1
|
Arion D, Enwright JF, Gonzalez-Burgos G, Lewis DA. Cell Type-Specific Profiles and Developmental Trajectories of Transcriptomes in Primate Prefrontal Layer 3 Pyramidal Neurons: Implications for Schizophrenia. Am J Psychiatry 2024; 181:920-934. [PMID: 39350613 PMCID: PMC11446470 DOI: 10.1176/appi.ajp.20230541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
OBJECTIVE In schizophrenia, impaired working memory is associated with transcriptome alterations in layer 3 pyramidal neurons (L3PNs) in the dorsolateral prefrontal cortex (DLPFC). Distinct subtypes of L3PNs that send axonal projections to the DLPFC in the opposite hemisphere (callosal projection [CP] neurons) or the parietal cortex in the same hemisphere (ipsilateral projection [IP] neurons) play critical roles in working memory. However, how the transcriptomes of these L3PN subtypes might shift during late postnatal development when working memory impairments emerge in individuals later diagnosed with schizophrenia is not known. The aim of this study was to characterize and compare the transcriptome profiles of CP and IP L3PNs across developmental transitions from prepuberty to adulthood in macaque monkeys. METHODS The authors used retrograde labeling to identify CP and IP L3PNs in the DLPFC of prepubertal, postpubertal, and adult macaque monkeys, and used laser microdissection to capture these neurons for RNA sequencing. RESULTS At all three ages, CP and IP L3PNs had distinct transcriptomes, with the number of genes differentially expressed between neuronal subtypes increasing with age. For IP L3PNs, age-related shifts in gene expression were most prominent between prepubertal and postpubertal animals, whereas for CP L3PNs such shifts were most prominent between postpubertal and adult animals. CONCLUSIONS These findings demonstrate the presence of cell type-specific profiles and developmental trajectories of the transcriptomes of PPC-projecting IP and DLPFC-projecting CP L3PNs in monkey DLPFC. The evidence that IP L3PNs reach a mature transcriptome earlier than CP L3PNs suggests that these two subtypes differentially contribute to the maturation of working memory performance across late postnatal development and that they may be differentially vulnerable to the disease process of schizophrenia at specific stages of postnatal development.
Collapse
Affiliation(s)
- Dominique Arion
- Department of Psychiatry (Arion, Enwright, Gonzalez-Burgos, Lewis) and Department of Neuroscience (Lewis), University of Pittsburgh, Pittsburgh
| | - John F Enwright
- Department of Psychiatry (Arion, Enwright, Gonzalez-Burgos, Lewis) and Department of Neuroscience (Lewis), University of Pittsburgh, Pittsburgh
| | - Guillermo Gonzalez-Burgos
- Department of Psychiatry (Arion, Enwright, Gonzalez-Burgos, Lewis) and Department of Neuroscience (Lewis), University of Pittsburgh, Pittsburgh
| | - David A Lewis
- Department of Psychiatry (Arion, Enwright, Gonzalez-Burgos, Lewis) and Department of Neuroscience (Lewis), University of Pittsburgh, Pittsburgh
| |
Collapse
|
2
|
Spildrejorde M, Leithaug M, Samara A, Aass HCD, Sharma A, Acharya G, Nordeng H, Gervin K, Lyle R. Citalopram exposure of hESCs during neuronal differentiation identifies dysregulated genes involved in neurodevelopment and depression. Front Cell Dev Biol 2024; 12:1428538. [PMID: 39055655 PMCID: PMC11269147 DOI: 10.3389/fcell.2024.1428538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs), including citalopram, are widely used antidepressants during pregnancy. However, the effects of prenatal exposure to citalopram on neurodevelopment remain poorly understood. We aimed to investigate the impact of citalopram exposure on early neuronal differentiation of human embryonic stem cells using a multi-omics approach. Citalopram induced time- and dose-dependent effects on gene expression and DNA methylation of genes involved in neurodevelopmental processes or linked to depression, such as BDNF, GDF11, CCL2, STC1, DDIT4 and GAD2. Single-cell RNA-sequencing analysis revealed distinct clusters of stem cells, neuronal progenitors and neuroblasts, where exposure to citalopram subtly influenced progenitor subtypes. Pseudotemporal analysis showed enhanced neuronal differentiation. Our findings suggest that citalopram exposure during early neuronal differentiation influences gene expression patterns associated with neurodevelopment and depression, providing insights into its potential neurodevelopmental impact and highlighting the importance of further research to understand the long-term consequences of prenatal SSRI exposure.
Collapse
Affiliation(s)
- Mari Spildrejorde
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Magnus Leithaug
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Athina Samara
- Division of Clinical Paediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Astrid Lindgren Children′s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Biomaterials, FUTURE Center for Functional Tissue Reconstruction, University of Oslo, Oslo, Norway
| | - Hans Christian D. Aass
- The Flow Cytometry Core Facility, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Ankush Sharma
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Solna, Sweden
- Center for Fetal Medicine, Karolinska University Hospital, Solna, Sweden
| | - Hedvig Nordeng
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
3
|
Rao S, Liang F, Herring BE. RhoGEF Tiam2 Regulates Glutamatergic Synaptic Transmission in Hippocampal CA1 Pyramidal Neurons. eNeuro 2024; 11:ENEURO.0500-21.2024. [PMID: 38871458 PMCID: PMC11262554 DOI: 10.1523/eneuro.0500-21.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Glutamatergic synapses exhibit significant molecular diversity, but circuit-specific mechanisms that underlie synaptic regulation are not well characterized. Prior reports show that Rho-guanine nucleotide exchange factor (RhoGEF) Tiam1 regulates perforant path→dentate gyrus granule neuron synapses. In the present study, we report Tiam1's homolog Tiam2 is implicated in glutamatergic neurotransmission in CA1 pyramidal neurons. We find that Tiam2 regulates evoked excitatory glutamatergic currents via a postsynaptic mechanism mediated by the catalytic Dbl-homology domain. Overall, we present evidence for RhoGEF Tiam2's role in glutamatergic synapse function at Schaffer collateral→CA1 pyramidal neuron synapses.
Collapse
Affiliation(s)
- Sadhna Rao
- Department of Biological Sciences, Neurobiology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089
| | - Feng Liang
- Department of Biological Sciences, Neurobiology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089
| | - Bruce E Herring
- Department of Biological Sciences, Neurobiology Section, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
4
|
Nakagawa N, Iwasato T. Golgi polarity shift instructs dendritic refinement in the neonatal cortex by mediating NMDA receptor signaling. Cell Rep 2023; 42:112843. [PMID: 37516101 DOI: 10.1016/j.celrep.2023.112843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023] Open
Abstract
Dendritic refinement is a critical component of activity-dependent neuronal circuit maturation, through which individual neurons establish specific connectivity with their target axons. Here, we demonstrate that the developmental shift of Golgi polarity is a key process in dendritic refinement. During neonatal development, the Golgi apparatus in layer 4 spiny stellate (SS) neurons in the mouse barrel cortex lose their original apical positioning and acquire laterally polarized distributions. This lateral Golgi polarity, which is oriented toward the barrel center, peaks on postnatal days 5-7 (P5-P7) and disappears by P15, which aligns with the developmental time course of SS neuron dendritic refinement. Genetic ablation of N-methyl-D-aspartate (NMDA) receptors, key players in dendritic refinement, disturbs the lateral Golgi polarity. Golgi polarity manipulation disrupts the asymmetric dendritic projection pattern and the primary-whisker-specific response of SS neurons. Our results elucidate activity-dependent Golgi dynamics and their critical role in developmental neuronal circuit refinement.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan.
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
5
|
Huang M, Xu L, Liu J, Huang P, Tan Y, Chen S. Cell–Cell Communication Alterations via Intercellular Signaling Pathways in Substantia Nigra of Parkinson’s Disease. Front Aging Neurosci 2022; 14:828457. [PMID: 35283752 PMCID: PMC8914319 DOI: 10.3389/fnagi.2022.828457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative movement disorder characterized with dopaminergic neuron (DaN) loss within the substantia nigra (SN). Despite bulk studies focusing on intracellular mechanisms of PD inside DaNs, few studies have explored the pathogeneses outside DaNs, or between DaNs and other cells. Here, we set out to probe the implication of intercellular communication involving DaNs in the pathogeneses of PD at a systemic level with bioinformatics methods. We harvested three online published single-cell/single-nucleus transcriptomic sequencing (sc/snRNA-seq) datasets of human SN (GSE126838, GSE140231, and GSE157783) from the Gene Expression Omnibus (GEO) database, and integrated them with one of the latest integration algorithms called Harmony. We then applied CellChat, the latest cell–cell communication analytic algorithm, to our integrated dataset. We first found that the overall communication quantity was decreased while the overall communication strength was enhanced in PD sample compared with control sample. We then focused on the intercellular communication where DaNs are involved, and found that the communications between DaNs and other cell types via certain signaling pathways were selectively altered in PD, including some growth factors, neurotrophic factors, chemokines, etc. pathways. Our bioinformatics analysis showed that the alteration in intercellular communications involving DaNs might be a previously underestimated aspect of PD pathogeneses with novel translational potential.
