1
|
McDonald ND, Antoshak EE. Towards a Yersinia pestis lipid A recreated in an Escherichia coli scaffold genome. Access Microbiol 2024; 6:000723.v3. [PMID: 39130741 PMCID: PMC11316592 DOI: 10.1099/acmi.0.000723.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/26/2024] [Indexed: 08/13/2024] Open
Abstract
Synthetic biology and genome engineering capabilities have facilitated the utilization of bacteria for a myriad of applications, ranging from medical treatments to biomanufacturing of complex molecules. The bacterial outer membrane, specifically the lipopolysaccharide (LPS), plays an integral role in the physiology, pathogenesis, and serves as a main target of existing detection assays for Gram-negative bacteria. Here we use CRISPR/Cas9 recombineering to insert Yersinia pestis lipid A biosynthesis genes into the genome of an Escherichia coli strain expressing the lipid IVa subunit. We successfully inserted three genes: kdsD, lpxM, and lpxP into the E. coli genome and demonstrated their expression via reverse transcription PCR (RT-PCR). Despite observing expression of these genes, analytical characterization of the engineered strain's lipid A structure via MALDI-TOF mass spectrometry indicated that the Y. pestis lipid A was not recapitulated in the E. coli background. As synthetic biology and genome engineering technologies advance, novel applications and utilities for the detection and treatments of dangerous pathogens like Yersinia pestis will continue to be developed.
Collapse
Affiliation(s)
- Nathan D. McDonald
- United States Army Combat Capabilities Development Command Chemical Biological Center, 8908 Guard St. E3831, Gunpowder, MD 21010, USA
| | - Erin E. Antoshak
- United States Army Combat Capabilities Development Command Chemical Biological Center, 8908 Guard St. E3831, Gunpowder, MD 21010, USA
- Excet Inc. 6225 Brandon Ave #360, Springfield, VA 22150, USA
| |
Collapse
|
2
|
Davies ML, Biryukov SS, Rill NO, Klimko CP, Hunter M, Dankmeyer JL, Miller JA, Shoe JL, Mlynek KD, Talyansky Y, Toothman RG, Qiu J, Bozue JA, Cote CK. Sex differences in immune protection in mice conferred by heterologous vaccines for pneumonic plague. Front Immunol 2024; 15:1397579. [PMID: 38835755 PMCID: PMC11148226 DOI: 10.3389/fimmu.2024.1397579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Background Yersinia pestis is the etiological agent of plague, which can manifest as bubonic, septicemic, and/or pneumonic disease. Plague is a severe and rapidly progressing illness that can only be successfully treated with antibiotics initiated early after infection. There are no FDA-approved vaccines for plague, and some vaccine candidates may be less effective against pneumonic plague than bubonic plague. Y. pestis is not known to impact males and females differently in mechanisms of pathogenesis or severity of infection. However, one previous study reported sex-biased vaccine effectiveness after intranasal Y. pestis challenge. As part of developing a safe and effective vaccine, it is essential that potential sex differences are characterized. Methods In this study we evaluated novel vaccines in male and female BALB/c mice using a heterologous prime-boost approach and monitored survival, bacterial load in organs, and immunological correlates. Our vaccine strategy consisted of two subcutaneous immunizations, followed by challenge with aerosolized virulent nonencapsulated Y. pestis. Mice were immunized with a combination of live Y. pestis pgm- pPst-Δcaf1, live Y. pestis pgm- pPst-Δcaf1/ΔyopD, or recombinant F1-V (rF1-V) combined with adjuvants. Results The most effective vaccine regimen was initial priming with rF1-V, followed by boost with either of the live attenuated strains. However, this and other strategies were more protective in female mice. Males had higher bacterial burden and differing patterns of cytokine expression and serum antibody titers. Male mice did not demonstrate synergy between vaccination and antibiotic treatment as repeatedly observed in female mice. Conclusions This study provides new knowledge about heterologous vaccine strategies, sex differences in plague-vaccine efficacy, and the immunological factors that differ between male and female mice.
Collapse
Affiliation(s)
- Michael L Davies
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Sergei S Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Nathaniel O Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jeremy A Miller
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jennifer L Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Kevin D Mlynek
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Yuli Talyansky
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Ronald G Toothman
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Ju Qiu
- Regulated Research Administration: Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Joel A Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| |
Collapse
|
3
|
Lipopolysaccharide of the Yersinia pseudotuberculosis Complex. Biomolecules 2021; 11:biom11101410. [PMID: 34680043 PMCID: PMC8533242 DOI: 10.3390/biom11101410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Lipopolysaccharide (LPS), localized in the outer leaflet of the outer membrane, serves as the major surface component of the Gram-negative bacterial cell envelope responsible for the activation of the host's innate immune system. Variations of the LPS structure utilized by Gram-negative bacteria promote survival by providing resistance to components of the innate immune system and preventing recognition by TLR4. This review summarizes studies of the biosynthesis of Yersinia pseudotuberculosis complex LPSs, and the roles of their structural components in molecular mechanisms of yersiniae pathogenesis and immunogenesis.
Collapse
|
4
|
Byvalov AA, Konyshev IV, Uversky VN, Dentovskaya SV, Anisimov AP. Yersinia Outer Membrane Vesicles as Potential Vaccine Candidates in Protecting against Plague. Biomolecules 2020; 10:E1694. [PMID: 33353123 PMCID: PMC7766529 DOI: 10.3390/biom10121694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Despite the relatively low incidence of plague, its etiological agent, Yersinia pestis, is an exceptional epidemic danger due to the high infectivity and mortality of this infectious disease. Reports on the isolation of drug-resistant Y. pestis strains indicate the advisability of using asymmetric responses, such as phage therapy and vaccine prophylaxis in the fight against this problem. The current relatively effective live plague vaccine is not approved for use in most countries because of its ability to cause heavy local and system reactions and even a generalized infectious process in people with a repressed immune status or metabolic disorders, as well as lethal infection in some species of nonhuman primates. Therefore, developing alternative vaccines is of high priority and importance. However, until now, work on the development of plague vaccines has mainly focused on screening for the potential immunogens. Several investigators have identified the protective potency of bacterial outer membrane vesicles (OMVs) as a promising basis for bacterial vaccine candidates. This review is aimed at presenting these candidates of plague vaccine and the results of their analysis in animal models.
Collapse
Affiliation(s)
- Andrey A. Byvalov
- Komi Research Center, Laboratory of Microbial Physiology, Institute of Physiology, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia;
- Department of Biotechnology, Vyatka State University, 610000 Kirov, Russia
| | - Ilya V. Konyshev
- Komi Research Center, Laboratory of Microbial Physiology, Institute of Physiology, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia;
- Department of Biotechnology, Vyatka State University, 610000 Kirov, Russia
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Svetlana V. Dentovskaya
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia;
| | - Andrey P. Anisimov
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia;
| |
Collapse
|
5
|
Sizova OV, Shashkov AS, Toukach PV, Knirel YA, Shaikhutdinova RZ, Ivanov SA, Kislichkina AA, Dentovskaya SV. Structure elucidation and gene cluster characterization of the O-antigen of Yersinia kristensenii С-134. Carbohydr Res 2019; 481:9-15. [PMID: 31220629 DOI: 10.1016/j.carres.2019.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/24/2019] [Accepted: 06/01/2019] [Indexed: 11/26/2022]
Abstract
Mild acid degradation of the lipopolysaccharide of Yersinia kristensenii C-134 afforded a glycerol teichoic acid-like O-polysaccharide, which was studied by sugar analysis, O-deacetylation and dephosphorylation along with 1D and 2D NMR spectroscopy. The following structure of the O-polysaccharide was established: This structure is related to those of other Y. kristensenii O-polysaccharides studied earlier. The O-antigen gene cluster of Y. kristensenii С-134 was analyzed and found to be consistent with the O-polysaccharide structure established.
