1
|
Robinson BP, Hawbaker S, Chiang A, Jordahl EM, Anaokar S, Nikiforov A, Bowman RW, Ziegler P, McAtee CK, Patton-Vogt J, O’Donnell AF. Alpha-arrestins Aly1/Art6 and Aly2/Art3 regulate trafficking of the glycerophosphoinositol transporter Git1 and impact phospholipid homeostasis. Biol Cell 2022; 114:3-31. [PMID: 34562280 PMCID: PMC11583686 DOI: 10.1111/boc.202100007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND INFORMATION Phosphatidylinositol (PI) is an essential phospholipid, critical to membrane bilayers. The complete deacylation of PI by B-type phospholipases produces intracellular and extracellular glycerophosphoinositol (GPI). Extracellular GPI is transported into the cell via Git1, a member of the Major Facilitator Superfamily of transporters at the yeast plasma membrane. Internalized GPI is degraded to produce inositol, phosphate and glycerol, thereby contributing to these pools. GIT1 gene expression is controlled by nutrient balance, with phosphate or inositol starvation increasing GIT1 expression to stimulate GPI uptake. However, less is known about control of Git1 protein levels or localization. RESULTS We find that the α-arrestins, an important class of protein trafficking adaptor, regulate Git1 localization and this is dependent upon their interaction with the ubiquitin ligase Rsp5. Specifically, α-arrestin Aly2 stimulates Git1 trafficking to the vacuole under basal conditions, but in response to GPI-treatment, either Aly1 or Aly2 promote Git1 vacuole trafficking. Cell surface retention of Git1, as occurs in aly1∆ aly2∆ cells, is linked to impaired growth in the presence of exogenous GPI and results in increased uptake of radiolabeled GPI, suggesting that accumulation of GPI somehow causes cellular toxicity. Regulation of α-arrestin Aly1 by the protein phosphatase calcineurin improves steady-state and substrate-induced trafficking of Git1, however, calcineurin plays a larger role in Git1 trafficking beyond regulation of α-arrestins. Interestingly, loss of Aly1 and Aly2 increased phosphatidylinositol-3-phosphate on the limiting membrane of the vacuole, and this was further exacerbated by GPI addition, suggesting that the effect is partially linked to Git1. Loss of Aly1 and Aly2 leads to increased incorporation of inositol label from [3 H]-inositol-labelled GPI into PI, confirming that internalized GPI influences PI balance and indicating a role for the a-arrestins in this regulation. CONCLUSIONS The α-arrestins Aly1 and Aly2 are novel regulators of Git1 trafficking with previously unanticipated roles in controlling phospholipid distribution and balance. SIGNIFICANCE To our knowledge, this is the first example of α-arrestin regulation of phosphatidyliniositol-3-phosphate levels. In future studies it will be exciting to determine if other α-arrestins similarly alter PI and PIPs to change the cellular landscape.
Collapse
Affiliation(s)
| | - Sarah Hawbaker
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annette Chiang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric M. Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sanket Anaokar
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Alexiy Nikiforov
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Ray W. Bowman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Philip Ziegler
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Ceara K. McAtee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Allyson F. O’Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Cheung HF, Coman C, Westhoff P, Manke M, Sickmann A, Borst O, Gawaz M, Watson SP, Heemskerk JWM, Ahrends R. Targeted Phosphoinositides Analysis Using High-Performance Ion Chromatography-Coupled Selected Reaction Monitoring Mass Spectrometry. J Proteome Res 2021; 20:3114-3123. [PMID: 33938762 PMCID: PMC8280744 DOI: 10.1021/acs.jproteome.1c00017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 12/30/2022]
Abstract
Phosphoinositides are minor components of cell membranes, but play crucial roles in numerous signal transduction pathways. To obtain quantitative measures of phosphoinositides, sensitive, accurate, and comprehensive methods are needed. Here, we present a quantitative targeted ion chromatography-mass spectrometry-based workflow that separates phosphoinositide isomers and increases the quantitative accuracy of measured phosphoinositides. Besides testing different analytical characteristics such as extraction and separation efficiency, the reproducibility of the developed workflow was also investigated. The workflow was verified in resting and stimulated human platelets, fat cells, and rat hippocampal brain tissue, where the LOD and LOQ for phosphoinositides were at 312.5 and 625 fmol, respectively. The robustness of the workflow is shown with different applications that confirms its suitability to analyze multiple less-abundant phosphoinositides.
Collapse
Affiliation(s)
- Hilaire
Yam Fung Cheung
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
- Institute
of Cardiovascular Sciences, Institute of Biomedical Research, College
of Medical and Dental Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Cristina Coman
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Wien, Austria
| | - Philipp Westhoff
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Mailin Manke
- Department
of Cardiology and Cardiovascular Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Albert Sickmann
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Oliver Borst
- Department
of Cardiology and Cardiovascular Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- Department
of Cardiology and Cardiovascular Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Steve P. Watson
- Institute
of Cardiovascular Sciences, Institute of Biomedical Research, College
of Medical and Dental Sciences, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Johan W. M. Heemskerk
- Department
of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Robert Ahrends
- Leibniz-Institut
für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Wien, Austria
| |
Collapse
|
3
|
Nomura W, Aoki M, Inoue Y. Methylglyoxal inhibits nuclear division through alterations in vacuolar morphology and accumulation of Atg18 on the vacuolar membrane in Saccharomyces cerevisiae. Sci Rep 2020; 10:13887. [PMID: 32807835 PMCID: PMC7431575 DOI: 10.1038/s41598-020-70802-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/03/2020] [Indexed: 12/27/2022] Open
Abstract
Methylglyoxal (MG) is a natural metabolite derived from glycolysis, and it inhibits the growth of cells in all kinds of organisms. We recently reported that MG inhibits nuclear division in Saccharomyces cerevisiae. However, the mechanism by which MG blocks nuclear division remains unclear. Here, we show that increase in the levels of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) is crucial for the inhibitory effects of MG on nuclear division, and the deletion of PtdIns(3,5)P2-effector Atg18 alleviated the MG-mediated inhibitory effects. Previously, we reported that MG altered morphology of the vacuole to a single swelling form, where PtdIns(3,5)P2 accumulates. The changes in the vacuolar morphology were also needed by MG to exert its inhibitory effects on nuclear division. The known checkpoint machinery, including the spindle assembly checkpoint and morphological checkpoint, are not involved in the blockade of nuclear division by MG. Our results suggest that both the accumulation of Atg18 on the vacuolar membrane and alterations in vacuolar morphology are necessary for the MG-induced inhibition of nuclear division.
Collapse
Affiliation(s)
- Wataru Nomura
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan. .,Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| | - Miho Aoki
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yoshiharu Inoue
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
4
|
Bui HH, Sanders PE, Bodenmiller D, Kuo MS, Donoho GP, Fischl AS. Direct analysis of PI(3,4,5)P 3 using liquid chromatography electrospray ionization tandem mass spectrometry. Anal Biochem 2018; 547:66-76. [PMID: 29470948 DOI: 10.1016/j.ab.2018.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 11/18/2022]
Abstract
Phosphatidylinositol (3,4,5) trisphosphate (PIP3) is a biologically active membrane phospholipid that is essential for the growth and survival of all eukaryotic cells. We describe a new method that directly measures PIP3 and describe the HPLC separation and measurement of the positional isomers of phosphatidylinositol bisphosphate, PI(3,5)P2, PI(3,4)P2 and PI(4,5)P2. Mass spectrometric analyses were performed online using ultra-high performance liquid chromatography (UHPLC)-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) in the negative multiple-reaction monitoring (MRM) modes. Rapid separation of PIP3 from PI, phosphatidylinositol phosphate (PIP) and PIP2 was accomplished by C18 reverse phase chromatography with the addition of the ion pairing reagents diisopropylethanolamine (DiiPEA) and ethylenediamine tetraacetic acid tetrasodium salt dihydrate (EDTA) to the samples and mobile phase with a total run time, including equilibration, of 12 min. Importantly, these chromatography conditions result in no carryover of PIP, PIP2, and PIP3 between samples. To validate the new method, U87MG cancer cells were serum starved and treated with PDGF to stimulate PIP3 biosynthesis in the presence or absence of the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. Results generated with the LC/MS method were in excellent agreement with results generated using [33P] phosphate radiolabeled U87MG cells and anion exchange chromatography analysis, a well validated method for measuring PIP3. To demonstrate the usefulness of the new method, we generated reproducible IC50 data for several well-characterized PI3K small molecule inhibitors using a U87MG cell-based assay as well as showing PIP3 can be measured from additional cancer cell lines. Together, our results demonstrate this novel method is sensitive, reproducible and can be used to directly measure PIP3 without radiolabeling or complex lipid derivatization.
