1
|
" Candidatus Liberibacter asiaticus" Secretes Nonclassically Secreted Proteins That Suppress Host Hypersensitive Cell Death and Induce Expression of Plant Pathogenesis-Related Proteins. Appl Environ Microbiol 2021; 87:AEM.00019-21. [PMID: 33579681 PMCID: PMC8091116 DOI: 10.1128/aem.00019-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although emerging evidence indicates that bacteria extracellularly export many cytoplasmic proteins referred to as non-classically secreted proteins (ncSecPs) for their own benefit, the mechanisms and functional significance of the ncSecPs in extracellular milieu remain elusive. "Candidatus Liberibacter asiaticus" (CLas) is a fastidious Gram-negative bacterium that causes Huanglongbing (HLB), the most globally devastating citrus disease. In this study, using the SecretomeP program coupled with an Escherichia coli alkaline phosphatase assay, we identified 27 ncSecPs from the CLas genome. Further, we demonstrated that 10 of these exhibited significantly higher levels of gene expression in citrus than in psyllid hosts, and particularly suppressed hypersensitive response (HR)-based cell death and H2O2 overaccumulation in Nicotiana benthamiana, indicating their opposing effects on early plant defenses. However, these proteins also dramatically enhanced the gene expression of pathogenesis-related 1 protein (PR-1), PR-2, and PR-5, essential components of plant defense mechanisms. Additional experiments disclosed that the increased expression of these PR genes, in particular PR-1 and PR-5, could negatively regulate HR-based cell death development and H2O2 accumulation. Remarkably, CLas infection clearly induced gene expression of PR-1, PR-2, and PR-5 in both HLB-tolerant and HLB-susceptible species of citrus plants. Taken together, we hypothesized that CLas has evolved an arsenal of ncSecPs that function cooperatively to overwhelm the early plant defenses by inducing host PR genes.IMPORTANCE In this study, we present a combined computational and experimental methodology that allows a rapid and efficient identification of the ncSecPs from bacteria, in particular the unculturable bacteria like CLas. Meanwhile, the study determined that a number of CLas ncSecPs suppressed HR-based cell death, and thus indicated a novel role for the bacterial ncSecPs in extracellular milieu. More importantly, these ncSecPs were found to suppress cell death presumably by utilizing host PR proteins. The data overall provide a novel clue to understand the CLas pathogenesis and also suggest a new way by which phytopathogens manipulate host cellular machinery to establish infection.
Collapse
|
2
|
Kopeckova M, Pavkova I, Stulik J. Diverse Localization and Protein Binding Abilities of Glyceraldehyde-3-Phosphate Dehydrogenase in Pathogenic Bacteria: The Key to its Multifunctionality? Front Cell Infect Microbiol 2020; 10:89. [PMID: 32195198 PMCID: PMC7062713 DOI: 10.3389/fcimb.2020.00089] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Bacterial proteins exhibiting two or more unrelated functions, referred to as moonlighting proteins, are suggested to contribute to full virulence manifestation in pathogens. An expanding number of published studies have revealed the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to be a multitasking protein with virulence impact in a number of pathogenic bacteria. This protein can be detected on the bacterial surface or outside the bacterial cell, where it interacts with host proteins. In this way, GAPDH is able to modulate various pathogenic processes. Moreover, it has been shown to be involved in non-enzymatic processes inside the bacterial cell. In this mini review, we summarize main findings concerning the multiple localization and protein interactions of GAPDH derived from bacterial pathogens of humans. We also briefly discuss problems associated with using GAPDH as a vaccine antigen and endeavor to inspire further research to fill gaps in the existing knowledge.
Collapse
Affiliation(s)
- Monika Kopeckova
- Department of Molecular Pathology and Biology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Ivona Pavkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
3
|
Non-classical Protein Excretion Is Boosted by PSMα-Induced Cell Leakage. Cell Rep 2018; 20:1278-1286. [PMID: 28793253 DOI: 10.1016/j.celrep.2017.07.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/06/2017] [Accepted: 07/18/2017] [Indexed: 02/04/2023] Open
Abstract
Release of cytoplasmic proteins into the supernatant occurs both in bacteria and eukaryotes. Because the underlying mechanism remains unclear, the excretion of cytoplasmic proteins (ECP) has been referred to as "non-classical protein secretion." We show that none of the known specific protein transport systems of Gram-positive bacteria are involved in ECP. However, the expression of the cationic and amphipathic α-type phenol-soluble modulins (PSMs), particularly of PSMα2, significantly increase ECP, while PSMβ peptides or δ-toxin have no effect on ECP. Because psm expression is strictly controlled by the accessory gene regulator (agr), ECP is also reduced in agr-negative mutants. PSMα peptides damage the cytoplasmic membrane, as indicated by the release of not only CPs but also lipids, nucleic acids, and ATP. Thus, our results show that in Staphylococcus aureus, PSMα peptides non-specifically boost the translocation of CPs by their membrane-damaging activity.