Collapse
Affiliation(s)
- Olga V Sizova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Philip V Toukach
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Rima Z Shaikhutdinova
- State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Moscow Region, Russian Federation
| | - Sergei A Ivanov
- State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Moscow Region, Russian Federation
| | - Angelina A Kislichkina
- State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Moscow Region, Russian Federation
| | - Svetlana V Dentovskaya
- State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Moscow Region, Russian Federation.
| |
Collapse
|
6
|
Shaikhutdinova RZ, Ivanov SA, Dentovskaya SV, Titareva GM, Knirel YA. Characterization of a Transposon Tn5-Generated Mutant of Yersinia pestis Defective in Lipooligosaccharide Biosynthesis. BIOCHEMISTRY (MOSCOW) 2019; 84:398-406. [PMID: 31228931 DOI: 10.1134/s0006297919040072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To identify Yersinia pestis genes involved in the microbe's resistance to cationic antimicrobial peptides, the strategy of random transposon mutagenesis with a Tn5 minitransposon was used, and the library was screened for detecting polymyxin B (PMB) susceptible mutants. The mutation responsible for PMB-sensitive phenotype and the lipopolysaccharide (LPS) structure were characterized for the Y. pestis strain KM218-A3. In this strain the mini-Tn5 was located in an open reading frame with the product homologous to the E. coli protein GmhB (82% identity) functioning as d-glycero-d-manno-heptose-1,7-diphosphate phosphatase. ESI FT ICR mass spectrometry of anions was used to study the structure of the unmodified LPS of Y. pestis KM218-A3, and molecules were revealed with the full-size LPS core or with two types of an incomplete core: consisting of Kdo-Kdo or Ko-Kdo disaccharides and Hep-(Kdo)-Kdo or Hep-(Ko)-Kdo trisaccharides. The performed complementation confirmed that the defect in the biological properties of the mutant strain was caused by inactivation of the gmhB gene. These findings indicated that the gmhB gene product of Y. pestis is essential for production of wild-type LPS resistant to antimicrobial peptides and serum.
Collapse
Affiliation(s)
- R Z Shaikhutdinova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - S A Ivanov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - S V Dentovskaya
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia.
| | - G M Titareva
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - Yu A Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
7
|
Liu L, Zheng S. Transcriptional regulation of Yersinia pestis biofilm formation. Microb Pathog 2019; 131:212-217. [PMID: 30980880 DOI: 10.1016/j.micpath.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/08/2019] [Indexed: 01/27/2023]
Abstract
Yersinia pestis, the causative agent of plague, is transmitted primarily by infected fleas in nature. Y. pestis can produce biofilms that block flea's proventriculus and promote flea-borne transmission. Transcriptional regulation of Y. pestis biofilm formation plays an important role in the response to complex changes in environments, including temperature, pH, oxidative stress, and restrictive nutrition conditions, and contributes to Y. pestis growth, reproduction, transmission, and pathogenesis. A set of transcriptional regulators involved in Y. pestis biofilm production simultaneously controls a variety of biological functions and physiological pathways. Interactions between these regulators contribute to the development of Y. pestis gene regulatory networks, which are helpful for a quick response to complex environmental changes and better survival. The roles of crucial factors and regulators involved in response to complex environmental signals and Y. pestis biofilm formation as well as the precise gene regulatory networks are discussed in this review, which will give a better understanding of the complicated mechanisms of transcriptional regulation in Y. pestis biofilm formation.
Collapse
Affiliation(s)
- Lei Liu
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shangen Zheng
- Department of Transfusion, General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China.
| |
Collapse
|
8
|
Sizova OV, Shashkov AS, Dmitrenok AS, Toukach PV, Knirel YA, Shaikhutdinova RZ, Ivanov SA, Kislichkina AA, Bogun AG, Dentovskaya SV. Structure and gene cluster of the O-polysaccharide of Yersinia rohdei H274-36/78. Int J Biol Macromol 2019; 122:555-561. [PMID: 30385338 DOI: 10.1016/j.ijbiomac.2018.10.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 10/28/2022]
Abstract
A branched O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Yersinia rohdei H274-36/78 and found to contain d-rhamnose, d-mannose, and 3,6-dideoxy-4-C-[(S)-1-hydroxyethyl]-d-xylo-hexose called yersiniose A (Yer). Partial acid hydrolysis of the O-polysaccharide eliminated Yer residues to give a modified linear polysaccharide. Studies by sugar analysis and 1H and 13C NMR spectroscopy, including computational NMR analysis, enabled structure elucidation of a hexasaccharide repeating unit of the O-polysaccharide having two Yer residues attached as monosaccharide side chains. The O-antigen gene cluster of Y. rohdei H274-36/78 located between JUMPStart and galF genes contained putative genes for synthesis of precursors of two O-antigen constituents, GDP-d-Man and GDP-d-Rha, whereas genes responsible for synthesis of CDP-Yer were within the chromosome outside the O-antigen gene cluster. Glycosyltransferase genes and ABC 2 transporter genes were present in the O-antigen gene cluster, and hence the structure established is consistent with the polysaccharide synthesis gene content of the genome.
Collapse
Affiliation(s)
- O V Sizova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - A S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - A S Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Ph V Toukach
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation.
| | - Y A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - R Z Shaikhutdinova
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russian Federation
| | - S A Ivanov
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russian Federation
| | - A A Kislichkina
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russian Federation
| | - A G Bogun
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russian Federation
| | - S V Dentovskaya
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russian Federation
| |
Collapse
|
9
|
Full structure and insight into the gene cluster of the O-specific polysaccharide of Yersinia intermedia H9-36/83 (O:17). Carbohydr Res 2018. [PMID: 29524727 DOI: 10.1016/j.carres.2018.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Lipopolysaccharide was isolated from bacteria Yersinia intermedia H9-36/83 (O:17) and degraded with mild acid to give an O-specific polysaccharide, which was isolated by GPC on Sephadex G-50 and studied by sugar analysis and 1D and 2D NMR spectroscopy. The polysaccharide was found to contain 3-deoxy-3-[(R)-3-hydroxybutanoylamino]-d-fucose (d-Fuc3NR3Hb) and the following structure of the heptasaccharide repeating unit was established: The structure established is consistent with the gene content of the O-antigen gene cluster. The O-polysaccharide structure and gene cluster of Y. intermedia are related to those of Hafnia alvei 1211 and Escherichia coli O:103.
Collapse
|
10
|
Sizova OV, Kondakova AN, Shashkov AS, Knirel YA, Shaikhutdinova RZ, Ivanov SA, Platonov ME, Hurst MRH, Dentovskaya SV. Structure and gene cluster of a tyvelose-containing O-polysaccharide of an entomopathogenic bacterium Yersinia entomophaga MH96 T related to Yersinia pseudotuberculosis. Carbohydr Res 2017; 445:93-97. [PMID: 28460348 DOI: 10.1016/j.carres.2017.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/31/2017] [Accepted: 04/13/2017] [Indexed: 11/18/2022]
Abstract
An O-polysaccharide was isolated from the lipopolysaccharide of an entomopathogenic bacterium Yersinia entomophaga MH96T by mild acid hydrolysis and studied by 2D NMR spectroscopy. The following structure of the branched tetrasaccharide repeating unit of the polysaccharide was established: where Tyv indicates 3,6-dideoxy-d-arabino-hexose (tyvelose). The structure established is consistent with the gene content of the O-antigen gene cluster. The O-polysaccharide structure and gene cluster of Y. entomophaga are related to those of some Y. pseudotuberculosis serotypes.
Collapse
Affiliation(s)
- O V Sizova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - A N Kondakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - A S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Y A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - R Z Shaikhutdinova
- State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Moscow Region, Russian Federation
| | - S A Ivanov
- State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Moscow Region, Russian Federation
| | - M E Platonov
- State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Moscow Region, Russian Federation
| | - M R H Hurst
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, 8140, New Zealand; Bio-Protection Research Centre, Lincoln, Christchurch, 8140, New Zealand
| | - S V Dentovskaya
- State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Moscow Region, Russian Federation.
| |
Collapse
|
11
|
Kenyon JJ, Cunneen MM, Reeves PR. Genetics and evolution of Yersinia pseudotuberculosis O-specific polysaccharides: a novel pattern of O-antigen diversity. FEMS Microbiol Rev 2017; 41:200-217. [PMID: 28364730 PMCID: PMC5399914 DOI: 10.1093/femsre/fux002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/02/2017] [Indexed: 11/29/2022] Open
Abstract
O-antigen polysaccharide is a major immunogenic feature of the lipopolysaccharide of Gram-negative bacteria, and most species produce a large variety of forms that differ substantially from one another. There are 18 known O-antigen forms in the Yersinia pseudotuberculosis complex, which are typical in being composed of multiple copies of a short oligosaccharide called an O unit. The O-antigen gene clusters are located between the hemH and gsk genes, and are atypical as 15 of them are closely related, each having one of five downstream gene modules for alternative main-chain synthesis, and one of seven upstream modules for alternative side-branch sugar synthesis. As a result, many of the genes are in more than one gene cluster. The gene order in each module is such that, in general, the earlier a gene product functions in O-unit synthesis, the closer the gene is to the 5΄ end for side-branch modules or the 3΄ end for main-chain modules. We propose a model whereby natural selection could generate the observed pattern in gene order, a pattern that has also been observed in other species.