Collapse
Affiliation(s)
- Hai H Bui
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA.
| | - Phillip E Sanders
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Diane Bodenmiller
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Ming Shang Kuo
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Gregory P Donoho
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Anthony S Fischl
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
5
|
Raess MA, Cowling BS, Bertazzi DL, Kretz C, Rinaldi B, Xuereb JM, Kessler P, Romero NB, Payrastre B, Friant S, Laporte J. Expression of the neuropathy-associated MTMR2 gene rescues MTM1-associated myopathy. Hum Mol Genet 2018; 26:3736-3748. [PMID: 28934386 DOI: 10.1093/hmg/ddx258] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/28/2017] [Indexed: 01/15/2023] Open
Abstract
Myotubularins (MTMs) are active or dead phosphoinositides phosphatases defining a large protein family conserved through evolution and implicated in different neuromuscular diseases. Loss-of-function mutations in MTM1 cause the severe congenital myopathy called myotubular myopathy (or X-linked centronuclear myopathy) while mutations in the MTM1-related protein MTMR2 cause a recessive Charcot-Marie-Tooth peripheral neuropathy. Here we aimed to determine the functional specificity and redundancy of MTM1 and MTMR2, and to assess their abilities to compensate for a potential therapeutic strategy. Using molecular investigations and heterologous expression of human MTMs in yeast cells and in Mtm1 knockout mice, we characterized several naturally occurring MTMR2 isoforms with different activities. We identified the N-terminal domain as responsible for functional differences between MTM1 and MTMR2. An N-terminal extension observed in MTMR2 is absent in MTM1, and only the short MTMR2 isoform lacking this N-terminal extension behaved similarly to MTM1 in yeast and mice. Moreover, adeno-associated virus-mediated exogenous expression of several MTMR2 isoforms ameliorates the myopathic phenotype owing to MTM1 loss, with increased muscle force, reduced myofiber atrophy, and reduction of the intracellular disorganization hallmarks associated with myotubular myopathy. Noteworthy, the short MTMR2 isoform provided a better rescue when compared with the long MTMR2 isoform. In conclusion, these results point to the molecular basis for MTMs functional specificity. They also provide the proof-of-concept that expression of the neuropathy-associated MTMR2 gene improves the MTM1-associated myopathy, thus identifying MTMR2 as a novel therapeutic target for myotubular myopathy.
Collapse
Affiliation(s)
- Matthieu A Raess
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,INSERM U964, 67404 Illkirch, France.,CNRS, UMR7104, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France.,Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR7156, 67000 Strasbourg, France
| | - Belinda S Cowling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,INSERM U964, 67404 Illkirch, France.,CNRS, UMR7104, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Dimitri L Bertazzi
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR7156, 67000 Strasbourg, France
| | - Christine Kretz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,INSERM U964, 67404 Illkirch, France.,CNRS, UMR7104, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Bruno Rinaldi
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR7156, 67000 Strasbourg, France
| | - Jean-Marie Xuereb
- INSERM U1048 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), 31432 Toulouse, France
| | - Pascal Kessler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,INSERM U964, 67404 Illkirch, France.,CNRS, UMR7104, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Norma B Romero
- INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Pitié-Salpêtrière Hospital, Sorbonne Universities, Pierre and Marie Curie University, 75013 Paris, France.,Unit of Neuromuscular Morphology, Institute of Myology.,Reference Center for Neuromuscular Pathology Paris-East, Institute of Myology, Public Hospital Network of Paris, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Bernard Payrastre
- INSERM U1048 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), 31432 Toulouse, France.,CHU de Toulouse, Laboratoire d'Hématologie, 31059 Toulouse, France
| | - Sylvie Friant
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR7156, 67000 Strasbourg, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France.,INSERM U964, 67404 Illkirch, France.,CNRS, UMR7104, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
6
|
Nomura W, Maeta K, Inoue Y. Phosphatidylinositol 3,5-bisphosphate is involved in methylglyoxal-induced activation of the Mpk1 mitogen-activated protein kinase cascade in Saccharomyces cerevisiae. J Biol Chem 2017; 292:15039-15048. [PMID: 28743744 DOI: 10.1074/jbc.m117.791590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/21/2017] [Indexed: 11/06/2022] Open
Abstract
Methylglyoxal (MG) is a natural metabolite derived from glycolysis, and this 2-oxoaldehyde has been implicated in some diseases including diabetes. However, the physiological significance of MG for cellular functions is yet to be fully elucidated. We previously reported that MG activates the Mpk1 (MAPK) cascade in the yeast Saccharomyces cerevisiae To gain further insights into the cellular functions and responses to MG, we herein screened yeast-deletion mutant collections for susceptibility to MG. We found that mutants defective in the synthesis of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) are more susceptible to MG. PtdIns(3,5)P2 levels increased following MG treatment, and vacuolar morphology concomitantly changed to a single swollen shape. MG activated the Pkc1-Mpk1 MAPK cascade in which a small GTPase Rho1 plays a crucial role, and the MG-induced phosphorylation of Mpk1 was impaired in mutants defective in the PtdIns(3,5)P2 biosynthetic pathway. Of note, heat shock-induced stress also provoked Mpk1 phosphorylation in a Rho1-dependent manner; however, PtdIns(3,5)P2 was dispensable for the heat shock-stimulated activation of this signaling pathway. Our results suggest that PtdIns(3,5)P2 is specifically involved in the MG-induced activation of the Mpk1 MAPK cascade and in the cellular adaptation to MG-induced stress.
Collapse
Affiliation(s)
- Wataru Nomura
- From the Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kazuhiro Maeta
- From the Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshiharu Inoue
- From the Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
7
|
Bishop AC, Ganguly S, Solis NV, Cooley BM, Jensen-Seaman MI, Filler SG, Mitchell AP, Patton-Vogt J. Glycerophosphocholine utilization by Candida albicans: role of the Git3 transporter in virulence. J Biol Chem 2013; 288:33939-33952. [PMID: 24114876 DOI: 10.1074/jbc.m113.505735] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Candida albicans contains four ORFs (GIT1,2,3,4) predicted to encode proteins involved in the transport of glycerophosphodiester metabolites. Previously, we reported that Git1, encoded by ORF 19.34, is responsible for the transport of intact glycerophosphoinositol but not glycerophosphocholine (GroPCho). Here, we report that a strain lacking both GIT3 (ORF 19.1979) and GIT4 (ORF 19.1980) is unable to transport [(3)H]GroPCho into the cell. In the absence of a GroPCho transporter, C. albicans can utilize GroPCho via a mechanism involving extracellular hydrolysis. Upon reintegration of either GIT3 or GIT4 into the genome, measurable uptake of [(3)H]GroPCho is observed. Transport assays and kinetic analyses indicate that Git3 has the greater transport velocity. We present evidence that GDE1 (ORF 19.3936) codes for an enzyme with glycerophosphodiesterase activity against GroPCho. Homozygous deletion of GDE1 results in a buildup of internal GroPCho that is restored to wild type levels by reintegration of GDE1 into the genome. The transcriptional regulator, Pho4, is shown to regulate the expression of GIT3, GIT4, and GDE1. Finally, Git3 is shown to be required for full virulence in a mouse model of disseminated candidiasis, and Git3 sequence orthologs are present in other pathogenic Candida species. In summary, we have characterized multiple aspects of GroPCho utilization by C. albicans and have demonstrated that GroPCho transport plays a key role in the growth of the organism in the host.