Collapse
|
4
|
Kinoshita H, Ohuchi S, Arakawa K, Watanabe M, Kitazawa H, Saito T. Isolation of lactic acid bacteria bound to the porcine intestinal mucosa and an analysis of their moonlighting adhesins. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2016; 35:185-196. [PMID: 27867805 PMCID: PMC5107636 DOI: 10.12938/bmfh.16-012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/10/2016] [Indexed: 12/20/2022]
Abstract
The adhesion of lactic acid bacteria (LAB) to the intestinal mucosa is one of the criteria in selecting for probiotics. Eighteen LAB were isolated from porcine
intestinal mucin (PIM): ten strains of Lactobacillus, six strains of Weissella, and two strains of
Streptococcus. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for phosphate-buffered saline (PBS) extracts from
the LAB, many bands were detected in half of the samples, while a few and/or no clear bands were detected in the other half. All six of the selected LAB showed
adhesion to PIM. L. johnsonii MYU 214 and MYU 221 showed adhesion at more than 10%. W. viridescens MYU 208, L.
reuteri MYU 213, L. mucosae MYU 225, and L. agilis MYU 227 showed medium levels of adhesion at 5.9–8.3%. In a
comprehensive analysis for the adhesins in the PBS extracts using a receptor overlay analysis, many moonlighting proteins were detected and identified as
candidates for adhesins: GroEL, enolase, and elongation factor Tu in MYU 208; peptidase C1, enolase, formyl-CoA transferase, phosphoglyceromutase,
triosephosphate isomerase, and phosphofructokinase in MYU 221; and DnaK, enolase, and phosphoglycerate kinase in MYU 227. These proteins in the PBS extracts,
which included such things as molecular chaperones and glycolytic enzymes, may play important roles as adhesins.
Collapse
Affiliation(s)
- Hideki Kinoshita
- Laboratory of Food Biochemistry, Department of Bioscience, School of Agriculture, Tokai University, Kawayo, Minami Aso-mura, Aso-gun, Kumamoto, Japan
| | - Satoko Ohuchi
- Department of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, Japan
| | - Kensuke Arakawa
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Okayama, Japan
| | - Masamichi Watanabe
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Haruki Kitazawa
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, Japan
| | - Tadao Saito
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
5
|
Excreted Cytoplasmic Proteins Contribute to Pathogenicity in Staphylococcus aureus. Infect Immun 2016; 84:1672-81. [PMID: 27001537 DOI: 10.1128/iai.00138-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 03/13/2016] [Indexed: 11/20/2022] Open
Abstract
Excretion of cytoplasmic proteins in pro- and eukaryotes, also referred to as "nonclassical protein export," is a well-known phenomenon. However, comparatively little is known about the role of the excreted proteins in relation to pathogenicity. Here, the impact of two excreted glycolytic enzymes, aldolase (FbaA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), on pathogenicity was investigated in Staphylococcus aureus Both enzymes bound to certain host matrix proteins and enhanced adherence of the bacterial cells to host cells but caused a decrease in host cell invasion. FbaA and GAPDH also bound to the cell surfaces of staphylococcal cells by interaction with the major autolysin, Atl, that is involved in host cell internalization. Surprisingly, FbaA showed high cytotoxicity to both MonoMac 6 (MM6) and HaCaT cells, while GAPDH was cytotoxic only for MM6 cells. Finally, the contribution of external FbaA and GAPDH to S. aureus pathogenicity was confirmed in an insect infection model.
