1
|
Wilmott P, Lisowski L. AAV Genome Topology Decides ITR Secondary Structure. Bioessays 2025; 47:e202400266. [PMID: 40045668 DOI: 10.1002/bies.202400266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 04/23/2025]
Abstract
Intra-strand base pairing is possible when double-stranded DNA contains inverted repeats, but vanishingly improbable without so-called negative superhelicity. This superhelicity itself is conditional upon whether the molecule can retain torsional stress-a question of "topology." This principle has been uncontroversial to biophysicists since the 1980s but has proven challenging for outsiders to grasp and retain. For those in AAV research, this constitutes a decades-long missed connection. AAV is one of a multitude of viruses bearing secondary-structure-forming elements on their termini. Its "inverted terminal repeats" (ITRs) can self-anneal into relatively large hammerhead structures on both ends of the dynamically structured genome and are central to numerous host interactions that drive the viral lifecycle. A standalone article such as this is therefore warranted to promote an understanding of these ideas in the AAV research community and highlight their significance in the basic biology of the virus and its vector gene delivery system.
Collapse
Affiliation(s)
- Patrick Wilmott
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| |
Collapse
|
2
|
Park J, Rhoo KY, Kim Y, Kim YS, Paik SR. Cell-Division-Independent Rapid Expression of DNA Delivered with α-Synuclein-Gold Nanoparticle Conjugates. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14846-14858. [PMID: 40014054 DOI: 10.1021/acsami.4c17967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Gene delivery is a primary technology employed in diverse areas of biomedical science, from gene therapy to gene editing, cancer treatment, and stem cell research. Here, we introduce a gene delivery system utilizing an intrinsically disordered protein of α-synuclein (αS) demonstrated to interact with lipid membranes by transforming its original random structure to an α-helix. Since the helix bundle formation is a signature of cell-penetrating peptides for membrane translocation, a multitude of αS(Y136C)s replacing tyrosine at the C-terminus with cysteine were covalently attached onto gold nanoparticles (AuNPs) in a specific orientation with the helix-forming basic N-termini exposed outward. The resulting αS(Y136C)-AuNP conjugates were found to exhibit a rapid gene expression without causing cytotoxicity when the gene of the enhanced green fluorescent protein (EGFP) was delivered with the conjugates into the cells. Based on inhibition studies toward endocytosis and mitosis, the αS(Y136C)-AuNP/DNA complex was demonstrated to take both endosomal and non-endosomal intracellular transport pathways. The DNA translocation into the nucleus was independent of cell division. This nondisruptive and rapid DNA transfection by αS(Y136C)-AuNPs allowed a successful delivery of granzyme A gene leading to cellular pyroptosis. Modifications of αS(Y136C)-AuNP/DNA complex, such as antibody immobilization and replacement of DNA with biological suprastructures including RNA, protein, and nonbiological fusion materials, would allow the intracellular delivery system to be applied in diverse areas of future biotechnology.
Collapse
Affiliation(s)
- Jeongha Park
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Kun Yil Rhoo
- Interdisciplinary Program of Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunsoo Kim
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Sik Kim
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Seung R Paik
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program of Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Maurer AC, Benyamini B, Whitney ON, Fan VB, Cattoglio C, Kissiov DU, Dailey GM, Darzacq X, Weitzman MD, Tjian R. Double-strand break repair pathways differentially affect processing and transduction by dual AAV vectors. Nat Commun 2025; 16:1532. [PMID: 39934106 PMCID: PMC11814140 DOI: 10.1038/s41467-025-56738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Recombinant adeno-associated viral vectors (rAAV) are a powerful tool for gene delivery but have a limited DNA carrying capacity. Efforts to expand this genetic payload have focused on engineering the vector components, such as dual trans-splicing vectors which double the delivery size by exploiting the natural concatenation of rAAV genomes in host nuclei. We hypothesized that inefficient dual vector transduction could be improved by modulating host factors which affect concatenation. Since factors mediating concatenation are not well defined, we performed a genome-wide screen to identify host cell regulators. We discover that Homologous Recombination (HR) is inhibitory to dual vector transduction. We demonstrate that depletion or inhibition of HR factors BRCA1 and Rad51 significantly increase reconstitution of a large split transgene by increasing both concatenation and expression from rAAVs. Our results define roles for DNA damage repair in rAAV transduction and highlight the potential for pharmacological intervention to increase genetic payload of rAAV vectors.
Collapse
Affiliation(s)
- Anna C Maurer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- CIRM Center of Excellence, University of California, Berkeley, CA, USA.
| | - Brian Benyamini
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Oscar N Whitney
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Vinson B Fan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Claudia Cattoglio
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- CIRM Center of Excellence, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Djem U Kissiov
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Gina M Dailey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, CA, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, CA, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, CA, USA
| |
Collapse
|
4
|
Chang TY, Waxman DJ. HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo. BMC Genomics 2024; 25:1240. [PMID: 39716078 DOI: 10.1186/s12864-024-11162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND STARR-seq and other massively-parallel reporter assays are widely used to discover functional enhancers in transfected cell models, which can be confounded by plasmid vector-induced type-I interferon immune responses and lack the multicellular environment and endogenous chromatin state of complex mammalian tissues. RESULTS We describe HDI-STARR-seq, which combines STARR-seq plasmid library delivery to the liver, by hydrodynamic tail vein injection (HDI), with reporter RNA transcriptional initiation driven by a minimal Albumin promoter, which we show is essential for mouse liver STARR-seq enhancer activity assayed 7 days after HDI. Importantly, little or no vector-induced innate type-I interferon responses were observed. Comparisons of HDI-STARR-seq activity between male and female mouse livers and in livers from males treated with an activating ligand of the transcription factor (TF) CAR (Nr1i3) identified many condition-dependent enhancers linked to condition-specific gene expression. Further, thousands of active liver enhancers were identified using a high complexity STARR-seq library comprised of ~ 50,000 genomic regions released by DNase-I digestion of mouse liver nuclei. When compared to stringently inactive library sequences, the active enhancer sequences identified were highly enriched for liver open chromatin regions with activating histone marks (H3K27ac, H3K4me1, H3K4me3), were significantly closer to gene transcriptional start sites, and were significantly depleted of repressive (H3K27me3, H3K9me3) and transcribed region histone marks (H3K36me3). CONCLUSION HDI-STARR-seq offers substantial improvements over current methodologies for large scale, functional profiling of enhancers, including condition-dependent enhancers, in liver tissue in vivo, and can be adapted to characterize enhancer activities in a variety of species and tissues by selecting suitable tissue- and species-specific promoter sequences.
Collapse
Affiliation(s)
- Ting-Ya Chang
- Departments of Biology and Biomedical Engineering, and Bioinformatics Program, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - David J Waxman
- Departments of Biology and Biomedical Engineering, and Bioinformatics Program, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
5
|
Chang TY, Waxman DJ. HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo. RESEARCH SQUARE 2024:rs.3.rs-4559581. [PMID: 38978599 PMCID: PMC11230509 DOI: 10.21203/rs.3.rs-4559581/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background STARR-seq and other massively-parallel reporter assays are widely used to discover functional enhancers in transfected cell models, which can be confounded by plasmid vector-induced type-I interferon immune responses and lack the multicellular environment and endogenous chromatin state of complex mammalian tissues. Results Here, we describe HDI-STARR-seq, which combines STARR-seq plasmid library delivery to the liver, by hydrodynamic tail vein injection (HDI), with reporter RNA transcriptional initiation driven by a minimal Albumin promoter, which we show is essential for mouse liver STARR-seq enhancer activity assayed 7 days after HDI. Importantly, little or no vector-induced innate type-I interferon responses were observed. Comparisons of HDI-STARR-seq activity between male and female mouse livers and in livers from males treated with an activating ligand of the transcription factor CAR (Nr1i3) identified many condition-dependent enhancers linked to condition-specific gene expression. Further, thousands of active liver enhancers were identified using a high complexity STARR-seq library comprised of ~ 50,000 genomic regions released by DNase-I digestion of mouse liver nuclei. When compared to stringently inactive library sequences, the active enhancer sequences identified were highly enriched for liver open chromatin regions with activating histone marks (H3K27ac, H3K4me1, H3K4me3), were significantly closer to gene transcriptional start sites, and were significantly depleted of repressive (H3K27me3, H3K9me3) and transcribed region histone marks (H3K36me3). Conclusions HDI-STARR-seq offers substantial improvements over current methodologies for large scale, functional profiling of enhancers, including condition-dependent enhancers, in liver tissue in vivo, and can be adapted to characterize enhancer activities in a variety of species and tissues by selecting suitable tissue- and species-specific promoter sequences.