Collapse
Affiliation(s)
- Andrew C Bishop
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Shantanu Ganguly
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Norma V Solis
- Division of Infectious Disease, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502
| | - Benjamin M Cooley
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| | | | - Scott G Filler
- Division of Infectious Disease, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502; David Geffen School of Medicine at UCLA, Los Angeles, California 90024
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282.
| |
Collapse
|
8
|
Abstract
PtdIns3P is recognized as an important player in the control of the endocytotic pathway and in autophagy. Recent data also suggest that PtdIns3P contributes to molecular mechanisms taking place at the plasma membrane and at the midbody during cytokinesis. This lipid is present in low amounts in mammalian cells and remains difficult to quantify either by traditional techniques based on radiolabelling followed by HPLC to separate the different phosphatidylinositol monophosphates, or by high-sensitive liquid chromatography coupled to MS, which is still under development. In the present study, we describe a mass assay to quantify this lipid from various biological samples using the recombinant PtdIns3P 5-kinase, PIKfyve. Using this assay, we show an increase in the mass level of PtdIns3P in mouse and human platelets following stimulation, loss of this lipid in Vps34-deficient yeasts and its relative enrichment in early endosomes isolated from BHK cells.
Collapse
|
9
|
Amoasii L, Bertazzi DL, Tronchère H, Hnia K, Chicanne G, Rinaldi B, Cowling BS, Ferry A, Klaholz B, Payrastre B, Laporte J, Friant S. Phosphatase-dead myotubularin ameliorates X-linked centronuclear myopathy phenotypes in mice. PLoS Genet 2012; 8:e1002965. [PMID: 23071445 PMCID: PMC3469422 DOI: 10.1371/journal.pgen.1002965] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 08/08/2012] [Indexed: 12/27/2022] Open
Abstract
Myotubularin MTM1 is a phosphoinositide (PPIn) 3-phosphatase mutated in X-linked centronuclear myopathy (XLCNM; myotubular myopathy). We investigated the involvement of MTM1 enzymatic activity on XLCNM phenotypes. Exogenous expression of human MTM1 in yeast resulted in vacuolar enlargement, as a consequence of its phosphatase activity. Expression of mutants from patients with different clinical progression and determination of PtdIns3P and PtdIns5P cellular levels confirmed the link between vacuolar morphology and MTM1 phosphatase activity, and showed that some disease mutants retain phosphatase activity. Viral gene transfer of phosphatase-dead myotubularin mutants (MTM1(C375S) and MTM1(S376N)) significantly improved most histological signs of XLCNM displayed by a Mtm1-null mouse, at similar levels as wild-type MTM1. Moreover, the MTM1(C375S) mutant improved muscle performance and restored the localization of nuclei, triad alignment, and the desmin intermediate filament network, while it did not normalize PtdIns3P levels, supporting phosphatase-independent roles of MTM1 in maintaining normal muscle performance and organelle positioning in skeletal muscle. Among the different XLCNM signs investigated, we identified only triad shape and fiber size distribution as being partially dependent on MTM1 phosphatase activity. In conclusion, this work uncovers MTM1 roles in the structural organization of muscle fibers that are independent of its enzymatic activity. This underlines that removal of enzymes should be used with care to conclude on the physiological importance of their activity.
Collapse
MESH Headings
- Animals
- Desmin/metabolism
- Disease Models, Animal
- Enzyme Activation/genetics
- Gene Expression
- Humans
- Male
- Mice
- Mice, Knockout
- Muscle Strength/genetics
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/ultrastructure
- Mutation
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Phenotype
- Phosphatidylinositol Phosphates/metabolism
- Phosphoric Monoester Hydrolases/metabolism
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- Leonela Amoasii
- Department of Translational Medecine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, Collège de France, Illkirch, France
| | - Dimitri L. Bertazzi
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | | | - Karim Hnia
- Department of Translational Medecine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, Collège de France, Illkirch, France
| | - Gaëtan Chicanne
- INSERM, U1048 and Université Toulouse 3, I2MC, Toulouse, France
| | - Bruno Rinaldi
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Belinda S. Cowling
- Department of Translational Medecine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, Collège de France, Illkirch, France
| | - Arnaud Ferry
- UMRS974, Université Pierre et Marie Curie, Paris, France
| | - Bruno Klaholz
- Department of Integrated Structural Biology, IGBMC, INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Bernard Payrastre
- INSERM, U1048 and Université Toulouse 3, I2MC, Toulouse, France
- CHU de Toulouse, Laboratoire d'Hématologie, Toulouse, France
- * E-mail: (SF); (JL); (BP)
| | - Jocelyn Laporte
- Department of Translational Medecine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, Collège de France, Illkirch, France
- * E-mail: (SF); (JL); (BP)
| | - Sylvie Friant
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
- * E-mail: (SF); (JL); (BP)
| |
Collapse
|
10
|
Quantification of Signaling Lipids by Nano-Electrospray Ionization Tandem Mass Spectrometry (Nano-ESI MS/MS). Metabolites 2012; 2:57-76. [PMID: 24957368 PMCID: PMC3901191 DOI: 10.3390/metabo2010057] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 01/10/2023] Open
Abstract
Lipids, such as phosphoinositides (PIPs) and diacylglycerol (DAG), are important signaling intermediates involved in cellular processes such as T cell receptor (TCR)-mediated signal transduction. Here we report identification and quantification of PIP, PIP2 and DAG from crude lipid extracts. Capitalizing on the different extraction properties of PIPs and DAGs allowed us to efficiently recover both lipid classes from one sample. Rapid analysis of endogenous signaling molecules was performed by nano-electrospray ionization tandem mass spectrometry (nano-ESI MS/MS), employing lipid class-specific neutral loss and multiple precursor ion scanning for their identification and quantification. Profiling of DAG, PIP and PIP2 molecular species in primary human T cells before and after TCR stimulation resulted in a two-fold increase in DAG levels with a shift towards 1-stearoyl-2-arachidonoyl-DAG in stimulated cells. PIP2 levels were slightly reduced, while PIP levels remained unchanged.
Collapse
|
11
|
Roubinet C, Decelle B, Chicanne G, Dorn JF, Payrastre B, Payre F, Carreno S. Molecular networks linked by Moesin drive remodeling of the cell cortex during mitosis. ACTA ACUST UNITED AC 2011; 195:99-112. [PMID: 21969469 PMCID: PMC3187714 DOI: 10.1083/jcb.201106048] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During mitosis, cortical Moesin activity is restricted to promote cell elongation and cytokinesis, but localized Moesin recruitment is necessary for polar bleb retraction and cortical relaxation. The cortical mechanisms that drive the series of mitotic cell shape transformations remain elusive. In this paper, we identify two novel networks that collectively control the dynamic reorganization of the mitotic cortex. We demonstrate that Moesin, an actin/membrane linker, integrates these two networks to synergize the cortical forces that drive mitotic cell shape transformations. We find that the Pp1-87B phosphatase restricts high Moesin activity to early mitosis and down-regulates Moesin at the polar cortex, after anaphase onset. Overactivation of Moesin at the polar cortex impairs cell elongation and thus cytokinesis, whereas a transient recruitment of Moesin is required to retract polar blebs that allow cortical relaxation and dissipation of intracellular pressure. This fine balance of Moesin activity is further adjusted by Skittles and Pten, two enzymes that locally produce phosphoinositol 4,5-bisphosphate and thereby, regulate Moesin cortical association. These complementary pathways provide a spatiotemporal framework to explain how the cell cortex is remodeled throughout cell division.
Collapse
Affiliation(s)
- Chantal Roubinet
- Cell Biology of Mitosis laboratory, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Robust utilization of phospholipase-generated metabolites, glycerophosphodiesters, by Candida albicans: role of the CaGit1 permease. EUKARYOTIC CELL 2011; 10:1618-27. [PMID: 21984707 DOI: 10.1128/ec.05160-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycerophosphodiesters are the products of phospholipase-mediated deacylation of phospholipids. In Saccharomyces cerevisiae, a single gene, GIT1, encodes a permease responsible for importing glycerophosphodiesters, such as glycerophosphoinositol and glycerophosphocholine, into the cell. In contrast, the Candida albicans genome contains four open reading frames (ORFs) with a high degree of similarity to S. cerevisiae GIT1 (ScGIT1) Here, we report that C. albicans utilizes glycerophosphoinositol (GroPIns) and glycerophosphocholine (GroPCho) as sources of phosphate at both mildly acidic and physiological pHs. Insertional mutagenesis of C. albicans GIT1 (CaGIT1) (orf19.34), the ORF most similar to ScGit1, abolished the ability of cells to use GroPIns as a phosphate source at acidic pH and to transport [(3)H]GroPIns at acidic and physiological pHs, while reintegration of a GIT1 allele into the genome restored those functions. Several lines of evidence, including the detection of internal [(3)H]GroPIns, indicated that GroPIns is transported intact through CaGit1. GroPIns transport was shown to conform to Michaelis-Menten kinetics, with an apparent K(m) of 28 ± 6 μM. Notably, uptake of label from [(3)H]GroPCho was found to be roughly 50-fold greater than uptake of label from [(3)H]GroPIns and roughly 500-fold greater than the equivalent activity in S. cerevisiae. Insertional mutagenesis of CaGIT1 had no effect on the utilization of GroPCho as a phosphate source or on the uptake of label from [(3)H]GroPCho. Growth under low-phosphate conditions was shown to increase label uptake from both [(3)H]GroPIns and [(3)H]GroPCho. Screening of a transcription factor deletion set identified CaPHO4 as required for the utilization of GroPIns, but not GroPCho, as a phosphate source.