Collapse
|
6
|
Götz F, Yu W, Dube L, Prax M, Ebner P. Excretion of cytosolic proteins (ECP) in bacteria. Int J Med Microbiol 2014; 305:230-7. [PMID: 25596889 DOI: 10.1016/j.ijmm.2014.12.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Excretion of cytosolic proteins (ECP) has been reported in bacteria and eukaryotes. As none of the classical signal peptide (SP) dependent or SP-independent pathways could be associated with ECP, it has been also referred to as 'non-classical protein export'. When microbiologists first began to study this subject in 1990, mainly singular cytoplasmic proteins were investigated, such as GAPDH at the cell surface and in the supernatant of pathogenic streptococci or glutamine synthetase (GlnA) as a major extracellular protein in pathogenic mycobacteria. Later, with the rising popularity of proteomics, it became obvious that the secretome of most bacteria contained a copious amount of cytosolic proteins. In particular ancient proteins such as glycolytic enzymes, chaperones, translation factors or enzymes involved in detoxification of reactive oxygen were found in the supernatants. As the excreted proteins do not possess a common motive, the most widespread opinion is that ECP is due to cell lysis. Indeed, upregulation of autolysins or distortion of the murein structure increased ECP, suggesting that enhanced ECP is some sort of survival strategy to counteract osmotic stress. However, in the meantime there are mounting evidences and hints that speak against cell lysis as a primary mechanism for ECP. Very likely, ECP belongs to the normal life cycle of bacteria and involves a programmed process. This review provides a brief overview of the 'non-classical protein export'.
Collapse
Affiliation(s)
- Friedrich Götz
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany.
| | - Wenqi Yu
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Linda Dube
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Marcel Prax
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Patrick Ebner
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Seidler NW. GAPDH, as a Virulence Factor. GAPDH: BIOLOGICAL PROPERTIES AND DIVERSITY 2013; 985:149-78. [DOI: 10.1007/978-94-007-4716-6_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Comparative transcriptomic and proteomic analyses of Trichomonas vaginalis following adherence to fibronectin. Infect Immun 2012; 80:3900-11. [PMID: 22927047 DOI: 10.1128/iai.00611-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The morphological transformation of Trichomonas vaginalis from an ellipsoid form in batch culture to an adherent amoeboid form results from the contact of parasites with vaginal epithelial cells and with immobilized fibronectin (FN), a basement membrane component. This suggests host signaling of the parasite. We applied integrated transcriptomic and proteomic approaches to investigate the molecular responses of T. vaginalis upon binding to FN. A transcriptome analysis was performed by using large-scale expressed-sequence-tag (EST) sequencing. A total of 20,704 ESTs generated from batch culture (trophozoite-EST) versus FN-amoeboid trichomonad (FN-EST) cDNA libraries were analyzed. The FN-EST library revealed decreased amounts of transcripts that were of lower abundance in the trophozoite-EST library. There was a shift by FN-bound organisms to the expression of transcripts encoding essential proteins, possibly indicating the expression of genes for adaptation to the morphological changes needed for the FN-adhesive processes. In addition, we identified 43 differentially expressed proteins in the proteomes of FN-bound and unbound trichomonads. Among these proteins, cysteine peptidase, glyceraldehyde-3-phosphate dehydrogenase (an FN-binding protein), and stress-related proteins were upregulated in the FN-adherent cells. Stress-related genes and proteins were highly expressed in both the transcriptome and proteome of FN-bound organisms, implying that these genes and proteins may play critical roles in the response to adherence. This is the first report of a comparative proteomic and transcriptomic analysis after the binding of T. vaginalis to FN. This approach may lead to the discovery of novel virulence genes and affirm the role of genes involved in disease pathogenesis. This knowledge will permit a greater understanding of the complex host-parasite interplay.
