladder transitional cell carcinoma. METHODS Firstly, construct recombinant adenovirus vector pAd-iNOS of iNOS, followed by transfection of pAd-iNOS into HECK293 packaging cells. Thirdly, harvest recombinant adenovirus rAd-iNOS after amplification and purification procedures. Finally, transfect the recombinant adenovirus rAd-iNOS into human bladder carcinoma T24 cells and examine the effect of rAd-iNOS transfection on apoptosis of T24 and possible mechanism. RESULTS As shown by this study, the recombinant adenovirus rAd-iNOS was constructed successfully. The virus titer was 5.8×10(8) PFU/mL and recombinant was verified by PCR analysis. Transfection of adenovirus rAd-iNOS into T24 cells could induce secretion of high NO concentration, P53 protein expression up-regulation, as well as promotion of T24 cell apoptosis. CONCLUSIONS The transfection of human bladder carcinoma T24 cells from recombinant adenovirus rAd-iNOS was confirmed to induce intracellular iNOS over-expression, high production of NO, up-regulation of intracellular P53 expression and promotion of cell apoptosis.
Collapse
Affiliation(s)
- Jing Tan
- Department of Urology, The Third Xiangya Hospital of Central South University, Department of Urology, The Third Xiangya Hospital, Yue-lu District, Changsha 410013, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Prabhu VV, Guruvayoorappan C. Inhibition of Metastatic Lung Cancer in C57BL/6 Mice by Marine Mangrove Rhizophora apiculata. Asian Pac J Cancer Prev 2013; 14:1833-40. [DOI: 10.7314/apjcp.2013.14.3.1833] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
20
|
Burke AJ, Sullivan FJ, Giles FJ, Glynn SA. The yin and yang of nitric oxide in cancer progression. Carcinogenesis 2013; 34:503-12. [PMID: 23354310 DOI: 10.1093/carcin/bgt034] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nitric oxide (NO) is a short-lived, pleiotropic molecule that affects numerous critical functions in the body. Presently, there are markedly conflicting findings in the literature regarding NO and its role in carcinogenesis and tumor progression. NO has been shown to have dichotomous effects on cellular proliferation, apoptosis, migration, invasion, angiogenesis and many other important processes in cancer biology. It has been shown to be both pro- and antitumorigenic, depending on the concentration and the tumor microenvironment in question. NO is generated by three isoforms of NO synthase (NOS) that are widely expressed and sometimes upregulated in human tumors. Due to its vast array of physiological functions, it presents a huge challenge to researchers to discover its true potential in cancer biology and consequently, its use in anticancer therapies. In this study, we review the current knowledge in this area, with an emphasis placed on NO modulation as an anticancer therapy, focusing on NO-donating drugs and NOS inhibitors.
Collapse
Affiliation(s)
- Amy J Burke
- Prostate Cancer Institute, National University of Ireland Galway, Dublin, Ireland.
| | | | | | | |
Collapse
|
21
|
Ambs S, Glynn SA. Candidate pathways linking inducible nitric oxide synthase to a basal-like transcription pattern and tumor progression in human breast cancer. Cell Cycle 2011; 10:619-24. [PMID: 21293193 DOI: 10.4161/cc.10.4.14864] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inducible nitric oxide synthase (NOS2) is an inflammation responsive enzyme (EC 1.14.13.39) that is induced during acute and chronic inflammation and tissue injury as part of the host defense and wound healing process. NOS2 up-regulation leads to increased nitric oxide (NO) production, the means by which this enzyme can initiate NO-dependent signal transduction, influence the redox state of cells and induce modifications of proteins, lipids, and DNA. Aberrant expression of NOS2 has been observed in many types of human tumors. In breast cancer, increased NOS2 is associated with markers of poor outcome and decreased survival. Growth factor and cytokine signaling, tissue remodeling, NF-kB activation, and hypoxia are candidate mechanisms that induce NOS2 in tumor epithelial and tumor-infiltrating cells. NOS2 induction will trigger the release of variable amounts of NO into the tumor microenvironment and can activate oncogenic pathways, including the Akt, epidermal growth factor receptor and c-Myc signaling pathways, and stimulate tumor microvascularization. Constitutively increased NO levels may also select for mutant p53 cells to overcome the tumor suppressor function of NO-activated wild-type p53. More recent findings suggest that NO induces stem cell-like tumor characteristics in breast cancer. In this review, we will discuss the effects of NO in tumor biology and disease progression with an emphasis on breast cancer, and will examine the mechanisms that link increased NO to a basal-like transcription pattern in human breast tumors and poor disease outcome.
Collapse
Affiliation(s)
- Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), National Cancer Institute (NCI); Bethesda, MD USA.
| | | |
Collapse
|
22
|
Yang GY, Taboada S, Liao J. Induced nitric oxide synthase as a major player in the oncogenic transformation of inflamed tissue. Methods Mol Biol 2009; 512:119-156. [PMID: 19347276 DOI: 10.1007/978-1-60327-530-9_8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO) is a free radical that is involved in the inflammatory process and carcinogenesis. There are four nitric oxide synthase enzymes involved in NO production: induced nitric oxide synthase (iNOS), endothelial NO synthase (eNOS), neural NO synthase (nNOS), and mitochondrial NOS. iNOS is an inducible and key enzyme in the inflamed tissue. Recent literatures indicate that NO as well as iNOS and eNOS can modulate cancer-related events including nitro-oxidative stress, apoptosis, cell cycle, angio-genesis, invasion, and metastasis. This chapter focuses on linking NO/iNOS/eNOS to inflammation and carcinogenesis from experimental evidence to potential targets on cancer prevention and treatment.
Collapse
Affiliation(s)
- Guang-Yu Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
23
|
Yasuoka H, Tsujimoto M, Yoshidome K, Nakahara M, Kodama R, Sanke T, Nakamura Y. Cytoplasmic CXCR4 expression in breast cancer: induction by nitric oxide and correlation with lymph node metastasis and poor prognosis. BMC Cancer 2008; 8:340. [PMID: 19025611 PMCID: PMC2642845 DOI: 10.1186/1471-2407-8-340] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 11/23/2008] [Indexed: 12/02/2022] Open
Abstract
Background Lymph nodes constitute the first site of metastasis for most malignancies, and the extent of lymph node involvement is a major criterion for evaluating patient prognosis. The CXC chemokine receptor 4 (CXCR4) has been shown to play an important role in lymph node metastasis. Nitric oxide (NO) may also contribute to induction of metastatic ability in human cancers. Methods CXCR4 expression was analyzed in primary human breast carcinoma with long-term follow-up. The relationship between nitrotyrosine levels (a biomarker for peroxynitrate formation from NO in vivo) and lymph node status, CXCR4 immunoreactivity, and other established clinico-pathological parameters, as well as prognosis, was analyzed. Nitrite/nitrate levels and CXCR4 expressions were assessed in MDA-MB-231 and SK-BR-3 breast cancer cell lines after induction and/or inhibition of NO synthesis. Results CXCR4 staining was predominantly cytoplasmic; this was observed in 50%(56/113) of the tumors. Cytoplasmic CXCR4 expression was significantly correlated with nitrotyrosine levels and lymph node metastasis. Kaplan-Meier survival curves showed that cytoplasmic CXCR4 expression was associated with reduced disease-free and overall survival. In multivariate analysis, cytoplasmic CXCR4 expression emerged as a significant independent predictor for overall and disease-free survival. Cytoplasmic expression of functional CXCR4 in MDA-MB-231 and SK-BR-3 cells was increased by treatment with the NO donor DETA NONOate. This increase was abolished by L-NAME, an inhibitor of NOS. Conclusion Our data showed a role for NO in stimulating cytoplasmic CXCR4 expression in vitro. Formation of the biomarker nitrotyrosine was also correlated with CXCR4 expression and lymph node metastasis in vivo. In addition, cytoplasmic CXCR4 expression may serve as a significant prognostic factor for long-term survival in breast cancer.
