1
|
Kamel MS, Munds RA, Verma MS. The Quest for Immunity: Exploring Human Herpesviruses as Vaccine Vectors. Int J Mol Sci 2023; 24:16112. [PMID: 38003300 PMCID: PMC10671728 DOI: 10.3390/ijms242216112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Herpesviruses are large DNA viruses that have long been used as powerful gene therapy tools. In recent years, the ability of herpesviruses to stimulate both innate and adaptive immune responses has led to their transition to various applications as vaccine vectors. This vaccinology branch is growing at an unprecedented and accelerated rate. To date, human herpesvirus-based vectors have been used in vaccines to combat a variety of infectious agents, including the Ebola virus, foot and mouth disease virus, and human immunodeficiency viruses. Additionally, these vectors are being tested as potential vaccines for cancer-associated antigens. Thanks to advances in recombinant DNA technology, immunology, and genomics, numerous steps in vaccine development have been greatly improved. A better understanding of herpesvirus biology and the interactions between these viruses and the host cells will undoubtedly foster the use of herpesvirus-based vaccine vectors in clinical settings. To overcome the existing drawbacks of these vectors, ongoing research is needed to further advance our knowledge of herpesvirus biology and to develop safer and more effective vaccine vectors. Advanced molecular virology and cell biology techniques must be used to better understand the mechanisms by which herpesviruses manipulate host cells and how viral gene expression is regulated during infection. In this review, we cover the underlying molecular structure of herpesviruses and the strategies used to engineer their genomes to optimize capacity and efficacy as vaccine vectors. Also, we assess the available data on the successful application of herpesvirus-based vaccines for combating diseases such as viral infections and the potential drawbacks and alternative approaches to surmount them.
Collapse
Affiliation(s)
- Mohamed S. Kamel
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Rachel A. Munds
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Krishi Inc., West Lafayette, IN 47906, USA
| | - Mohit S. Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Krishi Inc., West Lafayette, IN 47906, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Understanding the molecular basis of disease is crucial to improving the design and construction of herpesviral vectors for veterinary vaccines. Vaccine 2015; 33:5897-904. [PMID: 26387436 DOI: 10.1016/j.vaccine.2015.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/13/2015] [Accepted: 09/01/2015] [Indexed: 11/24/2022]
Abstract
Viral infections are associated with production losses in many animal production industries. Important examples of this are Marek's disease (MD) and bovine respiratory disease (BRD) which are significant issues in the chicken and cattle industries, respectively. Viruses play key roles in MD and BRD development and consequently have also been utilised in vaccination strategies to control these diseases. Despite the widespread availability and use of vaccines to control these diseases both are still major issues for their respective industries. Here the dual role of members of viruses from the family Herpesviridae in causation and control of MD and BRD will be discussed. The technologies that may lead to the development of improved vaccines to provide more sustainable control of MD and BRD will also be identified.
Collapse
|
3
|
Azab W, Kato K, Abdel-Gawad A, Tohya Y, Akashi H. Equine herpesvirus 4: recent advances using BAC technology. Vet Microbiol 2011; 150:1-14. [PMID: 21292410 DOI: 10.1016/j.vetmic.2011.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 12/17/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
Abstract
The equine herpesviruses are major infectious pathogens that threaten equine health. Equine herpesvirus 4 (EHV-4) is an important equine pathogen that causes respiratory tract disease, known as rhinopneumonitis, among horses worldwide. EHV-4 genome manipulation with subsequent understanding of the viral gene functions has always been difficult due to the limited number of susceptible cell lines and the absence of small-animal models of the infection. Efficient generation of mutants of EHV-4 would significantly contribute to the rapid and accurate characterization of the viral genes. This problem has been solved recently by the cloning of the genome of EHV-4 as a stable and infectious bacterial artificial chromosome (BAC) without any deletions of the viral genes. Very low copy BAC vectors are the mainstay of present genomic research because of the high stability of inserted clones and the possibility of mutating any gene target in a relatively short time. Manipulation of EHV-4 genome is now feasible using the power of BAC technology, and should aid greatly in assessing the role of viral genes in the virus-host interaction.