Collapse
Affiliation(s)
- Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Xu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yuyan Tan,
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China
- Shengdi Chen,
| |
Collapse
|
6
|
Liaci C, Camera M, Caslini G, Rando S, Contino S, Romano V, Merlo GR. Neuronal Cytoskeleton in Intellectual Disability: From Systems Biology and Modeling to Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22116167. [PMID: 34200511 PMCID: PMC8201358 DOI: 10.3390/ijms22116167] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a pathological condition characterized by limited intellectual functioning and adaptive behaviors. It affects 1–3% of the worldwide population, and no pharmacological therapies are currently available. More than 1000 genes have been found mutated in ID patients pointing out that, despite the common phenotype, the genetic bases are highly heterogeneous and apparently unrelated. Bibliomic analysis reveals that ID genes converge onto a few biological modules, including cytoskeleton dynamics, whose regulation depends on Rho GTPases transduction. Genetic variants exert their effects at different levels in a hierarchical arrangement, starting from the molecular level and moving toward higher levels of organization, i.e., cell compartment and functions, circuits, cognition, and behavior. Thus, cytoskeleton alterations that have an impact on cell processes such as neuronal migration, neuritogenesis, and synaptic plasticity rebound on the overall establishment of an effective network and consequently on the cognitive phenotype. Systems biology (SB) approaches are more focused on the overall interconnected network rather than on individual genes, thus encouraging the design of therapies that aim to correct common dysregulated biological processes. This review summarizes current knowledge about cytoskeleton control in neurons and its relevance for the ID pathogenesis, exploiting in silico modeling and translating the implications of those findings into biomedical research.
Collapse
Affiliation(s)
- Carla Liaci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Mattia Camera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Giovanni Caslini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Simona Rando
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Salvatore Contino
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128 Palermo, Italy;
| | - Valentino Romano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy;
| | - Giorgio R. Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
- Correspondence: ; Tel.: +39-0116706449; Fax: +39-0116706432
| |
Collapse
|
7
|
Cheng J, Scala F, Blanco FA, Niu S, Firozi K, Keehan L, Mulherkar S, Froudarakis E, Li L, Duman JG, Jiang X, Tolias KF. The Rac-GEF Tiam1 Promotes Dendrite and Synapse Stabilization of Dentate Granule Cells and Restricts Hippocampal-Dependent Memory Functions. J Neurosci 2021; 41:1191-1206. [PMID: 33328293 PMCID: PMC7888217 DOI: 10.1523/jneurosci.3271-17.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
The dentate gyrus (DG) controls information flow into the hippocampus and is critical for learning, memory, pattern separation, and spatial coding, while DG dysfunction is associated with neuropsychiatric disorders. Despite its importance, the molecular mechanisms regulating DG neural circuit assembly and function remain unclear. Here, we identify the Rac-GEF Tiam1 as an important regulator of DG development and associated memory processes. In the hippocampus, Tiam1 is predominantly expressed in the DG throughout life. Global deletion of Tiam1 in male mice results in DG granule cells with simplified dendritic arbors, reduced dendritic spine density, and diminished excitatory synaptic transmission. Notably, DG granule cell dendrites and synapses develop normally in Tiam1 KO mice, resembling WT mice at postnatal day 21 (P21), but fail to stabilize, leading to dendrite and synapse loss by P42. These results indicate that Tiam1 promotes DG granule cell dendrite and synapse stabilization late in development. Tiam1 loss also increases the survival, but not the production, of adult-born DG granule cells, possibly because of greater circuit integration as a result of decreased competition with mature granule cells for synaptic inputs. Strikingly, both male and female mice lacking Tiam1 exhibit enhanced contextual fear memory and context discrimination. Together, these results suggest that Tiam1 is a key regulator of DG granule cell stabilization and function within hippocampal circuits. Moreover, based on the enhanced memory phenotype of Tiam1 KO mice, Tiam1 may be a potential target for the treatment of disorders involving memory impairments.SIGNIFICANCE STATEMENT The dentate gyrus (DG) is important for learning, memory, pattern separation, and spatial navigation, and its dysfunction is associated with neuropsychiatric disorders. However, the molecular mechanisms controlling DG formation and function remain elusive. By characterizing mice lacking the Rac-GEF Tiam1, we demonstrate that Tiam1 promotes the stabilization of DG granule cell dendritic arbors, spines, and synapses, whereas it restricts the survival of adult-born DG granule cells, which compete with mature granule cells for synaptic integration. Notably, mice lacking Tiam1 also exhibit enhanced contextual fear memory and context discrimination. These findings establish Tiam1 as an essential regulator of DG granule cell development, and identify it as a possible therapeutic target for memory enhancement.
Collapse
Affiliation(s)
- Jinxuan Cheng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Federico Scala
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Francisco A Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Integrative Molecular and Biomedical Science Graduate Program, Baylor College of Medicine, Houston, Texas 77030
| | - Sanyong Niu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Karen Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Laura Keehan
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | | | - Lingyong Li
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Joseph G Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Kimberley F Tolias
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
8
|
EpiMOGA: An Epistasis Detection Method Based on a Multi-Objective Genetic Algorithm. Genes (Basel) 2021; 12:genes12020191. [PMID: 33525573 PMCID: PMC7911965 DOI: 10.3390/genes12020191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
In genome-wide association studies, detecting high-order epistasis is important for analyzing the occurrence of complex human diseases and explaining missing heritability. However, there are various challenges in the actual high-order epistasis detection process due to the large amount of data, “small sample size problem”, diversity of disease models, etc. This paper proposes a multi-objective genetic algorithm (EpiMOGA) for single nucleotide polymorphism (SNP) epistasis detection. The K2 score based on the Bayesian network criterion and the Gini index of the diversity of the binary classification problem were used to guide the search process of the genetic algorithm. Experiments were performed on 26 simulated datasets of different models and a real Alzheimer’s disease dataset. The results indicated that EpiMOGA was obviously superior to other related and competitive methods in both detection efficiency and accuracy, especially for small-sample-size datasets, and the performance of EpiMOGA remained stable across datasets of different disease models. At the same time, a number of SNP loci and 2-order epistasis associated with Alzheimer’s disease were identified by the EpiMOGA method, indicating that this method is capable of identifying high-order epistasis from genome-wide data and can be applied in the study of complex diseases.
Collapse
|
9
|
Kotelevets L, Chastre E. Rac1 Signaling: From Intestinal Homeostasis to Colorectal Cancer Metastasis. Cancers (Basel) 2020; 12:cancers12030665. [PMID: 32178475 PMCID: PMC7140047 DOI: 10.3390/cancers12030665] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022] Open
Abstract
The small GTPase Rac1 has been implicated in a variety of dynamic cell biological processes, including cell proliferation, cell survival, cell-cell contacts, epithelial mesenchymal transition (EMT), cell motility, and invasiveness. These processes are orchestrated through the fine tuning of Rac1 activity by upstream cell surface receptors and effectors that regulate the cycling Rac1-GDP (off state)/Rac1-GTP (on state), but also through the tuning of Rac1 accumulation, activity, and subcellular localization by post translational modifications or recruitment into molecular scaffolds. Another level of regulation involves Rac1 transcripts stability and splicing. Downstream, Rac1 initiates a series of signaling networks, including regulatory complex of actin cytoskeleton remodeling, activation of protein kinases (PAKs, MAPKs) and transcription factors (NFkB, Wnt/β-catenin/TCF, STAT3, Snail), production of reactive oxygen species (NADPH oxidase holoenzymes, mitochondrial ROS). Thus, this GTPase, its regulators, and effector systems might be involved at different steps of the neoplastic progression from dysplasia to the metastatic cascade. After briefly placing Rac1 and its effector systems in the more general context of intestinal homeostasis and in wound healing after intestinal injury, the present review mainly focuses on the several levels of Rac1 signaling pathway dysregulation in colorectal carcinogenesis, their biological significance, and their clinical impact.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| | - Eric Chastre
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| |
Collapse
|
10
|
Tiam1 is Critical for Glutamatergic Synapse Structure and Function in the Hippocampus. J Neurosci 2019; 39:9306-9315. [PMID: 31597723 DOI: 10.1523/jneurosci.1566-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence suggests numerous glutamatergic synapse subtypes exist in the brain, and that these subtypes are likely defined by unique molecular regulatory mechanisms. Recent work has identified substantial divergence of molecular composition between commonly studied Schaffer collateral synapses and perforant path-dentate gyrus (DG) synapses of the hippocampus. However, little is known about the molecular mechanisms that may confer unique properties to perforant path-DG synapses. Here we investigate whether the RhoGEF (Rho guanine-nucleotide exchange factor) protein Tiam1 plays a unique role in the regulation of glutamatergic synapses in dentate granule neurons using a combination of molecular, electrophysiological, and imaging approaches in rat entorhino-hippocampal slices of both sexes. We find that inhibition of Tiam1 function in dentate granule neurons reduces synaptic AMPA receptor function and causes dendritic spines to adopt an elongated filopodia-like morphology. We also find that Tiam1's support of perforant path-DG synapse function is dependent on its GEF domain and identify a potential role for the auto-inhibitory PH domain of Tiam1 in regulating Tiam1 function at these synapses. In marked contrast, reduced Tiam1 expression in CA1 pyramidal neurons produced no effect on glutamatergic synapse development. Together, these data identify a critical role for Tiam1 in the hippocampus and reveal a unique Tiam1-mediated molecular program of glutamatergic synapse regulation in dentate granule neurons.SIGNIFICANCE STATEMENT Several lines of evidence independently point to the molecular diversity of glutamatergic synapses in the brain. Rho guanine-nucleotide exchange factor (RhoGEF) proteins as powerful modulators of glutamatergic synapse function have also become increasingly appreciated in recent years. Here we investigate the synaptic regulatory role of the RhoGEF protein Tiam1, whose expression appears to be remarkably enriched in granule neurons of the dentate gyrus. We find that Tiam1 plays a critical role in the development of glutamatergic perforant path-dentate gyrus synapses, but not in commonly studied in Schaffer collateral-CA1 synapses. Together, these data reveal a unique RhoGEF-mediated molecular program of glutamatergic synapse regulation in dentate granule neurons.