Collapse
Affiliation(s)
- Hironao Yasuoka
- Department of Clinical Laboratory Medicine, Wakayama Medical University, Wakayama, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Rebeca R, Bracht L, Noleto GR, Martinez GR, Cadena SMSC, Carnieri EGS, Rocha MEM, de Oliveira MBM. Production of cachexia mediators by Walker 256 cells from ascitic tumors. Cell Biochem Funct 2008; 26:731-8. [PMID: 18646274 DOI: 10.1002/cbf.1497] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In neoplasic cachexia, chemical mediators seem to act as initiators or perpetuators of this process. Walker 256 cells, whose metabolic properties have so far been little studied with respect to cancer cachexia, are used as a model for the study of this syndrome. The main objective of this research was to pinpoint the substances secreted by these cells that may contribute to the progression of the cachectic state. Since inflammatory mediators seem to be involved in the manifestation of this syndrome, the in vitro production of nitric oxide (NO), cytokines (tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6)), and prostaglandin E2 (PGE2) was evaluated in Walker 256 cells isolated from ascitic tumors. After 4 or 5 h, a significant increase in NO production was observed (2.55 +/- 1.56 and 4.05 +/- 1.99 nmol NO per 10(7) cells, respectively). When isolated from a 6-day-old tumor, a significantly lower production of IL-6 and higher production of TNF-alpha than in cells from a 4-day-old tumor were observed, indicating a relationship between the production of cytokines and the time of tumor development after implantation. Considerable production of PGE(2) by Walker 256 cells isolated from the 6-day-old tumor was also observed. Polyamines were also determined in Walker 256 cells. Levels of putrescine, spermidine, and spermine did not show significant differences in tumors developed during 4 or 6 days. Direct evidence of the release of proinflammatory cytokines and PGE2 by Walker 256 cells suggests that these mediators can drive the cachectic syndrome in the host, the effect being dependent on tumor development time.
Collapse
Affiliation(s)
- Rosilene Rebeca
- Department of Biochemistry, UFPR-Federal University of Paraná, Curitiba, CEP, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yasuoka H, Kodama R, Hirokawa M, Takamura Y, Miyauchi A, Sanke T, Nakamura Y. CXCR4 expression in papillary thyroid carcinoma: induction by nitric oxide and correlation with lymph node metastasis. BMC Cancer 2008; 8:274. [PMID: 18826577 PMCID: PMC2572635 DOI: 10.1186/1471-2407-8-274] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 09/30/2008] [Indexed: 01/04/2023] Open
Abstract
Background Metastasis to regional lymph nodes is a common step in the progression of cancer. Recent evidence suggests that tumor production of CXCR4 promotes lymph node metastasis. Nitric oxide (NO) may also increase metastatic ability in human cancers. Methods Nitrite/nitrate levels and functional CXCR4 expression were assessed in K1 and B-CPAP papillary thyroid carcinoma (PTC) cells after induction and/or inhibition of NO synthesis. CXCR4 expression was also analyzed in primary human PTC. The relationship between nitrotyrosine levels, which are a biomarker for peroxynitrate formation from NO in vivo, CXCR4 expression, and lymph node status was also analyzed. Results Production of nitrite/nitrate and functional CXCR4 expression in both cell lines was increased by treatment with the NO donor DETA NONOate. The NOS inhibitor L-NAME eliminated this increase. Positive CXCR4 immunostaining was observed in 60.7% (34/56) of PTCs. CXCR4 expression was significantly correlated with nitrotyrosine levels and lymph node metastasis in human PTC. Conclusion Our data indicate that NO stimulates CXCR4 expression in vitro. Formation of the NO biomarker nitrotyrosine was also correlated with CXCR4 expression and lymph node metastasis in human PTC. NO may induce lymph node metastasis via CXCR4 induction in papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Hironao Yasuoka
- Department of Clinical Laboratory Medicine, Wakayama Medical University, Wakayama, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Yamaguchi H, Kidachi Y, Umetsu H, Ryoyama K. L-NAME inhibits tumor cell progression and pulmonary metastasis of r/m HM-SFME-1 cells by decreasing NO from tumor cells and TNF-alpha from macrophages. Mol Cell Biochem 2008; 312:103-12. [PMID: 18320293 DOI: 10.1007/s11010-008-9725-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 02/25/2008] [Indexed: 11/26/2022]
Abstract
Highly metastatic ras/myc-transformed serum-free mouse embryo (r/m HM-SFME-1) cells were injected subcutaneously to mice and the effects of Nomega-nitro-L-arginine methyl ester (L-NAME) on the tumor progression and pulmonary metastasis were investigated. In addition, production of nitric oxide (NO), matrix metalloproteinases (MMPs) and tumor necrosis factor-alpha (TNF-alpha) in the tumor cells and in a mouse macrophage-like cell line, J774.1 cells, was analyzed. The increase in footpad thickness was significantly smaller in the mice which were fed the L-NAME containing water (4.24+/-0.39 mg/day/mouse). The number of the tumor cells metastasized to the lungs was smaller in the L-NAME treated mice, although statistical significance was not found. Co-treatment of r/m HM-SFME-1 cells with interferon-gamma (IFN-gamma; 100 U/ml) and lipopolysaccharide (LPS; 0.5 microg/ml) significantly enhanced NO production, and the presence of L-NAME at 1 mM significantly decreased this response. In r/m HM-SFME-1 cells, MMP-2 was undetectable and MMP-9 was also very little in the basal level, and both MMPs were unaffected by the IFN-gamma and/or LPS treatments, not to mention by the L-NAME treatment. In J774.1 cells, any treatment including LPS appeared to enhance MMP-9 production, however, this upregulation was not inhibited by the additional presence of L-NAME. Production of TNF-alpha by J774.1 cells was markedly enhanced with LPS treatment, and this enhancement was significantly reduced in the presence of L-NAME. These results indicate that the inhibitory effects of L-NAME on the tumor cell progression and pulmonary metastasis could be due to suppression of NO from tumor cells and TNF-alpha from macrophages (Mol Cell Biochem, 2007).