Collapse
Affiliation(s)
- Walid Azab
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
4
|
Pathogenicity of a very virulent strain of Marek's disease herpesvirus cloned as infectious bacterial artificial chromosomes. J Biomed Biotechnol 2010; 2011:412829. [PMID: 21127705 PMCID: PMC2992818 DOI: 10.1155/2011/412829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 09/27/2010] [Indexed: 11/18/2022] Open
Abstract
Bacterial artificial chromosome (BAC) vectors containing the full-length genomes of several herpesviruses have been used widely as tools to enable functional studies of viral genes. Marek's disease viruses (MDVs) are highly oncogenic alphaherpesviruses that induce rapid-onset T-cell lymphomas in chickens. Oncogenic strains of MDV reconstituted from BAC clones have been used to examine the role of viral genes in inducing tumours. Past studies have demonstrated continuous increase in virulence of MDV strains. We have previously reported on the UK isolate C12/130 that showed increased virulence features including lymphoid organ atrophy and enhanced tropism for the central nervous system. Here we report the construction of the BAC clones (pC12/130) of this strain. Chickens were infected with viruses reconstituted from the pC12/130 clones along with the wild-type virus for the comparison of the pathogenic properties. Our studies show that BAC-derived viruses induced disease similar to the wild-type virus, though there were differences in the levels of pathogenicity between individual viruses. Generation of BAC clones that differ in the potential to induce cytolytic disease provide the opportunity to identify the molecular determinants of increased virulence by direct sequence analysis as well as by using reverse genetics approaches on the infectious BAC clones.
Collapse
|
5
|
Herpesvirus BACs: past, present, and future. J Biomed Biotechnol 2010; 2011:124595. [PMID: 21048927 PMCID: PMC2965428 DOI: 10.1155/2011/124595] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/19/2010] [Indexed: 12/12/2022] Open
Abstract
The herpesviridae are a large family of DNA viruses with large and complicated genomes. Genetic manipulation and the generation of recombinant viruses have been extremely difficult. However, herpesvirus bacterial artificial chromosomes (BACs) that were developed approximately 10 years ago have become useful and powerful genetic tools for generating recombinant viruses to study the biology and pathogenesis of herpesviruses. For example, BAC-directed deletion mutants are commonly used to determine the function and essentiality of viral genes. In this paper, we discuss the creation of herpesvirus BACs, functional analyses of herpesvirus mutants, and future applications for studies of herpesviruses. We describe commonly used methods to create and mutate herpesvirus BACs (such as site-directed mutagenesis and transposon mutagenesis). We also evaluate the potential future uses of viral BACs, including vaccine development and gene therapy.
Collapse
|
6
|
Jiang S, Zhong X, Zhai C, Chen L, Ma L, Jin M, Chen H. Constructing recombinant herpesvirus BAC vectors with mating-assisted genetically integrated clone method. Biotechnol Lett 2010; 32:903-7. [DOI: 10.1007/s10529-010-0253-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
7
|
Zhuan FF, Zhang ZF, Xu DP, Si YH, Wang HZ, Mijit G. Tn7-mediated introduction of DNA into bacmid-cloned pseudorabies virus genome for rapid construction of recombinant viruses. Virol Sin 2007. [DOI: 10.1007/s12250-007-0008-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
8
|
Rosas CT, König P, Beer M, Dubovi EJ, Tischer BK, Osterrieder N. Evaluation of the vaccine potential of an equine herpesvirus type 1 vector expressing bovine viral diarrhea virus structural proteins. J Gen Virol 2007; 88:748-757. [PMID: 17325347 DOI: 10.1099/vir.0.82528-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is an economically important pathogen of cattle that is maintained in the population by persistently infected animals. Virus infection may result in reproductive failure, respiratory disease and diarrhoea in naïve, susceptible bovines. Here, the construction and characterization of a novel vectored vaccine, which is based on the incorporation of genes encoding BVDV structural proteins (C, Erns, E1, E2) into a bacterial artificial chromosome of the equine herpesvirus type 1 (EHV-1) vaccine strain RacH, are reported. The reconstituted vectored virus, rH_BVDV, expressed BVDV structural proteins efficiently and was indistinguishable from parental vector virus with respect to growth properties in cultured cells. Intramuscular immunization of seronegative cattle with rH_BVDV resulted in induction of BVDV-specific serum neutralizing and ELISA antibodies. Upon experimental challenge infection of immunized calves with the heterologous BVDV strain Ib SE5508, a strong anamnestic boost of the neutralizing-antibody response was observed in all vaccinated animals. Immunized animals presented with reduced viraemia levels and decreased nasal virus shedding, and maintained higher leukocyte counts than mock-vaccinated controls.