Collapse
|
6
|
Chang TY, Waxman DJ. HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598329. [PMID: 38915578 PMCID: PMC11195054 DOI: 10.1101/2024.06.10.598329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
STARR-seq and other massively-parallel reporter assays are widely used to discover functional enhancers in transfected cell models, which can be confounded by plasmid vector-induced type-I interferon immune responses and lack the multicellular environment and endogenous chromatin state of complex mammalian tissues. Here, we describe HDI-STARR-seq, which combines STARR-seq plasmid library delivery to the liver, by hydrodynamic tail vein injection (HDI), with reporter RNA transcriptional initiation driven by a minimal Albumin promoter, which we show is essential for mouse liver STARR-seq enhancer activity assayed 7 days after HDI. Importantly, little or no vector-induced innate type-I interferon responses were observed. Comparisons of HDI-STARR-seq activity between male and female mouse livers and in livers from males treated with an activating ligand of the transcription factor CAR (Nr1i3) identified many condition-dependent enhancers linked to condition-specific gene expression. Further, thousands of active liver enhancers were identified using a high complexity STARR-seq library comprised of ~50,000 genomic regions released by DNase-I digestion of mouse liver nuclei. When compared to stringently inactive library sequences, the active enhancer sequences identified were highly enriched for liver open chromatin regions with activating histone marks (H3K27ac, H3K4me1, H3K4me3), were significantly closer to gene transcriptional start sites, and were significantly depleted of repressive (H3K27me3, H3K9me3) and transcribed region histone marks (H3K36me3). HDI-STARR-seq offers substantial improvements over current methodologies for large scale, functional profiling of enhancers, including condition-dependent enhancers, in liver tissue in vivo, and can be adapted to characterize enhancer activities in a variety of species and tissues by selecting suitable tissue- and species-specific promoter sequences.
Collapse
Affiliation(s)
- Ting-Ya Chang
- Departments of Biology and Biomedical Engineering, and Bioinformatics program, Boston University, Boston, MA 02215
| | - David J Waxman
- Departments of Biology and Biomedical Engineering, and Bioinformatics program, Boston University, Boston, MA 02215
| |
Collapse
|
7
|
Liu J, Li W, Jin X, Lin F, Han J, Zhang Y. Optimal tagging strategies for illuminating expression profiles of genes with different abundance in zebrafish. Commun Biol 2023; 6:1300. [PMID: 38129658 PMCID: PMC10739737 DOI: 10.1038/s42003-023-05686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
CRISPR-mediated knock-in (KI) technology opens a new era of fluorescent-protein labeling in zebrafish, a preferred model organism for in vivo imaging. We described here an optimized zebrafish gene-tagging strategy, which enables easy and high-efficiency KI, ensures high odds of obtaining seamless KI germlines and is suitable for wide applications. Plasmid donors for 3'-labeling were optimized by shortening the microhomologous arms and by reducing the number and reversing the sequence of the consensus Cas9/sgRNA binding sites. To allow for scar-less KI across the genome, linearized dsDNA donors with 5'-chemical modifications were generated and successfully incorporated into our method. To refine the germline screen workflow and expedite the screen process, we combined fluorescence enrichment and caudal-fin junction-PCR. Furthermore, to trace proteins expressed at a low abundance, we developed a fluorescent signal amplifier using the transcriptional activation strategy. Together, our strategies enable efficient gene-tagging and sensitive expression detection for almost every gene in zebrafish.
Collapse
Affiliation(s)
- Jiannan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Wenyuan Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xuepu Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Fanjia Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
- Laboratory Animal Center, Xiamen University, 361102, Xiamen, Fujian, China.
- Research Unit of Cellular Stress of CAMS, Cancer Research Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Yingying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| |
Collapse
|
8
|
Maurer AC, Benyamini B, Fan VB, Whitney ON, Dailey GM, Darzacq X, Weitzman MD, Tjian R. Double-Strand Break Repair Pathways Differentially Affect Processing and Transduction by Dual AAV Vectors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558438. [PMID: 37790316 PMCID: PMC10542147 DOI: 10.1101/2023.09.19.558438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Recombinant adeno-associated viral vectors (rAAV) are a powerful tool for gene delivery but have a limited DNA carrying capacity. Efforts to expand this genetic payload have focused on engineering the vector components, such as dual trans-splicing vectors which double the delivery size by exploiting the natural concatenation of rAAV genomes in host nuclei. We hypothesized that inefficient dual vector transduction could be improved by modulating host factors which affect concatenation. Since factors mediating concatenation are not well defined, we performed a genome-wide screen to identify host cell regulators. We discovered that Homologous Recombination (HR) is inhibitory to dual vector transduction. We demonstrate that depletion or inhibition of HR factors BRCA1 and Rad51 significantly increase reconstitution of a large split transgene by increasing both concatenation and expression from rAAVs. Our results define new roles for DNA damage repair in rAAV transduction and highlight the potential for pharmacological intervention to increase genetic payload of rAAV vectors.
Collapse
Affiliation(s)
- Anna C. Maurer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- CIRM Center of Excellence, University of California, Berkeley, CA
| | - Brian Benyamini
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Vinson B. Fan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Oscar N. Whitney
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Gina M. Dailey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, CA, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, CA, USA
| | - Matthew D. Weitzman
- University of Pennsylvania Perelman School of Medicine and the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
9
|
Hahn PA, Martins MA. Adeno-associated virus-vectored delivery of HIV biologics: the promise of a "single-shot" functional cure for HIV infection. J Virus Erad 2023; 9:100316. [PMID: 36915910 PMCID: PMC10005911 DOI: 10.1016/j.jve.2023.100316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The ability of immunoglobulin-based HIV biologics (Ig-HIV), including broadly neutralizing antibodies, to suppress viral replication in pre-clinical and clinical studies illustrates how these molecules can serve as alternatives or adjuncts to antiretroviral therapy for treating HIV infection. However, the current paradigm for delivering Ig-HIVs requires repeated passive infusions, which faces both logistical and economic challenges to broad-scale implementation. One promising way to overcome these obstacles and achieve sustained expression of Ig-HIVs in vivo involves the transfer of Ig-HIV genes to host cells utilizing adeno-associated virus (AAV) vectors. Because AAV vectors are non-pathogenic and their genomes persist in the cell nucleus as episomes, transgene expression can last for as long as the AAV-transduced cell lives. Given the long lifespan of myocytes, skeletal muscle is a preferred tissue for AAV-based immunotherapies aimed at achieving persistent delivery of Ig-HIVs. Consistent with this idea, recent studies suggest that lifelong immunity against HIV can be achieved from a one-time intramuscular dose of AAV/Ig-HIV vectors. However, realizing the promise of this approach faces significant hurdles, including the potential of AAV-delivered Ig-HIVs to induce anti-drug antibodies and the high AAV seroprevalence in the human population. Here we describe how these host immune responses can hinder AAV/Ig-HIV therapies and review current strategies for overcoming these barriers. Given the potential of AAV/Ig-HIV therapy to maintain ART-free virologic suppression and prevent HIV reinfection in people living with HIV, optimizing this strategy should become a greater priority in HIV/AIDS research.