Collapse
Affiliation(s)
- Hideaki Yamaguchi
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan.
| | | | | | | |
Collapse
|
27
|
Tsao TP, Lai JH, Yang SP, Ho LJ, Liou JT, Cheng CC, Cheng SM. Suppression of tissue necrosis factor-alpha or hydrogen peroxide-activated primary human T lymphocytes by Ginkgo biloba extract through down-regulation of activator protein-1 signal transduction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2008; 15:170-6. [PMID: 17481873 DOI: 10.1016/j.phymed.2007.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 02/28/2007] [Indexed: 05/15/2023]
Abstract
PURPOSE It was unknown whether Ginkgo biloba extract has regulatory effects on human T lymphocytes activated by tissue necrosis factor-alpha (TNF-alpha), which has an important role on the progression of inflammatory atherosclerotic plaques. We evaluated the effects of G. biloba extract on activated human peripheral T lymphocytes, which were isolated from human whole blood. METHODS The human T lymphocytes were treated with 25-100 microg G. biloba extract for 2h first. Then they were activated by TNF-alpha and H(2)O(2) to investigate the modulatory effects of G. biloba extract on human T lymphocytes. Electrophoretic mobility shift assay, Western blot (Immunoblot) analysis and immunoprecipitation kinase assays were used. RESULTS The inhibition of activated human T lymphocyte specifically correlated with the down-regulation of AP-1 DNA-binding activities. G. biloba extract was unique in its ability to inhibit the activation of c-Jun NH2-terminal protein kinase. CONCLUSIONS G. biloba extract might have its novel therapeutic effects on inflammation-based atherosclerotic diseases.
Collapse
Affiliation(s)
- Tien-Ping Tsao
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
28
|
Yamaguchi H, Noshita T, Kidachi Y, Umetsu H, Hayashi M, Komiyama K, Funayama S, Ryoyama K. Isolation of Ursolic Acid from Apple Peels and Its Specific Efficacy as a Potent Antitumor Agent. ACTA ACUST UNITED AC 2008. [DOI: 10.1248/jhs.54.654] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Toshiro Noshita
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Aomori University
| | - Yumi Kidachi
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Aomori University
| | - Hironori Umetsu
- Laboratory of Food Chemistry, Department of Life Sciences, Junior College, Gifu Shotoku Gakuen University
| | | | | | - Shinji Funayama
- Department of Kampo Pharmaceutical Sciences, Nihon Pharmaceutical University
| | - Kazuo Ryoyama
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Aomori University
| |
Collapse
|
29
|
Yamaguchi H, Kidachi Y, Umetsu H, Ryoyama K. Ras/myc-transformed serum-free mouse embryo cells under simulated inflammatory and infectious conditions increase levels of nitric oxide and matrix metalloproteinase-9 without a direct association between them. Mol Cell Biochem 2007; 306:43-51. [PMID: 17660954 DOI: 10.1007/s11010-007-9552-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 07/12/2007] [Indexed: 10/23/2022]
Abstract
Inflammatory and infectious conditions were simulated in cultures of ras/myc-transformed serum-free mouse embryo (ras/myc SFME) cells, using interferon-gamma (IFN-gamma, 100 units/ml) and lipopolysaccharide (LPS, 0.5 microg/ml) co-treatment for 24 h, to investigate their effects on the expression of inducible nitric oxide synthase (iNOS) mRNA and the production of NO. Aminoguanidine (AG, 1 mM; an NOS inhibitor) along with IFN-gamma and LPS, S-nitroso-N-acetyl-DL-penicillamine (SNAP, 100 microM; an NO donor) and/or (+/-)-N-[(E)-4-Ethyl-2-[(Z)-hydroxyimino]-5-nitro-3-hexene-1-yl]-3-pyridine carboxamide (NOR4, 100 microM; an NO donor), were also added to analyze the possible association of NO with matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1). Co-treatment of cells with IFN-gamma and LPS increased iNOS mRNA expression, NO production, MMP-9 mRNA expression, and 105 kDa MMP-9 production. Additional treatment with the NOS inhibitor AG inhibited NO production, but did not down-regulate the expression of MMP-9 mRNA or 105 kDa MMP-9. The NO donors SNAP and NOR4 did not affect the expression of MMP-9 mRNA, 105 kDa MMP-9 or TIMP-1 mRNA. These results suggest that ras/myc SFME cells respond to infectious and inflammatory conditions and can enhance malignancy as cancer cells due to their increased levels of NO and MMP-9 production, but that NO is not directly associated with MMP-9 in these cells.
Collapse
Affiliation(s)
- Hideaki Yamaguchi
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan.
| | | | | | | |
Collapse
|
30
|
Stempelj M, Kedinger M, Augenlicht L, Klampfer L. Essential role of the JAK/STAT1 signaling pathway in the expression of inducible nitric-oxide synthase in intestinal epithelial cells and its regulation by butyrate. J Biol Chem 2007; 282:9797-9804. [PMID: 17251186 DOI: 10.1074/jbc.m609426200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) is a highly reactive free radical that modulates tumorigenesis through its ability to regulate cell proliferation, cell death, migration and angiogenesis. Although the role of NO has been well studied in inflammatory cells, much less is known about the regulation of NO production in epithelial cells. We demonstrated that in intestinal epithelial cells the expression of inducible NO synthase (iNOS), the critical enzyme in the synthesis of NO, is synergistically stimulated by bacterial lipopolysaccharide (LPS) and interferon gamma (IFNgamma) or by the combination of tumor necrosis factor (TNF) and IFNgamma at the transcriptional level. Expression of iNOS and the production of NO in response to LPS/IFNgamma were significantly increased upon induction of oncogenic K-Ras, underlying frequently elevated expression of iNOS in colon cancer. Silencing of STAT1, a major transcription factor involved in signaling by IFNgamma, or pharmacological inhibition of JAKs, kinases that phosphorylate STATs, prevented the induction of iNOS and the production of NO in response to stimulation of cells with LPS/IFNgamma or TNF/IFNgamma, underscoring the importance of the intact JAK/STAT signaling in the regulation of iNOS expression in intestinal epithelial cells. Butyrate, a histone deacetylase (HDAC) inhibitor and a dietary chemopreventive agent, decreased NO production in macrophages and in intestinal myofibroblasts, consistent with its anti-inflammatory activity. In contrast, in intestinal epithelial cells, butyrate significantly enhanced the expression of iNOS and the production of NO in response to treatment with LPS/IFNgamma. Despite the fact that, like butyrate, three structurally unrelated inhibitors of HDAC activity, trichostatin A, suberoylanilide hydroxamic acid, and apicidin, induced acetylation of H3 and H4 in epithelial cells, they failed to increase the production of NO, demonstrating that butyrate regulates NO production in epithelial cells in an HDAC-independent manner. The ability of butyrate to regulate the production of NO in a variety of cell types is likely to underlie its potent chemopreventive and anti-inflammatory activity.