Collapse
Affiliation(s)
- Johanna J. Kenyon
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology. Brisbane, QLD 4001, Australia
| | - Monica M. Cunneen
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter R. Reeves
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
The effect of growth temperature on the nanoscale biochemical surface properties of Yersinia pestis. Anal Bioanal Chem 2016; 408:5585-91. [PMID: 27259520 DOI: 10.1007/s00216-016-9659-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
Yersinia pestis, the causative agent of plague, has been responsible for several recurrent, lethal pandemics in history. Currently, it is an important pathogen to study owing to its virulence, adaptation to different environments during transmission, and potential use in bioterrorism. Here, we report on the changes to Y. pestis surfaces in different external microenvironments, specifically culture temperatures (6, 25, and 37 °C). Using nanoscale imaging coupled with functional mapping, we illustrate that changes in the surfaces of the bacterium from a morphological and biochemical standpoint can be analyzed simultaneously using atomic force microscopy. The results from functional mapping, obtained at a single cell level, show that the density of lipopolysaccharide (measured via terminal N-acetylglucosamine) on Y. pestis grown at 37 °C is only slightly higher than cells grown at 25 °C, but nearly three times higher than cells maintained at 6 °C for an extended period of time, thereby demonstrating that adaptations to different environments can be effectively captured using this technique. This nanoscale evaluation provides a new microscopic approach to study nanoscale properties of bacterial pathogens and investigate adaptations to different external environments.
Collapse
|
13
|
Liu L, Fang H, Yang H, Zhang Y, Han Y, Zhou D, Yang R. CRP Is an Activator of Yersinia pestis Biofilm Formation that Operates via a Mechanism Involving gmhA and waaAE-coaD. Front Microbiol 2016; 7:295. [PMID: 27014218 PMCID: PMC4782182 DOI: 10.3389/fmicb.2016.00295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/23/2016] [Indexed: 01/28/2023] Open
Abstract
gmhA encodes a phosphoheptose isomerase that catalyzes the biosynthesis of heptose, a conserved component of lipopolysaccharide (LPS). GmhA plays an important role in Yersinia pestis biofilm blockage in the flea gut. waaA, waaE, and coaD constitute a three-gene operon waaAE-coaD in Y. pestis. waaA encodes a transferase that is responsible for binding lipid-A to the core oligosaccharide of LPS. WaaA is a key determinant in Y. pestis biofilm formation, and the waaA expression is positively regulated by the two-component regulatory system PhoP/PhoQ. WaaE is involved in LPS modification and is necessary for Y. pestis biofilm production. In this study, the biofilm-related phenotypic assays indicate that the global regulator CRP stimulates Y. pestis biofilm formation in vitro and on nematodes, while it has no regulatory effect on the biosynthesis of the biofilm-signaling molecular 3',5'-cyclic diguanosine monophosphate. Further gene regulation experiments disclose that CRP does not regulate the hms genes at the transcriptional level but directly promotes the gmhA transcription and indirectly activates the waaAE-coaD transcription through directly acting on phoPQ-YPO1632. Thus, it is speculated that CRP-mediated carbon catabolite regulation of Y. pestis biofilm formation depends on the CRP-dependent carbon source metabolic pathways of the biosynthesis, modification, and transportation of biofilm exopolysaccharide.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Yiquan Zhang
- Department of Biochemistry, School of Medicine, Jiangsu University Zhenjiang, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| |
Collapse
|
14
|
Abstract
Three major plague pandemics caused by the gram-negative bacterium Yersinia pestis have killed nearly 200 million people in human history. Due to its extreme virulence and the ease of its transmission, Y. pestis has been used purposefully for biowarfare in the past. Currently, plague epidemics are still breaking out sporadically in most of parts of the world, including the United States. Approximately 2000 cases of plague are reported each year to the World Health Organization. However, the potential use of the bacteria in modern times as an agent of bioterrorism and the emergence of a Y. pestis strain resistant to eight antibiotics bring out severe public health concerns. Therefore, prophylactic vaccination against this disease holds the brightest prospect for its long-term prevention. Here, we summarize the progress of the current vaccine development for counteracting plague.
Collapse
Affiliation(s)
- Wei Sun
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, 110880, Gainesville, FL, 32611-0880, USA.
| |
Collapse
|
15
|
Kondakova AN, Kirsheva NA, Arbatsky NP, Shaikhutdinova RZ, Shashkov AS, Ivanov SA, Anisimov AP, Knirel YA. Structure of a zwitterionic O-polysaccharide from Photorhabdus temperata subsp. cinerea 3240. Carbohydr Res 2015; 407:1-4. [PMID: 25699972 DOI: 10.1016/j.carres.2015.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 12/16/2014] [Accepted: 01/21/2015] [Indexed: 10/24/2022]
Abstract
A phosphorylated O-polysaccharide was isolated from the lipopolysaccharide of an entomopathogenic bacterium Photorhabdus temperata subsp. cinerea 3240 and studied by sugar analysis, dephosphorylation, and (1)H and (13)C NMR spectroscopy. The following structure of the linear trisaccharide repeating unit of the O-polysaccharide was established: →3)-β-D-GalpNAc4PEtN-(1→4)-β-D-GlcpA-(1→3)-β-D-FucpNAc4N-(1→ where GlcA indicates glucuronic acid, FucNAc4N 2-acetamido-4-amino-2,4,6-trideoxygalactose, and PEtN 2-aminoethyl phosphate.
Collapse
Affiliation(s)
- Anna N Kondakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Nadezhda A Kirsheva
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Rima Z Shaikhutdinova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A Ivanov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Andrey P Anisimov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Yang Y, Oishi S, Martin CE, Seeberger PH. Diversity-oriented synthesis of inner core oligosaccharides of the lipopolysaccharide of pathogenic Gram-negative bacteria. J Am Chem Soc 2013; 135:6262-71. [PMID: 23521711 DOI: 10.1021/ja401164s] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipopolysaccharide (LPS) is a potent virulence factor of pathogenic Gram-negative bacteria. To better understand the role of LPS in host-pathogen interactions and to elucidate the antigenic and immunogenic properties of LPS inner core region, a collection of well-defined L-glycero-D-manno-heptose (Hep) and 3-deoxy-α-D-manno-oct-2-ulosonic acid (Kdo)-containing inner core oligosaccharides is required. To address this need, we developed a diversity-oriented approach based on a common orthogonal protected disaccharide Hep-Kdo. Utilizing this new approach, we synthesized a range of LPS inner core oligosaccharides from a variety of pathogenic bacteria including Y. pestis, H. influenzae, and Proteus that cause plague, meningitis, and severe wound infections, respectively. Rapid access to these highly branched core oligosaccharides relied on elaboration of the disaccharide Hep-Kdo core as basis for the elongation with various flexible modules including unique Hep and 4-amino-4-deoxy-β-L-arabinose (Ara4N) monosaccharides and branched Hep-Hep disaccharides. A regio- and stereoselective glycosylation of Kdo 7,8-diol was key to selective installation of the Ara4N moiety at the 8-hydroxyl group of Kdo moiety of the Hep-Kdo disaccharide. The structure of the LPS inner core oligosaccharides was confirmed by comparison of (1)H NMR spectra of synthetic antigens and isolated fragments. These synthetic LPS core oligosaccharides can be covalently bound to carrier proteins via the reducing end pentyl amine linker, to explore their antigenic and immunogenic properties as well as potential applications such as diagnostic tools and vaccines.