Collapse
Affiliation(s)
- Patricia A. Hahn
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458, USA
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Mauricio A. Martins
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458, USA
| |
Collapse
|
10
|
Eftekharpour E, Shcholok T. Cre-recombinase systems for induction of neuron-specific knockout models: a guide for biomedical researchers. Neural Regen Res 2023; 18:273-279. [PMID: 35900402 PMCID: PMC9396489 DOI: 10.4103/1673-5374.346541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Gene deletion has been a valuable tool for unraveling the mysteries of molecular biology. Early approaches included gene trapping and gene targetting to disrupt or delete a gene randomly or at a specific location, respectively. Using these technologies in mouse embryos led to the generation of mouse knockout models and many scientific discoveries. The efficacy and specificity of these approaches have significantly increased with the advent of new technology such as clustered regularly interspaced short palindromic repeats for targetted gene deletion. However, several limitations including unwanted off-target gene deletion have hindered their widespread use in the field. Cre-recombinase technology has provided additional capacity for cell-specific gene deletion. In this review, we provide a summary of currently available literature on the application of this system for targetted deletion of neuronal genes. This article has been constructed to provide some background information for the new trainees on the mechanism and to provide necessary information for the design, and application of the Cre-recombinase system through reviewing the most frequent promoters that are currently available for genetic manipulation of neurons. We additionally will provide a summary of the latest technological developments that can be used for targeting neurons. This may also serve as a general guide for the selection of appropriate models for biomedical research.
Collapse
|
11
|
Stadermann A, Gamer M, Fieder J, Lindner B, Fehrmann S, Schmidt M, Schulz P, Gorr IH. Structural analysis of random transgene integration in CHO manufacturing cell lines by targeted sequencing. Biotechnol Bioeng 2021; 119:868-880. [PMID: 34935125 PMCID: PMC10138747 DOI: 10.1002/bit.28012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/08/2022]
Abstract
Genetically modified CHO cell lines are traditionally used for the production of biopharmaceuticals. However, an in-depth molecular understanding of the mechanism and exact position of transgene integration into the genome of pharmaceutical manufacturing cell lines is still scarce. Next Generation Sequencing (NGS) holds great promise for strongly facilitating the understanding of CHO cell factories, as it has matured to a powerful and affordable technology for cellular genotype analysis. Targeted Locus Amplification (TLA) combined with NGS allows for robust detection of genomic positions of transgene integration and structural genomic changes occurring upon stable integration of expression vectors. TLA was applied to generate comparative genomic fingerprints of several CHO production cell lines expressing different monoclonal antibodies. Moreover, high producers resulting from an additional round of transfection of an existing cell line (supertransfection) were analyzed to investigate the integrity and the number of integration sites. Our analyses enabled detailed genetic characterization of the integration regions with respect to the number of integrates and structural changes of the host cell's genome. Single integration sites per clone with concatenated transgene copies could be detected and were in some cases found to be associated with genomic rearrangements, deletions or translocations. Supertransfection resulted in an increase in titer associated with an additional integration site per clone. Based on the TLA fingerprints, CHO cell lines originating from the same mother clone could clearly be distinguished. Interestingly, two CHO cell lines originating from the same mother clone were shown to differ genetically and phenotypically despite of their identical TLA fingerprints. Taken together, TLA provides an accurate genetic characterization with respect to transgene integration sites compared to conventional methods and represents a valuable tool for a comprehensive evaluation of CHO production clones early in cell line development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anna Stadermann
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Martin Gamer
- R&D Project Management NBEs, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Jürgen Fieder
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Benjamin Lindner
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Steffen Fehrmann
- Genedata AG, Selector BU, Margarethenstrasse 38, 4053, Basel, Switzerland
| | - Moritz Schmidt
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Patrick Schulz
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Ingo H Gorr
- Analytical Development Biologicals, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| |
Collapse
|
12
|
Monnery BD. Polycation-Mediated Transfection: Mechanisms of Internalization and Intracellular Trafficking. Biomacromolecules 2021; 22:4060-4083. [PMID: 34498457 DOI: 10.1021/acs.biomac.1c00697] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyplex-mediated gene transfection is now in its' fourth decade of serious research, but the promise of polyplex-mediated gene therapy has yet to fully materialize. Only approximately one in a million applied plasmids actually expresses. A large part of this is due to an incomplete understanding of the mechanism of polyplex transfection. There is an assumption that internalization must follow a canonical mechanism of receptor mediated endocytosis. Herein, we present arguments that untargeted (and most targeted) polyplexes do not utilize these routes. By incorporating knowledge of syndecan-polyplex interactions, we can show that syndecans are the "target" for polyplexes. Further, it is known that free polycations (which disrupt cell-membranes by acid-catalyzed hydrolysis of phospholipid esters) are necessary for (untargeted) endocytosis. This can be incorporated into the model to produce a novel mechanism of endocytosis, which fits the observed phenomenology. After membrane translocation, polyplex containing vesicles reach the endosome after diffusing through the actin mesh below the cell membrane. From there, they are acidified and trafficked toward the lysosome. Some polyplexes are capable of escaping the endosome and unpacking, while others are not. Herein, it is argued that for some polycations, as acidification proceeds the polyplexes excluding free polycations, which disrupt the endosomal membrane by acid-catalyzed hydrolysis, allowing the polyplex to escape. The polyplex's internal charge ratio is now insufficient for stability and it releases plasmids which diffuse to the nucleus. A small proportion of these plasmids diffuse through the nuclear pore complex (NPC), with aggregation being the major cause of loss. Those plasmids that have diffused through the NPC will also aggregate, and this appears to be the reason such a small proportion of nuclear plasmids express mRNA. Thus, the structural features which promote unpacking in the endosome and allow for endosomal escape can be determined, and better polycations can be designed.
Collapse
Affiliation(s)
- Bryn D Monnery
- Department of Organic and (Bio)Polymer Chemistry, Hasselt University, Building F, Agoralaan 1, B-3590 Diepenbeek, Belgium
| |
Collapse
|
13
|
Zeng M, Xu Q, Zhou D, A S, Alshehri F, Lara-Sáez I, Zheng Y, Li M, Wang W. Highly branched poly(β-amino ester)s for gene delivery in hereditary skin diseases. Adv Drug Deliv Rev 2021; 176:113842. [PMID: 34293384 DOI: 10.1016/j.addr.2021.113842] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Non-viral gene therapy for hereditary skin diseases is an attractive prospect. However, research efforts dedicated to this area are rare. Taking advantage of the branched structural possibilities of polymeric vectors, we have developed a gene delivery platform for the treatment of an incurable monogenic skin disease - recessive dystrophic epidermolysis bullosa (RDEB) - based on highly branched poly(β-amino ester)s (HPAEs). The screening of HPAEs and optimization of therapeutic gene constructs, together with evaluation of the combined system for gene transfection, were comprehensively reviewed. The successful restoration of type VII collagen (C7) expression both in vitro and in vivo highlights HPAEs as a promising generation of polymeric vectors for RDEB gene therapy into the clinic. Considering that the treatment of patients with genetic cutaneous disorders, such as other subtypes of epidermolysis bullosa, pachyonychia congenita, ichthyosis and Netherton syndrome, remains challenging, the success of HPAEs in RDEB treatment indicates that the development of viable polymeric gene delivery vectors could potentially expedite the translation of gene therapy for these diseases from bench to bedside.