Collapse
|
11
|
MiR-190a potentially ameliorates postoperative cognitive dysfunction by regulating Tiam1. BMC Genomics 2019; 20:670. [PMID: 31438846 PMCID: PMC6704709 DOI: 10.1186/s12864-019-6035-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/15/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) affects a large number of post-surgery patients, especially for the elderly. However, the etiology of this neurocognitive disorder is largely unknown. Even if several studies have reported a small number of miRNAs as the essential modulatory factors in POCD, these findings are still rather limited. The aim of current study was to screen the POCD-related miRNAs in the hippocampus tissues and investigate the target genes of differentially expressed miRNAs and their biological functions underlying POCD pathophysiology. METHODS The miRNA microarray was used to find the abnormal expression of miRNAs in the hippocampus tissues from the POCD model mice to normal mice (Discovery cohort, 3 vs 3). The nominal significant results were validated in an independent sample of hippocampus tissues of 10 mice based on same miRNA microarray (Replication cohort, 5 vs 5). Expression level of the most significantly abnormal miRNA was further validated by real-time quantitative polymerase chain reaction (PCR). To determine the expression pattern among miRNAs and genes and detect the interactions, we conducted a weighted gene co-expression network analysis (WGCNA) in the miRNAs and genes expression data from hippocampus tissue of wild type mice (n = 24). The target genes of miRNAs were predicted using the miRWalk3.0 software. Furthermore, we used the ClueGO software to decipher the pathways network and reveal the biological functions of target genes of miRNAs. RESULTS We found that nine miRNAs showed significant associations with POCD in both datasets. Among these miRNAs, mmu-miR-190a-3p was the most significant one. By performing WGCNA analysis, we found 25 co-expression modules, of which mmu-miR-190a-3p was significantly anti-correlated with red module. Moreover, in the red module, 314 genes were significantly enriched in four pathways such as axon guidance and calcium signaling pathway, which are well-documented to be associated with psychiatric disorders and brain development. Also, 169 of the 314 genes were highly correlated with mmu-miR-190a-3p, and four genes (Sphkap, Arhgef25, Tiam1, and Ntrk3) had putative binding sites at 3'-UTR of mmu-miR-190a-3p. Based on protein-protein network analysis, we detected that Tiam1 was a central gene regulated by the mmu-miR-190a-3p. CONCLUSIONS Taken together, we conclude that mmu-miR-190a-3p is involved in the etiology of POCD and may serve as a novel predictive indicator for POCD.
Collapse
|
12
|
Liu X, Golden LC, Lopez JA, Shepherd TR, Yu L, Fuentes EJ. Conformational Dynamics and Cooperativity Drive the Specificity of a Protein-Ligand Interaction. Biophys J 2019; 116:2314-2330. [PMID: 31146922 PMCID: PMC6588728 DOI: 10.1016/j.bpj.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
Molecular recognition is critical for the fidelity of signal transduction in biology. Conversely, the disruption of protein-protein interactions can lead to disease. Thus, comprehension of the molecular determinants of specificity is essential for understanding normal biological signaling processes and for the development of precise therapeutics. Although high-resolution structures have provided atomic details of molecular interactions, much less is known about the influence of cooperativity and conformational dynamics. Here, we used the Tiam2 PSD-95/Dlg/ZO-1 (PDZ) domain and a quadruple mutant (QM), engineered by swapping the identity of four residues important for specificity in the Tiam1 PDZ into the Tiam2 PDZ domain, as a model system to investigate the role of cooperativity and dynamics in PDZ ligand specificity. Surprisingly, equilibrium binding experiments found that the ligand specificity of the Tiam2 QM was switched to that of the Tiam1 PDZ. NMR-based studies indicated that Tiam2 QM PDZ, but not other mutants, had extensive microsecond to millisecond motions distributed throughout the entire domain suggesting structural cooperativity between the mutated residues. Thermodynamic analyses revealed energetic cooperativity between residues in distinct specificity subpockets that was dependent upon the identity of the ligand, indicating a context-dependent binding mechanism. Finally, isothermal titration calorimetry experiments showed distinct entropic signatures along the mutational trajectory from the Tiam2 wild-type to the QM PDZ domain. Collectively, our studies provide unique insights into how structure, conformational dynamics, and thermodynamics combine to modulate ligand-binding specificity and have implications for the evolution, regulation, and design of protein-ligand interactions.
Collapse
Affiliation(s)
- Xu Liu
- Department of Biochemistry, University of Iowa, Iowa City, Iowa
| | - Lisa C Golden
- Department of Biochemistry, University of Iowa, Iowa City, Iowa
| | - Josue A Lopez
- Department of Biochemistry, University of Iowa, Iowa City, Iowa
| | | | - Liping Yu
- Department of Biochemistry, University of Iowa, Iowa City, Iowa; Carver College of Medicine Medical Nuclear Magnetic Resonance Facility, University of Iowa, Iowa City, Iowa
| | - Ernesto J Fuentes
- Department of Biochemistry, University of Iowa, Iowa City, Iowa; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
13
|
Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons. Int J Mol Sci 2018; 19:ijms19124052. [PMID: 30558189 PMCID: PMC6321366 DOI: 10.3390/ijms19124052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022] Open
Abstract
Cellular activation of RAS GTPases into the GTP-binding “ON” state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson’s disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets.
Collapse
|
14
|
Sessa A, Ciabatti E, Drechsel D, Massimino L, Colasante G, Giannelli S, Satoh T, Akira S, Guillemot F, Broccoli V. The Tbr2 Molecular Network Controls Cortical Neuronal Differentiation Through Complementary Genetic and Epigenetic Pathways. Cereb Cortex 2018; 27:3378-3396. [PMID: 27600842 DOI: 10.1093/cercor/bhw270] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/04/2016] [Indexed: 01/21/2023] Open
Abstract
The T-box containing Tbr2 gene encodes for a transcription factor essential for the specification of the intermediate neural progenitors (INPs) originating the excitatory neurons of the cerebral cortex. However, its overall mechanism of action, direct target genes and cofactors remain unknown. Herein, we carried out global gene expression profiling combined with genome-wide binding site identification to determine the molecular pathways regulated by TBR2 in INPs. This analysis led to the identification of novel protein-protein interactions that control multiple features of INPs including cell-type identity, morphology, proliferation and migration dynamics. In particular, NEUROG2 and JMJD3 were found to associate with TBR2 revealing unexplored TBR2-dependent mechanisms. These interactions can explain, at least in part, the role of this transcription factor in the implementation of the molecular program controlling developmental milestones during corticogenesis. These data identify TBR2 as a major determinant of the INP-specific traits by regulating both genetic and epigenetic pathways.
Collapse
Affiliation(s)
- Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute , 20132 Milan, Italy
| | - Ernesto Ciabatti
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute , 20132 Milan, Italy
| | - Daniela Drechsel
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway ,LondonNW7 1AA, UK
| | - Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute , 20132 Milan, Italy
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute , 20132 Milan, Italy
| | - Serena Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute , 20132 Milan, Italy
| | - Takashi Satoh
- Laboratory of Host Defense, Osaka University, Osaka565-0871, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, Osaka University, Osaka565-0871, Japan
| | - Francois Guillemot
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway ,LondonNW7 1AA, UK
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.,CNR Institute of Neuroscience, 20129 Milan, Italy
| |
Collapse
|
15
|
Kou W, Xu X, Ji S, Chen M, Liu D, Wang K, Zhuang J, Yu Q, Zhao Q, Xu Y, Zhang H, Peng W. The inhibition of the effect and mechanism of vascular intimal hyperplasia in Tiam1 knockout mice. Biochem Biophys Res Commun 2018; 497:248-255. [DOI: 10.1016/j.bbrc.2018.02.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
|
16
|
Neuronal cytoskeletal gene dysregulation and mechanical hypersensitivity in a rat model of Rett syndrome. Proc Natl Acad Sci U S A 2017; 114:E6952-E6961. [PMID: 28760966 DOI: 10.1073/pnas.1618210114] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Children with Rett syndrome show abnormal cutaneous sensitivity. The precise nature of sensory abnormalities and underlying molecular mechanisms remain largely unknown. Rats with methyl-CpG binding protein 2 (MeCP2) mutation, characteristic of Rett syndrome, show hypersensitivity to pressure and cold, but hyposensitivity to heat. They also show cutaneous hyperinnervation by nonpeptidergic sensory axons, which include subpopulations encoding noxious mechanical and cold stimuli, whereas peptidergic thermosensory innervation is reduced. MeCP2 knockdown confined to dorsal root ganglion sensory neurons replicated this phenotype in vivo, and cultured MeCP2-deficient ganglion neurons showed augmented axonogenesis. Transcriptome analysis revealed dysregulation of genes associated with cytoskeletal dynamics, particularly those controlling actin polymerization and focal-adhesion formation necessary for axon growth and mechanosensory transduction. Down-regulation of these genes by topoisomerase inhibition prevented abnormal axon sprouting. We identified eight key affected genes controlling actin signaling and adhesion formation, including members of the Arhgap, Tiam, and cadherin families. Simultaneous virally mediated knockdown of these genes in Rett rats prevented sensory hyperinnervation and reversed mechanical hypersensitivity, indicating a causal role in abnormal outgrowth and sensitivity. Thus, MeCP2 regulates ganglion neuronal genes controlling cytoskeletal dynamics, which in turn determines axon outgrowth and mechanosensory function and may contribute to altered pain sensitivity in Rett syndrome.