Collapse
|
9
|
KINOSHITA H, IMOTO S, SUDA Y, ISHIDA M, WATANABE M, KAWAI Y, KITAZAWA H, MIURA K, HORII A, SAITO T. Proposal of screening method for intestinal mucus adhesive lactobacilli using the enzymatic activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Anim Sci J 2012; 84:150-8. [DOI: 10.1111/j.1740-0929.2012.01054.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Oliveira L, Madureira P, Andrade EB, Bouaboud A, Morello E, Ferreira P, Poyart C, Trieu-Cuot P, Dramsi S. Group B streptococcus GAPDH is released upon cell lysis, associates with bacterial surface, and induces apoptosis in murine macrophages. PLoS One 2012; 7:e29963. [PMID: 22291899 PMCID: PMC3264557 DOI: 10.1371/journal.pone.0029963] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 12/09/2011] [Indexed: 11/18/2022] Open
Abstract
Glyceraldehyde 3-phosphate dehydrogenases (GAPDH) are cytoplasmic glycolytic enzymes that, despite lacking identifiable secretion signals, have been detected at the surface of several prokaryotic and eukaryotic organisms where they exhibit non-glycolytic functions including adhesion to host components. Group B Streptococcus (GBS) is a human commensal bacterium that has the capacity to cause life-threatening meningitis and septicemia in newborns. Electron microscopy and fluorescence-activated cell sorter (FACS) analysis demonstrated the surface localization of GAPDH in GBS. By addressing the question of GAPDH export to the cell surface of GBS strain NEM316 and isogenic mutant derivatives of our collection, we found that impaired GAPDH presence in the surface and supernatant of GBS was associated with a lower level of bacterial lysis. We also found that following GBS lysis, GAPDH can associate to the surface of many living bacteria. Finally, we provide evidence for a novel function of the secreted GAPDH as an inducer of apoptosis of murine macrophages.
Collapse
Affiliation(s)
- Liliana Oliveira
- Universidade do Porto, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Centre National de la Recherche Scientifique (UMR 8104), Paris, France
- Institut National de la Santé et de la Recherche Médicale, U1016, Paris, France
| | - Pedro Madureira
- Universidade do Porto, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Elva Bonifácio Andrade
- Universidade do Porto, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Abdelouhab Bouaboud
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Centre National de la Recherche Scientifique (UMR 8104), Paris, France
- Institut National de la Santé et de la Recherche Médicale, U1016, Paris, France
| | - Eric Morello
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-positif, CNRS URA 2172, Paris, France
| | - Paula Ferreira
- Universidade do Porto, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Claire Poyart
- Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Centre National de la Recherche Scientifique (UMR 8104), Paris, France
- Institut National de la Santé et de la Recherche Médicale, U1016, Paris, France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-positif, CNRS URA 2172, Paris, France
| | - Shaynoor Dramsi
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-positif, CNRS URA 2172, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Localization of nephritis-associated plasmin receptor in acute poststreptococcal glomerulonephritis. Hum Pathol 2010; 41:1276-85. [DOI: 10.1016/j.humpath.2010.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 11/24/2022]
|
12
|
Identification of the binding domain of Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase for Porphyromonas gingivalis major fimbriae. Infect Immun 2009; 77:5130-8. [PMID: 19737900 DOI: 10.1128/iai.00439-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Porphyromonas gingivalis forms communities with antecedent oral biofilm constituent streptococci. P. gingivalis major fimbriae bind to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) present on the streptococcal surface, and this interaction plays an important role in P. gingivalis colonization. This study identified the binding domain of Streptococcus oralis GAPDH for P. gingivalis fimbriae. S. oralis recombinant GAPDH (rGAPDH) was digested with lysyl endopeptidase. Cleaved fragments of rGAPDH were applied to a reverse-phase high-pressure liquid chromatograph equipped with a C18 column. Each peak was collected; the binding activity toward P. gingivalis recombinant fimbrillin (rFimA) was analyzed with a biomolecular interaction analysis system. The fragment displaying the strongest binding activity was further digested with various proteinases, after which the binding activity of each fragment was measured. The amino acid sequence of each fragment was determined by direct sequencing, mass spectrometric analysis, and amino acid analysis. Amino acid residues 166 to 183 of S. oralis GAPDH exhibited the strongest binding activity toward rFimA; confocal laser scanning microscopy revealed that the synthetic peptide corresponding to amino acid residues 166 to 183 of S. oralis GAPDH (pep166-183, DNFGVVEGLMTTIHAYTG) inhibits S. oralis-P. gingivalis biofilm formation in a dose-dependent manner. Moreover, pep166-183 inhibited interbacterial biofilm formation by several oral streptococci and P. gingivalis strains with different types of FimA. These results indicate that the binding domain of S. oralis GAPDH for P. gingivalis fimbriae exists within the region encompassing amino acid residues 166 to 183 of GAPDH and that pep166-183 may be a potent inhibitor of P. gingivalis colonization in the oral cavity.