Collapse
Affiliation(s)
- You Yang
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | | | | | |
Collapse
|
17
|
Kilár A, Dörnyei Á, Kocsis B. Structural characterization of bacterial lipopolysaccharides with mass spectrometry and on- and off-line separation techniques. MASS SPECTROMETRY REVIEWS 2013; 32:90-117. [PMID: 23165926 DOI: 10.1002/mas.21352] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 06/01/2023]
Abstract
The focus of this review is the application of mass spectrometry to the structural characterization of bacterial lipopolysaccharides (LPSs), also referred to as "endotoxins," because they elicit the strong immune response in infected organisms. Recently, a wide variety of MS-based applications have been implemented to the structure elucidation of LPS. Methodological improvements, as well as on- and off-line separation procedures, proved the versatility of mass spectrometry to study complex LPS mixtures. Special attention is given in the review to the tandem mass spectrometric methods and protocols for the analyses of lipid A, the endotoxic principle of LPS. We compare and evaluate the different ionization techniques (MALDI, ESI) in view of their use in intact R- and S-type LPS and lipid A studies. Methods for sample preparation of LPS prior to mass spectrometric analysis are also described. The direct identification of intrinsic heterogeneities of most intact LPS and lipid A preparations is a particular challenge, for which separation techniques (e.g., TLC, slab-PAGE, CE, GC, HPLC) combined with mass spectrometry are often necessary. A brief summary of these combined methodologies to profile LPS molecular species is provided.
Collapse
Affiliation(s)
- Anikó Kilár
- Department of Analytical and Environmental Chemistry, Institute of Chemistry, Faculty of Sciences, University of Pécs, Pécs, Hungary.
| | | | | |
Collapse
|
18
|
Structure of the O-polysaccharide of Photorhabdus luminescens subsp. laumondii containing d-glycero-d-manno-heptose and 3,6-dideoxy-3-formamido-d-glucose. Carbohydr Res 2012; 351:134-7. [DOI: 10.1016/j.carres.2012.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 11/22/2022]
|
19
|
Yamashita S, Lukacik P, Barnard TJ, Noinaj N, Felek S, Tsang TM, Krukonis ES, Hinnebusch BJ, Buchanan SK. Structural insights into Ail-mediated adhesion in Yersinia pestis. Structure 2012; 19:1672-82. [PMID: 22078566 DOI: 10.1016/j.str.2011.08.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/16/2011] [Accepted: 08/19/2011] [Indexed: 12/24/2022]
Abstract
Ail is an outer membrane protein from Yersinia pestis that is highly expressed in a rodent model of bubonic plague, making it a good candidate for vaccine development. Ail is important for attaching to host cells and evading host immune responses, facilitating rapid progression of a plague infection. Binding to host cells is important for injection of cytotoxic Yersinia outer proteins. To learn more about how Ail mediates adhesion, we solved two high-resolution crystal structures of Ail, with no ligand bound and in complex with a heparin analog called sucrose octasulfate. We identified multiple adhesion targets, including laminin and heparin, and showed that a 40 kDa domain of laminin called LG4-5 specifically binds to Ail. We also evaluated the contribution of laminin to delivery of Yops to HEp-2 cells. This work constitutes a structural description of how a bacterial outer membrane protein uses a multivalent approach to bind host cells.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-8030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dentovskaya SV, Anisimov AP, Kondakova AN, Lindner B, Bystrova OV, Svetoch TE, Shaikhutdinova RZ, Ivanov SA, Bakhteeva IV, Titareva GM, Knirel AYA. Functional characterization and biological significance of Yersinia pestis lipopolysaccharide biosynthesis genes. BIOCHEMISTRY (MOSCOW) 2012; 76:808-22. [PMID: 21999543 DOI: 10.1134/s0006297911070121] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In silico analysis of available bacterial genomes revealed the phylogenetic proximity levels of enzymes responsible for biosynthesis of lipopolysaccharide (LPS) of Yersinia pestis, the cause of plague, to homologous proteins of closely related Yersinia spp. and some other bacteria (Serratia proteamaculans, Erwinia carotovora, Burkholderia dolosa, Photorhabdus luminescens and others). Isogenic Y. pestis mutants with single or double mutations in 14 genes of LPS biosynthetic pathways were constructed by site-directed mutagenesis on the base of the virulent strain 231 and its attenuated derivative. Using high-resolution electrospray ionization mass spectrometry, the full LPS structures were elucidated in each mutant, and the sequence of monosaccharide transfers in the assembly of the LPS core was inferred. Truncation of the core decreased significantly the resistance of bacteria to normal human serum and polymyxin B, the latter probably as a result of a less efficient incorporation of 4-amino-4-deoxyarabinose into lipid A. Impairing of LPS biosynthesis resulted also in reduction of LPS-dependent enzymatic activities of plasminogen activator and elevation of LD(50) and average survival time in mice and guinea pigs infected with experimental plague. Unraveling correlations between biological properties of bacteria and particular LPS structures may help a better understanding of pathogenesis of plague and implication of appropriate genes as potential molecular targets for treatment of plague.
Collapse
Affiliation(s)
- S V Dentovskaya
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kondakova AN, Kirsheva NA, Shashkov AS, Shaikhutdinova RZ, Arabtsky NP, Ivanov SA, Anisimov AP, Knirel YA. Low structural diversity of the O-polysaccharides of Photorhabdus asymbiotica subspp. asymbiotica and australis and their similarity to the O-polysaccharides of taxonomically remote bacteria including Francisella tularensis. Carbohydr Res 2011; 346:1951-5. [PMID: 21816392 DOI: 10.1016/j.carres.2011.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/11/2011] [Accepted: 05/15/2011] [Indexed: 10/18/2022]
Abstract
The O-polysaccharides were isolated from the lipopolysaccharides of emerging human pathogens Photorhabdus asymbiotica subsp. asymbiotica US-86 and US-87 and subsp. australis AU36, AU46, and AU92. Studies by sugar analysis and (1)H and (13)C NMR spectroscopy before and after O-deacetylation showed that the O-polysaccharide structures are essentially identical within, and only slightly different between, the subspecies. The following structures of the repeating units of the O-polysaccharides were established: →3)-β-d-Quip4NGlyFo-(1→4)-α-d-GalpNAcAN3Ac-(1→4)-α-d-GalpNAcA3R-(1→3)-α-d-QuipNAc-(1→ where GalNAcA stands for 2-acetamido-2-deoxygalacturonic acid, GalNAcAN for amide of GalNAcA, QuiNAc for 2-acetamido-2,6-dideoxyglucose, and Qui4NGlyFo for 4,6-dideoxy-4-(N-formylglycyl)aminoglucose; R=Ac in subsp. asymbiotica or H in subsp. australis. The structures established resemble those of a number of taxonomically remote bacteria including Francisella tularensis (Vinogradov, E. V.; Shashkov, A. S.; Knirel, Y. A.; Kochetkov, N. K.; Tochtamysheva, N. V.; Averin, S. P.; Goncharova, O. V.; Khlebnikov, V. S. Carbohydr. Res.1991, 214, 289-297), which differs in (i) the presence of a formyl group on Qui4N rather than the N-formylglycyl group, (ii) the mode of the linkage between the repeating units (β1→2 vs α1→3), (iii) amidation of both GalNAcA residues rather than one residue, and iv) the lack of O-acetylation.
Collapse
Affiliation(s)
- Anna N Kondakova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Outer membrane protein X (Ail) contributes to Yersinia pestis virulence in pneumonic plague and its activity is dependent on the lipopolysaccharide core length. Infect Immun 2010; 78:5233-43. [PMID: 20837715 DOI: 10.1128/iai.00783-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis, the causative agent of plague, is one of the most virulent microorganisms known. The outer membrane protein X (OmpX) in Y. pestis KIM is required for efficient bacterial adherence to and internalization by cultured HEp-2 cells and confers resistance to human serum. Here, we tested the contribution of OmpX to disease progression in the fully virulent Y. pestis CO92 strain by engineering a deletion mutant and comparing its ability in mediating pneumonic plague to that of the wild type in two animal models. The deletion of OmpX delayed the time to death up to 48 h in a mouse model and completely attenuated virulence in a rat model of disease. All rats challenged with 1 × 10(8) CFU of the ompX mutant survived, compared to the 50% lethal dose (LD50) of 1.2 × 10(3) CFU for the wild-type strain. Because murine serum is not bactericidal for the ompX mutant, the mechanism underlying the delay in time to death in mice was attributed to loss of adhesion/internalization properties but not serum resistance. The rat model, which is most similar to humans, highlighted the critical role of serum resistance in disease. To resolve conflicting evidence for the role of Y. pestis lipopolysaccharide (LPS) and OmpX in serum resistance, ompX was cloned into Escherichia coli D21 and three isogenic derivatives engineered to have progressively truncated LPS core saccharides. OmpX-mediated serum resistance, adhesiveness, and invasiveness, although dependent on LPS core length, displayed these functions in E. coli, independently of other Yersinia proteins and/or LPS. Also, autoaggregation was required for efficient OmpX-mediated adhesiveness and internalization but not serum resistance.