Collapse
|
13
|
Rockwell NC, Wolfger H, Kuchler K, Thorner J. ABC transporter Pdr10 regulates the membrane microenvironment of Pdr12 in Saccharomyces cerevisiae. J Membr Biol 2009; 229:27-52. [PMID: 19452121 PMCID: PMC2687517 DOI: 10.1007/s00232-009-9173-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 04/21/2009] [Indexed: 01/24/2023]
Abstract
The eukaryotic plasma membrane exhibits both asymmetric distribution of lipids between the inner and the outer leaflet and lateral segregation of membrane components within the plane of the bilayer. In budding yeast (Saccharomyces cerevisiae), maintenance of leaflet asymmetry requires P-type ATPases, which are proposed to act as inward-directed lipid translocases (Dnf1, Dnf2, and the associated protein Lem3), and ATP-binding cassette (ABC) transporters, which are proposed to act as outward-directed lipid translocases (Pdr5 and Yor1). The S. cerevisiae genome encodes two other Pdr5-related ABC transporters: Pdr10 (67% identity) and Pdr15 (75% identity). We report the first analysis of Pdr10 localization and function. A Pdr10-GFP chimera was located in discrete puncta in the plasma membrane and was found in the detergent-resistant membrane fraction. Compared to control cells, a pdr10 mutant was resistant to sorbate but hypersensitive to the chitin-binding agent Calcofluor White. Calcofluor sensitivity was attributable to a partial defect in endocytosis of the chitin synthase Chs3, while sorbate resistance was attributable to accumulation of a higher than normal level of the sorbate exporter Pdr12. Epistasis analysis indicated that Pdr10 function requires Pdr5, Pdr12, Lem3, and mature sphingolipids. Strikingly, Pdr12 was shifted to the detergent-resistant membrane fraction in pdr10 cells. Pdr10 therefore acts as a negative regulator for incorporation of Pdr12 into detergent-resistant membranes, a novel role for members of the ABC transporter superfamily.
Collapse
Affiliation(s)
- Nathan C. Rockwell
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202 USA
- c/o Lagarias Lab, Department of Molecular and Cellular Biology, University of California, 31 Briggs Hall, Davis, CA 95616 USA
| | - Hubert Wolfger
- Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Karl Kuchler
- Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Jeremy Thorner
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202 USA
- Department of Molecular and Cell Biology, University of California, Room 16, Barker Hall, Berkeley, CA 94720-3202 USA
| |
Collapse
|
14
|
Ercetin ME, Ananieva EA, Safaee NM, Torabinejad J, Robinson JY, Gillaspy GE. A phosphatidylinositol phosphate-specific myo-inositol polyphosphate 5-phosphatase required for seedling growth. PLANT MOLECULAR BIOLOGY 2008; 67:375-88. [PMID: 18392779 DOI: 10.1007/s11103-008-9327-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 03/19/2008] [Indexed: 05/19/2023]
Abstract
The phosphatidylinositol phosphate signaling pathway is involved in many crucial cellular functions. The myo-inositol polyphosphate 5-phosphatases (5PTases) (E.C. 3.1.3.56) comprise a large protein family that hydrolyze 5-phosphates from a variety of phosphatidylinositol phosphate and inositol phosphate substrates. We previously reported that the At5PTase11 enzyme (At1g47510), which is one of the smallest predicted 5PTases found in any organism, encodes an active 5PTase whose activity is restricted to tris- and bis-, but not mono-phosphorylated phosphatidylinositol phosphate substrates containing a 5-phosphate. This is in contrast to other unrestricted Arabidopsis 5PTases, which also hydrolyze tris- and bis inositol phosphate molecules. To further explore the function of At5PTase11, we have characterized two T-DNA mutants in the At5PTase11 gene, and have complemented this mutant. Seed from 5ptase11 mutants germinate slower than wildtype seed and mutant seedlings have decreased hypocotyl growth as compared to wildtype seedlings when grown in the dark. This phenotype is the opposite of the increased hypocotyl growth phenotype previously described for other 5ptase mutants defective in inositol phosphate-specific 5PTase enzymes. By labeling the endogenous myo-inositol pool in 5ptase11 mutants, we correlated these hypocotyl growth changes with a small increase in the 5PTase11 substrate, phosphatidylinositol (4,5) bisphosphate, and decreases in the potential products of 5PTase11, phosphatidylinositol (3) phosphate and phosphatidylinositol (4) phosphate. Surprisingly, we also found that dark-grown 5ptase11 mutants contain increases in inositol (1,4,5) trisphosphate and an inositol bisphosphate that is not a substrate for recombinant 5PTase11. We present a model for regulation of hypocotyl growth by specific molecules found in this pathway.
Collapse
Affiliation(s)
- Mustafa E Ercetin
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | | | | | |
Collapse
|
15
|
Ivanova PT, Milne SB, Byrne MO, Xiang Y, Brown HA. Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry. Methods Enzymol 2008; 432:21-57. [PMID: 17954212 DOI: 10.1016/s0076-6879(07)32002-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycerophospholipids are the structural building blocks of the cellular membrane. In addition to creating a protective barrier around the cell, lipids are precursors of intracellular signaling molecules that modulate membrane trafficking and are involved in transmembrane signal transduction. Phospholipids are also increasingly recognized as important participants in the regulation and control of cellular function and disease. Analysis and characterization of lipid species by mass spectrometry (MS) have evolved and advanced with improvements in instrumentation and technology. Key advances, including the development of "soft" ionization techniques for MS such as electrospray ionization (ESI), matrix-assisted laser desorption/ionization (MALDI), and tandem mass spectrometry (MS/MS), have facilitated the analysis of complex lipid mixtures by overcoming the earlier limitations. ESI-MS has become the technique of choice for the analysis of multi-component mixtures of lipids from biological samples due to its exceptional sensitivity and capacity for high throughput. This chapter covers qualitative and quantitative MS methods used for the elucidation of glycerophospholipid identity and quantity in cell or tissue extracts. Sections are included on the extraction, MS analysis, and data analysis of glycerophospholipids and polyphosphoinositides.
Collapse
Affiliation(s)
- Pavlina T Ivanova
- Departments of Pharmacology and Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
16
|
PXA domain-containing protein Pxa1 is required for normal vacuole function and morphology in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2008; 72:548-56. [PMID: 18256467 DOI: 10.1271/bbb.70666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PhoX homology (PX) domain-containing proteins play critical roles in vesicular trafficking, protein sorting, and lipid modification in eukaryotic cells. Several proteins with PX domains contain an associated domain termed PXA (PX-associated). Although PXA domain-containing proteins are required for some important cellular processes, the function of the PXA domain is unknown. We identified three PXA domain-containing proteins in Schizosaccharomyces pombe. S. pombe Pxa1p (SPAC5D6.07c) contained only the PXA domain, not the PX domain. To elucidate the role of the PXA domain in eukaryotic cells, we constructed and characterized a disruption mutant, pxa1. The pxa1 disruptant contained enlarged vacuoles and exhibited mislocalization of vacuolar carboxypeptidase Y (CPY). The conversion rate from pro- to mature-CPY was greatly impaired in pxa1 cells, and fluorescence microscopy indicated that a sorting receptor for CPY, Vps10p, mislocalized to the vacuolar membrane. The mutants were also deficient in vacuolar sorting of a multivesicular body (MVB) marker, a ubiquitin-GFP-carboxypeptidase S (Ub-GFP-CPS) fusion protein. Taken together, these results indicate that Pxa1 protein is required for normal vacuole function and morphology in S. pombe.