Collapse
|
14
|
Kaczmarek JC, Patel AK, Rhym LH, Palmiero UC, Bhat B, Heartlein MW, DeRosa F, Anderson DG. Systemic delivery of mRNA and DNA to the lung using polymer-lipid nanoparticles. Biomaterials 2021; 275:120966. [PMID: 34147715 DOI: 10.1016/j.biomaterials.2021.120966] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022]
Abstract
Non-viral vectors offer the potential to deliver nucleic acids including mRNA and DNA into cells in vivo. However, designing materials that effectively deliver to target organs and then to desired compartments within the cell remains a challenge. Here we develop polymeric materials that can be optimized for either DNA transcription in the nucleus or mRNA translation in the cytosol. We synthesized poly(beta amino ester) terpolymers (PBAEs) with modular changes to monomer chemistry to investigate influence on nucleic acid delivery. We identified two PBAEs with a single monomer change as being effective for either DNA (D-90-C12-103) or mRNA (DD-90-C12-103) delivery to lung endothelium following intravenous injection in mice. Physical properties such as particle size or charge did not account for the difference in transfection efficacy. However, endosome co-localization studies revealed that D-90-C12-103 nanoparticles resided in late endosomes to a greater extent than DD-90-C12-103. We compared luciferase expression in vivo and observed that, even with nucleic acid optimized vectors, peak luminescence using mRNA was two orders of magnitude greater than pDNA in the lungs of mice following systemic delivery. This study indicates that different nucleic acids require tailored delivery vectors, and further support the potential of PBAEs as intracellular delivery materials.
Collapse
Affiliation(s)
- James C Kaczmarek
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Asha Kumari Patel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Luke H Rhym
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Umberto Capasso Palmiero
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Chemistry, Materials, And Chemical Engineering, Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
| | | | | | | | - Daniel G Anderson
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
15
|
Bruter AV, Korshunova DS, Kubekina MV, Sergiev PV, Kalinina AA, Ilchuk LA, Silaeva YY, Korshunov EN, Soldatov VO, Deykin AV. Novel transgenic mice with Cre-dependent co-expression of GFP and human ACE2: a safe tool for study of COVID-19 pathogenesis. Transgenic Res 2021; 30:10.1007/s11248-021-00249-8. [PMID: 33855640 PMCID: PMC8045570 DOI: 10.1007/s11248-021-00249-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022]
Abstract
The current coronavirus disease (COVID-19) pandemic remains one of the most serious public health problems. Increasing evidence shows that infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes a very complex and multifaceted disease that requires detailed study. Nevertheless, experimental research on COVID-19 remains challenging due to the lack of appropriate animal models. Herein, we report novel humanized mice with Cre-dependent expression of hACE2, the main entry receptor of SARS-CoV-2. These mice carry hACE2 and GFP transgenes floxed by the STOP cassette, allowing them to be used as breeders for the creation of animals with tissue-specific coexpression of hACE2 and GFP. Moreover, inducible expression of hACE2 makes this line biosafe, whereas coexpression with GFP simplifies the detection of transgene-expressing cells. In our study, we tested our line by crossing with Ubi-Cre mice, characterized by tamoxifen-dependent ubiquitous activation of Cre recombinase. After tamoxifen administration, the copy number of the STOP cassette was decreased, and the offspring expressed hACE2 and GFP, confirming the efficiency of our system. We believe that our model can be a useful tool for studying COVID-19 pathogenesis because the selective expression of hACE2 can shed light on the roles of different tissues in SARS-CoV-2-associated complications. Obviously, it can also be used for preclinical trials of antiviral drugs and new vaccines.
Collapse
Affiliation(s)
- Alexandra V. Bruter
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Vavilova st. 34/5, Moscow, Russian Federation 119334
| | - Diana S. Korshunova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Vavilova st. 34/5, Moscow, Russian Federation 119334
| | - Marina V. Kubekina
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Vavilova st. 34/5, Moscow, Russian Federation 119334
| | - Petr V. Sergiev
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, Russian Federation 119991
| | - Anastasiia A. Kalinina
- Federal State Budgetary Institution “N. N. Blokhin National Medical Research Center of Oncology”, Ministry of Health of the Russian Federation, Kashirskoe sh. 24, Moscow, Russian Federation 115478
| | - Leonid A. Ilchuk
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Vavilova st. 34/5, Moscow, Russian Federation 119334
| | - Yuliya Yu. Silaeva
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Vavilova st. 34/5, Moscow, Russian Federation 119334
| | - Eugenii N. Korshunov
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Vavilova st. 34/5, Moscow, Russian Federation 119334
| | - Vladislav O. Soldatov
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Vavilova st. 34/5, Moscow, Russian Federation 119334
- Laboratory of Genome Editing for Veterinary and Biomedicine, Belgorod State National Research University, 85, Pobedy St., Belgorod, Belgorod region Russian Federation 308015
| | - Alexey V. Deykin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Vavilova st. 34/5, Moscow, Russian Federation 119334
- Laboratory of Genome Editing for Veterinary and Biomedicine, Belgorod State National Research University, 85, Pobedy St., Belgorod, Belgorod region Russian Federation 308015
| |
Collapse
|
16
|
Ebrahimi M, Mara L, Chessa B, Chessa F, Parham A, Dattena M. Optimizing injection time of GFP plasmid into sheep zygote. Reprod Domest Anim 2021; 56:467-475. [PMID: 33368650 DOI: 10.1111/rda.13885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
Microinjection of exogenous DNA into the cytoplasm of matured oocytes or zygotes is a promising technique to generate transgenic animals. However, the data about the microinjection time and procedure in sheep are limited and have not treated in detail. To obtain more in-depth information, the Sarda sheep oocytes from abattoir-derived ovaries were subjected to IVM and IVF. Then, the GFP plasmid as a reporter gene was injected into the cytoplasm of MII oocytes (n: 95) and zygotes at different post-insemination intervals (6-8 hpi, n: 120; 8-10 hpi, n: 122; 10-12 hpi, n: 110 and 12-14 hpi, n: 96). There were no significant differences in the cleavage rates between the groups. However, blastocyst rate of injected zygotes at all-time intervals was significantly lower than injected MII oocytes and control group (p < 0.05). Interestingly, the proportion of GFP-positive embryos was higher at 8-10 hpi compared with other injected groups (4 % versus 0 %, p < 0.01). Among these, the proportion of mosaic embryos was high and two of those embryos developed to the blastocyst stage. In conclusion, we settled on the cytoplasmic microinjection of GFP plasmid at 8-10 hpi as an optimized time point for the production of transgenic sheep and subsequent experiments.
Collapse
Affiliation(s)
- Mohammadreza Ebrahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Laura Mara
- Department of Animal Science, Agricultural Research Agency of Sardinia, Sassari, Italy
| | - Bernardo Chessa
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Fabrizio Chessa
- Department of Animal Science, Agricultural Research Agency of Sardinia, Sassari, Italy
| | - Abbas Parham
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maria Dattena
- Department of Animal Science, Agricultural Research Agency of Sardinia, Sassari, Italy
| |
Collapse
|
17
|
Zittersteijn HA, Gonçalves MA, Hoeben RC. A primer to gene therapy: Progress, prospects, and problems. J Inherit Metab Dis 2021; 44:54-71. [PMID: 32510617 PMCID: PMC7891367 DOI: 10.1002/jimd.12270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Genetic therapies based on gene addition have witnessed a variety of clinical successes and the first therapeutic products have been approved for clinical use. Moreover, innovative gene editing techniques are starting to offer new opportunities in which the mutations that underlie genetic diseases can be directly corrected in afflicted somatic cells. The toolboxes underpinning these DNA modifying technologies are expanding with great pace. Concerning the ongoing efforts for their implementation, viral vector-based gene delivery systems have acquired center-stage, providing new hopes for patients with inherited and acquired disorders. Specifically, the application of genetic therapies using viral vectors for the treatment of inborn metabolic disorders is growing and clinical applications are starting to appear. While the field has matured from the technology perspective and has yielded efficacious products, it is the perception of many stakeholders that from the regulatory side further developments are urgently needed. In this review, we summarize the features of state-of-the-art viral vector systems and the corresponding gene-centered therapies they seek to deliver. Moreover, a brief summary is also given on emerging gene editing approaches built on CRISPR-Cas9 nucleases and, more recently, nickases, including base editors and prime editors. Finally, we will point at some regulatory aspects that may deserve further attention for translating these technological developments into actual advanced therapy medicinal products (ATMPs).