Collapse
|
23
|
Abstract
The potential application of Yersinia pestis for bioterrorism emphasizes the urgent need to develop more effective vaccines against airborne infection. The current status of plague vaccines has been reviewed. The present emphasis is on subunit vaccines based on the F1 and LcrV antigens. These provide good protection in animal models but may not protect against F1 strains with modifications to the type III secretion system. The duration of protection against pneumonic infection is also uncertain. Other strategies under investigation include defined live-attenuated vaccines, DNA vaccines, mucosal delivery systems and heterologous immunization. The live-attenuated strain Y. pestis EV NIIEG protects against aerosol challenge in animal models and, with further modification to reduce residual virulence and to optimize respiratory protection, it could provide a shortcut to improved vaccines. The regulatory problems inherent in licensing vaccines for which efficacy data are unavailable and their possible solutions are discussed herein.
Collapse
Affiliation(s)
- Valentina A Feodorova
- Scientific and Research Institute for Medical and Veterinary Biotechnologies, Russia-Switzerland, Branch in Saratov, 9 Proviantskaya Street, Box 1580, Saratov 410028, Russia.
| | | |
Collapse
|
24
|
Abstract
Killed whole cell vaccines for plague were first produced as long ago as the late 1890s and modified versions of these are still used, with evidence that they are efficacious against bubonic plague. Renewed efforts with modern technology have yielded new candidate vaccines which are less reactogenic, can be produced in a conventional pharmaceutical manufacturing plant and are protective against the life-threatening pneumonic form of the disease. This paper reviews the progress towards an improved vaccine for plague and assesses the likely impact of a prophylactic vaccine for bubonic and pneumonic plague.
Collapse
Affiliation(s)
- E D Williamson
- Defence Science and Technology Laboratory (DSTL), Porton Down, Salisbury, Wilts SP4 0JQ, UK.
| |
Collapse
|
25
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update covering the period 2001-2002. MASS SPECTROMETRY REVIEWS 2008; 27:125-201. [PMID: 18247413 DOI: 10.1002/mas.20157] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This review is the second update of the original review on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates that was published in 1999. It covers fundamental aspects of the technique as applied to carbohydrates, fragmentation of carbohydrates, studies of specific carbohydrate types such as those from plant cell walls and those attached to proteins and lipids, studies of glycosyl-transferases and glycosidases, and studies where MALDI has been used to monitor products of chemical synthesis. Use of the technique shows a steady annual increase at the expense of older techniques such as FAB. There is an increasing emphasis on its use for examination of biological systems rather than on studies of fundamental aspects and method development and this is reflected by much of the work on applications appearing in tabular form.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
26
|
|
27
|
Kolodziejek AM, Sinclair DJ, Seo KS, Schnider DR, Deobald CF, Rohde HN, Viall AK, Minnich SS, Hovde CJ, Minnich SA, Bohach GA. Phenotypic characterization of OmpX, an Ail homologue of Yersinia pestis KIM. MICROBIOLOGY-SGM 2007; 153:2941-2951. [PMID: 17768237 DOI: 10.1099/mic.0.2006/005694-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The goal of this study was to characterize the Yersinia pestis KIM OmpX protein. Yersinia spp. provide a model for studying several virulence processes including attachment to, and internalization by, host cells. For Yersinia enterocolitica and Yersinia pseudotuberculosis, Ail, YadA and Inv, have been implicated in these processes. In Y. pestis, YadA and Inv are inactivated. Genomic analysis of two Y. pestis strains revealed four loci with sequence homology to Ail. One of these genes, designated y1324 in the Y. pestis KIM database, encodes a protein designated OmpX. The mature protein has a predicted molecular mass of 17.47 kDa, shares approximately 70 % sequence identity with Y. enterocolitica Ail, and has an identical homologue, designated Ail, in the Y. pestis CO92 database. The present study compared the Y. pestis KIM6(+) parental strain with a mutant derivative having an engineered disruption of the OmpX structural gene. The parental strain (and a merodiploid control strain) expressed OmpX at 28 and 37 degrees C, and the protein was detectable throughout all phases of growth. OmpX was required for efficient adherence to, and internalization by, cultured HEp-2 cell monolayers and conferred resistance to the bactericidal effect of human serum. Deletion of ompX resulted in a significantly reduced autoaggregation phenotype and loss of pellicle formation in vitro. These results suggest that Y. pestis OmpX shares functional homology with Y. enterocolitica Ail in adherence, internalization into epithelial cells and serum resistance.
Collapse
Affiliation(s)
- Anna M Kolodziejek
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | - Dylan J Sinclair
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | - Keun S Seo
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | - Darren R Schnider
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | - Claudia F Deobald
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | - Harold N Rohde
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | - Austin K Viall
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | - Scott S Minnich
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | - Carolyn J Hovde
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | - Scott A Minnich
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | - Gregory A Bohach
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| |
Collapse
|
28
|
Anisimov AP, Shaikhutdinova RZ, Pan'kina LN, Feodorova VA, Savostina EP, Bystrova OV, Lindner B, Mokrievich AN, Bakhteeva IV, Titareva GM, Dentovskaya SV, Kocharova NA, Senchenkova SN, Holst O, Devdariani ZL, Popov YA, Pier GB, Knirel YA. Effect of deletion of the lpxM gene on virulence and vaccine potential of Yersinia pestis in mice. J Med Microbiol 2007; 56:443-453. [PMID: 17374882 DOI: 10.1099/jmm.0.46880-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yersinia pestis undergoes an obligate flea-rodent-flea enzootic life cycle. The rapidly fatal properties of Y. pestis are responsible for the organism's sustained survival in natural plague foci. Lipopolysaccharide (LPS) plays several roles in Y. pestis pathogenesis, prominent among them being resistance to host immune effectors and induction of a septic-shock state during the terminal phases of infection. LPS is acylated with 4-6 fatty acids, the number varying with growth temperature and affecting the molecule's toxic properties. Y. pestis mutants were constructed with a deletion insertion in the lpxM gene in both virulent and attenuated strains, preventing the organisms from synthesizing the most toxic hexa-acylated lipid A molecule when grown at 25 degrees C. The virulence and/or protective potency of pathogenic and attenuated Y. pestis DeltalpxM mutants were then examined in a mouse model. The DeltalpxM mutation in a virulent strain led to no change in the LD(50) value compared to that of the parental strain, while the DeltalpxM mutation in attenuated strains led to a modest 2.5-16-fold reduction in virulence. LPS preparations containing fully hexa-acylated lipid A were ten times more toxic in actinomycin D-treated mice then preparations lacking this lipid A isoform, although this was not significant (P>0.05). The DeltalpxM mutation in vaccine strain EV caused a significant increase in its protective potency. These studies suggest there is little impact from lipid A modifications on the virulence of Y. pestis strains but there are potential improvements in the protective properties in attenuated vaccine strains.