Collapse
Affiliation(s)
- Mateja Stempelj
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York 10467
| | | | - Leonard Augenlicht
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York 10467
| | - Lidija Klampfer
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York 10467.
| |
Collapse
|
31
|
Colakogullari M, Ulukaya E, Yilmaztepe A, Ocakoglu G, Yilmaz M, Karadag M, Tokullugil A. Higher serum nitrate levels are associated with poor survival in lung cancer patients. Clin Biochem 2006; 39:898-903. [PMID: 16919616 DOI: 10.1016/j.clinbiochem.2006.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 04/27/2006] [Accepted: 06/28/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Angiogenic factors induce tumour growth and angiogenesis which leads to tumour metastasis and a poor survival rate. This study aimed to assess the possible roles of nitric oxide (NO) and vascular endothelial growth factor-A (VEGF-A) in the overall survival of patients with late stage lung cancer. DESIGN AND METHODS The study was carried out with primary lung carcinoma patients (n=31) and healthy controls (n=15). Pre- and post-cisplatin-based chemotherapy serum nitrite/nitrate levels were measured as nitrite after enzymatic conversion followed by Griess reaction and serum VEGF-A analysis was performed using ELISA. After patient follow-up, survival rates were calculated by using the Kaplan-Meier method [Dudek et al. Cancer Invest 2005; 23(3):193-200]. RESULTS The serum nitrite/nitrate and VEGF-A levels of lung cancer patients and the control group were 93.7+/-48.9 and 63.7+/-32.2 microM (p=0.018), and 620+/-491 and 255+/-157 pg/mL (p=0.001), respectively. High nitrite/nitrate (>67.2 microM) concentration had statistically significant effects on overall survival (Cox analysis, p=0.026). The overall survival of the lung cancer patients with higher serum nitrate concentrations was significantly less than the ones with lower serum nitrite/nitrate (Kaplan-Meier survival functions test, log rank significance=0.0007). CONCLUSION Our results suggest that having a high serum nitrite/nitrate concentration is a strong indicator of poor survival for late stage lung cancer patients. However, this conclusion deserves to be elucidated further by using a larger sample size.
Collapse
|
32
|
Abstract
Nitric oxide (NO) and nitric oxide synthases are ubiquitous in malignant tumours and are known to exert both pro- and anti-tumour effects. We summarize our current understanding of the role of NO in tumour progression, especially in relation to angiogenesis and vascular functions. We also discuss potential strategies for cancer treatment that modulate NO production and/or its downstream signalling pathways.
Collapse
Affiliation(s)
- Dai Fukumura
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
33
|
Su Z, Kuball J, Barreiros AP, Gottfried D, Ferreira EA, Theobald M, Galle PR, Strand D, Strand S. Nitric oxide promotes resistance to tumor suppression by CTLs. THE JOURNAL OF IMMUNOLOGY 2006; 176:3923-30. [PMID: 16547226 DOI: 10.4049/jimmunol.176.7.3923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many human tumors express inducible NO synthetase (NOS2), but the roles of NO in tumor development are not fully elucidated. An important step during tumor development is the acquisition of apoptosis resistance. We investigated the dose-dependent effects of endogenously produced NO on apoptosis using ecdysone-inducible NOS2 cell lines. Our results show that short-term NOS2 expression enhances CD95-mediated apoptosis and T cell cytotoxicity dose dependently. Furthermore, we could show that during chronic exposure to NO, besides the primary cytotoxic NO effect, there is selection of cell clones resistant to NO that show cross-resistance to CD95-induced apoptosis and the killing by CTLs. We propose that NO production could initially act as an autocrine suicide or paracrine killing mechanism in cells undergoing malignant transformation. However, once failed, the outcome is fatal. NO promotes tumor formation by enhancing the selection of cells that can evade immune attack by acquiring apoptosis resistance.
Collapse
Affiliation(s)
- Zhanhai Su
- Department of Internal Medicine, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Shen SC, Lin CW, Lee HM, Chien LL, Chen YC. Lipopolysaccharide plus 12-o-tetradecanoylphorbol 13-acetate induction of migration and invasion of glioma cells in vitro and in vivo: Differential inhibitory effects of flavonoids. Neuroscience 2006; 140:477-89. [PMID: 16580779 DOI: 10.1016/j.neuroscience.2006.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 01/10/2006] [Accepted: 02/11/2006] [Indexed: 11/19/2022]
Abstract
In an earlier study, we reported that nitric oxide is involved in lipopolysaccharide plus 12-o-tetradecanoylphorbol 13-acetate-induced malignant transformation via increases in metalloproteinase 9 enzyme activity and inducible nitric oxide synthase gene expression in rat glioma C6 cells, however the mechanism has remained undefined. Lipopolysaccharide plus 12-o-tetradecanoylphorbol 13-acetate, but not lipopolysaccharide or 12-o-tetradecanoylphorbol 13-acetate alone, induced transformation in glioma C6 cells (but not in human glioblastoma cells GBM-8401 cells) without affecting their viability. An increase in inducible nitric oxide synthase protein expression, nitric oxide production, and metalloproteinase 9 enzyme activity is identified lipopolysaccharide/12-o-tetradecanoylphorbol 13-acetate-treated C6 cells, however lipopolysaccharide/12-o-tetradecanoylphorbol 13-acetate and 12-o-tetradecanoylphorbol 13-acetate (but not lipopolysaccharide) addition shows the similar inductive pattern on metalloproteinase 9 enzyme activity without affecting inducible nitric oxide synthase protein expression and nitric oxide production in GBM-8401 cells. Treatment of C6 cells with lipopolysaccharide/12-o-tetradecanoylphorbol 13-acetate increases the expression of phosphorylated extracellular regulated protein kinases and Jun N-terminal kinases, but not p38, proteins, and an addition of the extracellular regulated protein kinases inhibitor PD98059 or Jun N-terminal kinases inhibitors SP600125, but not the p38 inhibitor SB203580, significantly blocked lipopolysaccharide/12-o-tetradecanoylphorbol 13-acetate-induced inducible nitric oxide synthase protein expression and metalloproteinase 9 enzyme activity accompanied by blocking morphological transformation in C6 cells. Among 19 structurally related flavonoids, kaempferol and wogonin exhibit significant inhibitory effects on lipopolysaccharide/12-o-tetradecanoylphorbol 13-acetate-induced morphological transformation and colony formation, and attenuation of inducible nitric oxide synthase, phosphorylated extracellular regulated protein kinases protein expression, and metalloproteinase 9 enzyme activity was observed. 2'-OH flavone at a dose of 100 microM inhibition of lipopolysaccharide/12-o-tetradecanoylphorbol 13-acetate-induced events via apoptosis induction is identified. Furthermore, lipopolysaccharide/12-o-tetradecanoylphorbol 13-acetate, but not lipopolysaccharide or 12-o-tetradecanoylphorbol 13-acetate, induces tumoral invasion and migration in vitro and in vivo, and those are blocked by kaempferol and wogonin addition. These data suggest that combination of lipopolysaccharide and 12-o-tetradecanoylphorbol 13-acetate promotes tumoral progression via activating metalloproteinase 9 enzyme activity and inducible nitric oxide synthase gene expression, which is located downstream of mitogen-activated protein kinases activation, in rat glioma cells C6. Kaempferol and wogonin exhibit effective inhibitory effects on lipopolysaccharide/12-o-tetradecanoylphorbol 13-acetate-induced events, and thus possess the potential for further development.