Collapse
Affiliation(s)
- Cristina T Rosas
- Department of Microbiology and Immunology, Ithaca, NY 14853, USA
| | - Patricia König
- Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Boddenblick 5A, D-17493 Insel Riems, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Boddenblick 5A, D-17493 Insel Riems, Germany
| | - Edward J Dubovi
- Department of Microbiology and Immunology, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
9
|
Rosas CT, Tischer BK, Perkins GA, Wagner B, Goodman LB, Osterrieder N. Live-attenuated recombinant equine herpesvirus type 1 (EHV-1) induces a neutralizing antibody response against West Nile virus (WNV). Virus Res 2007; 125:69-78. [PMID: 17241683 DOI: 10.1016/j.virusres.2006.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 12/20/2022]
Abstract
The immunogenicity in horses of a recombinant equine herpesvirus type 1 (EHV-1) vaccine expressing West Nile virus (WNV) prM and E proteins was studied. To construct the recombinant EHV-1, two-step en passant mutagenesis was employed for manipulation of a bacterial artificial chromosome (BAC) of vaccine strain RacH. Recombinant EHV-1 stably expressed the WNV prM and E proteins as demonstrated by indirect immunofluorescence and Western blotting. In addition, growth properties in vitro of the EHV-1/WNV recombinant were found to not be significantly different from those of the parental virus. To determine if vaccination of horses induces an antibody response, 10 horses were allocated in two groups. Group A consisted of six horses that were vaccinated three times with the recombinant EHV-1/WNV virus in 28- to 31-day intervals. Group B consisted of four horses that were sham-vaccinated using the same regimen. Serum was collected on days 0, 31, 45 and 66. Plaque reduction neutralization test and IgG(T)- and IgGb-specific WNV E antibody-capture ELISAs were used. After a single vaccination (day 31), at least four of the six horses from group A had detectable levels of serum neutralizing antibodies against WNV, and three horses retained SN titers until the end of the study. None of the horses in the control group B sero-converted. On days 31 and 45, five of the six horses in group A had a marked increase of WNV-specific IgG(T), and at least four exhibited modestly elevated WNV-specific IgGb titers. From the results, we concluded that the EHV-1 vectored virus is able to express the WNV structural proteins and that vaccination of horses results in the induction of WNV E-protein-specific IgG(T), IgGb, and neutralizing antibodies.
Collapse
Affiliation(s)
- Cristina T Rosas
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
10
|
Schleiss MR. Nonprimate models of congenital cytomegalovirus (CMV) infection: gaining insight into pathogenesis and prevention of disease in newborns. ILAR J 2006; 47:65-72. [PMID: 16391432 DOI: 10.1093/ilar.47.1.65] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Congenital and perinatal infections with cytomegalovirus (CMV) are responsible for considerable short- and long- term morbidity in infants. CMV is the most common congenital viral infection in the developed world, and is a common cause of neurodevelopmental injury, including mental retardation and sensorineural hearing loss (SNHL). Antiviral therapy has been shown to be valuable in ameliorating the severity of SNHL, but CMV disease control in newborns ultimately depends on successful development of a vaccine. Because CMVs are extremely species specific, preclinical evaluation of vaccines must be performed in animal models using the appropriate CMV of the animal being studied. Several small animal models available for CMV vaccine and pathogenesis research are described. The discussion focuses on the guinea pig model because guinea pig cytomegalovirus (GPCMV), which crosses the placenta and causes infection in utero, is uniquely useful. Examination of vaccines in the GPCMV and other nonprimate models should provide insights into the determinants of the host response that protect the fetus, and may help to prioritize potential vaccine strategies for use in human clinical trials related to this important public health problem.