Collapse
Affiliation(s)
- Andrey P Anisimov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Moscow Region, Russia
| | - Rima Z Shaikhutdinova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Moscow Region, Russia
| | | | | | - Elena P Savostina
- Russian Research Anti-Plague Institute 'Microbe', Saratov 410071, Russia
| | - Ol'ga V Bystrova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Buko Lindner
- Research Center Borstel, Leibniz Center for Medicine and Biosciences, D-23845 Borstel, Germany
| | - Aleksandr N Mokrievich
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Moscow Region, Russia
| | - Irina V Bakhteeva
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Moscow Region, Russia
| | - Galina M Titareva
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Moscow Region, Russia
| | - Svetlana V Dentovskaya
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Moscow Region, Russia
| | - Nina A Kocharova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Otto Holst
- Research Center Borstel, Leibniz Center for Medicine and Biosciences, D-23845 Borstel, Germany
| | - Zurab L Devdariani
- Russian Research Anti-Plague Institute 'Microbe', Saratov 410071, Russia
| | - Yuriy A Popov
- Russian Research Anti-Plague Institute 'Microbe', Saratov 410071, Russia
| | - Gerald B Pier
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
29
|
Cornelius C, Quenee L, Anderson D, Schneewind O. Protective immunity against plague. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 603:415-24. [PMID: 17966437 DOI: 10.1007/978-0-387-72124-8_38] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Plague, an infectious disease that reached catastrophic proportions during three pandemics, continues to be a legitimate public health concern worldwide. Although antibiotic therapy for the causative agent Yersinia pestis is available, pharmaceutical supply limitations, multi-drug resistance from natural selection as well as malicious bioengineering are a reality. Consequently, plague vaccinology is a priority for biodefense research. Development of a multi-subunit vaccine with Fraction 1 and LcrV as protective antigens seems to be receiving the most attention. However, LcrV has been shown to cause immune suppression and Y. pestis mutants lacking F1 expression are thought to be fully virulent in nature and in animal experiments. The LcrV variant, rV10, retains the well documented protective antigenic properties of LcrV but with diminished inhibitory effects on the immune system. More research is required to examine the molecular mechanisms of vaccine protection afforded by surface protein antigens and to decipher the host mechanisms responsible for vaccine success.
Collapse
|
30
|
Zhou D, Han Y, Yang R. Molecular and physiological insights into plague transmission, virulence and etiology. Microbes Infect 2006; 8:273-84. [PMID: 16182593 DOI: 10.1016/j.micinf.2005.06.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 05/30/2005] [Accepted: 06/03/2005] [Indexed: 11/28/2022]
Abstract
Plague is caused by Yersinia pestis, which evolved from the enteric pathogen Y. pseudotuberculosis, which normally causes a chronic and relatively mild disease. Y. pestis is not only able to parasitize the flea but also highly virulent to rodents and humans, causing epidemics of a systemic and often fatal disease. Y. pestis could be used as a bio-weapon and for bio-terrorism. It uses a number of strategies that allow the pathogen to change its lifestyle rapidly to survive in fleas and to grow in the mammalian hosts. Extensive studies reviewed here give an overall picture of the determinants responsible for plague pathogenesis in mammalians and the transmission by fleas. The availability of multiple genomic sequences and more extensive use of genomics and proteomics technologies should allow a comprehensive dissection of the complex of host-adaptation and virulence in Y. pestis.
Collapse
Affiliation(s)
- Dongsheng Zhou
- State Key laboratory of Pathogen and Biosecurity, National Center for Biomedical Analysis, Army Center for Microbial Detection and Research, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | | | | |
Collapse
|
31
|
Anisimov AP, Dentovskaya SV, Titareva GM, Bakhteeva IV, Shaikhutdinova RZ, Balakhonov SV, Lindner B, Kocharova NA, Senchenkova SN, Holst O, Pier GB, Knirel YA. Intraspecies and temperature-dependent variations in susceptibility of Yersinia pestis to the bactericidal action of serum and to polymyxin B. Infect Immun 2005; 73:7324-31. [PMID: 16239530 PMCID: PMC1273868 DOI: 10.1128/iai.73.11.7324-7331.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipopolysaccharide (LPS) structure impacts the bactericidal action of cationic peptides, such as polymyxin B (PMB), and sensitivity to killing by normal human serum (NHS). Cultivation of different subspecies strains of Yersinia pestis isolated from unrelated geographic origins at various temperatures (mammals, 37 degrees C; fleas, 25 degrees C; or winter hibernation, 6 degrees C) affects LPS composition and structure. We tested the susceptibilities of various strains of Y. pestis grown at these different temperatures to PMB and serum bactericidal killing. Both properties varied significantly in response to temperature changes. In Y. pestis subsp. pestis (the main subspecies causing human plague), high levels of resistance to PMB and NHS were detected at 25 degrees C. However, at the same temperature, Y. pestis subsp. caucasica was highly sensitive to PMB. At both of the extreme temperatures, all strains were highly susceptible to PMB. At 25 degrees C and 37 degrees C, Y. pestis subsp. caucasica strain 1146 was highly susceptible to the bactericidal activity of 80% NHS. All Y. pestis strains studied were able to grow in heat-inactivated human serum or in 80% normal mouse serum. At 6 degrees C, all strains were highly sensitive to NHS. Variations in the PMB resistance of different bacterial cultures related to both the content of cationic components (4-amino-4-deoxyarabinose in lipid A and glycine in the core) and a proper combination of terminal monosaccharides in the LPS. The NHS resistance correlated with an elevated content of N-acetylglucosamine in the LPS. Structural variation in the LPS of Y. pestis correlates with the organism's ability to resist innate immunity in both fleas and mammals.
Collapse
Affiliation(s)
- Andrey P Anisimov
- State Research Center for Applied Microbiology, Obolensk, Moscow Region 142279, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Taylor VL, Titball RW, Oyston PCF. Oral immunization with a dam mutant of Yersinia pseudotuberculosis protects against plague. MICROBIOLOGY-SGM 2005; 151:1919-1926. [PMID: 15941999 DOI: 10.1099/mic.0.27959-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inactivation of the gene encoding DNA adenine methylase (dam) has been shown to attenuate some pathogens such as Salmonella enterica serovar Typhimurium and is a lethal mutation in others such as Yersinia pseudotuberculosis strain YPIII. In this study the dam methylase gene in Yersinia pseudotuberculosis strain IP32953 was inactivated. Unlike the wild-type, DNA isolated from the mutant could be digested with MboI, which is consistent with an altered pattern of DNA methylation. The mutant was sensitive to bile salts but not to 2-aminopurine. The effect of dam inactivation on gene expression was examined using a DNA microarray. In BALB/c mice inoculated orally or intravenously with the dam mutant, the median lethal dose (MLD) was at least 10(6)-fold higher than the MLD of the wild-type. BALB/c mice inoculated with the mutant were protected against a subcutaneous challenge with 100 MLDs of Yersinia pestis strain GB and an intravenous challenge with 300 MLDs of Y. pseudotuberculosis IP32953.
Collapse
Affiliation(s)
- Victoria L Taylor
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Richard W Titball
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Petra C F Oyston
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
33
|
Oyston PCF, Isherwood KE. The many and varied niches occupied by Yersinia pestis as an arthropod-vectored zoonotic pathogen. Antonie van Leeuwenhoek 2005; 87:171-7. [PMID: 15803382 DOI: 10.1007/s10482-004-4619-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 10/12/2004] [Indexed: 11/30/2022]
Abstract
Yersinia pestis, the causative agent of bubonic and pneumonic plague, has a complex lifestyle, cycling between both arthropod and mammalian hosts. This pathogen has previously been shown to survive intracellularly within macrophages and to be capable of biofilm formation within the flea, suggesting the development of a range of strategies to ensure survival throughout its life cycle, including expression of virulence factors and tight regulation of its genes.
Collapse
Affiliation(s)
- Petra C F Oyston
- Microbiology, Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK.
| | | |
Collapse
|
34
|
Knirel YA, Lindner B, Vinogradov EV, Kocharova NA, Senchenkova SN, Shaikhutdinova RZ, Dentovskaya SV, Fursova NK, Bakhteeva IV, Titareva GM, Balakhonov SV, Holst O, Gremyakova TA, Pier GB, Anisimov AP. Temperature-Dependent Variations and Intraspecies Diversity of the Structure of the Lipopolysaccharide of Yersinia pestis,. Biochemistry 2005; 44:1731-43. [PMID: 15683257 DOI: 10.1021/bi048430f] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Yersinia pestis spread throughout the Americas in the early 20th century, and it occurs predominantly as a single clone within this part of the world. However, within Eurasia and parts of Africa there is significant diversity among Y. pestis strains, which can be classified into different biovars (bv.) and/or subspecies (ssp.), with bv. orientalis/ssp. pestis most closely related to the American clone. To determine one aspect of the relatedness of these different Y. pestis isolates, the structure of the lipopolysaccharide (LPS) of four wild-type and one LPS-mutant Eurasian/African strains of Y. pestis was determined, evaluating effects of growth at mammalian (37 degrees C) or flea (25 degrees C) temperatures on the structure and composition of the core oligosaccharide and lipid A. In the wild-type clones of ssp. pestis, a single major core glycoform was synthesized at 37 degrees C whereas multiple core oligosaccharide glycoforms were produced at 25 degrees C. Structural differences occurred primarily in the terminal monosaccharides. Only tetraacyl lipid A was made at 37 degrees C, whereas at 25 degrees C additional pentaacyl and hexaacyl lipid A structures were produced. 4-Amino-4-deoxyarabinose levels in lipid A increased with lower growth temperatures or when bacteria were cultured in the presence of polymyxin B. In Y. pestis ssp. caucasica, the LPS core lacked D-glycero-D-manno-heptose and the content of 4-amino-4-deoxyarabinose showed no dependence on growth temperature, whereas the degree of acylation of the lipid A and the structure of the oligosaccharide core were temperature dependent. A spontaneous deep-rough LPS mutant strain possessed only a disaccharide core and a slightly variant lipid A. The diversity and differences in the structure of the Y. pestis LPS suggest important contributions of these variations to the pathogenesis of this organism, potentially related to innate and acquired immune recognition of Y. pestis and epidemiologic means to detect, classify, control and respond to Y. pestis infections.