Collapse
Affiliation(s)
- Hidde A. Zittersteijn
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Manuel A.F.V. Gonçalves
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Rob C. Hoeben
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
18
|
Han B, Zhang Y, Bi X, Zhou Y, Krueger CJ, Hu X, Zhu Z, Tong X, Zhang B. Bi-FoRe: an efficient bidirectional knockin strategy to generate pairwise conditional alleles with fluorescent indicators. Protein Cell 2021; 12:39-56. [PMID: 32681448 PMCID: PMC7815861 DOI: 10.1007/s13238-020-00747-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Gene expression labeling and conditional manipulation of gene function are important for elaborate dissection of gene function. However, contemporary generation of pairwise dual-function knockin alleles to achieve both conditional and geno-tagging effects with a single donor has not been reported. Here we first developed a strategy based on a flipping donor named FoRe to generate conditional knockout alleles coupled with fluorescent allele-labeling through NHEJ-mediated unidirectional targeted insertion in zebrafish facilitated by the CRISPR/Cas system. We demonstrated the feasibility of this strategy at sox10 and isl1 loci, and successfully achieved Cre-induced conditional knockout of target gene function and simultaneous switch of the fluorescent reporter, allowing generation of genetic mosaics for lineage tracing. We then improved the donor design enabling efficient one-step bidirectional knockin to generate paired positive and negative conditional alleles, both tagged with two different fluorescent reporters. By introducing Cre recombinase, these alleles could be used to achieve both conditional knockout and conditional gene restoration in parallel; furthermore, differential fluorescent labeling of the positive and negative alleles enables simple, early and efficient real-time discrimination of individual live embryos bearing different genotypes prior to the emergence of morphologically visible phenotypes. We named our improved donor as Bi-FoRe and demonstrated its feasibility at the sox10 locus. Furthermore, we eliminated the undesirable bacterial backbone in the donor using minicircle DNA technology. Our system could easily be expanded for other applications or to other organisms, and coupling fluorescent labeling of gene expression and conditional manipulation of gene function will provide unique opportunities to fully reveal the power of emerging single-cell sequencing technologies.
Collapse
Affiliation(s)
- Bingzhou Han
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yage Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xuetong Bi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yang Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Christopher J Krueger
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory, Atlanta, GA, 33032, USA
| | - Xinli Hu
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Zuoyan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
19
|
Pastor M, Quiviger M, Pailloux J, Scherman D, Marie C. Reduced Heterochromatin Formation on the pFAR4 Miniplasmid Allows Sustained Transgene Expression in the Mouse Liver. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:28-36. [PMID: 32505001 PMCID: PMC7270507 DOI: 10.1016/j.omtn.2020.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
Abstract
Non-viral gene delivery into the liver generally mediates a transient transgene expression. A comparative analysis was performed using two gene vectors, pFAR4 and pKAR4, which differ by the absence or presence of an antibiotic resistance marker, respectively. Both plasmids carried the same eukaryotic expression cassette composed of a sulfamidase (Sgsh) cDNA expressed from the human alpha antitrypsin liver-specific promoter. Hydrodynamic injection of the pFAR4 construct resulted in prolonged sulfamidase secretion from the liver, whereas delivery of the pKAR4 construct led to a sharp decrease in circulating enzyme. After induction of hepatocyte division, a rapid decline of sulfamidase expression occurred, indicating that the pFAR4 derivative was mostly episomal. Quantification analyses revealed that both plasmids were present at similar copy numbers, whereas Sgsh transcript levels remained high only in mice infused with the pFAR4 construct. Using a chromatin immunoprecipitation assay, it was established that the 5' end of the expression cassette carried by pKAR4 exhibited a 7.9-fold higher heterochromatin-to-euchromatin ratio than the pFAR4 construct, whereas a bisulfite treatment did not highlight any obvious differences in the methylation status of the two plasmids. Thus, by preventing transgene expression silencing, the pFAR4 gene vector allows a sustained transgene product secretion from the liver.
Collapse
Affiliation(s)
- Marie Pastor
- Université de Paris, UTCBS, CNRS, INSERM, 4, avenue de l'Observatoire, 75006 Paris, France
| | - Mickäel Quiviger
- Université de Paris, UTCBS, CNRS, INSERM, 4, avenue de l'Observatoire, 75006 Paris, France
| | - Julie Pailloux
- Université de Paris, UTCBS, CNRS, INSERM, 4, avenue de l'Observatoire, 75006 Paris, France
| | - Daniel Scherman
- Université de Paris, UTCBS, CNRS, INSERM, 4, avenue de l'Observatoire, 75006 Paris, France
| | - Corinne Marie
- Université de Paris, UTCBS, CNRS, INSERM, 4, avenue de l'Observatoire, 75006 Paris, France; Chimie ParisTech, PSL Research University, 75005 Paris, France.
| |
Collapse
|
20
|
Bruter AV, Kalashnikova MV, Prytyko AP, Belyavsky AV. Maintenance of Plasmid Expression in vivo Depends Primarily on the CpG Contents of the Vector and Transgene. Mol Biol 2020; 54:427-435. [DOI: 10.1134/s0026893320030048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 01/04/2025]
|
21
|
Barnea-Cramer AO, Singh M, Fischer D, De Silva S, McClements ME, Barnard AR, MacLaren RE. Repair of Retinal Degeneration following Ex Vivo Minicircle DNA Gene Therapy and Transplantation of Corrected Photoreceptor Progenitors. Mol Ther 2020; 28:830-844. [PMID: 32027843 DOI: 10.1016/j.ymthe.2020.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 10/25/2022] Open
Abstract
The authors describe retinal reconstruction and restoration of visual function in heritably blind mice missing the rhodopsin gene using a novel method of ex vivo gene therapy and cell transplantation. Photoreceptor precursors with the same chromosomal genetic mutation were treated ex vivo using minicircle DNA, a non-viral technique that does not present the packaging limitations of adeno-associated virus (AAV) vectors. Following transplantation, genetically modified cells reconstructed a functional retina and supported vision in blind mice harboring the same founder gene mutation. Gene delivery by minicircles showed comparable long-term efficiency to AAV in delivering the missing gene, representing the first non-viral system for robust treatment of photoreceptors. This important proof-of-concept finding provides an innovative convergence of cell and gene therapies for the treatment of hereditary neurodegenerative disease and may be applied in future studies toward ex vivo correction of patient-specific cells to provide an autologous source of tissue to replace lost photoreceptors in inherited retinal blindness. This is the first report using minicircles in photoreceptor progenitors and the first to transplant corrected photoreceptor precursors to restore vision in blind animals.
Collapse
Affiliation(s)
| | - Mandeep Singh
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK; Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dominik Fischer
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK; University Eye Hospital and Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Samantha De Silva
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | | | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
22
|
Gao Y, Hisey E, Bradshaw TWA, Erata E, Brown WE, Courtland JL, Uezu A, Xiang Y, Diao Y, Soderling SH. Plug-and-Play Protein Modification Using Homology-Independent Universal Genome Engineering. Neuron 2019; 103:583-597.e8. [PMID: 31272828 PMCID: PMC7200071 DOI: 10.1016/j.neuron.2019.05.047] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/13/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
Analysis of endogenous protein localization, function, and dynamics is fundamental to the study of all cells, including the diversity of cell types in the brain. However, current approaches are often low throughput and resource intensive. Here, we describe a CRISPR-Cas9-based homology-independent universal genome engineering (HiUGE) method for endogenous protein manipulation that is straightforward, scalable, and highly flexible in terms of genomic target and application. HiUGE employs adeno-associated virus (AAV) vectors of autonomous insertional sequences (payloads) encoding diverse functional modifications that can integrate into virtually any genomic target loci specified by easily assembled gene-specific guide-RNA (GS-gRNA) vectors. We demonstrate that universal HiUGE donors enable rapid alterations of proteins in vitro or in vivo for protein labeling and dynamic visualization, neural-circuit-specific protein modification, subcellular rerouting and sequestration, and truncation-based structure-function analysis. Thus, the "plug-and-play" nature of HiUGE enables high-throughput and modular analysis of mechanisms driving protein functions in cellular neurobiology.