Collapse
|
13
|
Kinoshita H, Wakahara N, Watanabe M, Kawasaki T, Matsuo H, Kawai Y, Kitazawa H, Ohnuma S, Miura K, Horii A, Saito T. Cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Lactobacillus plantarum LA 318 recognizes human A and B blood group antigens. Res Microbiol 2008; 159:685-91. [PMID: 18790050 DOI: 10.1016/j.resmic.2008.07.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 07/16/2008] [Accepted: 07/29/2008] [Indexed: 11/25/2022]
Abstract
Lactobacillus plantarum LA 318 is a potential probiotic strain isolated from normal human intestinal tissue that shows high adhesion to human colonic mucin mediated by the bacterial cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We report the adhesion mechanism of the lactobacilli is in part due to GAPDH binding to human ABO-type blood group antigens expressed on human colonic mucin (HCM). After periodate oxidation of HCM, adhesion of L. plantarum LA 318 bacterial cells significantly decreased compared to normal HCM. A BIACORE binding assay of GAPDH to blood group antigens was then performed. High binding was observed to A and B group antigens, while binding to H group antigen was lower (P<0.01). No interaction was observed between GAPDH and various monosaccharides. Furthermore, GAPDH binding to the B-trisaccharide biotinyl polymer (BP)-probe [Galalpha1-3 (Fucalpha1-2) Gal-] was significantly higher as compared to B-disaccharide, Lewis D-trisaccharide, 3-fucosyl-N-acetylglucosamine and alpha-N-acetylneuraminic acid BP-probes. The data suggests the trisaccharide structure is important in binding to the blood group antigens. The binding of GAPDH to HCM significantly decreased after incubation with NAD+. This suggests that the NAD binding domain on GAPDH may be related to binding to HCM.
Collapse
Affiliation(s)
- Hideki Kinoshita
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1,Aoba-ku, Sendai, Miyagi 981-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Oda T, Tamura K, Yoshizawa N, Sugisaki T, Matsumoto K, Hattori M, Sawai T, Namikoshi T, Yamada M, Kikuchi Y, Suzuki S, Miura S. Elevated urinary plasmin activity resistant to alpha2-antiplasmin in acute poststreptococcal glomerulonephritis. Nephrol Dial Transplant 2008; 23:2254-9. [PMID: 18223261 DOI: 10.1093/ndt/gfm937] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND A pathogenic role of intraglomerular plasmin bound to nephritogenic antigen (nephritis-associated plasmin receptor, NAPlr) and resistant to physiologic inhibitors such as alpha(2)-antiplasmin (alpha(2)-AP) has recently been proposed in acute poststreptococcal glomerulonephritis (APSGN). To confirm this concept, we analysed the urinary profile of plasmin cascade in APSGN patients. METHODS Urine samples from 10 patients with APSGN, 12 patients with IgA nephropathy (IgAN), 10 patients with streptococcal infection without nephritis (SI) and 10 healthy control subjects were analysed. The alpha(2)-AP-resistant plasmin activity was assessed by a chromogenic assay after alpha(2)-AP was added to each urine sample. Urinary plasminogen activator (PA) and plasmin were further analysed by polyacrylamide gel zymography. Urinary NAPlr was assessed by western blot analysis in selected samples. RESULTS Urinary alpha(2)-AP-resistant plasmin activity corrected for creatinine concentration (units/g x creatinine) was significantly higher in patients with APSGN (2.99 +/- 0.63) than in patients with IgAN (1.02 +/- 0.20, P < 0.01), SI (0.79 +/- 0.17, P < 0.01), or in healthy control subjects (0.73 +/- 0.18, P < 0.01). This tendency was confirmed by casein gel zymography. However urinary PA activity assessed by plasminogen-casein gel zymography did not differ between groups. NAPlr was detected in the urine of APSGN patients. CONCLUSIONS We found elevated urinary plasmin activity resistant to alpha(2)-AP, which may be due to urinary excretion of NAPlr in patients with APSGN. This result supports the pathogenic role of the NAPlr-plasmin complex in the development of APSGN. Furthermore, alpha(2)-AP-resistant urinary plasmin activity may be useful as a diagnostic marker for APSGN.