Collapse
|
17
|
Thole JM, Vermeer JEM, Zhang Y, Gadella TWJ, Nielsen E. Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. THE PLANT CELL 2008; 20:381-95. [PMID: 18281508 PMCID: PMC2276440 DOI: 10.1105/tpc.107.054304] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Polarized expansion of root hair cells in Arabidopsis thaliana is improperly controlled in root hair-defective rhd4-1 mutant plants, resulting in root hairs that are shorter and randomly form bulges along their length. Using time-lapse fluorescence microscopy in rhd4-1 root hairs, we analyzed membrane dynamics after labeling with RabA4b, a marker for polarized membrane trafficking in root hairs. This revealed stochastic loss and recovery of the RabA4b compartment in the tips of growing root hairs, consistent with a role for the RHD4 protein in regulation of polarized membrane trafficking in these cells. The wild-type RHD4 gene was identified by map-based cloning and was found to encode a Sac1p-like phosphoinositide phosphatase. RHD4 displayed a preference for phosphatidylinositol-4-phosphate [PI(4)P] in vitro, and rhd4-1 roots accumulated higher levels of PI(4)P in vivo. In wild-type root hairs, PI(4)P accumulated primarily in a tip-localized plasma membrane domain, but in rhd4-1 mutants, significant levels of PI(4)P were detected associated with internal membranes. A fluorescent RHD4 fusion protein localized to membranes at the tips of growing root hairs. We propose that RHD4 is selectively recruited to RabA4b-labeled membranes that are involved in polarized expansion of root hair cells and that, in conjunction with the phosphoinositide kinase PI-4Kbeta1, RHD4 regulates the accumulation of PI(4)P on membrane compartments at the tips of growing root hairs.
Collapse
Affiliation(s)
- Julie M Thole
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | |
Collapse
|
18
|
Gunesekera B, Torabinejad J, Robinson J, Gillaspy GE. Inositol polyphosphate 5-phosphatases 1 and 2 are required for regulating seedling growth. PLANT PHYSIOLOGY 2007; 143:1408-17. [PMID: 17237190 PMCID: PMC1820906 DOI: 10.1104/pp.106.089474] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Signals can be perceived and amplified at the cell membrane by receptors coupled to the production of a variety of second messengers, including myoinositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)]. The myoinositol polyphosphate 5-phosphatases (5PTases; EC 3.1.3.56) comprise a large protein family that hydrolyzes 5-phosphates from a variety of myoinositol phosphate (InsP) and phosphoinositide phosphate (PtdInsP) substrates. Arabidopsis thaliana has 15 genes encoding 5PTases. Biochemical analyses of a subgroup of 5PTase enzymes suggest that these enzymes have both overlapping and unique substrate preferences. Ectopic expression of these genes in transgenic plants can reduce Ins(1,4,5)P(3) levels and alter abscisic acid (ABA) signaling. To further explore the function of 5PTases in signaling, we have identified and characterized T-DNA insertional mutants for 5PTase1 and 5PTase2 and produced a double mutant. When grown in the dark, the seeds from these mutants germinate faster than wild-type seeds and the mutant seedlings have longer hypocotyls than wild-type seedlings. Seeds from these mutant lines also demonstrate an increase in sensitivity to ABA. These changes in early seedling growth are accompanied by mass increases in Ins(1,4,5)P(3), but not by changes in endogenous ABA content. By labeling the endogenous myoinositol pool in 5ptase1 and 5ptase2 mutants, we detected increases in Ins(1,4,5)P(3) and a decrease in PtdIns, PtdIns(4)P, and phosphatidylinositol (4,5) bisphosphate. Taken together, these data indicate that the At5PTase1 and At5PTase2 genes have nonredundant roles in hydrolyzing inositol second-messenger substrates and that regulation of Ins(1,4,5)P(3) levels is important during germination and early seedling development.
Collapse
Affiliation(s)
- Bhadra Gunesekera
- Department of Biochemistry and Fralin Biotechnology Center, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
19
|
Almaguer C, Fisher E, Patton-Vogt J. Posttranscriptional regulation of Git1p, the glycerophosphoinositol/glycerophosphocholine transporter of Saccharomyces cerevisiae. Curr Genet 2006; 50:367-75. [PMID: 16924500 DOI: 10.1007/s00294-006-0096-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 07/25/2006] [Accepted: 07/29/2006] [Indexed: 12/25/2022]
Abstract
Glycerophosphoinositol (GroPIns) and glycerophosphocholine (GroPCho) are the products of phospholipase-B mediated deacylation of phosphatidylinositol and phosphatidylcholine, respectively. GroPIns and GroPCho are transported across the Saccharomyces cerevisiae plasma membrane into the cell via the transporter encoded by GIT1. Previous studies have shown that GIT1 expression is regulated by inorganic phosphate (P(i)) availability through the transcription factors Pho2p and Pho4p. We now report that posttranscriptional mechanisms also regulate Git1p activity in response to P(i) availability. Mutations that inhibit endocytosis and vacuolar proteolysis inhibit Git1p degradation, indicating that Git1p downregulation involves internalization and subsequent degradation in the vacuole. Similar to the effect seen with P(i), provision of cells with high levels of the Git1p substrates, GroPIns and GroPCho, posttranscriptionally downregulates Git1p activity. Unlike P(i), high levels of GroPCho and GroPIns do not repress GIT1 promoter-driven reporter gene activity. These results indicate that Git1p transport activity is regulated at multiple levels by P(i) availability. In addition, the results indicate that the Git1p substrates (and alternate phosphate sources) GroPIns and GroPCho behave distinctly from P(i) in their ability to affect GIT1 expression.
Collapse
Affiliation(s)
- Claudia Almaguer
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | |
Collapse
|
20
|
Preuss ML, Schmitz AJ, Thole JM, Bonner HKS, Otegui MS, Nielsen E. A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana. ACTA ACUST UNITED AC 2006; 172:991-8. [PMID: 16567499 PMCID: PMC2063757 DOI: 10.1083/jcb.200508116] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The RabA4b GTPase labels a novel, trans-Golgi network compartment displaying a developmentally regulated polar distribution in growing Arabidopsis thaliana root hair cells. GTP bound RabA4b selectively recruits the plant phosphatidylinositol 4-OH kinase, PI-4Kβ1, but not members of other PI-4K families. PI-4Kβ1 colocalizes with RabA4b on tip-localized membranes in growing root hairs, and mutant plants in which both the PI-4Kβ1 and -4Kβ2 genes are disrupted display aberrant root hair morphologies. PI-4Kβ1 interacts with RabA4b through a novel homology domain, specific to eukaryotic type IIIβ PI-4Ks, and PI-4Kβ1 also interacts with a Ca2+ sensor, AtCBL1, through its NH2 terminus. We propose that RabA4b recruitment of PI-4Kβ1 results in Ca2+-dependent generation of PI-4P on this compartment, providing a link between Ca2+ and PI-4,5P2–dependent signals during the polarized secretion of cell wall components in tip-growing root hair cells.
Collapse
Affiliation(s)
- Mary L Preuss
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | | | | | | | | |
Collapse
|
21
|
Fernández-Murray JP, McMaster CR. Glycerophosphocholine catabolism as a new route for choline formation for phosphatidylcholine synthesis by the Kennedy pathway. J Biol Chem 2005; 280:38290-6. [PMID: 16172116 DOI: 10.1074/jbc.m507700200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, neuropathy target esterase (Nte1p in yeast) deacylates phosphatidylcholine derived exclusively from the CDP-choline pathway to produce glycerophosphocholine (GroPCho) and release two fatty acids. The metabolic fate of GroPCho in eukaryotic cells is currently not known. Saccharomyces cerevisiae contains two open reading frames predicted to contain glycerophosphodiester phosphodiesterase domains, YPL110c and YPL206c. Pulse-chase experiments were conducted to monitor GroPCho metabolic fate under conditions known to alter CDP-choline pathway flux and consequently produce different rates of formation of GroPCho. From this analysis, it was revealed that GroPCho was metabolized to choline, with this choline serving as substrate for renewed synthesis of phosphatidylcholine. YPL110c played the major role in this metabolic pathway. To extend and confirm the metabolic studies, the ability of the ypl110cDelta and ypl206cDelta strains to utilize exogenous GroPCho or glycerophosphoinositol as the sole source of phosphate was analyzed. Consistent with our metabolic profiling, the ypl206cDelta strain grew on both substrates with a similar rate to wild type, whereas the ypl110cDelta strain grew very poorly on GroPCho and with moderately reduced growth on glycerophosphoinositol.