Collapse
Affiliation(s)
- Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Live attenuated and killed whole cell vaccines against disease caused by Yersinia pestis have been available since the early part of the last century. Although these vaccines indicate the feasibility of protecting against disease, they have a number of shortcomings. The live attenuated vaccine is highly reactogenic and is not licensed for use in humans. The killed whole cell vaccine, also reactogenic, provides poor protection against pneumonic plague and immunisation requires multiple doses of the vaccine. Against this background, a range of candidate vaccines, including rationally attenuated mutants, subunit vaccines and naked DNA vaccines have been described. Of these, an injected subunit vaccine is likely to offer the best near-term solution to the provision of a vaccine that protects against both bubonic and pneumonic plague.
Collapse
|
36
|
Rebeil R, Ernst RK, Gowen BB, Miller SI, Hinnebusch BJ. Variation in lipid A structure in the pathogenic yersiniae. Mol Microbiol 2004; 52:1363-73. [PMID: 15165239 DOI: 10.1111/j.1365-2958.2004.04059.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Important pathogens in the genus Yersinia include the plague bacillus Yersinia pestis and two enteropathogenic species, Yersinia pseudotuberculosis and Yersinia enterocolitica. A shift in growth temperature induced changes in the number and type of acyl groups on the lipid A of all three species. After growth at 37 degrees C, Y. pestis lipopolysaccharide (LPS) contained the tetra-acylated lipid IV(A) and smaller amounts of lipid IV(A) modified with C10 or C12 acyl groups, Y. pseudotuberculosis contained the same forms as part of a more heterogeneous population in which lipid IV(A) modified with C16:0 predominated, and Y. enterocolitica produced a unique tetra-acylated lipid A. When grown at 21 degrees C, however, the three yersiniae synthesized LPS containing predominantly hexa-acylated lipid A. This more complex lipid A stimulated human monocytes to secrete tumour necrosis factor-alpha, whereas the lipid A synthesized by the three species at 37 degrees C did not. The Y. pestis phoP gene was required for aminoarabinose modification of lipid A, but not for the temperature-dependent acylation changes. The results suggest that the production of a less immunostimulatory form of LPS upon entry into the mammalian host is a conserved pathogenesis mechanism in the genus Yersinia, and that species-specific lipid A forms may be important for life cycle and pathogenicity differences.
Collapse
Affiliation(s)
- Roberto Rebeil
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St., Hamilton, MT 59840, USA
| | | | | | | | | |
Collapse
|
37
|
Flashner Y, Mamroud E, Tidhar A, Ber R, Aftalion M, Gur D, Lazar S, Zvi A, Bino T, Ariel N, Velan B, Shafferman A, Cohen S. Generation of Yersinia pestis attenuated strains by signature-tagged mutagenesis in search of novel vaccine candidates. Infect Immun 2004; 72:908-15. [PMID: 14742535 PMCID: PMC321629 DOI: 10.1128/iai.72.2.908-915.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a search for novel attenuated vaccine candidates for use against Yersinia pestis, the causative agent of plague, a signature-tagged mutagenesis strategy was used and optimized for a subcutaneously infected mouse model. A library of tagged mutants of the virulent Y. pestis Kimberley53 strain was generated. Screening of 300 mutants through two consecutive cycles resulted in selection of 16 mutant strains that were undetectable in spleens 48 h postinfection. Each of these mutants was evaluated in vivo by assays for competition against the wild-type strain and for virulence following inoculation of 100 CFU (equivalent to 100 50% lethal doses [LD50] of the wild type). A wide spectrum of attenuation was obtained, ranging from avirulent mutants exhibiting competition indices of 10(-5) to 10(-7) to virulent mutants exhibiting a delay in the mean time to death or mutants indistinguishable from the wild type in the two assays. Characterization of the phenotypes and genotypes of the selected mutants led to identification of virulence-associated genes coding for factors involved in global bacterial physiology (e.g., purH, purK, dnaE, and greA) or for hypothetical polypeptides, as well as for the virulence regulator gene lcrF. One of the avirulent mutant strains (LD50, >10(7) CFU) was found to be disrupted in the pcm locus, which is presumably involved in the bacterial response to environmental stress. This Kimberley53pcm mutant was superior to the EV76 live vaccine strain because it induced 10- to 100-fold-higher antibody titers to the protective V and F1 antigens and because it conferred efficacious protective immunity.
Collapse
Affiliation(s)
- Yehuda Flashner
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, 74100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hinchliffe SJ, Isherwood KE, Stabler RA, Prentice MB, Rakin A, Nichols RA, Oyston PCF, Hinds J, Titball RW, Wren BW. Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis. Genome Res 2003; 13:2018-29. [PMID: 12952873 PMCID: PMC403674 DOI: 10.1101/gr.1507303] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 07/08/2003] [Indexed: 12/20/2022]
Abstract
Yersinia pestis, the causative agent of plague, diverged from Yersinia pseudotuberculosis, an enteric pathogen, an estimated 1500-20,000 years ago. Genetic characterization of these closely related organisms represents a useful model to study the rapid emergence of bacterial pathogens that threaten mankind. To this end, we undertook genome-wide DNA microarray analysis of 22 strains of Y. pestis and 10 strains of Y. pseudotuberculosis of diverse origin. Eleven Y. pestis DNA loci were deemed absent or highly divergent in all strains of Y. pseudotuberculosis. Four were regions of phage origin, whereas the other seven included genes encoding a vitamin B12 receptor and the insect toxin sepC. Sixteen differences were identified between Y. pestis strains, with biovar Antiqua and Mediaevalis strains showing most divergence from the arrayed CO92 Orientalis strain. Fifty-eight Y. pestis regions were specific to a limited number of Y. pseudotuberculosis strains, including the high pathogenicity island, three putative autotransporters, and several possible insecticidal toxins and hemolysins. The O-antigen gene cluster and one of two possible flagellar operons had high levels of divergence between Y. pseudotuberculosis strains. This study reports chromosomal differences between species, biovars, serotypes, and strains of Y. pestis and Y. pseudotuberculosis that may relate to the evolution of these species in their respective niches.
Collapse
|
39
|
Titball RW, Williamson ED. Second and third generation plague vaccines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 529:397-406. [PMID: 12756798 DOI: 10.1007/0-306-48416-1_80] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Richard W Titball
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | | |
Collapse
|
40
|
Prior JL, Titball RW. Monoclonal antibodies against Yersinia pestis lipopolysaccharide detect bacteria cultured at 28 degrees C or 37 degrees C. Mol Cell Probes 2003; 16:251-6. [PMID: 12270265 DOI: 10.1006/mcpr.2002.0420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four monoclonal antibodies were generated against Yersinia pestis lipopolysaccharide by immunising mice with a cell surface preparation from Y. pestis strain 1255. In an ELISA the monoclonal antibodies reacted with live whole cells of Y. pestis strain GB cultured at 28 degrees C or 37 degrees C. The lowest detection threshold for Y. pestis strain GB cultured at 28 degrees C was 4 x 10(5) cfu ml(-1) and for bacteria cultured at 37 degrees C was 1 x 10(4) cfu ml(-1). The monoclonal antibodies did not cross react with other pathogenic Yersinia in an ELISA, but showed some cross reactivity in an immuno-blot. The monoclonal antibodies could be used for the detection of Y. pestis cultured at different temperatures and with varying plasmid profiles as the lipopolysaccharide molecule is not temperature regulated and the genes encoding its biosynthesis are located on the bacterial chromosome.