Collapse
Affiliation(s)
- Takashi Oda
- Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa-shi, Saitama 359-8513, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kinoshita H, Uchida H, Kawai Y, Kawasaki T, Wakahara N, Matsuo H, Watanabe M, Kitazawa H, Ohnuma S, Miura K, Horii A, Saito T. Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. J Appl Microbiol 2008; 104:1667-74. [PMID: 18194256 DOI: 10.1111/j.1365-2672.2007.03679.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To characterize the adhesion molecule of Lactobacillus plantarum LA 318 that shows high adhesion to human colonic mucin (HCM). METHODS AND RESULTS The adhesion test used the BIACORE assay where PBS-washed bacterial cells showed a significant decrease in adherence to HCM than distilled water-washed cells. A component in the PBS wash fraction adhered to the HCM and a main protein was detected as a c. 40-kDa band using SDS-PAGE. Using homology comparisons of the N-terminal amino acid sequences compared with sequence databases, this protein was identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The DNA sequence of LA 318 GAPDH was 100% identical to the GAPDH (gapB) of L. plantarum WCFS1. The purified GAPDH adhered to HCM. CONCLUSIONS We found the adhesin of L. plantarum LA 318 to HCM in its culture PBS wash fraction. The molecule was identified as GAPDH. Because LA 318 possesses the same adhesin as many pathogens, the lactobacilli GAPDH may compete with pathogens infecting the intestine. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report showing GAPDH expressed on the cell surface of lactobacilli adheres to mucin suggesting L. plantarum LA 318 adheres to HCM using GAPDH binding activity to colonize the human intestinal mucosa.
Collapse
Affiliation(s)
- H Kinoshita
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
There is mounting evidence that the hemostatic system is critical in host responses to bacterial infection. Invasive bacteria have evolved virulence strategies to interact with host hemostatic factors such as plasminogen and fibrinogen for infection. Furthermore, genetic variations in host hemostatic factors also influence host response to bacterial infection.
Collapse
Affiliation(s)
- Hongmin Sun
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
17
|
Coyle EM, Blazer LL, White AA, Hess JL, Boyle MDP. Practical applications of high-affinity, albumin-binding proteins from a group G streptococcal isolate. Appl Microbiol Biotechnol 2006; 71:39-45. [PMID: 16317541 DOI: 10.1007/s00253-005-0097-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 07/08/2005] [Accepted: 07/10/2005] [Indexed: 11/24/2022]
Abstract
Binding proteins that have high affinities for mammalian plasma proteins that are expressed on the surface of bacteria have proven valuable for the purification and detection of several biologically important molecules from human and animal plasma or serum. In this study, we have isolated a high affinity albumin-binding molecule from a group G streptococcal isolate of bovine origin and have demonstrated that the isolated protein can be biotinylated without loss of binding activity and can be used as a tracer for quantification of human serum albumin (HSA). The binding protein can be immobilized and used as a selective capture reagent in a competitive ELISA format using a biotinylated HSA tracer. In this assay format, the sensitivity of detection for 50% inhibition of binding of HSA was less than 1 microg/ml. When attached to the bacterial surface, this binding protein can be used to deplete albumin from human plasma, as analyzed by surface-enhanced laser desorption ionization time of flight mass spectrometry.
Collapse
Affiliation(s)
- Emily M Coyle
- Department of Biology, Juniata College, 1700 Moore St., Huntingdon, PA 16652, USA
| | | | | | | | | |
Collapse
|
18
|
Hess JL, Boyle MDP. Fibrinogen fragment D is necessary and sufficient to anchor a surface plasminogen-activating complex in Streptococcus pyogenes. Proteomics 2006; 6:375-8. [PMID: 16287173 DOI: 10.1002/pmic.200500189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, the importance of different domains of the fibrinogen molecule in the binding and assembly of a surface plasminogen (plgn) activator has been analyzed. This was achieved using SELDI technology that enabled dissociation of bound fragments from intact bacteria and accurate distinction between fibrinogen fragments based on their molecular mass. These studies indicate that Streptococcus pyogenes binds directly to human fibrinogen fragment D but not fragment E. The predominant surface proteins binding to fragment D were associated with the mrp gene product. Surface-associated fibrinogen fragment D was capable of anchoring a functional surface plgn activator complex. Taken together, these data indicated that fragment D of fibrinogen is necessary and sufficient to anchor a plgn activator complex on the surface of Streptococcus pyogenes.