Collapse
Affiliation(s)
- J Pedro Fernández-Murray
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | |
Collapse
|
22
|
Fisher E, Almaguer C, Holic R, Griac P, Patton-Vogt J. Glycerophosphocholine-dependent growth requires Gde1p (YPL110c) and Git1p in Saccharomyces cerevisiae. J Biol Chem 2005; 280:36110-7. [PMID: 16141200 DOI: 10.1074/jbc.m507051200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycerophosphocholine is formed via the deacylation of the phospholipid phosphatidylcholine. The protein encoded by Saccharomyces cerevisiae open reading frame YPL110c effects glycerophosphocholine metabolism in vivo, most likely by acting as a glycerophosphocholine phosphodiesterase. Deletion of YPL110c causes an accumulation of glycerophosphocholine in cells prelabeled with [14C]choline. Correspondingly, overexpression of YPL110c results in reduced intracellular glycerophosphocholine in cells prelabeled with [14C]choline. Glycerophospho[3H]choline supplied in the growth medium accumulates to a much greater extent in the intracellular fraction of a YPL110Delta strain than in a wild type strain. Furthermore, glycerophospho[3H]choline accumulation requires the transporter encoded by GIT1, a known glycerophosphoinositol transporter. Growth on glycerophosphocholine as the sole phosphate source requires YPL110c and the Git1p permease. In contrast to glycerophosphocholine, glycerophosphoinositol metabolism is unaffected by deletion of YPL110c. The open reading frame YPL110c has been termed GDE1.
Collapse
Affiliation(s)
- Edward Fisher
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | | | | | | | |
Collapse
|
23
|
Williams ME, Torabinejad J, Cohick E, Parker K, Drake EJ, Thompson JE, Hortter M, Dewald DB. Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4,5)P2 and constitutive expression of the stress-response pathway. PLANT PHYSIOLOGY 2005; 138:686-700. [PMID: 15923324 PMCID: PMC1150389 DOI: 10.1104/pp.105.061317] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 03/25/2005] [Accepted: 03/28/2005] [Indexed: 05/02/2023]
Abstract
Phosphoinositides (PIs) are signaling molecules that regulate cellular events including vesicle targeting and interactions between membrane and cytoskeleton. Phosphatidylinositol (PtdIns)(4,5)P(2) is one of the best characterized PIs; studies in which PtdIns(4,5)P(2) localization or concentration is altered lead to defects in the actin cytoskeleton and exocytosis. PtdIns(4,5)P(2) and its derivative Ins(1,4,5)P(3) accumulate in salt, cold, and osmotically stressed plants. PtdIns(4,5)P(2) signaling is terminated through the action of inositol polyphosphate phosphatases and PI phosphatases including supressor of actin mutation (SAC) domain phosphatases. In some cases, these phosphatases also act on Ins(1,4,5)P(3). We have characterized the Arabidopsis (Arabidopsis thaliana) sac9 mutants. The SAC9 protein is different from other SAC domain proteins in several ways including the presence of a WW protein interaction domain within the SAC domain. The rice (Oryza sativa) and Arabidopsis SAC9 protein sequences are similar, but no apparent homologs are found in nonplant genomes. High-performance liquid chromatography studies show that unstressed sac9 mutants accumulate elevated levels of PtdIns(4,5)P(2) and Ins(1,4,5)P(3) as compared to wild-type plants. The sac9 mutants have characteristics of a constitutive stress response, including dwarfism, closed stomata, and anthocyanin accumulation, and they overexpress stress-induced genes and overaccumulate reactive-oxygen species. These results suggest that the SAC9 phosphatase is involved in modulating phosphoinsitide signals during the stress response.
Collapse
|
24
|
DeWald DB, Torabinejad J, Samant RS, Johnston D, Erin N, Shope JC, Xie Y, Welch DR. Metastasis Suppression by Breast Cancer Metastasis Suppressor 1 Involves Reduction of Phosphoinositide Signaling in MDA-MB-435 Breast Carcinoma Cells. Cancer Res 2005. [DOI: 10.1158/0008-5472.713.65.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Several molecules that suppress metastasis without suppressing tumorigenicity have been identified, but their mechanisms of action have not yet been determined. Many block growth at the secondary site, suggesting involvement in how cells respond to signals from the extracellular milieu. Breast cancer metastasis suppressor 1 (BRMS1)–transfected MDA-MB-435 cells were examined for modifications of phosphoinositide signaling as a potential mechanism for metastasis suppression. 435/BRMS1 cells expressed <10% of phosphatidylinositol-4, 5-bisphosphate compared with parental cells, whereas levels of the PtdIns(4)P and phosphatidylinositol-3-phosphate were unchanged. Inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] were decreased in 435/BRMS1 cells by ∼50%. Phosphatidylinositol-3,4,5-trisphosphate levels were undetectable in 435/BRMS1 cells, even when stimulated by exogenous insulin or platelet-derived growth factor. Immunofluorescence microscopy to examine cellular distribution confirmed that phosphatidylinositol-4,5-bisphosphate distribution with cells was unchanged but was uniformly decreased throughout the cell. Although the gross morphology of 435/BRMS1 cells is similar to the parent, filamentous actin was more readily apparent in 435/BRMS1. Intracellular calcium, measured using Fluo-3 and Fura-2 fluorescent calcium indicator dyes, was somewhat lower, but not statistically different in 435/BRMS1 compared with parental cell. However, when stimulated with platelet-derived growth factor, MDA-MB-435 cells, but not 435/BRMS1 cells mobilized intracellular calcium. Taken together, these results implicate signaling through phosphoinositides in the regulation of breast cancer metastasis, specifically metastasis that can be suppressed by BRMS1.
Collapse
Affiliation(s)
- Daryll B. DeWald
- 1Department of Biology, Utah State University, Logan, Utah
- 2National Foundation for Cancer Research, Center for Metastasis Research
| | - Javad Torabinejad
- 1Department of Biology, Utah State University, Logan, Utah
- 2National Foundation for Cancer Research, Center for Metastasis Research
| | - Rajeev S. Samant
- 4Department of Pathology, Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Derrick Johnston
- 1Department of Biology, Utah State University, Logan, Utah
- 2National Foundation for Cancer Research, Center for Metastasis Research
| | - Nuray Erin
- 3Jake Gittlen Research Institute, The Pennsylvania University College of Medicine, Hershey, Pennsylvania; and
| | | | - Yi Xie
- 4Department of Pathology, Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Danny R. Welch
- 2National Foundation for Cancer Research, Center for Metastasis Research
- 4Department of Pathology, Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
25
|
Almaguer C, Cheng W, Nolder C, Patton-Vogt J. Glycerophosphoinositol, a novel phosphate source whose transport is regulated by multiple factors in Saccharomyces cerevisiae. J Biol Chem 2004; 279:31937-42. [PMID: 15145930 DOI: 10.1074/jbc.m403648200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Git1p mediates the transport of the phospholipid metabolite, glycerophosphoinositol, into Saccharomyces cerevisiae. We report that phosphate limitation and inositol limitation affect GIT1 expression and Git1p transport activity via distinct mechanisms that involve multiple transcription factors. GIT1 transcript levels and Git1p activity are greater in cells starved for phosphate, with or without inositol limitation, than in cells only limited for inositol. Furthermore, the kinetics of GIT1 transcript accumulation and Git1p activity upon transfer of cells to phosphate starvation media are different from those obtained upon transfer of cells to inositol-free media. Pho2p and Pho4p are required for GIT1 expression and for Git1p transport activity under all growth conditions tested. In contrast, Ino2p and Ino4p are required for full GIT1 expression when inositol is limiting, with or without phosphate limitation, but not when only phosphate is limiting. Greatly reduced transport activity was detected in ino2Delta and ino4Delta cells under all growth conditions. A 300-base pair region of the GIT1 promoter containing potential Pho4p binding sites was shown to be required for full GIT1 expression. Git1p appears to act as a H(+)-symporter, and neither inositol nor phosphate effectively compete with glycerophosphoinositol for transport by Git1p. Glycerophosphoinositol was shown previously to support the growth of an inositol auxotroph. Remarkably, we now report that glycerophosphoinositol can act as the sole source of phosphate for the cell, providing functional relevance for the regulation of Git1p transport activity by phosphate.