Collapse
Affiliation(s)
- J L Prior
- Dstl Chemical and Biological Sciences, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK.
| | | |
Collapse
|
41
|
Kawahara K, Tsukano H, Watanabe H, Lindner B, Matsuura M. Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun 2002; 70:4092-8. [PMID: 12117916 PMCID: PMC128165 DOI: 10.1128/iai.70.8.4092-4098.2002] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Revised: 04/09/2002] [Accepted: 05/02/2002] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis strain Yreka was grown at 27 or 37 degrees C, and the lipid A structures (lipid A-27 degrees C and lipid A-37 degrees C) of the respective lipopolysaccharides (LPS) were investigated by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. Lipid A-27 degrees C consisted of a mixture of tri-acyl, tetra-acyl, penta-acyl, and hexa-acyl lipid A's, of which tetra-acyl lipid A was most abundant. Lipid A-37 degrees C consisted predominantly of tri- and tetra-acylated molecules, with only small amounts of penta-acyl lipid A; no hexa-acyl lipid A was detected. Furthermore, the amount of 4-amino-arabinose was substantially higher in lipid A-27 degrees C than in lipid A-37 degrees C. By use of mouse and human macrophage cell lines, the biological activities of the LPS and lipid A preparations were measured via their abilities to induce production of tumor necrosis factor alpha (TNF-alpha). In both cell lines the LPS and the lipid A from bacteria grown at 27 degrees C were stronger inducers of TNF-alpha than those from bacteria grown at 37 degrees C. However, the difference in activity was more prominent in human macrophage cells. These results suggest that in order to reduce the activation of human macrophages, it may be more advantageous for Y. pestis to produce less-acylated lipid A at 37 degrees C.
Collapse
Affiliation(s)
- Kazuyoshi Kawahara
- Department of Bacteriology, The Kitasato Institute, Tokyo 108-8642, Japan.
| | | | | | | | | |
Collapse
|
42
|
Hitchen PG, Prior JL, Oyston PCF, Panico M, Wren BW, Titball RW, Morris HR, Dell A. Structural characterization of lipo-oligosaccharide (LOS) from Yersinia pestis: regulation of LOS structure by the PhoPQ system. Mol Microbiol 2002; 44:1637-50. [PMID: 12067350 DOI: 10.1046/j.1365-2958.2002.02990.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The two-component regulatory system PhoPQ has been shown to regulate the expression of virulence factors in a number of bacterial species. For one such virulence factor, lipopolysaccharide (LPS), the PhoPQ system has been shown to regulate structural modifications in Salmonella enterica var Typhimurium. In Yersinia pestis, which expresses lipo-oligosaccharide (LOS), a PhoPQ regulatory system has been identified and an isogenic mutant constructed. To investigate potential modifications to LOS from Y. pestis, which to date has not been fully characterized, purified LOS from wild-type plague and the phoP defective mutant were analysed by mass spectrometry. Here we report the structural characterization of LOS from Y. pestis and the direct comparison of LOS from a phoP mutant. Structural modifications to lipid A, the host signalling portion of LOS, were not detected but analysis of the core revealed the expression of two distinct molecular species in wild-type LOS, differing in terminal galactose or heptose. The phoP mutant was restricted to the expression of a single molecular species, containing terminal heptose. The minimum inhibitory concentration of cationic antimicrobial peptides for the two strains was determined and compared with the wild-type: the phoP mutant was highly sensitive to polymyxin. Thus, LOS modification is under the control of the PhoPQ regulatory system and the ability to alter LOS structure may be required for survival of Y. pestis within the mammalian and/or flea host.
Collapse
Affiliation(s)
- Paul G Hitchen
- Department of Biological Sciences, Wolfson Building, Imperial College, London, SW7 2AY, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Vinogradov EV, Lindner B, Kocharova NA, Senchenkova SN, Shashkov AS, Knirel YA, Holst O, Gremyakova TA, Shaikhutdinova RZ, Anisimov AP. The core structure of the lipopolysaccharide from the causative agent of plague, Yersinia pestis. Carbohydr Res 2002; 337:775-7. [PMID: 11996830 DOI: 10.1016/s0008-6215(02)00074-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The rough-type lipopolysaccharide (LPS) of the plague pathogen, Yersinia pestis, was studied after mild-acid and strong-alkaline degradations by chemical analyses, NMR spectroscopy and electrospray-ionization mass spectrometry, and the following structure of the core region was determined:where L-alpha-D-Hep stands for L-glycero-alpha-D-manno-heptose, Sug1 for either 3-deoxy-alpha-D-manno-oct-2-ulosonic acid (alpha-Kdo) or D-glycero-alpha-D-talo-oct-2-ulosonic acid (alpha-Ko), and Sug2 for either beta-D-galactose or D-glycero-alpha-D-manno-heptose. A minority of the LPS molecules lacks GlcNAc.
Collapse
Affiliation(s)
- Evgeny V Vinogradov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47,Moscow 119991, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Karlyshev AV, Oyston PC, Williams K, Clark GC, Titball RW, Winzeler EA, Wren BW. Application of high-density array-based signature-tagged mutagenesis to discover novel Yersinia virulence-associated genes. Infect Immun 2001; 69:7810-9. [PMID: 11705963 PMCID: PMC98877 DOI: 10.1128/iai.69.12.7810-7819.2001] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2001] [Accepted: 08/08/2001] [Indexed: 12/29/2022] Open
Abstract
Yersinia pestis, the causative agent of plague, and the enteropathogen Yersinia pseudotuberculosis have nearly identical nucleotide similarity yet cause markedly different diseases. To investigate this conundrum and to study Yersinia pathogenicity, we developed a high-density oligonucleotide array-based modification of signature-tagged mutagenesis (STM). Y. pseudotuberculosis YPIII mutants constructed with the tagged transposons were evaluated in the murine yersiniosis infection model. The DNA tags were amplified using biotinylated primers and hybridized to high-density oligonucleotide arrays containing DNA complementary to the tags. Comparison of the hybridization signals from input pools and output pools identified a mutant whose relative abundance was significantly reduced in the output pool. Sequence data from 31 transposon insertion regions was compared to the complete Y. pestis CO92 genome sequence. The 26 genes present in both species were found to be almost identical, but five Y. pseudotuberculosis genes identified through STM did not have counterparts in the Y. pestis genome and may contribute to the different tropisms in these closely related pathogens. Potential virulence genes identified include those involved in lipopolysaccharide biosynthesis, adhesion, phospholipase activity, iron assimilation, and gene regulation. The phospholipase A (PldA) mutant exhibited reduced phospholipase activity compared to the wild-type strain and in vivo attenuation of the mutant was confirmed. The combination of optimized double tag sequences and high-density array hybridization technology offers improved performance, efficiency, and reliability over classical STM and permits quantitative analysis of data.
Collapse
Affiliation(s)
- A V Karlyshev
- Department of Infectious Diseases, London School of Hygiene and Tropical Medicine, University of London, London WC1E 7HT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Yersinia pestis is the etiological agent of bubonic and pneumonic plague, diseases which have caused over 200 milllion human deaths in the past. Plague still occurs throughout the world today, though for reasons that are not fully understood pandemics of disease do not develop from these outbreaks. Antibiotic treatment of bubonic plague is usually effective, but pneumonic plague is difficult to treat and even with antibiotic therapy death often results. A killed whole cell plague vaccine has been used in the past, but recent studies in animals have shown that this vaccine offers poor protection against pneumonic disease. A live attenuated vaccine is also available. Whilst this vaccine is effective, it retains some virulence and in most countries it is not considered to be suitable for use in humans. We review here work to develop improved sub-unit and live attenuated vaccines against plague. A sub-unit vaccine based on the F1- and V-antigens is highly effective against both bubonic and pneumonic plague, when tested in animal models of disease. This vaccine has been used to explore the utility of different intranasal and oral delivery systems, based on the microencapsulation or Salmonella delivery of sub-units.
Collapse
Affiliation(s)
- R W Titball
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, SP4 0JQ, Wilts, UK.
| | | |
Collapse
|