Collapse
Affiliation(s)
- Mark R Schleiss
- Division of Pediatric Infectious Diseases, University of Minnesota Children's Hospital, and School of Medicine, Department of Pediatrics, Minneapolis, MN, USA
| |
Collapse
|
11
|
Schleiss MR, Heineman TC. Progress toward an elusive goal: current status of cytomegalovirus vaccines. Expert Rev Vaccines 2006; 4:381-406. [PMID: 16026251 DOI: 10.1586/14760584.4.3.381] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although infection with human cytomegalovirus (CMV) is ubiquitous and generally asymptomatic in most individuals, certain patient populations are at high risk for CMV-associated disease. These include HIV-infected individuals with AIDS, transplant patients, and newborn infants with congenital CMV infection. Immunity to CMV infection, both in the transplant setting and among women of childbearing age, plays a vital role in the control of CMV-induced injury and disease. Although immunity induced by CMV infection is not completely protective against reinfection, there is nevertheless a sound basis on which to believe that vaccination could help control CMV disease in high-risk patient populations. Evidence from several animal models of CMV infection indicates that a variety of vaccine strategies are capable of inducing immune responses sufficient to protect against CMV-associated illness following viral challenge. Vaccination has also proven effective in improving pregnancy outcomes following CMV challenge of pregnant guinea pigs, providing a 'proof-of-principle' relevant to human clinical trials of CMV vaccines. Although there are no licensed vaccines currently available for human CMV, progress toward this goal has been made, as evidenced by ongoing clinical trial testing of a number of immunization strategies. CMV vaccines currently in various stages of preclinical and clinical testing include: protein subunit vaccines; DNA vaccines; vectored vaccines using viral vectors, such as attenuated pox- and alphaviruses; peptide vaccines; and live attenuated vaccines. This review summarizes some of the obstacles that must be overcome in development of a CMV vaccine, and provides an overview of the current state of preclinical and clinical trial evaluation of vaccines for this important public health problem.
Collapse
Affiliation(s)
- Mark R Schleiss
- University of Minnesota School of Medicine, 420 Delaware Street SE, MMC 296, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
12
|
Niikura M, Dodgson JB, Cheng HH. Stability of Marek's disease virus 132-bp repeats during serial in vitro passages. Arch Virol 2006; 151:1431-8. [PMID: 16489507 DOI: 10.1007/s00705-006-0724-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 01/05/2006] [Indexed: 10/25/2022]
Abstract
The Marek's disease virus (MDV) genome contains 2 sets of 132-bp tandem repeat sequences. An increase in 132-bp repeat units has been associated with attenuation of oncogenicity during in vitro passage. By cloning entire genomes, we demonstrated that the copy number of 132-bp repeats can differ within an individual MDV genome. The stability of the 132-bp repeats during cell passage depended on the initial copy number. When both sets of repeats contained 2 copies, the copy number remained stable, while if even 1 set of repeats contained 6 copies, repeat expansion occurred relatively quickly. This expansion did not affect the in vitro growth curve. However, when MDV clones with low and high copy numbers were passed together, genomes with expanded repeats rapidly predominated, mimicking the behavior of naturally-occurring MDV. These results suggest that the preponderance of high-copy repeats after passage reflects intracellular copy number within individual infected cells rather than an influence on the spread of the virus.
Collapse
Affiliation(s)
- M Niikura
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | | | | |
Collapse
|
13
|
Niikura M, Dodgson J, Cheng H. Direct evidence of host genome acquisition by the alphaherpesvirus Marek’s disease virus. Arch Virol 2005; 151:537-49. [PMID: 16155725 DOI: 10.1007/s00705-005-0633-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 07/29/2005] [Indexed: 10/25/2022]
Abstract
Many herpesviruses including Marek's disease virus (MDV), a poultry alphaherpesvirus, carry homologous host genes presumably acquired during viral evolution. We have characterized one recent acquisition by MDV in considerable detail. The virulent MDV strain Md11 previously was isolated from a commercial chicken and initially propagated on duck cells. In the process of cloning the entire Md11 genome in a bacterial artificial chromosome (BAC), we obtained an infectious clone in which the entire terminal repeat short segment was replaced with a portion of the duck genome that corresponds to chicken chromosome 19. This sequence is not predicted to express any protein even though it contains one exon of the VAMP1 gene. The replacement did not affect MDV replication in vitro, despite the virus having only one copy of ICP4. Furthermore, we have shown that the variant MDV genome containing the duck genome substitution is present in the parental Md11 population and has been maintained through several subsequent propagations of the virus on chicken cells. This finding provides direct evidence that host genome acquisition by MDV actually occurs during virus replication, and that one or more such MDV genomes with host sequences may exist within MDV viral stocks which tend to be polyclonal, due to the cell-associated nature of its infection process.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chickens/genetics