Collapse
Affiliation(s)
- Yudong Gao
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Erin Hisey
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Tyler W A Bradshaw
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical School, Durham, NC 27710, USA
| | - Eda Erata
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Walter E Brown
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Jamie L Courtland
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical School, Durham, NC 27710, USA
| | - Akiyoshi Uezu
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical School, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical School, Durham, NC 27710, USA.
| |
Collapse
|
23
|
Zhang C, Zhang G, Liu D. Histone deacetylase inhibitors reactivate silenced transgene in vivo. Gene Ther 2018; 26:75-85. [DOI: 10.1038/s41434-018-0053-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/18/2018] [Accepted: 11/26/2018] [Indexed: 11/09/2022]
|
24
|
Patel NA, Anderson CR, Terkildsen SE, Davis RC, Pack LD, Bhargava S, Clarke HR. Antibody expression stability in CHO clonally derived cell lines and their subclones: Role of methylation in phenotypic and epigenetic heterogeneity. Biotechnol Prog 2018; 34:635-649. [DOI: 10.1002/btpr.2655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/24/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Neha A. Patel
- Dept. of Bioprocess Development; Seattle Genetics; Bothell WA 98021
| | | | | | - Ray C. Davis
- Dept. of Bioprocess Development; Seattle Genetics; Bothell WA 98021
| | - Laura D. Pack
- Dept. of CMC Statistics; Seattle Genetics; Bothell WA 98021
| | - Swapnil Bhargava
- Dept. of Bioprocess Development; Seattle Genetics; Bothell WA 98021
| | | |
Collapse
|
25
|
Staunstrup NH, Stenderup K, Mortensen S, Primo MN, Rosada C, Steiniche T, Liu Y, Li R, Schmidt M, Purup S, Dagnæs-Hansen F, Schrøder LD, Svensson L, Petersen TK, Callesen H, Bolund L, Mikkelsen JG. Psoriasiform skin disease in transgenic pigs with high-copy ectopic expression of human integrins α2 and β1. Dis Model Mech 2018; 10:869-880. [PMID: 28679670 PMCID: PMC5536904 DOI: 10.1242/dmm.028662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/12/2017] [Indexed: 01/15/2023] Open
Abstract
Psoriasis is a complex human-specific disease characterized by perturbed keratinocyte proliferation and a pro-inflammatory environment in the skin. Porcine skin architecture and immunity are very similar to that in humans, rendering the pig a suitable animal model for studying the biology and treatment of psoriasis. Expression of integrins, which is normally confined to the basal layer of the epidermis, is maintained in suprabasal keratinocytes in psoriatic skin, modulating proliferation and differentiation as well as leukocyte infiltration. Here, we generated minipigs co-expressing integrins α2 and β1 in suprabasal epidermal layers. Integrin-transgenic minipigs born into the project displayed skin phenotypes that correlated with the number of inserted transgenes. Molecular analyses were in good concordance with histological observations of psoriatic hallmarks, including hypogranulosis and T-lymphocyte infiltration. These findings mark the first creation of minipigs with a psoriasiform phenotype resembling human psoriasis and demonstrate that integrin signaling plays a key role in psoriasis pathology. Summary: A cloned porcine disease model to advance topical treatment in the debilitating skin disorder psoriasis.
Collapse
Affiliation(s)
- Nicklas Heine Staunstrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,iPSYCH The Lundbeck Foundation Initiative For Integrative Psychiatric Research, Denmark.,iSEQ, Centre for integrative sequencing, Aarhus, Denmark
| | - Karin Stenderup
- Department of Dermatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Sidsel Mortensen
- Department of Skin Inflammation Pharmacology, LEO Pharma, 2750 Ballerup, Denmark
| | | | - Cecilia Rosada
- Department of Dermatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Torben Steiniche
- Department of Dermatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Ying Liu
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | - Rong Li
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | - Mette Schmidt
- Department of Veterinary Reproduction and Obstetrics, Faculty of Life Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Stig Purup
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | | | | | - Lars Svensson
- Department of NME Ideation, LEO Pharma, 2750 Ballerup, Denmark
| | | | - Henrik Callesen
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,iSEQ, Centre for integrative sequencing, Aarhus, Denmark.,HuaDa JiYin (BGI), Shenzhen 518083, China
| | | |
Collapse
|
26
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
27
|
Cerqueira C, Thompson CD, Day PM, Pang YYS, Lowy DR, Schiller JT. Efficient Production of Papillomavirus Gene Delivery Vectors in Defined In Vitro Reactions. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:165-179. [PMID: 28497074 PMCID: PMC5423317 DOI: 10.1016/j.omtm.2017.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/13/2017] [Indexed: 11/17/2022]
Abstract
Papillomavirus capsids can package a wide variety of nonviral DNA plasmids and deliver the packaged genetic material to cells, making them attractive candidates for targeted gene delivery vehicles. However, the papillomavirus vectors generated by current methods are unlikely to be suitable for clinical applications. We have developed a chemically defined, cell-free, papillomavirus-based vector production system that allows the incorporation of purified plasmid DNA (pseudogenome) into high-titer papillomavirus L1/L2 capsids. We investigated the incorporation of several DNA forms into a variety of different papillomavirus types, including human and animal types. Our results show that papillomavirus capsids can package and transduce linear or circular DNA under defined conditions. Packaging and transduction efficiencies were surprisingly variable across capsid types, DNA forms, and assembly reaction conditions. The pseudoviruses produced by these methods are sensitive to the same entry inhibitors as cell-derived pseudovirions, including neutralizing antibodies and heparin. The papillomavirus vector production systems developed in this study generated as high as 1011 infectious units/mg of L1. The pseudoviruses were infectious both in vitro and in vivo and should be compatible with good manufacturing practice (GMP) requirements.
Collapse
Affiliation(s)
- Carla Cerqueira
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia D. Thompson
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patricia M. Day
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuk-Ying S. Pang
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Douglas R. Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John T. Schiller
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author: John T. Schiller, Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Building 37, Room 4112B, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z, Kurita M, Hishida T, Li M, Aizawa E, Guo S, Chen S, Goebl A, Soligalla RD, Qu J, Jiang T, Fu X, Jafari M, Esteban CR, Berggren WT, Lajara J, Nuñez-Delicado E, Guillen P, Campistol JM, Matsuzaki F, Liu GH, Magistretti P, Zhang K, Callaway EM, Zhang K, Belmonte JCI. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 2016; 540:144-149. [PMID: 27851729 DOI: 10.1038/nature20565] [Citation(s) in RCA: 821] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 10/27/2016] [Indexed: 02/05/2023]
Abstract
Targeted genome editing via engineered nucleases is an exciting area of biomedical research and holds potential for clinical applications. Despite rapid advances in the field, in vivo targeted transgene integration is still infeasible because current tools are inefficient, especially for non-dividing cells, which compose most adult tissues. This poses a barrier for uncovering fundamental biological principles and developing treatments for a broad range of genetic disorders. Based on clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) technology, here we devise a homology-independent targeted integration (HITI) strategy, which allows for robust DNA knock-in in both dividing and non-dividing cells in vitro and, more importantly, in vivo (for example, in neurons of postnatal mammals). As a proof of concept of its therapeutic potential, we demonstrate the efficacy of HITI in improving visual function using a rat model of the retinal degeneration condition retinitis pigmentosa. The HITI method presented here establishes new avenues for basic research and targeted gene therapies.