Collapse
Affiliation(s)
- Jennifer L Hess
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| | | |
Collapse
|
19
|
Maeda K, Nagata H, Nonaka A, Kataoka K, Tanaka M, Shizukuishi S. Oral streptococcal glyceraldehyde-3-phosphate dehydrogenase mediates interaction with Porphyromonas gingivalis fimbriae. Microbes Infect 2005; 6:1163-70. [PMID: 15488735 DOI: 10.1016/j.micinf.2004.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 06/23/2004] [Indexed: 11/16/2022]
Abstract
Interaction of Porphyromonas gingivalis with plaque-forming bacteria is necessary for its colonization in periodontal pockets. Participation of Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and P. gingivalis fimbriae in this interaction has been reported. In this investigation, the contribution of various oral streptococcal GAPDHs to interaction with P. gingivalis fimbriae was examined. Streptococcal cell surface GAPDH activity was measured by incubation of a constant number of streptococci with glyceraldehyde-3-phosphate and analysis for the conversion of NAD+ to NADH based on the absorbance at 340 nm. Coaggregation activity was measured by a turbidimetric assay. Cell surface GAPDH activity was correlated with coaggregation activity (r = 0.854, P < 0.01) with Spearman's rank correlation coefficient. S. oralis ATCC 9811 and ATCC 10557, Streptococcus gordonii G9B, Streptococcus sanguinis ATCC 10556, and Streptococcus parasanguinis ATCC 15909 exhibited high cell surface GAPDH activity and coaggregation activity; consequently, their cell surface GAPDHs were extracted with mutanolysin and purified on a Cibacron Blue Sepharose column. Subsequently, their DNA sequences were elucidated. Purified GAPDHs bound P. gingivalis recombinant fimbrillin by Western blot assay, furthermore, their DNA sequences displayed a high degree of homology with one another. Moreover, S. oralis recombinant GAPDH inhibited coaggregation between P. gingivalis and the aforementioned five streptococcal strains in a dose-dependent manner. These results suggest that GAPDHs of various plaque-forming streptococci may be involved in their attachment to P. gingivalis fimbriae and that they may contribute to P. gingivalis colonization.
Collapse
Affiliation(s)
- Kazuhiko Maeda
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Zacharski LR, Sukhatme VP. Coley's toxin revisited: immunotherapy or plasminogen activator therapy of cancer? J Thromb Haemost 2005; 3:424-7. [PMID: 15748226 DOI: 10.1111/j.1538-7836.2005.01110.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- L R Zacharski
- Department of Veterans Affairs Medical Center, White River Junction, VT 05009, USA
| | | |
Collapse
|
21
|
Oda T, Yamakami K, Omasu F, Suzuki S, Miura S, Sugisaki T, Yoshizawa N. Glomerular plasmin-like activity in relation to nephritis-associated plasmin receptor in acute poststreptococcal glomerulonephritis. J Am Soc Nephrol 2004; 16:247-54. [PMID: 15574512 DOI: 10.1681/asn.2004040341] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A nephritogenic antigen for acute poststreptococcal glomerulonephritis (APSGN) was isolated recently from group A streptococcus and termed nephritis-associated plasmin receptor (NAPlr). In vitro experimental data indicate that the pathogenic role of NAPlr occurs through its ability to bind to plasmin and maintain its proteolytic activity. However, the mechanism whereby this antigen induces glomerular damage in vivo has not been fully elucidated. Renal biopsy tissues from 17 patients with APSGN, 8 patients with rapidly progressive glomerulonephritis, and 10 normal kidneys were analyzed in this study. Plasmin-like activity was assessed on cryostat sections by in situ zymography with a plasmin-sensitive synthetic substrate. Serial sections were simultaneously assessed for NAPlr deposition by immunofluorescence staining. Glomerular plasmin-like activity was absent or weak in normal controls and in patients with rapidly progressive glomerulonephritis, although tubulointerstitial activity was occasionally detected. Prominent glomerular plasmin-like activity was found in patients who had APSGN and in whom glomerular NAPlr was positive, whereas it was absent or weak in patients who had APSGN and in whom glomerular NAPlr was negative. The distribution of glomerular plasmin-like activity was identical to that of NAPlr deposition but was generally different from that of fibrin(ogen) deposition as assessed by double staining. The activity was abolished by the addition of aprotinin to the reaction mixture but was not altered by the addition of a matrix metalloprotease inhibitor, a cysteine protease inhibitor, or inhibitors of plasminogen activators. Thus, upregulated glomerular plasmin-like activity in relation to NAPlr deposition in APSGN was identified. This result supports the nephritogenic character of NAPlr and offers insight into the mechanism whereby this antigen induces nephritis.