Collapse
Affiliation(s)
- S C Shen
- Department of Dermatology, School of Medicine, Taipei Medical University, and Department of Dermatology, Taipei Municipal Wan-Fang Hospital-Affiliated to Taipei Medical University, 111 Xinglong Road, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Okada F, Tazawa H, Kobayashi T, Kobayashi M, Hosokawa M. Involvement of reactive nitrogen oxides for acquisition of metastatic properties of benign tumors in a model of inflammation-based tumor progression. Nitric Oxide 2006; 14:122-9. [PMID: 16125421 DOI: 10.1016/j.niox.2005.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2005] [Revised: 06/16/2005] [Accepted: 06/20/2005] [Indexed: 11/30/2022]
Abstract
The cells of a weakly tumorigenic and non-metastatic murine fibrosarcoma (QR-32) are converted into highly malignant tumors (acquiring metastatic potential) once they have grown in vivo after being co-implanted with gelatin sponge which induces inflammation. In the present study, we examined whether nitric oxide (NO) is involved in the inflammation-based tumor progression by administrating a specific inhibitor to inducible nitric oxide synthase, aminoguanidine (AG). First, we co-implanted 1 x 10(5) QR-32 cells with gelatin sponge (10 x 5 x 3 mm piece) into a subcutaneous space in C57BL6 mice. Administration of AG in drinking water (1%) had started 2 days before the tumor implantation and continued until the termination of the experiment. The incidence of tumor formation and the tumor growth did not differ between AG-treated group and -untreated group. On day 28, we excised the arising tumors to establish culture cell lines for evaluation of their acquisition of metastatic phenotype in other normal mice. Metastasis incidence and the number of metastatic colonies were significantly reduced in the tumor cell lines obtained from AG-treated mice compared to those from non-treated mice (p < 0.05). Immunohistochemical analysis demonstrated that inducible nitric oxide synthase and nitrotyrosine in the inflamed lesion were reduced in the AG-administered mice. However, intensity of 8-hydroxy-2-deoxyguanosine was not different between the groups. These results showed that nitric oxide and its reactive nitrogen oxide species cooperatively play a pivotal role in the progression of benign tumor cells in inflamed lesions.
Collapse
Affiliation(s)
- Futoshi Okada
- Department of Biomolecular Function, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan.
| | | | | | | | | |
Collapse
|
36
|
Caso G, McNurlan MA, McMillan ND, Eremin O, Garlick PJ. Tumour cell growth in culture: dependence on arginine. Clin Sci (Lond) 2004; 107:371-9. [PMID: 15157183 DOI: 10.1042/cs20040096] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 05/17/2004] [Accepted: 05/25/2004] [Indexed: 11/17/2022]
Abstract
The amino acid arginine has been shown to affect the growth of several tumours, although the mechanisms of its action are not clear. In the present study, using a human breast tumour cell line (MCF-7), we investigated the arginine requirements of tumour cells for optimal protein synthesis and growth, and the metabolic pathway responsible for the arginine-dependent growth. The results showed that MCF-7 cells are highly dependent on arginine for growth and that the requirement for arginine is much higher than for an indispensable amino acid, leucine, indicating that arginine is needed for pathways other than protein synthesis. In arginine-free cultures, growth could be completely restored by the urea cycle intermediate citrulline. However, arginine could not be replaced by the urea cycle intermediate and the direct precursor for polyamine synthesis, ornithine, or by the polyamine putrescine, suggesting that the high dependence on arginine is not due to a requirement for polyamine synthesis. Moreover, inhibition of NOS [NO (nitric oxide) synthase] did not affect cell protein synthesis and growth, and the arginine analogue and substrate for NOS, homoarginine, could not replace arginine, implying that the conversion of arginine into NO is not involved in the growth-promoting effects of arginine. The major determinant for the high dependence of MCF-7 cells for arginine was found to be the irreversible conversion of this amino acid into ornithine by the intracellular enzyme arginase. The conversion into ornithine caused a progressive depletion of arginine from the culture medium, which ultimately inhibited cell protein synthesis and halted growth. Intracellular arginase activity may be the major factor determining the requirement for arginine of all cells in culture.
Collapse
Affiliation(s)
- Giuseppe Caso
- Department of Surgery, State University of New York, Stony Brook, NY 11794-8191, USA.
| | | | | | | | | |
Collapse
|
37
|
Igawa S, Hayashi I, Tanaka N, Hiruma H, Majima M, Kawakami T, Hirose M, Masuda N, Kobayashi H. Nitric oxide generated by iNOS reduces deformability of Lewis lung carcinoma cells. Cancer Sci 2004; 95:342-7. [PMID: 15072593 PMCID: PMC11159104 DOI: 10.1111/j.1349-7006.2004.tb03213.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 02/26/2004] [Accepted: 02/27/2004] [Indexed: 11/28/2022] Open
Abstract
Previous studies have indicated that NO plays a crucial role in the metastasis of tumor cells and that tumor cells produce nitric oxide (NO) via inducible nitric oxide synthase (iNOS). Since the deformability of tumor cells is an important factor governing their metastatic potential, in this study we investigated the regulation of tumor cell deformability by NO. Lewis lung tumor cells (3LL cells) were also incubated with a cytokine mixture (IL-1 beta, IFN gamma, and TNF alpha). The nitrite/nitrate content of the supernatant was then measured by the Griess method, and iNOS expression was evaluated by RT-PCR in vitro. Nitrite/nitrate was produced in response to administration of the cytokine mixture, and iNOS mRNA was expressed in the cytokine-treated cells. The deformability of the 3LL cells was evaluated by measuring the peak pressure generated during their passage through a microfilter at a constant flow rate. Both the cytokine mixture and NO donor (NOC 18) significantly increased the filtration pressure, and the staining of the cells with rhodamine-phalloidin revealed assembly of F-actin in the cell membrane. In conclusion, NO plays a role in the decreased deformability of tumor cells, suggesting that NO is one of the factors that regulates metastasis.
Collapse
Affiliation(s)
- Satoshi Igawa
- Program of Clinical Medicine, Department of Internal Medicine (Respiratory Disease and Collagen Disease), Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Puhakka A, Kinnula V, Näpänkangas U, Säily M, Koistinen P, Pääkkö P, Soini Y. High expression of nitric oxide synthases is a favorable prognostic sign in non-small cell lung carcinoma. APMIS 2003; 111:1137-46. [PMID: 14678024 DOI: 10.1111/j.1600-0463.2003.apm1111210.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Immunohistochemical expression of neuronal (n), endothelial (e), and inducible (i) NOS and their association with the type, grade, apoptotic index, proliferation of tumors and the survival of patients were investigated in 89 biopsies of non-small cell lung carcinoma (NSCLC). In tumor cells, expression of iNOS was detected in 35/89 (40%) cases, while 79/89 (89%) and 72/89 (81%) cases showed weak to intense positivity for eNOS and nNOS, respectively. Strong eNOS staining was seen significantly more often in adenocarcinomas than in squamous cells carcinomas (p=0.016), and iNOS immunoreactivity was seen more often in grade I-II tumors than in grade III tumors (p=0.024). There was no significant difference between the low and high apoptotic indexes or between the low and high proliferation rates of tumors in any instance of NOS staining. The patients with tumors showing high nNOS expression tended to have better survival than the others (p=0.06, log-rank; p=0.04, Bresow; p=0.048, Tarone-Ware). Similarly, the patients with tumors showing high expression of iNOS, eNOS and nNOS, as determined by a combined sum index, had a better survival than those with a low sum index for these enzymes (p<0.05). The results show intense expression of eNOS and nNOS, and moderate expression of iNOS in tumor cells of non-small cell carcinoma. Intense NOSs expression seems to be a favorable prognostic sign in non-small cell lung carcinoma.