Collapse
Affiliation(s)
- Keiichiro Suzuki
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Yuji Tsunekawa
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Reyna Hernandez-Benitez
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.,4700 King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900, Saudi Arabia
| | - Jun Wu
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.,Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain
| | - Jie Zhu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.,Shiley Eye Institute, Institute for Genomic Medicine, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive #0946, La Jolla, California 92023, USA
| | - Euiseok J Kim
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, California 92037, USA
| | - Fumiyuki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Mako Yamamoto
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Toshikazu Araoka
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.,Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain
| | - Zhe Li
- Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC0412, La Jolla, California 92093-0412, USA
| | - Masakazu Kurita
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Mo Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Emi Aizawa
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Shicheng Guo
- Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC0412, La Jolla, California 92093-0412, USA
| | - Song Chen
- Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC0412, La Jolla, California 92093-0412, USA
| | - April Goebl
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Rupa Devi Soligalla
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingshuai Jiang
- Shiley Eye Institute, Institute for Genomic Medicine, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive #0946, La Jolla, California 92023, USA.,Guangzhou EliteHealth Biological Pharmaceutical Technology Company Ltd, Guangzhou 510005, China
| | - Xin Fu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.,Shiley Eye Institute, Institute for Genomic Medicine, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive #0946, La Jolla, California 92023, USA
| | - Maryam Jafari
- Shiley Eye Institute, Institute for Genomic Medicine, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive #0946, La Jolla, California 92023, USA
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - W Travis Berggren
- Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Jeronimo Lajara
- Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain
| | - Estrella Nuñez-Delicado
- Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain
| | - Pedro Guillen
- Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain.,Fundación Dr. Pedro Guillen, Investigación Biomedica de Clinica CEMTRO, Avenida Ventisquero de la Condesa, 42, 28035 Madrid, Spain
| | - Josep M Campistol
- Hospital Clinic, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China.,Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Pierre Magistretti
- 4700 King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900, Saudi Arabia
| | - Kun Zhang
- Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC0412, La Jolla, California 92093-0412, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, California 92037, USA
| | - Kang Zhang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.,Shiley Eye Institute, Institute for Genomic Medicine, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive #0946, La Jolla, California 92023, USA.,Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Veterans Administration Healthcare System, San Diego, California 92093, USA
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| |
Collapse
|
29
|
Chiuchiolo MJ, Crystal RG. Gene Therapy for Alpha-1 Antitrypsin Deficiency Lung Disease. Ann Am Thorac Soc 2016; 13 Suppl 4:S352-69. [PMID: 27564673 PMCID: PMC5059492 DOI: 10.1513/annalsats.201506-344kv] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/28/2015] [Indexed: 12/16/2022] Open
Abstract
Alpha-1 antitrypsin (AAT) deficiency, characterized by low plasma levels of the serine protease inhibitor AAT, is associated with emphysema secondary to insufficient protection of the lung from neutrophil proteases. Although AAT augmentation therapy with purified AAT protein is efficacious, it requires weekly to monthly intravenous infusion of AAT purified from pooled human plasma, has the risk of viral contamination and allergic reactions, and is costly. As an alternative, gene therapy offers the advantage of single administration, eliminating the burden of protein infusion, and reduced risks and costs. The focus of this review is to describe the various strategies for AAT gene therapy for the pulmonary manifestations of AAT deficiency and the state of the art in bringing AAT gene therapy to the bedside.
Collapse
Affiliation(s)
- Maria J Chiuchiolo
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
30
|
Bazzani RP, Pringle IA, Connolly MM, Davies LA, Sumner-Jones SG, Schleef M, Hyde SC, Gill DR. Transgene sequences free of CG dinucleotides lead to high level, long-term expression in the lung independent of plasmid backbone design. Biomaterials 2016; 93:20-26. [PMID: 27061267 DOI: 10.1016/j.biomaterials.2016.03.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 12/13/2022]
Abstract
Non-viral aerosol gene therapy offers great potential for treating chronic lung diseases of the airways such as cystic fibrosis (CF). Early clinical trials showed that transgene expression in the airways was transient whereas maximal duration of transgene expression is essential in order to minimise the frequency of aerosol treatments. Improved vector design, such as careful selection of the promoter/enhancer, can lead to more persistent levels of transgene expression, but multiple factors affect expression in vivo. Following aerosol delivery to the lungs of mice, we measured reporter gene expression from a CpG-free luciferase transgene cassette in the context of both a plasmid and minicircle vector configuration and showed that the vector backbone had no effect on expression. Transgene activity was affected by the vector backbone however, when a similar, but sub-optimal CpG-containing transgene was used, suggesting that aspects of the plasmid backbone had a negative impact on transgene expression. Similar studies were performed in Toll-like receptor-9 (TLR9) knockout mice to investigate a potential role for the TLR9 signalling pathway in detecting CpGs in the vector sequence. Even in the absence of TLR9, persistent expression could only be achieved with a CpG-free transgene. Together, these data indicate that in order to achieve high levels of persistent expression in vivo, a CpG-free transgene cassette is required.
Collapse
Affiliation(s)
- Reto P Bazzani
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK; The UK Cystic Fibrosis Gene Therapy Consortium, UK
| | - Ian A Pringle
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK; The UK Cystic Fibrosis Gene Therapy Consortium, UK
| | - Mary M Connolly
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK; The UK Cystic Fibrosis Gene Therapy Consortium, UK
| | - Lee A Davies
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK; The UK Cystic Fibrosis Gene Therapy Consortium, UK
| | - Stephanie G Sumner-Jones
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK; The UK Cystic Fibrosis Gene Therapy Consortium, UK
| | - Martin Schleef
- PlasmidFactory, Meisenstraße 96, D-33607 Bielefeld, Germany
| | - Stephen C Hyde
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK; The UK Cystic Fibrosis Gene Therapy Consortium, UK
| | - Deborah R Gill
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK; The UK Cystic Fibrosis Gene Therapy Consortium, UK.
| |
Collapse
|
31
|
Li X, Liu G, Chen M, Yang Y, Xie Y, Kong X. A Novel Hydrodynamic Injection Mouse Model of HBV Genotype C for the Study of HBV Biology and the Anti-Viral Activity of Lamivudine. HEPATITIS MONTHLY 2016; 16:e34420. [PMID: 27195013 PMCID: PMC4867405 DOI: 10.5812/hepatmon.34420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/06/2016] [Accepted: 01/15/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Absence of an immunocompetent mouse model of persistent hepatitis B virus (HBV) infection has hindered the research of HBV infection and the development of antiviral medications. OBJECTIVES In the present study, we aimed to develop a novel HBV genotype C mouse model by hydrodynamic injection (HI) and then used it to evaluate the antiviral activity of lamivudine. MATERIALS AND METHODS A quantity of 15 μg of HBV plasmid [pcDNA3.1 (+)-HBV1.3C], adeno-associated virus-HBV1.3C (pAAV-HBV1.3C) or pAAV-HBV1.2A) were injected into male C57BL/6 mice, by HI, accounting for a total of 13 mice per group. Then, lamivudine was administered to mice with sustained HBV viremia, for 4 weeks. Real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry methods were used to detect HBsAg, HBeAg, HBsAb, HBcAg and HBV DNA, in serum or liver of the mice, at indicated time points. RESULTS In 60% of the mice injected with pcDNA3.1 (+)-HBV1.3C, HBsAg, HBeAg, HBcAg and HBV DNA persisted for > 20 weeks in liver, post-injection, with no HBsAb appearance. Meanwhile, no significant inflammation was observed in these mice. Compared with pAAV-HBV1.2A and pAAV-HBV1.3C, pcDNA3.1 (+)-HBV1.3C administration led to higher and longer HBV viremia. Furthermore, serum HBV DNA was significantly reduced by lamivudine, after 4 weeks administration, and returned to the original level, after ceasing administration for 1 week, in the mice. CONCLUSIONS In conclusion, our observations indicated that pcDNA3.1 (+)-HBV1.3C was superior to AAV/HBV plasmid for establishment of persistent HBV infection by HI, in vivo, and this mouse model could be useful for studies of hepatitis virology and for the development of innovatory treatments for HBV infections.