Collapse
Affiliation(s)
- Takashi Oda
- Department of Public Health, National Defense Medical College, 3-2 Namiki, Tokorozawa-shi, Saitama 359-8513, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Rezcallah MS, Boyle MDP, Sledjeski DD. Mouse skin passage of Streptococcus pyogenes results in increased streptokinase expression and activity. MICROBIOLOGY-SGM 2004; 150:365-371. [PMID: 14766914 DOI: 10.1099/mic.0.26826-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The plasminogen activator streptokinase has been proposed to be a key component of a complex mechanism that promotes skin invasion by Streptococcus pyogenes. This study was designed to compare ska gene message and protein levels in wild-type M1 serotype isolate 1881 and a more invasive variant recovered from the spleen of a lethally infected mouse. M1 isolates selected for invasiveness demonstrated enhanced levels of active plasminogen activator activity in culture. This effect was due to a combination of increased expression of the ska gene and decreased expression of the speB gene. The speB gene product, SpeB, was found to efficiently degrade streptokinase in vitro.
Collapse
Affiliation(s)
- Myrna S Rezcallah
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Michael D P Boyle
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| | - Darren D Sledjeski
- Department of Microbiology and Immunology, Medical College of Ohio, 3055 Arlington Avenue, Toledo, OH 43614-5806, USA
| |
Collapse
|
23
|
Seifert KN, McArthur WP, Bleiweis AS, Brady LJ. Characterization of group B streptococcal glyceraldehyde-3-phosphate dehydrogenase: surface localization, enzymatic activity, and protein-protein interactions. Can J Microbiol 2003; 49:350-6. [PMID: 12897829 DOI: 10.1139/w03-042] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During characterization of the surface antigens of serotype III group B streptococci (GBS), a protein with an apparent M(r) of approximately 173,500 migrating on a SDS--polyacrylamide gel was found to have an N-terminal amino acid sequence identical to that of the plasmin receptor (Plr) of group A streptococci, a surface-localized glyceraldehyde-3-phosphate dehydrogenase (GAPDH). This work begins to characterize GBS GAPDH and to assess its functional activity on the cell surface. The 1.0-kb gapC gene of GBS was amplified by PCR. plr and gapC demonstrated 87% homology. An anti-Plr monoclonal antibody reacted with GBS whole cells, suggesting GBS GAPDH is surface localized. Multiple serotypes of GBS demonstrated functional GAPDH on their surfaces. The anti-Plr monoclonal antibody recognized GBS protein bands of approximately 41 and 173.5 kDa, by Western blot. Presumably, these represent monomeric and tetrameric forms of the GAPDH molecule. GBS GAPDH was demonstrated by Western blot analysis to interact with lys- and glu-plasminogens. Fluid-phase GBS GAPDH interacted, by means of ELISA, with immobilized lys-plasminogen, glu-plasminogen, actin, and fibrinogen. Enzymatically active GAPDH, capable of binding cytoskeletal and extracellular matrix proteins, is expressed on the surface of GBS.
Collapse
Affiliation(s)
- Kyle N Seifert
- Department of Oral Biology, College of Dentistry, University of Florida, Gainsville, FL 32610-0424, USA
| | | | | | | |
Collapse
|
24
|
D'Costa SS, Romer TG, Boyle MD. Analysis of expression of a cytosolic enzyme on the surface of Streptococcus pyogenes. Biochem Biophys Res Commun 2000; 278:826-32. [PMID: 11095992 DOI: 10.1006/bbrc.2000.3884] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The normally cytosolic glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase, (GAPDH) has been reported to be expressed on the surface of Streptococcus pyogenes, group A, where it can act as a plasmin binding protein (Plr), and potentially a signaling molecule. In studies of wild-type and isogenic mutants, an association between surface expression of antigenic GAPDH/Plr and M and M-related fibrinogen-binding proteins was identified. Inactivation of the mga gene, whose product controls expression of M and M-related proteins also influenced expression of surface GAPDH/Plr. Revertants or pseudorevertants of mga mutants led to concomitant re-expression of surface GAPDH/Plr and M and M-related proteins. Using surface enhanced laser desorption ionization (SELDI) mass spectroscopy, a physical association between GAPDH/Plr and streptococcal fibrinogen-binding proteins was demonstrated. These studies support the hypothesis that surface M and M-related proteins are involved in anchoring GAPDH/Plr on the surface of group A streptococci.
Collapse
Affiliation(s)
- S S D'Costa
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio, USA
| | | | | |
Collapse
|