Collapse
|
17
|
Tumor Necrosis Factor Alpha-Induced Recruitment of Inflammatory Mononuclear Cells Leads to Inflammation and Altered Brain Development in Murine Cytomegalovirus-Infected Newborn Mice. J Virol 2017; 91:JVI.01983-16. [PMID: 28122986 PMCID: PMC5375689 DOI: 10.1128/jvi.01983-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/06/2017] [Indexed: 12/24/2022] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection is a significant cause of abnormal neurodevelopment and long-term neurological sequelae in infants and children. Resident cell populations of the developing brain have been suggested to be more susceptible to virus-induced cytopathology, a pathway thought to contribute to the clinical outcomes following intrauterine HCMV infection. However, recent findings in a newborn mouse model of the infection in the developing brain have indicated that elevated levels of proinflammatory mediators leading to mononuclear cell activation and recruitment could underlie the abnormal neurodevelopment. In this study, we demonstrate that treatment with tumor necrosis factor alpha (TNF-α)-neutralizing antibodies decreased the frequency of CD45+ Ly6Chi CD11b+ CCR2+ activated myeloid mononuclear cells (MMCs) and the levels of proinflammatory cytokines in the blood and the brains of murine CMV-infected mice. This treatment also normalized neurodevelopment in infected mice without significantly impacting the level of virus replication. These results indicate that TNF-α is a major component of the inflammatory response associated with altered neurodevelopment that follows murine CMV infection of the developing brain and that a subset of peripheral blood myeloid mononuclear cells represent a key effector cell population in this model of virus-induced inflammatory disease of the developing brain.IMPORTANCE Congenital human cytomegalovirus (HCMV) infection is the most common viral infection of the developing human fetus and can result in neurodevelopmental sequelae. Mechanisms of disease leading to neurodevelopmental deficits in infected infants remain undefined, but postulated pathways include loss of neuronal progenitor cells, damage to the developing vascular system of the brain, and altered cellular positioning. Direct virus-mediated cytopathic effects cannot explain the phenotypes of brain damage in most infected infants. Using a mouse model that recapitulates characteristics of the brain infection described in human infants, we have shown that TNF-α plays a key role in brain inflammation, including recruitment of inflammatory mononuclear cells. Neutralization of TNF-α normalized neurodevelopmental abnormalities in infected mice, providing evidence that virus-induced inflammation is a major component of disease in the developing brain. These results suggest that interventions limiting inflammation associated with the infection could potentially improve the neurologic outcome of infants infected in utero with HCMV.
Collapse
|
18
|
Marei H, Carpy A, Macek B, Malliri A. Proteomic analysis of Rac1 signaling regulation by guanine nucleotide exchange factors. Cell Cycle 2016; 15:1961-74. [PMID: 27152953 PMCID: PMC4968972 DOI: 10.1080/15384101.2016.1183852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/13/2016] [Accepted: 04/22/2016] [Indexed: 10/30/2022] Open
Abstract
The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1's normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Alejandro Carpy
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Boris Macek
- Proteome Center Tuebingen, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Angeliki Malliri
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Guibinga GH. MicroRNAs: tools of mechanistic insights and biological therapeutics discovery for the rare neurogenetic syndrome Lesch-Nyhan disease (LND). ADVANCES IN GENETICS 2015; 90:103-131. [PMID: 26296934 DOI: 10.1016/bs.adgen.2015.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that modulate the translation of mRNA. They have emerged over the past few years as indispensable entities in the transcriptional regulation of genes. Their discovery has added additional layers of complexity to regulatory networks that control cellular homeostasis. Also, their dysregulated pattern of expression is now well demonstrated in myriad diseases and pathogenic processes. In the current review, we highlight the role of miRNAs in Lesch-Nyhan disease (LND), a rare neurogenetic syndrome caused by mutations in the purine metabolic gene encoding the hypoxanthine-guanine phosphoribosyltransferase (HPRT) enzyme. We describe how experimental and biocomputational approaches have helped to unravel genetic and signaling pathways that provide mechanistic understanding of some of the molecular and cellular basis of this ill-defined neurogenetic disorder. Through miRNA-based target predictions, we have identified signaling pathways that may be of significance in guiding biological therapeutic discovery for this incurable neurological disorder. We also propose a model to explain how a gene such as HPRT, mostly known for its housekeeping metabolic functions, can have pleiotropic effects on disparate genes and signal transduction pathways. Our hypothetical model suggests that HPRT mRNA transcripts may be acting as competitive endogenous RNAs (ceRNAs) intertwined in multiregulatory cross talk between key neural transcripts and miRNAs. Overall, this approach of using miRNA-based genomic approaches to elucidate the molecular and cellular basis of LND and guide biological target identification might be applicable to other ill-defined rare inborn-error metabolic diseases.
Collapse
Affiliation(s)
- Ghiabe-Henri Guibinga
- Division of Genetics, Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Duman JG, Mulherkar S, Tu YK, X Cheng J, Tolias KF. Mechanisms for spatiotemporal regulation of Rho-GTPase signaling at synapses. Neurosci Lett 2015; 601:4-10. [PMID: 26003445 DOI: 10.1016/j.neulet.2015.05.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 01/16/2023]
Abstract
Synapses mediate information flow between neurons and undergo plastic changes in response to experience, which is critical for learning and memory. Conversely, synaptic defects impair information processing and underlie many brain pathologies. Rho-family GTPases control synaptogenesis by transducing signals from extracellular stimuli to the cytoskeleton and nucleus. The Rho-GTPases Rac1 and Cdc42 promote synapse development and the growth of axons and dendrites, while RhoA antagonizes these processes. Despite its importance, many aspects of Rho-GTPase signaling remain relatively unknown. Rho-GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). Though the number of both GEFs and GAPs greatly exceeds that of Rho-GTPases, loss of even a single GEF or GAP often has profound effects on cognition and behavior. Here, we explore how the actions of specific GEFs and GAPs give rise to the precise spatiotemporal activation patterns of Rho-GTPases in neurons. We consider the effects of coupling GEFs and GAPs targeting the same Rho-GTPase and the modular pathways that connect specific cellular stimuli with a given Rho-GTPase via different GEFs. We discuss how the creation of sharp borders between Rho-GTPase activation zones is achieved by pairing a GEF for one Rho-GTPase with a GAP for another and the extensive crosstalk between different Rho-GTPases. Given the importance of synapses for cognition and the fundamental roles that Rho-GTPases play in regulating them, a detailed understanding of Rho-GTPase signaling is essential to the progress of neuroscience.
Collapse
Affiliation(s)
- Joseph G Duman
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yen-Kuei Tu
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program,Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jinxuan X Cheng
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program,Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Differential Tiam1/Rac1 activation in hippocampal and cortical neurons mediates differential spine shrinkage in response to oxygen/glucose deprivation. J Cereb Blood Flow Metab 2014; 34:1898-906. [PMID: 25248834 PMCID: PMC4269742 DOI: 10.1038/jcbfm.2014.158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 01/09/2023]
Abstract
Distinct neuronal populations show differential sensitivity to global ischemia, with hippocampal CA1 neurons showing greater vulnerability compared to cortical neurons. The mechanisms that underlie differential vulnerability are unclear, and we hypothesize that intrinsic differences in neuronal cell biology are involved. Dendritic spine morphology changes in response to ischemic insults in vivo, but cell type-specific differences and the molecular mechanisms leading to such morphologic changes are unexplored. To directly compare changes in spine size in response to oxygen/glucose deprivation (OGD) in cortical and hippocampal neurons, we used separate and equivalent cultures of each cell type. We show that cortical neurons exhibit significantly greater spine shrinkage compared to hippocampal neurons. Rac1 is a Rho-family GTPase that regulates the actin cytoskeleton and is involved in spine dynamics. We show that Rac1 and the Rac guanine nucleotide exchange factor (GEF) Tiam1 are differentially activated by OGD in hippocampal and cortical neurons. Hippocampal neurons express more Tiam1 than cortical neurons, and reducing Tiam1 expression in hippocampal neurons by shRNA enhances OGD-induced spine shrinkage. Tiam1 knockdown also reduces hippocampal neuronal vulnerability to OGD. This work defines fundamental differences in signalling pathways that regulate spine morphology in distinct neuronal populations that may have a role in the differential vulnerability to ischemia.
Collapse
|
22
|
Mulinari S, Häcker U. Rho-guanine nucleotide exchange factors during development: Force is nothing without control. Small GTPases 2014; 1:28-43. [PMID: 21686118 DOI: 10.4161/sgtp.1.1.12672] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 05/31/2010] [Accepted: 06/14/2010] [Indexed: 01/04/2023] Open
Abstract
The development of multicellular organisms is associated with extensive rearrangements of tissues and cell sheets. The driving force for these rearrangements is generated mostly by the actin cytoskeleton. In order to permit the reproducible development of a specific body plan, dynamic reorganization of the actin cytoskeleton must be precisely coordinated in space and time. GTP-exchange factors that activate small GTPases of the Rho family play an important role in this process. Here we review the role of this class of cytoskeletal regulators during important developmental processes such as epithelial morphogenesis, cytokinesis, cell migration, cell polarity, neuronal growth cone extension and phagocytosis in different model systems.