Collapse
Affiliation(s)
- Claudia Almaguer
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | | | | | |
Collapse
|
26
|
Shaw JD, Hama H, Sohrabi F, DeWald DB, Wendland B. PtdIns(3,5)P2 is required for delivery of endocytic cargo into the multivesicular body. Traffic 2003; 4:479-90. [PMID: 12795693 DOI: 10.1034/j.1600-0854.2003.t01-1-00106.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The endocytic pathway transports cargo from the plasma membrane to early endosomes, where certain cargoes are sorted to the late endosome/multivesicular body. Biosynthetic cargo destined for the lysosome is also trafficked through the multivesicular body. Once delivered to the multivesicular body, cargo destined for the interior of the lysosome is selectively sorted into vesicles that bud into the lumen of the multivesicular body. These vesicles are released into the lumen of the lysosome upon the fusion of the multivesicular body and lysosomal limiting membranes. The yeast protein Fab1, which catalyzes the production of phosphatidylinositol (3,5) bisphosphate [PtdIns(3,5)P2], is necessary for proper sorting of biosynthetic cargo in the multivesicular body. Utilizing an endocytosis screen, we isolated a novel allele of FAB1 that contains a point mutation in the lipid kinase domain. Characterization of this allele revealed reduced PtdIns(3,5)P2 production, altered vacuole morphology, and biosynthetic protein sorting defects. We also found that endocytosis of the plasma membrane protein Ste3 is partially blocked downstream of the internalization step, and that delivery of the dye FM4-64 to the vacuole is delayed in fab1 mutants. Additionally, Ste3 is not efficiently sorted into multivesicular body vesicles in fab1 mutants and instead localizes to the vacuolar limiting membrane. These data show that PtdIns(3,5)P2 is necessary for proper trafficking and sorting of endocytic cargo through the late endosome/multivesicular body.
Collapse
Affiliation(s)
- Jonathan D Shaw
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA
| | | | | | | | | |
Collapse
|
27
|
Ha SA, Torabinejad J, DeWald DB, Wenk MR, Lucast L, De Camilli P, Newitt RA, Aebersold R, Nothwehr SF. The synaptojanin-like protein Inp53/Sjl3 functions with clathrin in a yeast TGN-to-endosome pathway distinct from the GGA protein-dependent pathway. Mol Biol Cell 2003; 14:1319-33. [PMID: 12686590 PMCID: PMC153103 DOI: 10.1091/mbc.e02-10-0686] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Yeast TGN resident proteins that frequently cycle between the TGN and endosomes are much more slowly transported to the prevacuolar/late endosomal compartment (PVC) than other proteins. However, TGN protein transport to the PVC is accelerated in mutants lacking function of Inp53p. Inp53p contains a SacI polyphosphoinositide phosphatase domain, a 5-phosphatase domain, and a proline-rich domain. Here we show that all three domains are required to mediate "slow delivery" of TGN proteins into the PVC. Although deletion of the proline-rich domain did not affect general membrane association, it caused localization to become less specific. The proline-rich domain was shown to bind to two proteins, including clathrin heavy chain, Chc1p. Unlike chc1 mutants, inp53 mutants do not mislocalize TGN proteins to the cell surface, consistent with the idea that Chc1p and Inp53p act at a common vesicular trafficking step but that Chc1p is used at other steps also. Like mutations in the AP-1 adaptor complex, mutations in INP53 exhibit synthetic growth and transport defects when combined with mutations in the GGA proteins. Taken together with other recent studies, our results suggest that Inp53p and AP-1/clathrin act together in a TGN-to-early endosome pathway distinct from the direct TGN-to-PVC pathway mediated by GGA/clathrin.
Collapse
Affiliation(s)
- Seon-Ah Ha
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lazar T, Scheglmann D, Gallwitz D. A novel phospholipid-binding protein from the yeast Saccharomyces cerevisiae with dual binding specificities for the transport GTPase Ypt7p and the Sec1-related Vps33p. Eur J Cell Biol 2002; 81:635-46. [PMID: 12553664 DOI: 10.1078/0171-9335-00290] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gene product of the Saccharomyces cerevisiae open reading frame YDR229w (named IVY1 for: Interacting with Vps33p and Ypt7p) was found to interact with both the GTPase Ypt7p and the Sec1-related Vps33 protein. While deletion of IVY1 does not lead to any recognized change in phenotype, overexpression of Ivy1p leads to fragmentation of the vacuole, missorting of the vacuolar enzyme carboxypeptidase Y (CPY) to the exterior of the cell, and an accumulation of multivesicular bodies inside the cell. All effects caused by the overexpression of Ivy1p can be reset by simultaneously raising the amount of Vps33p. This suppression activity of Vps33p suggests that Ivy1p and Vps33p at least partially counteract the action of each other in the cell. The intracellular level of Ivy1p increases in cells approaching stationary growth phase at which part of the protein is located at the rim of the vacuole. In addition to its specific interactions with members of two regulatory protein families, Ivy1p in vitro shows a marked propensity for binding phospholipids with high affinity.
Collapse
Affiliation(s)
- Thomas Lazar
- Department of Molecular Genetics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
29
|
Saiardi A, Sciambi C, McCaffery JM, Wendland B, Snyder SH. Inositol pyrophosphates regulate endocytic trafficking. Proc Natl Acad Sci U S A 2002; 99:14206-11. [PMID: 12391334 PMCID: PMC137862 DOI: 10.1073/pnas.212527899] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The high energy potential and rapid turnover of the recently discovered inositol pyrophosphates, such as diphosphoinositol-pentakisphosphate and bis-diphosphoinositol-tetrakisphosphate, suggest a dynamic cellular role, but no specific functions have yet been established. Using several yeast mutants with defects in inositol phosphate metabolism, we identify dramatic membrane defects selectively associated with deficient formation of inositol pyrophosphates. We show that this phenotype reflects specific abnormalities in endocytic pathways and not other components of membrane trafficking. Thus, inositol pyrophosphates are major regulators of endocytosis.
Collapse
Affiliation(s)
- Adolfo Saiardi
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
30
|
Chen R, Kang VH, Chen J, Shope JC, Torabinejad J, DeWald DB, Prestwich GD. A monoclonal antibody to visualize PtdIns(3,4,5)P(3) in cells. J Histochem Cytochem 2002; 50:697-708. [PMID: 11967281 DOI: 10.1177/002215540205000511] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] is a second messenger produced in response to agonist stimulation. Traditionally, visualization of phosphoinositide polyphosphates (PtdInsP(n)) in living cells is accomplished using chimeric green fluorescent protein (GFP)-pleckstrin homology (PH) domain proteins, while PtdInsP(n) quantitation is accomplished by extraction and separation of radiolabeled cellular PtdInsP(n)s. Here we describe preparation of a covalent protein-PtdIns(3,4,5)P(3) immunogen, characterization of binding selectivity of an anti-PtdIns(3,4,5)P(3) IgM, and immunodetection of PtdIns(3,4,5)P(3) in stimulated mammalian cells. This antibody has greater than three orders of magnitude selectivity for binding PtdIns(3,4,5)P(3) relative to its precursor, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), and is therefore optimal for studies of cell function. The immunodetection in platelet-derived growth factor (PDGF)-stimulated NIH 3T3 cells was benchmarked against HPLC analysis of [3H]-myo-inositol-labeled cellular PtdInsP(n)s. In addition, the changes in subcellular amounts and localizations of both PtdIns(3,4,5)P(3) and PtdIns(4,5)P(2) in stimulated NIH 3T3 fibroblasts and human neutrophils were observed by immunofluorescence. In insulin- or PDGF-stimulated fibroblasts, PtdIns(3,4,5)P(3) levels increased in the cytoplasm, peaking at 10 min. In contrast, increases in the PtdIns(4,5)P(2) levels were detected in nuclei, corresponding to the production of new substrate following depletion by phosphoinositide (PI) 3-kinase.