Collapse
Affiliation(s)
- Airi Puhakka
- Departments of Internal Medicine, University of Oulu and Oulu University Hospital, Oulu, Finland.
| | | | | | | | | | | | | |
Collapse
|
39
|
Ishikawa T, Yoshida N, Higashihara H, Inoue M, Uchiyama K, Takagi T, Handa O, Kokura S, Naito Y, Okanoue T, Yoshikawa T. Different effects of constitutive nitric oxide synthase and heme oxygenase on pulmonary or liver metastasis of colon cancer in mice. Clin Exp Metastasis 2003; 20:445-50. [PMID: 14524534 DOI: 10.1023/a:1025448403124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It has recently been reported that not only endogenous nitric oxide (NO) but also carbon monoxide (CO) produced by heme oxygenase (HO) have many physiological functions. The objective of the present study was to determine whether endogenous NO or CO is involved in the experimental pulmonary or liver metastasis of colon cancer in mice. Intravenous or intrasplenic injection of colon 26 cells from a mouse colon adenocarcinoma cell line resulted in multiple pulmonary or liver metastases. NG-nitro-L-arginine methyl ester (L-NAME), a competitive inhibitor of NO synthase (NOS), or zinc deuteroporphyrin 2, 4-bis glycol (ZnDPBG), a competitive inhibitor of HO, was administered to the mice only on the day of tumor inoculation. We assessed the number of tumor cells 24 h later and the outcome of metastases of the target organ. In the pulmonary metastasis model, L-NAME increased both the number of tumor cells 24 h later and outcome of metastases 18 days later, but did not have a significant effect on liver metastasis. On the other hand, metastasis to the liver, but not that to the lung, increased following administration of ZnDPBG. These results suggest that the activities of NOS and HO could influence experimental metastasis in an organ-specific manner.
Collapse
Affiliation(s)
- Takeshi Ishikawa
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lin Z, Chen S, Ye C, Zhu S. Nitric oxide synthase expression in human bladder cancer and its relation to angiogenesis. UROLOGICAL RESEARCH 2003; 31:232-5. [PMID: 12937869 DOI: 10.1007/s00240-003-0302-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Accepted: 01/08/2003] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) is synthesized by the enzyme family of nitric oxide synthases (NOS) and plays an important role in tumor growth and angiogenesis. The expression of two of the NOS isoforms, the endothelial and inducible isoforms (eNOS and iNOS, respectively), were evaluated in bladder tissue from patients with transitional cell carcinoma (TCC). The specimens were procured from 58 patients with TCC and 14 cases of normal bladder mucosa were used as a control group. NOS immunohistochemistry was performed and microvessal density (MVD) was determined. iNOS specific proteins were found in 47 of 58 bladder cancer specimens but not in control bladder tissue. The endothelial cells in both normal urothelium and tumor tissue showed a highly positive eNOS immunostaining. The MVD was 39.3+/-19.5 and 29.3+/-10.5 in TCC positive and negative for iNOS, respectively ( P<0.01). A correlation between iNOS immunoreactivity and tumor grade in bladder carcinoma could not be verified. These results indicate that NO generation from iNOS in the malignant epithelium and from eNOS in tumor stroma play a important role in tumor angiogenesis.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Urology, Union Hospital Affiliated to Fujian Medical University, Fuzhou 350001, People's Republic of China.
| | | | | | | |
Collapse
|
41
|
Wang J, Torbenson M, Wang Q, Ro JY, Becich M. Expression of inducible nitric oxide synthase in paired neoplastic and non-neoplastic primary prostate cell cultures and prostatectomy specimen. Urol Oncol 2003; 21:117-22. [PMID: 12856639 DOI: 10.1016/s1078-1439(02)00208-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule for ischemia, inflammation, angiogenesis, immune response, and cell growth and differentiation. It has recently been shown that increased production of NO within various human cancers may contribute to tumor angiogenesis, tumor growth and metastasis, and tumor-related immune suppression. NO can be produced by several NO synthases (NOS), including inducible synthase (iNOS), which is expressed during cell activation and produces NO in larger quantity and for a longer period of time than non-inducible NOSs. In this study, we examined the expression levels of iNOS mRNA and protein in prostate adenocarcinoma using a paired nonneoplastic and neoplastic primary prostate cell culture system and related prostatectomy specimens. Six pairs of neoplastic and nonneoplastic primary prostate cell cultures were established from radical prostatectomy specimens based on homogeneity of the originating tumor and the nonneoplastic tissue. Radioactive reverse transcriptase polymerase chain reaction and subsequent quantitative analysis of iNOS mRNA were performed on the cultures using beta-actin as an internal control. Immunohistochemical studies with an anti-iNOS monoclonal antibody were performed on the corresponding formalin-fixed paraffin-embedded prostatectomy tissue sections. We observed marked patient-to-patient variation in "normal" levels of iNOS mRNA. However, all six neoplastic cultures showed moderately to markedly higher mRNA levels than did their paired nonneoplastic cultures. In addition, iNOS protein levels were significantly higher in paraffin-embedded prostate cancer tissue sections than in adjacent nonneoplastic tissue. Overexpression of iNOS mRNA and protein levels is present in moderately differentiated prostate adenocarcinoma and may contribute to prostate cancer angiogenesis, tumor growth, and tumor-related immunosuppression.