Collapse
Affiliation(s)
- Shai Mulinari
- Department of Experimental Medical Science; Lund Strategic Research Center for Stem Cell Biology and Cell Therapy; Lund University; Lund, Sweden
| | | |
Collapse
|
23
|
The guanine nucleotide exchange factor Tiam1: A Janus-faced molecule in cellular signaling. Cell Signal 2014; 26:483-91. [DOI: 10.1016/j.cellsig.2013.11.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/26/2013] [Indexed: 11/22/2022]
|
24
|
Xiao L, Hu C, Yang W, Guo D, Li C, Shen W, Liu X, Aijun H, Dan W, He C. NMDA receptor couples Rac1-GEF Tiam1 to direct oligodendrocyte precursor cell migration. Glia 2013; 61:2078-99. [PMID: 24123220 DOI: 10.1002/glia.22578] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/02/2013] [Accepted: 08/26/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Lin Xiao
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education; Neuroscience Center of Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Chun Hu
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education; Neuroscience Center of Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Wenjing Yang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education; Neuroscience Center of Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Dazhi Guo
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education; Neuroscience Center of Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Cui Li
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education; Neuroscience Center of Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Weiran Shen
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education; Neuroscience Center of Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Xiuyun Liu
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education; Neuroscience Center of Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Huang Aijun
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education; Neuroscience Center of Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Wang Dan
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education; Neuroscience Center of Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Cheng He
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education; Neuroscience Center of Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| |
Collapse
|
25
|
Guibinga GH, Murray F, Barron N, Pandori W, Hrustanovic G. Deficiency of the purine metabolic gene HPRT dysregulates microRNA-17 family cluster and guanine-based cellular functions: a role for EPAC in Lesch-Nyhan syndrome. Hum Mol Genet 2013; 22:4502-15. [PMID: 23804752 DOI: 10.1093/hmg/ddt298] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lesch-Nyhan syndrome (LNS) is a neurodevelopmental disorder caused by mutations in the gene encoding the purine metabolic enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). A series of motor, cognitive and neurobehavioral anomalies characterize this disease phenotype, which is still poorly understood. The clinical manifestations of this syndrome are believed to be the consequences of deficiencies in neurodevelopmental pathways that lead to disordered brain function. We have used microRNA array and gene ontology analysis to evaluate the gene expression of differentiating HPRT-deficient human neuron-like cell lines. We set out to identify dysregulated genes implicated in purine-based cellular functions. Our approach was based on the premise that HPRT deficiency affects preeminently the expression and the function of purine-based molecular complexes, such as guanine nucleotide exchange factors (GEFs) and small GTPases. We found that several microRNAs from the miR-17 family cluster and genes encoding GEF are dysregulated in HPRT deficiency. Most notably, our data show that the expression of the exchange protein activated by cAMP (EPAC) is blunted in HPRT-deficient human neuron-like cell lines and fibroblast cells from LNS patients, and is altered in the cortex, striatum and midbrain of HPRT knockout mouse. We also show a marked impairment in the activation of small GTPase RAP1 in the HPRT-deficient cells, as well as differences in cytoskeleton dynamics that lead to increased motility for HPRT-deficient neuron-like cell lines relative to control. We propose that the alterations in EPAC/RAP1 signaling and cell migration in HPRT deficiency are crucial for neuro-developmental events that may contribute to the neurological dysfunctions in LNS.
Collapse
|
26
|
ZHU JINMING, YU PEIWU. Downregulation of T-cell lymphoma invasion and metastasis-inducing factor 1 induces cytoskeletal rearrangement and inhibits the invasive capacity of gastric cancer cells. Mol Med Rep 2013; 8:425-33. [DOI: 10.3892/mmr.2013.1513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/16/2013] [Indexed: 11/06/2022] Open
|
27
|
Miller MB, Yan Y, Eipper BA, Mains RE. Neuronal Rho GEFs in synaptic physiology and behavior. Neuroscientist 2013; 19:255-73. [PMID: 23401188 DOI: 10.1177/1073858413475486] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the mammalian brain, the majority of excitatory synapses are housed in micron-sized dendritic protrusions called spines, which can undergo rapid changes in shape and number in response to increased or decreased synaptic activity. These dynamic alterations in dendritic spines require precise control of the actin cytoskeleton. Within spines, multidomain Rho guanine nucleotide exchange factors (Rho GEFs) coordinate activation of their target Rho GTPases by a variety of pathways. In this review, we focus on the handful of disease-related Rho GEFs (Kalirin; Trio; Tiam1; P-Rex1,2; RasGRF1,2; Collybistin) localized at synapses and known to affect electrophysiology, spine morphology, and animal behavior. The goal is to integrate structure/function studies with measurements of synaptic function and behavioral phenotypes in animal models.
Collapse
Affiliation(s)
- Megan B Miller
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | | | | | | |
Collapse
|
28
|
Ahmed MM, Dhanasekaran AR, Tong S, Wiseman FK, Fisher EMC, Tybulewicz VLJ, Gardiner KJ. Protein profiles in Tc1 mice implicate novel pathway perturbations in the Down syndrome brain. Hum Mol Genet 2013; 22:1709-24. [PMID: 23349361 PMCID: PMC3613160 DOI: 10.1093/hmg/ddt017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tc1 mouse model of Down syndrome (DS) is functionally trisomic for ∼120 human chromosome 21 (HSA21) classical protein-coding genes. Tc1 mice display features relevant to the DS phenotype, including abnormalities in learning and memory and synaptic plasticity. To determine the molecular basis for the phenotypic features, the levels of 90 phosphorylation-specific and phosphorylation-independent proteins were measured by Reverse Phase Protein Arrays in hippocampus and cortex, and 64 in cerebellum, of Tc1 mice and littermate controls. Abnormal levels of proteins involved in MAP kinase, mTOR, GSK3B and neuregulin signaling were identified in trisomic mice. In addition, altered correlations among the levels of N-methyl-D-aspartate (NMDA) receptor subunits and the HSA21 proteins amyloid beta (A4) precursor protein (APP) and TIAM1, and between immediate early gene (IEG) proteins and the HSA21 protein superoxide dismutase-1 (SOD1) were found in the hippocampus of Tc1 mice, suggesting altered stoichiometry among these sets of functionally interacting proteins. Protein abnormalities in Tc1 mice were compared with the results of a similar analysis of Ts65Dn mice, a DS mouse model that is trisomic for orthologs of 50 genes trisomic in the Tc1 plus an additional 38 HSA21 orthologs. While there are similarities, abnormalities unique to the Tc1 include increased levels of the S100B calcium-binding protein, mTOR proteins RAPTOR and P70S6, the AMP-kinase catalytic subunit AMPKA, the IEG proteins FBJ murine osteosarcoma viral oncogene homolog (CFOS) and activity-regulated cytoskeleton-associated protein (ARC), and the neuregulin 1 receptor ERBB4. These data identify novel perturbations, relevant to neurological function and to some seen in Alzheimer's disease, that may occur in the DS brain, potentially contributing to phenotypic features and influencing drug responses.
Collapse
Affiliation(s)
- Md Mahiuddin Ahmed
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, University of Colorado Denver School of Medicine, 12700 E 19th Avenue, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Zang YW, Gu XD, Xiang JB, Chen ZY. Brain metastases from colorectal cancer: microenvironment and molecular mechanisms. Int J Mol Sci 2012; 13:15784-800. [PMID: 23443093 PMCID: PMC3546661 DOI: 10.3390/ijms131215784] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/05/2012] [Accepted: 11/12/2012] [Indexed: 01/02/2023] Open
Abstract
Colorectal cancer is one of the most common digestive tract malignancies in the world. Owing to the newer and more effective systemic therapies, the life of colorectal cancer patients can be remarkably prolonged, and the incidence of brain metastases is increasing. However, little is known about the underlying mechanisms of brain metastasis from colorectal cancer. Here we review the tumor microenvironment and metastasis associated molecules in brain metastases from colorectal cancer. A further understanding of these mechanisms will help us to propose better strategies for colorectal cancer patients with brain metastasis and improve their life quality.
Collapse
Affiliation(s)
| | | | - Jian-Bin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumiqi Road, Shanghai 200040, China; E-Mails: (Y.-W.Z.); (X.-D.G.); (J.-B.X.)
| | - Zong-You Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumiqi Road, Shanghai 200040, China; E-Mails: (Y.-W.Z.); (X.-D.G.); (J.-B.X.)
| |
Collapse
|
30
|
Saneyoshi T, Hayashi Y. The Ca2+ and Rho GTPase signaling pathways underlying activity-dependent actin remodeling at dendritic spines. Cytoskeleton (Hoboken) 2012; 69:545-54. [PMID: 22566410 DOI: 10.1002/cm.21037] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/17/2012] [Accepted: 04/25/2012] [Indexed: 02/06/2023]
Abstract
Most excitatory synapses reside on small protrusions located on the dendritic shaft of neurons called dendritic spines. Neuronal activity regulates the number and structure of spines in both developing and mature brains. Such morphological changes are mediated by the modification of the actin cytoskeleton, the major structural component of spines. Because the number and size of spines is tightly correlated with the strength of synaptic transmission, the activity-dependent structural remodeling of a spine plays an important role in the modulation of synaptic transmission. The regulation of spine morphogenesis utilizes multiple intracellular signaling pathways that alter the dynamics of actin remodeling. Here, we will review recent studies examining the signaling pathways underlying activity-dependent actin remodeling at excitatory postsynaptic neurons.