- Chickens/virology
- Chromosomes, Artificial, Bacterial/genetics
- DNA, Viral/genetics
- Ducks/genetics
- Ducks/virology
- Evolution, Molecular
- Genome
- Herpesvirus 2, Gallid/genetics
- Herpesvirus 2, Gallid/pathogenicity
- Herpesvirus 2, Gallid/physiology
- Molecular Sequence Data
- Recombination, Genetic
- Sequence Homology, Nucleic Acid
- Terminal Repeat Sequences
- Transformation, Genetic
- Virus Replication/genetics
Collapse
Affiliation(s)
- M Niikura
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | | | | |
Collapse
|
14
|
Jia Q, Wu TT, Liao HI, Chernishof V, Sun R. Murine gammaherpesvirus 68 open reading frame 31 is required for viral replication. J Virol 2004; 78:6610-20. [PMID: 15163752 PMCID: PMC416517 DOI: 10.1128/jvi.78.12.6610-6620.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Murine gammaherpesvirus 68 (MHV-68) is genetically related to the human gammaherpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) and Epstein-Barr virus (EBV). It has been proposed as a model for gammaherpesvirus infection and pathogenesis. Open reading frame 31 (ORF31) is conserved among the Beta- and Gammaherpesvirinae subfamily, and there is no known mammalian homologue of this protein. The function of MHV-68 ORF31 and its viral homologues has not yet been determined. We described here a primary characterization of this protein and its requirement for lytic replication. The native MHV-68 ORF31 was detected at peak levels by 24 h postinfection, and the FLAG-tagged and green fluorescent protein fusion ORF31 were localized in the cytoplasm and nucleus in a diffuse pattern. Two independent experimental approaches were then utilized to demonstrate that ORF31 was required for lytic replication. First, small interfering RNA generated against ORF31 expression blocked protein expression and virus production in transfected cells. Then, two-independent bacterial artificial chromosome-derived ORF31-null MHV-68 mutants (31STOP) were generated and found to be defective in virus production in fibroblast cells. This defect can be rescued in trans by MHV-68 ORF31 and importantly by its KSHV homologue. A repair virus of 31STOP was also generated by homologous recombination in fibroblast cells. Finally, we showed that the defect in ORF31 blocked late lytic protein expression. Our results demonstrate that MHV-68 ORF31 is required for viral lytic replication, and its function is conserved in its KSHV homologue.
Collapse
Affiliation(s)
- Qingmei Jia
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
15
|
Schleiss MR. Animal models of congenital cytomegalovirus infection: an overview of progress in the characterization of guinea pig cytomegalovirus (GPCMV). J Clin Virol 2002; 25 Suppl 2:S37-49. [PMID: 12361755 DOI: 10.1016/s1386-6532(02)00100-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The strict species-specificity of cytomegalovirus (CMV) precludes preclinical evaluation of human CMV (HCMV) vaccines in animal models and necessitates the study of nonhuman CMVs. Among the CMVs of small mammals, the guinea pig cytomegalovirus (GPCMV) has unique advantages, due to its ability to cross the placenta, causing infection in utero. OBJECTIVE AND STUDY DESIGNS: Progress in GPCMV studies has been hampered by a lack of detailed molecular characterization of the viral genome. Therefore, recent efforts have been undertaken to characterize the GPCMV genome, and apply this information to in vivo subunit vaccine studies. RESULTS Progress in the sequencing of the GPCMV genome has revealed the presence of both highly conserved as well as novel open reading frames (ORFs). Cloning of GPCMV vaccine candidates, such as the glycoprotein B (gB) and UL83 proteins, has facilitated subunit vaccine evaluation. Protein vaccines and DNA vaccines have shown evidence of protection in pregnancy/challenge experiments. In addition, the GPCMV genome has proved amenable to cloning as a bacterial artificial chromosome (BAC) in Escherichia coli, and BAC-derived recombinants retain the ability to replicate in vivo. CONCLUSIONS Progress has been made in molecular characterization of GPCMV. Insights from these studies should prove germane to the understanding of the correlates of protective immunity for the fetus in vaccine studies, and should assist in prioritization of vaccine strategies in HCMV vaccine trials.
Collapse
Affiliation(s)
- Mark R Schleiss
- Division of Infectious Diseases, Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
| |
Collapse
|