Collapse
Affiliation(s)
- Jianzhou Wang
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
42
|
Peng JP, Zheng S, Xiao ZX, Zhang SZ. Inducible nitric oxide synthase expression is related to angiogenesis, bcl-2 and cell proliferation in hepatocellular carcinoma. JOURNAL OF ZHEJIANG UNIVERSITY. SCIENCE 2003; 4:221-227. [PMID: 12659238 DOI: 10.1631/jzus.2003.0221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, we examined the expression of inducible nitric oxide synthase (iNOS) and vascular endothelial growth factor (VEGF) by immunohistochemical staining in 76 tissue sections collected from hepatocellular carcinoma (HCC) patients undergoing hepatectomy. Microvascular density (MVD) was determined by counting endothelial cells immunostained using anti-CD34 antibody. We performed DNA-flow cytometric analyses to elucidate the impact of iNOS and VEGF expression on the cell cycle of HCC. Most of the HCC cells that invaded stroma were markedly immunostained by iNOS antibody. The iNOS stain intensity of the liver tissue close to the tumor edge was stronger than that of HCC tissue, and the strongest was the hepatocytes closer to the tumor tissue. However, iNOS expression in 10 normal hepatic samples was undetectable. VEGF positive expression ratio was 84.8% in iNOS positive expression cases, and the ratio was 35.3% in negative cases. There was significant correlation (P = 0.000) between iNOS and VEGF expression. Moreover, iNOS expression was significantly associated with bcl-2 and MVD, but without p53 expression. DNA-flow cytometric analyses showed that combined expression of iNOS and VEGF had significant impact on the cell cycle in HCC. PI (Proliferating Index) and SPF (S-phase fraction) in the combined positive expression of iNOS and VEGF group was significantly higher than that in the combined negative group. The present findings suggested that iNOS expression was significantly associated with angiogenesis, bcl-2 and cell proliferation of HCC.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Division
- Endothelial Growth Factors/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Intercellular Signaling Peptides and Proteins/metabolism
- Liver/blood supply
- Liver/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Lymphokines/metabolism
- Male
- Middle Aged
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Nitric Oxide Synthase/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Statistics as Topic
- Tumor Suppressor Protein p53/metabolism
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- Jia-Ping Peng
- Cancer Institute, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | | | | | | |
Collapse
|
43
|
Porta C, Rizzo V, Zimatore M, Sartore-Bianchi A, Danova M, Mutti L. Intrapleural interleukin-2 induces nitric oxide production in pleural effusions from malignant mesothelioma: a possible mechanism of interleukin-2-mediated cytotoxicity? Lung Cancer 2002; 38:159-62. [PMID: 12399127 DOI: 10.1016/s0169-5002(02)00187-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Due to the frequent use of intrapleural interleukin-2 (IL-2) to treat pleural effusions from malignant mesothelioma (MMe), we measured nitric oxide (NO) end product nitrite (NO(2)(-)) in pleural effusions of 12 MMe patients with chronic or chronic-relapsing pleurisy. Through high performance liquid chromatography analysis, NO(2)(-) was found in the initial pleural fluid sample of all patients (156.25 pmol ml(-1)), and increased significantly following IL-2 intrapleural instillation, both at 24 (589.91 pmol ml(-1), P < or = 0.0005) and 48 h (756 pmol ml(-1), P< or = 0.0005). Even though it is difficult to argue if the large amounts of NO end product NO(2)(-) we observed is produced by IL-2-stimulated and recruited immune cells, by MMe cells themselves, or by both, it is possible that NO could contribute to the complex antitumor activity of IL-2.
Collapse
Affiliation(s)
- Camillo Porta
- Internal Medicine and Medical Oncology, IRCCS San Matteo University Hospital, I-27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Jadeski LC, Chakraborty C, Lala PK. Role of nitric oxide in tumour progression with special reference to a murine breast cancer model. Can J Physiol Pharmacol 2002; 80:125-35. [PMID: 11934255 DOI: 10.1139/y02-007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is a potent bioactive molecule produced in the presence of NO synthase (NOS) enzymes, which mediates numerous physiological functions under constitutive conditions. Sustained overproduction of NO (and NO-reaction products), typically under inductive conditions, can lead to cell cycle arrest and cellular apoptosis. Furthermore, carcinogenesis may result from mutational events following NO-mediated DNA damage and hindrance to DNA repair (e.g., mutation of tumour-suppressor gene p53). In a majority of human and experimental tumours, tumour-derived NO appears to stimulate tumour progression; however, for a minority of tumours, the opposite has been reported. This apparent discrepancy may be explained by differential susceptibility of tumour cells to NO-mediated cytostasis or apoptosis, and the emergence of NO-resistant and NO-dependent clones. NO-resistance may be mediated by p53 inactivation, and upregulation of cyclo-oxygenase-2 and heat shock protein 70 (HSP70). In a murine mammary tumour model, tumour-derived NO promoted tumour growth and metastasis by enhancing invasive, angiogenic, and migratory capacities of tumour cells. Invasion stimulation followed the altered balance of matrix metalloproteases and their inhibitors; migration stimulation followed activation of guanylate cyclase and MAP kinase pathways. Selective NOS inhibitors may have a therapeutic role in certain cancers.
Collapse
Affiliation(s)
- Lorraine C Jadeski
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | | | | |
Collapse
|
45
|
Mendes RV, Martins AR, de Nucci G, Murad F, Soares FA. Expression of nitric oxide synthase isoforms and nitrotyrosine immunoreactivity by B-cell non-Hodgkin's lymphomas and multiple myeloma. Histopathology 2001; 39:172-8. [PMID: 11493334 DOI: 10.1046/j.1365-2559.2001.01189.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Nitric oxide synthases (NOS) are isoenzymes that catalyse the synthesis of nitric oxide (NO). The three main NOS isoforms are: NOS1 or neuronal, NOS2 or inducible, and NOS3 or endothelial. NO plays both physiological and pathological roles, depending on its rate of synthesis and concentration, cellular source and microenvironment. Apoptosis is an important biological factor in low-grade lymphomas, and NO is able to prevent apoptosis. In-situ expression of NOS and synthesis of NO have been shown in several malignant tumours, but not in lymphoid neoplasms. This study evaluates whether human B-cell neoplasms express NOS isoforms, and nitrotyrosine (NY), which is usually interpreted as a marker of NO. METHODS AND RESULTS We studied the expression of NOS-IR isoforms and NY-IR in 16 cases of B-cell non-Hodgkin's lymphoma (NHL) (five follicle centre cell lymphoma, four small lymphocytic/CLL, and seven diffuse large cell lymphoma), and 10 cases of multiple myeloma (MM). NOS1 was expressed in 5/10 cases of MM, and 15/16 cases of NHL. NOS2 was detected in all cases of MM, and in 14/16 cases of NHL, whereas NOS3 was positive in 3/10 of MM and in only in 1/16 cases of NHL. The expression of NY-IR was observed in 70% of MM cases, and in all cases of B-cell NHL, in a dot-like pattern in few tumour cells. CONCLUSIONS B-cell neoplasms express neuronal and inducible NOS, and nitrotyrosine. Taken together, our results suggest that B-cell neoplasms can produce NO. The role of NO in the biology, diagnosis and prognosis of B-cell neoplasms remains to be established.
Collapse
Affiliation(s)
- R V Mendes
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | | | | |
Collapse
|
46
|
Shochina M, Fellig Y, Sughayer M, Pizov G, Vitner K, Podeh D, Hochberg A, Ariel I. Nitric oxide synthase immunoreactivity in human bladder carcinoma. Mol Pathol 2001; 54:248-52. [PMID: 11477140 PMCID: PMC1187076 DOI: 10.1136/mp.54.4.248] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS To study the expression of the endothelial and inducible isoforms of nitric oxide synthase (eNOS and iNOS, respectively) in human bladder carcinoma and schistosomal bladder disease, and to compare it with normal adult and fetal urothelium. Nitric oxide is thought to play a complex role in human carcinogenesis, but has only recently been investigated in bladder cancer. METHODS Immunohistochemistry was performed on paraffin wax embedded sections of 33 human bladder carcinomas and five bladder carcinoma cell lines; in addition, seven schistosomal bladder cases and normal and fetal urothelium were investigated. In the cell lines enzymatic activity was examined by the NADPH diaphorase reaction. RESULTS Immunoreactivity for eNOS was present in most cells of all 31 cases examined. Immunoreactivity for iNOS was less abundant and was seen in 23 of 25 cases. Similar findings were noted in schistosomal bladder cancer. In the normal bladder mucosa, eNOS immunoreactivity was found only in the superficial cell layer and iNOS was not expressed, whereas in the fetal urothelium immunoreactivity for both isoforms was seen in all cell layers. Enzymatic activity and immunoreactivity for eNOS and iNOS were evident in the five bladder carcinoma cell lines. CONCLUSIONS It is possible that NOS plays a role in the differentiation of the transitional epithelium in fetal life, has a biological function in the adult bladder mucosa, and is involved in bladder carcinogenesis. eNOS and iNOS immunoreactivity do not differ in schistosomal and non-schistosomal bladder carcinoma, but resemble the pattern of expression typical of fetal urothelium.