Collapse
|
31
|
Mo J, Lee D, Hong S, Han S, Yeo H, Sun W, Choi S, Kim H, Lee HW. Preso regulation of dendritic outgrowth through PI(4,5)P2-dependent PDZ interaction with βPix. Eur J Neurosci 2012; 36:1960-70. [PMID: 22595022 DOI: 10.1111/j.1460-9568.2012.08124.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In neuronal development, dendritic outgrowth and arborization are important for the establishment of neural circuit formation. A previous study reported that PSD-95-interacting regulator of spine morphogenesis (Preso) formed a complex with PAK-interacting exchange factor-beta (βPix) via PSD-95/Dlg/ZO-1 (PDZ) interaction. Here, we report that Preso and its binding protein, βPix, are localized in dendritic growth cones. Knockdown and dominant-negative inhibition of Preso in cultured neurons markedly reduced the dendritic outgrowth but not branching, and led to a decrease in the intensity of βPix and F-actin in neuronal dendritic tips. Moreover, phosphatidylinositol 4,5-bisphosphate (PIP(2) ) induced a conformational change in Preso toward the open PDZ domain and enhanced the interaction with βPix. In addition, the Preso band 4.1 protein, ezrin, radixin and moesin (FERM) domain mutant is unable to interact with PIP(2) and it did not rescue the Preso-knockdown effect. These results indicate that PIP(2) is a key signalling molecule that regulates dendritic outgrowth through activation of small GTPase signalling via interaction between Preso and βPix.
Collapse
Affiliation(s)
- Jiwon Mo
- Department of Anatomy and Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Polarized cellular responses, for example, cell migration, require the co-ordinated assembly of signalling complexes at a particular subcellular location, such as the leading edge of cells. Small GTPases of the Ras superfamily play central roles in many (polarized) responses to growth factors, chemokines or integrin ligands. These small GTPases are functionally distinct, yet remarkably homologous in their primary sequence and especially in their effector domains. Therefore it has long been unclear how GTPase signalling specificity is regulated. Small GTPases carry a lipid anchor, in the context of a hypervariable region, which mediates membrane association. However, whereas the lipid has long been proposed to be the critical regulator of subcellular GTPase targeting, there is now increasing evidence that specific protein-protein interactions are important as well. This review discusses recent findings on GTPase targeting and proposes a revised model for GTPase signalling. In this model, the hypervariable domain acts in conjunction with the lipid tail to target the GTPase to specific membrane-associated protein complexes. Here, local GTPase activation occurs, leading to subsequent exposure of the effector domain, binding to effector proteins and the initiation of downstream signalling.
Collapse
Affiliation(s)
- Jean Paul ten Klooster
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
33
|
Essential role for vav Guanine nucleotide exchange factors in brain-derived neurotrophic factor-induced dendritic spine growth and synapse plasticity. J Neurosci 2011; 31:12426-36. [PMID: 21880903 DOI: 10.1523/jneurosci.0685-11.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB, regulate a wide range of cellular processes, including dendritic spine formation and functional synapse plasticity. However, the signaling mechanisms that link BDNF-activated TrkB to F-actin remodeling enzymes and dendritic spine morphological plasticity remain poorly understood. We report here that BDNF/TrkB signaling in neurons activates the Vav family of Rac/RhoA guanine nucleotide exchange factors through a novel TrkB-dependent mechanism. We find that Vav is required for BDNF-stimulated Rac-GTP production in cortical and hippocampal neurons. Vav is partially enriched at excitatory synapses in the postnatal hippocampus but does not appear to be required for normal dendritic spine density. Rather, we observe significant reductions in both BDNF-induced, rapid, dendritic spine head growth and in CA3-CA1 theta burst-stimulated long-term potentiation in Vav-deficient mouse hippocampal slices, suggesting that Vav-dependent regulation of dendritic spine morphological plasticity facilitates normal functional synapse plasticity.
Collapse
|
34
|
Govek EE, Hatten ME, Van Aelst L. The role of Rho GTPase proteins in CNS neuronal migration. Dev Neurobiol 2011; 71:528-53. [PMID: 21557504 DOI: 10.1002/dneu.20850] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The architectonics of the mammalian brain arise from a remarkable range of directed cell migrations, which orchestrate the emergence of cortical neuronal layers and pattern brain circuitry. At different stages of cortical histogenesis, specific modes of cell motility are essential to the stepwise formation of cortical architecture. These movements range from interkinetic nuclear movements in the ventricular zone, to migrations of early-born, postmitotic polymorphic cells into the preplate, to the radial migration of precursors of cortical output neurons across the thickening cortical wall, and the vast, tangential migrations of interneurons from the basal forebrain into the emerging cortical layers. In all cases, actomyosin motors act in concert with cell adhesion receptor systems to provide the force and traction needed for forward movement. As key regulators of actin and microtubule cytoskeletons, cell polarity, and adhesion, the Rho GTPases play critical roles in CNS neuronal migration. This review will focus on the different types of migration in the developing neocortex and cerebellar cortex, and the role of the Rho GTPases, their regulators and effectors in these CNS migrations, with particular emphasis on their involvement in radial migration.
Collapse
Affiliation(s)
- Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, NY 10065, USA
| | | | | |
Collapse
|
35
|
Stafford RL, Ear J, Knight MJ, Bowie JU. The molecular basis of the Caskin1 and Mint1 interaction with CASK. J Mol Biol 2011; 412:3-13. [PMID: 21763699 DOI: 10.1016/j.jmb.2011.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 07/05/2011] [Accepted: 07/05/2011] [Indexed: 12/21/2022]
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK) is a conserved multi-domain scaffolding protein involved in brain development, synapse formation, and establishment of cell polarity. To accomplish these diverse functions, CASK participates in numerous protein-protein interactions. In particular, CASK forms competing CASK/Mint1/Velis and CASK/Caskin1/Velis tripartite complexes that physically associate with the cytoplasmic tail of neurexin, a transmembrane protein enriched at presynaptic sites. This study shows that a short linear EEIWVLRK peptide motif from Caskin1 is necessary and sufficient for binding CASK. We also identified the conserved binding site for the peptide on the CASK calmodulin kinase domain. A related EPIWVMRQ peptide from Mint1 was also discovered to be sufficient for binding. Searching all human proteins for the Mint1/Caskin1 consensus peptide ExIWVxR revealed that T-cell lymphoma invasion and metastasis 1 (TIAM1) contains a conserved EEVIWVRRE peptide that was also found to be sufficient for CASK binding in vitro. TIAM1 is well known for its role in tumor metastasis, but it also possesses overlapping cellular and neurological functions with CASK, suggesting a previously unknown cooperation between the two proteins. This new peptide interaction motif also explains how Caskin1 and Mint1 form competing complexes and suggests a new role for the cellular hub protein CASK.
Collapse
Affiliation(s)
- Ryan L Stafford
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, Boyer Hall, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| | | | | | | |
Collapse
|
36
|
Tolias KF, Duman JG, Um K. Control of synapse development and plasticity by Rho GTPase regulatory proteins. Prog Neurobiol 2011; 94:133-48. [PMID: 21530608 DOI: 10.1016/j.pneurobio.2011.04.011] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 12/21/2022]
Abstract
Synapses are specialized cell-cell contacts that mediate communication between neurons. Most excitatory synapses in the brain are housed on dendritic spines, small actin-rich protrusions extending from dendrites. During development and in response to environmental stimuli, spines undergo marked changes in shape and number thought to underlie processes like learning and memory. Improper spine development, in contrast, likely impedes information processing in the brain, since spine abnormalities are associated with numerous brain disorders. Elucidating the mechanisms that regulate the formation and plasticity of spines and their resident synapses is therefore crucial to our understanding of cognition and disease. Rho-family GTPases, key regulators of the actin cytoskeleton, play essential roles in orchestrating the development and remodeling of spines and synapses. Precise spatio-temporal regulation of Rho GTPase activity is critical for their function, since aberrant Rho GTPase signaling can cause spine and synapse defects as well as cognitive impairments. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). We propose that Rho-family GEFs and GAPs provide the spatiotemporal regulation and signaling specificity necessary for proper Rho GTPase function based on the following features they possess: (i) existence of multiple GEFs and GAPs per Rho GTPase, (ii) developmentally regulated expression, (iii) discrete localization, (iv) ability to bind to and organize specific signaling networks, and (v) tightly regulated activity, perhaps involving GEF/GAP interactions. Recent studies describe several Rho-family GEFs and GAPs that uniquely contribute to spinogenesis and synaptogenesis. Here, we highlight several of these proteins and discuss how they occupy distinct biochemical niches critical for synaptic development.
Collapse
Affiliation(s)
- Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
37
|
Wang Y, Yang F, Fu Y, Huang X, Wang W, Jiang X, Gritsenko MA, Zhao R, Monore ME, Pertz OC, Purvine SO, Orton DJ, Jacobs JM, Camp DG, Smith RD, Klemke RL. Spatial phosphoprotein profiling reveals a compartmentalized extracellular signal-regulated kinase switch governing neurite growth and retraction. J Biol Chem 2011; 286:18190-201. [PMID: 21454597 DOI: 10.1074/jbc.m111.236133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signaling pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.