Collapse
Affiliation(s)
- Riyan Chen
- Center for Cell Signaling, Salt Lake City, Utah 84108, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Ha SA, Bunch JT, Hama H, DeWald DB, Nothwehr SF. A novel mechanism for localizing membrane proteins to yeast trans-Golgi network requires function of synaptojanin-like protein. Mol Biol Cell 2001; 12:3175-90. [PMID: 11598201 PMCID: PMC60165 DOI: 10.1091/mbc.12.10.3175] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Localization of resident membrane proteins to the yeast trans-Golgi network (TGN) involves both their retrieval from a prevacuolar/endosomal compartment (PVC) and a "slow delivery" mechanism that inhibits their TGN-to-PVC transport. A screen for genes required for the slow delivery mechanism uncovered INP53, a gene encoding a phosphoinositide phosphatase. A retrieval-defective model TGN protein, A(F-->A)-ALP, was transported to the vacuole in inp53 mutants approximately threefold faster than in wild type. Inp53p appears to function in a process distinct from PVC retrieval because combining inp53 with mutations that block retrieval resulted in a much stronger phenotype than either mutation alone. In vps27 strains defective for both anterograde and retrograde transport out of the PVC, a loss of Inp53p function markedly accelerated the rate of transport of TGN residents A-ALP and Kex2p into the PVC. Inp53p function is cargo specific because a loss of Inp53p function had no effect on the rate of Vps10p transport to the PVC in vps27 cells. The rate of early secretory pathway transport appeared to be unaffected in inp53 mutants. Cell fractionation experiments suggested that Inp53p associates with Golgi or endosomal membranes. Taken together, these results suggest that a phosphoinositide signaling event regulates TGN-to-PVC transport of select cargo proteins.
Collapse
Affiliation(s)
- S A Ha
- Division of Biological Sciences, University of Missouri, Columbia, 65211, USA
| | | | | | | | | |
Collapse
|
32
|
Heilmann I, Perera IY, Gross W, Boss WF. Plasma membrane phosphatidylinositol 4,5-bisphosphate levels decrease with time in culture. PLANT PHYSIOLOGY 2001; 126:1507-18. [PMID: 11500549 PMCID: PMC117150 DOI: 10.1104/pp.126.4.1507] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2001] [Revised: 04/17/2001] [Accepted: 04/19/2001] [Indexed: 05/18/2023]
Abstract
During the stationary phase of growth, after 7 to 12 d in culture, the levels of phosphatidylinositol 4,5-bisphosphate (PtdInsP(2)) decreased by 75% in plasma membranes of the red alga Galdieria sulphuraria. Concomitant with the decrease in PtdInsP(2) levels in plasma membranes, there was an increase in PtdInsP(2) in microsomes, suggesting that the levels of plasma membrane PtdInsP(2) are regulated differentially. The decline of PtdInsP(2) in plasma membranes was accompanied by a 70% decrease in the specific activity of PtdInsP kinase and by reduced levels of protein cross-reacting with antisera against a conserved PtdInsP kinase domain. Upon osmotic stimulation, the loss of PtdInsP(2)from the plasma membrane increased from 10% in 7-d-old cells to 60% in 12-d-old cells, although the levels of inositol 1,4,5-trisphosphate (InsP(3)) produced in whole cells were roughly equal at both times. When cells with low plasma membrane PtdInsP(2) levels were osmotically stimulated, a mild osmotic stress (12.5 mM KCl) activated PtdInsP kinase prior to InsP(3) production, whereas in cells with high plasma membrane PtdInsP(2), more severe stress (250 mM KCl) was required to induce an increase in PtdInsP kinase activity. The differential regulation of a plasma membrane signaling pool of PtdInsP(2) is discussed with regard to the implications for understanding the responsive state of cells.
Collapse
Affiliation(s)
- I Heilmann
- Department of Botany, North Carolina State University, Raleigh, NC 27695-7612, USA
| | | | | | | |
Collapse
|
33
|
DeWald DB, Torabinejad J, Jones CA, Shope JC, Cangelosi AR, Thompson JE, Prestwich GD, Hama H. Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed arabidopsis. PLANT PHYSIOLOGY 2001; 126:759-69. [PMID: 11402204 PMCID: PMC111166 DOI: 10.1104/pp.126.2.759] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2000] [Revised: 10/12/2000] [Accepted: 01/04/2001] [Indexed: 05/05/2023]
Abstract
The phosphoinositide phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] is a key signaling molecule in animal cells. It can be hydrolyzed to release 1,2-diacyglycerol and inositol 1,4,5-trisphosphate (IP(3)), which in animal cells lead to protein kinase C activation and cellular calcium mobilization, respectively. In addition to its critical roles in constitutive and regulated secretion of proteins, PtdIns(4,5)P(2) binds to proteins that modify cytoskeletal architecture and phospholipid constituents. Herein, we report that Arabidopsis plants grown in liquid media rapidly increase PtdIns(4,5)P(2) synthesis in response to treatment with sodium chloride, potassium chloride, and sorbitol. These results demonstrate that when challenged with salinity and osmotic stress, terrestrial plants respond differently than algae, yeasts, and animal cells that accumulate different species of phosphoinositides. We also show data demonstrating that whole-plant IP(3) levels increase significantly within 1 min of stress initiation, and that IP(3) levels continue to increase for more than 30 min during stress application. Furthermore, using the calcium indicators Fura-2 and Fluo-3 we show that root intracellular calcium concentrations increase in response to stress treatments. Taken together, these results suggest that in response to salt and osmotic stress, Arabidopsis uses a signaling pathway in which a small but significant portion of PtdIns(4,5)P(2) is hydrolyzed to IP(3). The accumulation of IP(3) occurs during a time frame similar to that observed for stress-induced calcium mobilization. These data also suggest that the majority of the PtdIns(4,5)P(2) synthesized in response to salt and osmotic stress may be utilized for cellular signaling events distinct from the canonical IP(3) signaling pathway.
Collapse
Affiliation(s)
- D B DeWald
- Department of Biology, Utah State University, Logan, Utah 84322-5305, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Stratford S, DeWald DB, Summers SA. Ceramide dissociates 3'-phosphoinositide production from pleckstrin homology domain translocation. Biochem J 2001; 354:359-68. [PMID: 11171115 PMCID: PMC1221664 DOI: 10.1042/0264-6021:3540359] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Numerous hormones, cytokines and transforming oncogenes activate phosphoinositide 3-kinase (PI-3K), a lipid kinase that initiates signal transduction cascades regulating cellular proliferation, survival, protein synthesis and glucose metabolism. PI-3K catalyses the production of the 3'-phosphoinositides PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3), which recruit downstream effector enzymes to the membrane via their pleckstrin homology (PH) domains. Recent studies have indicated that another signalling lipid, the sphingolipid ceramide, inhibits several PI-3K-dependent events, including insulin-stimulated glucose uptake and growth-factor-stimulated cell survival. Here we show that ceramide analogues specifically prevent the recruitment of the PtdIns(3,4,5)P(3)-binding proteins Akt/protein kinase B (PKB) or the general receptor for phosphoinositides-1 (GRP1). Specifically, the short-chain ceramide derivative C2-ceramide inhibited the platelet-derived growth factor (PDGF)-stimulated translocation of full-length Akt/PKB, as well as truncated proteins encoding only the PH domains of Akt/PKB or GRP1. C2-ceramide did not alter the membrane localization of the PH domain for phospholipase Cdelta, which preferentially binds PtdIns(4,5)P(2), nor did it affect the PDGF-stimulated production of PtdIns(3,4)P(2) or PtdIns(3,4,5)P(3). Interestingly, a glucosylceramide synthase inhibitor, 1-phenyl-2-decanoylamino-3-morpholinopropan-1-ol (PDMP), shown previously to increase intracellular ceramide concentrations without affecting PI-3K [Rani, Abe, Chang, Rosenzweig, Saltiel, Radin and Shayman (1995) J. Biol. Chem. 270, 2859-2867], recapitulated the inhibitory effects of C2-ceramide on PDGF-stimulated Akt/PKB phosphorylation. These studies indicate that ceramide prevents the translocation of certain PtdIns(3,4,5)P(3)-binding proteins, despite the presence of a full complement of PtdIns(3,4)P(2) or PtdIns(3,4,5)P(3). Furthermore, these findings suggest a mechanism by which stimuli that induce ceramide synthesis could negate the fundamental signalling pathways initiated by PI-3K.
Collapse
Affiliation(s)
- S Stratford
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | | | | |
Collapse
|