Collapse
Affiliation(s)
- M Shochina
- Department of Rehabilitation, Hadassah Medical Center and the Hebrew University-Hadassah Medical School, Jerusalem, il-91240, Israel
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Shochina M, Fellig Y, Sughayer M, Pizov G, Vitner K, Podeh D, Hochberg A, Ariel I. Nitric oxide synthase immunoreactivity in human bladder carcinoma. Mol Pathol 2001. [PMID: 11477140 DOI: 10.1136/mp.54.4.248.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIMS To study the expression of the endothelial and inducible isoforms of nitric oxide synthase (eNOS and iNOS, respectively) in human bladder carcinoma and schistosomal bladder disease, and to compare it with normal adult and fetal urothelium. Nitric oxide is thought to play a complex role in human carcinogenesis, but has only recently been investigated in bladder cancer. METHODS Immunohistochemistry was performed on paraffin wax embedded sections of 33 human bladder carcinomas and five bladder carcinoma cell lines; in addition, seven schistosomal bladder cases and normal and fetal urothelium were investigated. In the cell lines enzymatic activity was examined by the NADPH diaphorase reaction. RESULTS Immunoreactivity for eNOS was present in most cells of all 31 cases examined. Immunoreactivity for iNOS was less abundant and was seen in 23 of 25 cases. Similar findings were noted in schistosomal bladder cancer. In the normal bladder mucosa, eNOS immunoreactivity was found only in the superficial cell layer and iNOS was not expressed, whereas in the fetal urothelium immunoreactivity for both isoforms was seen in all cell layers. Enzymatic activity and immunoreactivity for eNOS and iNOS were evident in the five bladder carcinoma cell lines. CONCLUSIONS It is possible that NOS plays a role in the differentiation of the transitional epithelium in fetal life, has a biological function in the adult bladder mucosa, and is involved in bladder carcinogenesis. eNOS and iNOS immunoreactivity do not differ in schistosomal and non-schistosomal bladder carcinoma, but resemble the pattern of expression typical of fetal urothelium.
Collapse
Affiliation(s)
- M Shochina
- Department of Rehabilitation, Hadassah Medical Center and the Hebrew University-Hadassah Medical School, Jerusalem, il-91240, Israel
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Chandra R, Haines GK, Bentz BG, Shah P, Robinson AM, Radosevich JA. Expression of nitric oxide synthase type 3 in reflux-induced esophageal lesions. Otolaryngol Head Neck Surg 2001; 124:442-7. [PMID: 11283504 DOI: 10.1067/mhn.2001.114254] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The expression of endothelial constitutive nitric oxide synthase (NOS3) by squamous dysplasia and carcinomas of the head and neck has previously been described. We sought to compare NOS3 expression in squamous mucosa, glandular metaplasia, and adenocarcinoma of the esophagus. METHODS Forty paraffin-embedded specimens from 20 patients with adenocarcinoma were stained with anti-NOS3 monoclonal antibody. The percentage of cells stained and the intensity of staining were determined for squamous epithelium, metaplasia, and adenocarcinoma. Staining characteristics were statistically analyzed according to clinical variables. RESULTS NOS3 expression was significantly higher in adenocarcinoma and squamous epithelium compared with glandular metaplasia. Among the carcinomas, larger tumor size (T3/4), nodal positivity, and advanced TNM stage (III/IV) significantly correlated with increased NOS3 expression. CONCLUSIONS NOS3 is expressed in reflux-induced lesions of the esophagus. Glandular metaplasia shows basal levels of NOS3 that significantly increase with malignant transformation and tumor progression. The role of free radicals in carcinogenesis is being actively studied.
Collapse
Affiliation(s)
- R Chandra
- Department of Otolaryngology--Head and Neck Surgery, Northwestern University School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Nitric oxide (NO) is a short-lived molecule required for many physiological functions, produced from L-arginine by NO synthases (NOS). It is a free radical, producing many reactive intermediates that account for its bioactivity. Sustained induction of the inducible form of NOS (iNOS) in chronic inflammation may be mutagenic, through NO-mediated DNA damage or hindrance to DNA repair, and thus potentially carcinogenic. Expression of iNOS is positively associated with P53 mutation in tumours of the colon, lung, and oropharynx. Progression of a large majority of human and experimental tumours seems to be stimulated by NO resulting from activation of iNOS or constitutive NOS, whereas inhibition is documented in others. This discrepancy is largely explained by differential sensitivity of tumour cells to NO-mediated cytostasis or apoptosis and clonal evolution of NO-resistant and NO-dependent cells. P53 mutation or loss is one of many events linked with NO resistance and dependence. NO can stimulate tumour growth and metastasis by promoting migratory, invasive, and angiogenic abilities of tumour cells, which may also be triggered by activation of cyclo-oxygenase (COX)-2. Thus, selective inhibitors of NOS, COX, or both may have a therapeutic role in certain cancers.
Collapse
Affiliation(s)
- P K Lala
- University of Western Ontario, Department of Anatomy, London, Canada.
| | | |
Collapse
|
50
|
Angelucci C, Lama G, Iacopino F, Maglione D, Sica G. Effect of placenta growth factor-1 on proliferation and release of nitric oxide, cyclic AMP and cyclic GMP in human epithelial cells expressing the FLT-1 receptor. Growth Factors 2001; 19:193-206. [PMID: 11811792 DOI: 10.3109/08977190109001086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We investigated the effect of placenta growth factor-1 (P1GF-1) on cell growth and on the release of nitric oxide (NO), cyclic AMP (cAMP) and cyclic GMP (cGMP) in human malignant epithelial cells. A noteworthy increase in proliferation was induced in choriocarcinoma cells (BeWo) by P1GF-1 treatment, while breast cancer cells (CG-5) were minimally affected. Western blotting and immunocytochemistry demonstrated the expression of the P1GF-1 receptor fms-like tyrosine kinase-1 (Flt-1) in these models. NO was released in the BeWo culture medium as a result of P1GF-1 treatment, with maximal induction occurring after 6 h. Enhanced cAMP levels were observed after 80 min-6 h, while the amounts of cGMP produced were undetectable. In summary, PIGF-1 stimulates the proliferation of cell types that express Flt-1, other than endothelial cells. In BeWo cells, this effect is preceded by the induction of NO and cAMP as probable downstream effectors of Flt-1 activation.
Collapse
Affiliation(s)
- C Angelucci
- Institute of Histology and Embryology, Catholic University of the Sacred Heart, Rome, Italy
| | | | | | | | | |
Collapse
|