Collapse
Affiliation(s)
- Yingchun Wang
- Department of Pathology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xie Z, Cahill ME, Radulovic J, Wang J, Campbell SL, Miller CA, Sweatt JD, Penzes P. Hippocampal phenotypes in kalirin-deficient mice. Mol Cell Neurosci 2010; 46:45-54. [PMID: 20708080 DOI: 10.1016/j.mcn.2010.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/31/2010] [Accepted: 08/03/2010] [Indexed: 11/19/2022] Open
Abstract
Regulation of forebrain cellular structure and function by small GTPase pathways is crucial for normal and pathological brain development and function. Kalirin is a brain-specific activator of Rho-like small GTPases implicated in neuropsychiatric disorders. We have recently demonstrated key roles for kalirin in cortical synaptic transmission, dendrite branching, spine density, and working memory. However, little is known about the impact of the complete absence of kalirin on the hippocampus in mice. We thus investigated hippocampal function, structure, and associated behavioral phenotypes in KALRN knockout (KO) mice we have recently generated. Here we show that KALRN KO mice had modest impairments in hippocampal LTP, but normal hippocampal synaptic transmission. In these mice, both context and cue-dependent fear conditioning were impaired. Spine density and dendrite morphology in hippocampal pyramidal neurons were not significantly affected in the KALRN KO mice, but small alterations in the gross morphology of the hippocampus were detected. These data suggest that hippocampal structure and function are more resilient to the complete loss of kalirin, and reveal impairments in fear learning. These studies allow the comparison of the phenotypes of different kalirin mutant mice and shed light on the brain region-specific functions of small GTPase signaling.
Collapse
Affiliation(s)
- Zhong Xie
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tiam1 as a signaling mediator of nerve growth factor-dependent neurite outgrowth. PLoS One 2010; 5:e9647. [PMID: 20333299 PMCID: PMC2841637 DOI: 10.1371/journal.pone.0009647] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 02/01/2010] [Indexed: 12/13/2022] Open
Abstract
Nerve Growth Factor (NGF)-induced neuronal differentiation requires the activation of members of the Rho family of small GTPases. However, the molecular mechanisms through which NGF regulates cytoskeletal changes and neurite outgrowth are not totally understood. In this work, we identify the Rac1-specific guanine exchange factor (GEF) Tiam1 as a novel mediator of NGF/TrkA-dependent neurite elongation. In particular, we report that knockdown of Tiam1 causes a significant reduction in Rac1 activity and neurite outgrowth induced by NGF. Physical interaction between Tiam1 and active Ras (Ras-GTP), but not tyrosine phosphorylation of Tiam1, plays a central role in Rac1 activation by NGF. In addition, our findings indicate that Ras is required to associate Tiam1 with Rac1 and promote Rac1 activation upon NGF stimulation. Taken together, these findings define a novel molecular mechanism through which Tiam1 mediates TrkA signaling and neurite outgrowth induced by NGF.
Collapse
|
40
|
Dicou E. Neurotrophins and neuronal migration in the developing rodent brain. ACTA ACUST UNITED AC 2009; 60:408-17. [DOI: 10.1016/j.brainresrev.2009.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/11/2009] [Accepted: 03/17/2009] [Indexed: 01/19/2023]
|
41
|
Zhang QG, Wang R, Han D, Brann DW. Role of Rac1 GTPase in JNK signaling and delayed neuronal cell death following global cerebral ischemia. Brain Res 2009; 1265:138-47. [PMID: 19368836 PMCID: PMC3801190 DOI: 10.1016/j.brainres.2009.01.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/14/2009] [Accepted: 01/18/2009] [Indexed: 12/31/2022]
Abstract
The overall goal of this study was to determine the role of Rac1 in POSH/MLK/JNK signaling and delayed neuronal cell death following cerebral ischemia. Temporal studies revealed that Rac1 GTPase activation was significantly elevated in hippocampus CA1 at 10 min to 72 h after cerebral ischemia reperfusion, with peak levels 30 min to 6 h after reperfusion. Total Rac1 protein levels were not significantly changed following cerebral ischemia. Rac1 has been shown to interact with POSH (plenty of SH3s), a scaffold protein that binds to and regulates MLK3 and JNK activation. Co-immunoprecipitation (Co-IP) studies revealed that POSH-Rac1-MLK3 complex formation displayed a significant and prolonged elevation after reperfusion, with a correlative increase in phosphorylation/activation of MLK3 as compared to sham controls. Intracerebroventricular administration of Rac1 antisense oligonucleotides (AS-ODNs) significantly attenuated Rac1 levels and Rac1 activation at 30 min after reperfusion, with a correlated significant attenuation of POSH-MLK3-Rac1 complex formation and MLK3 activation in hippocampus CA1. Infusion of Rac1 AS-ODNs also significantly attenuated post-ischemic activation of JNK, downstream of MLK3, and strongly protected the hippocampus CA1 from ischemic damage. Missense oligos had no effect on any of the parameters measured. The Rac1 AS-ODNs results were further confirmed by administration of a Rac1 inhibitor (NSC23766), which markedly attenuated activation of Rac1 and JNK, and significantly attenuated apoptotic delayed neuronal cell death following cerebral ischemia. As a whole, these studies demonstrate an important role for Rac1 in activation of the prodeath MLK3-JNK kinase signaling pathway and delayed neuronal cell death following cerebral ischemia.
Collapse
Affiliation(s)
- Quan-Guang Zhang
- Developmental Neurobiology Program, Institute of Molecular Medicine and Genetics, and Department of Neurology, Medical College of Georgia, Augusta, GA 30912
| | - Ruimin Wang
- Research Center for Molecular Biology, North China Coal Medical University, Tangshan 063000, China
| | - Dong Han
- Developmental Neurobiology Program, Institute of Molecular Medicine and Genetics, and Department of Neurology, Medical College of Georgia, Augusta, GA 30912
| | - Darrell W. Brann
- Developmental Neurobiology Program, Institute of Molecular Medicine and Genetics, and Department of Neurology, Medical College of Georgia, Augusta, GA 30912
| |
Collapse
|
42
|
The Yin–Yang of Dendrite Morphology: Unity of Actin and Microtubules. Mol Neurobiol 2008; 38:270-84. [DOI: 10.1007/s12035-008-8046-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
|
43
|
Penzes P, Cahill ME, Jones KA, Srivastava DP. Convergent CaMK and RacGEF signals control dendritic structure and function. Trends Cell Biol 2008; 18:405-13. [PMID: 18701290 DOI: 10.1016/j.tcb.2008.07.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/30/2008] [Accepted: 07/02/2008] [Indexed: 12/25/2022]
Abstract
Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity and behavior, and its malfunction underlies many neurodevelopmental and psychiatric disorders. However, the molecular mechanisms that control dendritic spine morphogenesis have only recently emerged. We summarize recent work that has revealed an important connection between calcium/calmodulin-dependent kinases (CaMKs) and guanine-nucleotide-exchange factors (GEFs) that activate the small GTPase Rac (RacGEFs) in controlling dendritic spine morphogenesis. These two groups of molecules function in neurons as a unique signaling cassette that transduces calcium influx into small GTPase activity and, thence, actin reorganization and spine morphogenesis. Through this pathway, CaMKs and RacGEFs amplify calcium signals and translate them into spatially and temporally regulated structural remodeling of dendritic spines.
Collapse
Affiliation(s)
- Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
44
|
Li L, El-Hayek YH, Liu B, Chen Y, Gomez E, Wu X, Ning K, Li L, Chang N, Zhang L, Wang Z, Hu X, Wan Q. Direct-current electrical field guides neuronal stem/progenitor cell migration. Stem Cells 2008; 26:2193-200. [PMID: 18556511 DOI: 10.1634/stemcells.2007-1022] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Direct-current electrical fields (EFs) promote nerve growth and axon regeneration. We report here that at physiological strengths, EFs guide the migration of neuronal stem/progenitor cells (NSPCs) toward the cathode. EF-directed NSPC migration requires activation of N-methyl-d-aspartate receptors (NMDARs), which leads to an increased physical association of Rho GTPase Rac1-associated signals to the membrane NMDARs and the intracellular actin cytoskeleton. Thus, this study identifies the EF as a directional guidance cue in controlling NSPC migration and reveals a role of the NMDAR/Rac1/actin signal transduction pathway in mediating EF-induced NSPC migration. These results suggest that as a safe physical approach in clinical application, EFs may be developed as a practical therapeutic strategy for brain repair by directing NSPC migration to the injured brain regions to replace cell loss. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Lei Li
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada 89557-0271, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhou P, Porcionatto M, Pilapil M, Chen Y, Choi Y, Tolias KF, Bikoff JB, Hong EJ, Greenberg ME, Segal RA. Polarized signaling endosomes coordinate BDNF-induced chemotaxis of cerebellar precursors. Neuron 2007; 55:53-68. [PMID: 17610817 PMCID: PMC2661852 DOI: 10.1016/j.neuron.2007.05.030] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 11/08/2006] [Accepted: 05/31/2007] [Indexed: 01/15/2023]
Abstract
During development, neural precursors migrate in response to positional cues such as growth factor gradients. However, the mechanisms that enable precursors to sense and respond to such gradients are poorly understood. Here we show that cerebellar granule cell precursors (GCPs) migrate along a gradient of brain-derived neurotrophic factor (BDNF), and we demonstrate that vesicle trafficking is critical for this chemotactic process. Activation of TrkB, the BDNF receptor, stimulates GCPs to secrete BDNF, thereby amplifying the ambient gradient. The BDNF gradient stimulates endocytosis of TrkB and associated signaling molecules, causing asymmetric accumulation of signaling endosomes at the subcellular location where BDNF concentration is maximal. Thus, regulated BDNF exocytosis and TrkB endocytosis enable precursors to polarize and migrate in a directed fashion along a shallow BDNF gradient.
Collapse
Affiliation(s)
- Pengcheng Zhou
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School
| | - Marimelia Porcionatto
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School
| | - Mariecel Pilapil
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School
| | - Yicheng Chen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School
| | - Yoojin Choi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School
| | - Kimberley F. Tolias
- Division of Neuroscience, Children’s Hospital Boston and Department of Neurobiology, Harvard Medical School
| | - Jay B. Bikoff
- Division of Neuroscience, Children’s Hospital Boston and Department of Neurobiology, Harvard Medical School
| | - Elizabeth J. Hong
- Division of Neuroscience, Children’s Hospital Boston and Department of Neurobiology, Harvard Medical School
| | - Michael E. Greenberg
- Division of Neuroscience, Children’s Hospital Boston and Department of Neurobiology, Harvard Medical School
| | - Rosalind A. Segal
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School
- To whom correspondence should be addressed: Rosalind A. Segal, Department of Pediatric Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, 617-632-4737, 617-632-2085,
| |
Collapse
|
46
|
Jaworski J. ARF6 in the nervous system. Eur J Cell Biol 2007; 86:513-24. [PMID: 17559968 DOI: 10.1016/j.ejcb.2007.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 04/11/2007] [Accepted: 04/18/2007] [Indexed: 01/19/2023] Open
Abstract
Actin cytoskeleton dynamics and membrane trafficking are tightly connected and are among the most important driving forces of neuronal development, basic synaptic transmission events, and synaptic plasticity. One group of proteins involved in coordination of these two processes is the family of ADP ribosylation factors (ARFs) regulating actin dynamics, lipid modification and membrane trafficking. ARF6 is the only member of the ARF family that can simultaneously regulate actin cytoskeleton changes and membrane exchange between plasma membrane and endocytic compartments. The presence of ARF6 and its guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) in the brain, as well as its capability to regulate several aspects of neuronal development and synaptic plasticity, has been recently demonstrated. The main purpose of this review is to present the current knowledge about how ARF6 can influence morphological processes crucial for proper formation of the neuronal circuits in the brain, including dendrite and axon differentiation, development of dendritic arbor complexity and dendritic spine formation. Potential effects of ARF6 on synaptic events resulting from its ability to control exo- and endocytosis will be also discussed.
Collapse
Affiliation(s)
- Jacek Jaworski
- Laboratory of Molecular and Cell Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, PL-02-109, Warsaw, Poland.
| |
Collapse
|
47
|
Tolias KF, Bikoff JB, Kane CG, Tolias CS, Hu L, Greenberg ME. The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor-dependent dendritic spine development. Proc Natl Acad Sci U S A 2007; 104:7265-70. [PMID: 17440041 PMCID: PMC1855368 DOI: 10.1073/pnas.0702044104] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dendritic spines are small, actin-rich protrusions on the surface of dendrites that receive the majority of excitatory synaptic inputs in the brain. The formation and remodeling of spines, processes that underlie synaptic development and plasticity, are regulated in part by Eph receptor tyrosine kinases. However, the mechanism by which Ephs regulate actin cytoskeletal remodeling necessary for spine development is not fully understood. Here, we report that the Rac1 guanine nucleotide exchange factor Tiam1 interacts with the EphB2 receptor in a kinase-dependent manner. Activation of EphBs by their ephrinB ligands induces the tyrosine phosphorylation and recruitment of Tiam1 to EphB complexes containing NMDA-type glutamate receptors. Either knockdown of Tiam1 protein by RNAi or inhibition of Tiam1 function with a dominant-negative Tiam1 mutant blocks dendritic spine formation induced by ephrinB1 stimulation. Taken together, these findings suggest that EphBs regulate spine development in part by recruiting, phosphorylating, and activating Tiam1. Tiam1 can then promote Rac1-dependent actin cytoskeletal remodeling required for dendritic spine morphogenesis.
Collapse
Affiliation(s)
- Kimberley F. Tolias
- *Neurobiology Program, Children's Hospital, and
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Jay B. Bikoff
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | | | | | - Linda Hu
- *Neurobiology Program, Children's Hospital, and
| | - Michael E. Greenberg
- *Neurobiology Program, Children's Hospital, and
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Minard ME, Ellis LM, Gallick GE. Tiam1 regulates cell adhesion, migration and apoptosis in colon tumor cells. Clin Exp Metastasis 2006; 23:301-13. [PMID: 17086355 DOI: 10.1007/s10585-006-9040-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 09/13/2006] [Indexed: 12/15/2022]
Abstract
The guanine nucleotide exchange factor Tiam1 regulates numerous biologic properties including migration and invasion. We demonstrated previously that colon tumor cells biologically selected for increased migration were increased in Tiam1 expression. Cells selected for increased Tiam1 expression or that ectopically overexpress Tiam1 were increased in metastatic potential. Here, we demonstrate that Tiam1 regulates additional functions associated with metastasis, including reduced cellular adhesion and resistance to anoikis. Tiam1 effects on cellular migration are mediated through its downstream substrate, Rac. Increased Tiam1 expression also leads to anoikis-resistance, whereas decreasing Tiam1 expression by siRNA sensitizes cells to this form of apoptosis; however, Tiam1's regulation of anoikis is Rac-independent. Staurosporine sensitivity is also Rac-independent, suggesting Tiam1's effects on apoptosis require other effectors. As many of the observed phenotypes are characteristic of a transition of transformed epithelial cells to a mesenchymal-like phenotype, we also examined biochemical properties associated with an EMT. We demonstrate an increase in vimentin expression in cell lines that overexpress Tiam1 and have a more metastatic phenotype. Concomitant with this increase, we observe a decrease in E-cadherin expression in these cells. Lastly, we stained a panel of human colorectal specimens and adjacent normal tissue, and demonstrate that Tiam1 is overexpressed in a subset of human colorectal tumors. In summary, in colon tumor cells, Tiam1 affects multiple properties associated with acquisition of the metastatic phenotype, and may represent a marker of colon tumor progression and metastasis in a subset of tumors.
Collapse
Affiliation(s)
- Meghan E Minard
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 173, Houston, TX 77030, USA
| | | | | |
Collapse
|
49
|
Yoshizawa M, Kawauchi T, Sone M, Nishimura YV, Terao M, Chihama K, Nabeshima YI, Hoshino M. Involvement of a Rac activator,P-Rex1, in neurotrophin-derived signaling and neuronal migration. J Neurosci 2006; 25:4406-19. [PMID: 15858067 PMCID: PMC6725123 DOI: 10.1523/jneurosci.4955-04.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rho-family GTPases play key roles in regulating cytoskeletal reorganization, contributing to many aspects of nervous system development. Their activities are known to be regulated by guanine nucleotide exchange factors (GEFs), in response to various extracellular cues. P-Rex1, a GEF for Rac, has been mainly investigated in neutrophils, in which this molecule contributes to reactive oxygen species formation. However, its role in the nervous system is essentially unknown. Here we describe the expression profile and a physiological function of P-Rex1 in nervous system development. In situ hybridization revealed that P-Rex1 is dynamically expressed in a variety of cells in the developing mouse brain, including some cortical and DRG neurons. In migrating neurons in the intermediate zone, P-Rex1 protein was found to localize in the leading process and adjacent cytoplasmic region. When transfected in pheochromocytoma PC12 cells, P-Rex1 can be activated by NGF, causing an increase in GTP-bound Rac1 and cell motility. Deletion analyses suggested roles for distinct domains of this molecule. Experiments using a P-Rex1 mutant lacking the Dbl-homology domain, a dominant-negative-like form, and small interfering RNA showed that endogenous P-Rex1 was involved in cell migration of PC12 cells and primary cultured neurons from the embryonic day 14 cerebral cortices, induced by extracellular stimuli (NGF, BDNF, and epidermal growth factor). Furthermore, in utero electroporation of the mutant protein into the embryonic cerebral cortex perturbed radial neuronal migration. These findings suggest that P-Rex1, which is expressed in a variety of cell types, is activated by extracellular cues such as neurotrophins and contributes to neuronal migration in the developing nervous system.
Collapse
Affiliation(s)
- Masato Yoshizawa
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sato M, Suzuki K, Nakanishi S. Expression profile of BDNF-responsive genes during cerebellar granule cell development. Biochem Biophys Res Commun 2006; 341:304-9. [PMID: 16426579 DOI: 10.1016/j.bbrc.2005.12.184] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 12/22/2005] [Indexed: 01/19/2023]
Abstract
With the aid of microarray and PCR analysis, this investigation sought expression profiles of BDNF-regulated genes in cultured mouse cerebellar granule cells and addressed their relevance to gene regulation in developing granule cells in vivo. Many of the BDNF-upregulated and downregulated genes identified were upregulated and downregulated, respectively, during cerebellar development. This developmental change was, at least partly, prevented in the TrkB receptor-deficient cerebellum. The BDNF-upregulated genes were distributed in either postmigratory or both premigratory and postmigratory granule cells at postnatal day 8 (P8) and were still present in mature granule cells at P21. In contrast, the BDNF-downregulated genes were predominantly expressed in premigratory granule cells at P8 and disappeared at P21. Furthermore, many of the BDNF-upregulated gene products are implicated in signaling cascades of N-methyl-D-aspartate receptors and MAP kinase. The results indicate that BDNF signaling plays a pivotal role in promoting gene expression in granule cell development and maturation.
Collapse
Affiliation(s)
- Masaaki Sato
- Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|