Collapse
Affiliation(s)
- Xiumei Li
- Liver Disease Key Lab, 458 Hospital of PLA, Guangzhou, China
| | - Guangze Liu
- Liver Disease Key Lab, 458 Hospital of PLA, Guangzhou, China
| | - Meijuan Chen
- Liver Disease Key Lab, 458 Hospital of PLA, Guangzhou, China
| | - Yang Yang
- Liver Disease Key Lab, 458 Hospital of PLA, Guangzhou, China
| | - Yong Xie
- Liver Disease Key Lab, 458 Hospital of PLA, Guangzhou, China
| | - Xiangping Kong
- Liver Disease Key Lab, 458 Hospital of PLA, Guangzhou, China
- Corresponding Author: Xiangping Kong, Liver Disease Key Lab, 458 Hospital of PLA, 801 Dongfengdong Road, 510600, Guangzhou, Guangdong, China. Tel: +86-2087395343, Fax: +86-2087371180, E-mail:
| |
Collapse
|
32
|
Zheng M, Mitra RN, Filonov NA, Han Z. Nanoparticle-mediated rhodopsin cDNA but not intron-containing DNA delivery causes transgene silencing in a rhodopsin knockout model. FASEB J 2015; 30:1076-86. [PMID: 26564956 DOI: 10.1096/fj.15-280511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/28/2015] [Indexed: 12/14/2022]
Abstract
Previously, we compared the efficacy of nanoparticle (NP)-mediated intron-containing rhodopsin (sgRho) vs. intronless cDNA in ameliorating retinal disease phenotypes in a rhodopsin knockout (RKO) mouse model of retinitis pigmentosa. We showed that NP-mediated sgRho delivery achieved long-term expression and phenotypic improvement in RKO mice, but not NP housing cDNA. However, the protein level of the NP-sgRho construct was only 5-10% of wild-type at 8 mo postinjection. To have a better understanding of the reduced levels of long-term expression of the vectors, in the present study, we evaluated the epigenetic changes of subretinal delivering NP-cDNA vs. NP-sgRho in the RKO mouse eyes. Following the administration, DNA methylation and histone status of specific regions (bacteria plasmid backbone, promoter, rhodopsin gene, and scaffold/matrix attachment region) of the vectors were evaluated at various time points. We documented that epigenetic transgene silencing occurred in vector-mediated gene transfer, which were caused by the plasmid backbone and the cDNA of the transgene, but not the intron-containing transgene. No toxicity or inflammation was found in the treated eyes. Our results suggest that cDNA of the rhodopsin transgene and bacteria backbone interfered with the host defense mechanism of DNA methylation-mediated transgene silencing through heterochromatin-associated modifications.
Collapse
Affiliation(s)
- Min Zheng
- *Department of Ophthalmology and Carolina Institute for NanoMedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; and Molecular Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Rajendra N Mitra
- *Department of Ophthalmology and Carolina Institute for NanoMedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; and Molecular Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Nazar A Filonov
- *Department of Ophthalmology and Carolina Institute for NanoMedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; and Molecular Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Zongchao Han
- *Department of Ophthalmology and Carolina Institute for NanoMedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; and Molecular Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| |
Collapse
|
33
|
Yong CSM, Westwood JA, Schröder J, Papenfuss AT, von Scheidt B, Moeller M, Devaud C, Darcy PK, Kershaw MH. Expression of a Chimeric Antigen Receptor in Multiple Leukocyte Lineages in Transgenic Mice. PLoS One 2015; 10:e0140543. [PMID: 26505904 PMCID: PMC4624721 DOI: 10.1371/journal.pone.0140543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/24/2015] [Indexed: 12/25/2022] Open
Abstract
Genetically modified CD8+ T lymphocytes have shown significant anti-tumor effects in the adoptive immunotherapy of cancer, with recent studies highlighting a potential role for a combination of other immune subsets to enhance these results. However, limitations in present genetic modification techniques impose difficulties in our ability to fully explore the potential of various T cell subsets and assess the potential of other leukocytes armed with chimeric antigen receptors (CARs). To address this issue, we generated a transgenic mouse model using a pan-hematopoietic promoter (vav) to drive the expression of a CAR specific for a tumor antigen. Here we present a characterization of the immune cell compartment in two unique vav-CAR transgenic mice models, Founder 9 (F9) and Founder 38 (F38). We demonstrate the vav promoter is indeed capable of driving the expression of a CAR in cells from both myeloid and lymphoid lineage, however the highest level of expression was observed in T lymphocytes from F38 mice. Lymphoid organs in vav-CAR mice were smaller and had reduced cell numbers compared to the wild type (WT) controls. Furthermore, the immune composition of F9 mice differed greatly with a significant reduction in lymphocytes found in the thymus, lymph node and spleen of these mice. To gain insight into the altered immune phenotype of F9 mice, we determined the chromosomal integration site of the transgene in both mouse strains using whole genome sequencing (WGS). We demonstrated that compared to the 7 copies found in F38 mice, F9 mice harbored almost 270 copies. These novel vav-CAR models provide a ready source of CAR expressing myeloid and lymphoid cells and will aid in facilitating future experiments to delineate the role for other leukocytes for adoptive immunotherapy against cancer.
Collapse
Affiliation(s)
- Carmen S. M. Yong
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jennifer A. Westwood
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jan Schröder
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Bioinformatics and Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Department of Computing and Information Systems, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Anthony T. Papenfuss
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Bioinformatics and Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Department of Computing and Information Systems, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bianca von Scheidt
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Maria Moeller
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christel Devaud
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
- INSERM U1043 Centre de Physiopathologie Toulouse Purpan (CPTP), Toulouse, France
- * E-mail: (MK); (PD); (CD)
| | - Phillip K. Darcy
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Immunology, Monash University, Prahran Victoria 3181 Australia
- * E-mail: (MK); (PD); (CD)
| | - Michael H. Kershaw
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Immunology, Monash University, Prahran Victoria 3181 Australia
- * E-mail: (MK); (PD); (CD)
| |
Collapse
|
34
|
Zhao J, Yang L, Huang P, Wang Z, Tan Y, Liu H, Pan J, He CY, Chen ZY. Synthesis and characterization of low molecular weight polyethyleneimine-terminated Poly(β-amino ester) for highly efficient gene delivery of minicircle DNA. J Colloid Interface Sci 2015; 463:93-8. [PMID: 26520815 DOI: 10.1016/j.jcis.2015.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 11/16/2022]
Abstract
Gene therapy has held great promise for treating specific acquired and inherited diseases. However, the lack of safe and efficient gene delivery systems remains as the major challenge. Poly(β-amino ester)s (PBAEs) have attracted much attention due to their outstanding properties in biosafety, DNA delivery efficiency and convenience in synthesis. In this paper, we reported the further enhancement of the PBAE functions by increasing its positive charge through conjugating with low molecular weight polyethylenimine (LPEI). The resulted LPEI-PBAE polymer was able to condense minicircle DNA (mcDNA) forming nanoparticles with a diameter of 50-200nm. Furthermore, as compared to parental PBAE and a commercial transfection reagent very common in laboratory application, the LPEI-PBAE demonstrated significantly higher transfection efficiency with little cytotoxicity. These results suggested LPEI-PBAEs are worthy of further optimization for gene therapy applications.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Lei Yang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Ping Huang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - ZhiYong Wang
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| | - Yan Tan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Hong Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - JiaJia Pan
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Cheng-Yi He
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Zhi-Ying Chen
- Center for Gene and Cell Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| |
Collapse
|
35
|
Embryonic Lethality in Homozygous Human Her-2 Transgenic Mice Due to Disruption of the Pds5b Gene. PLoS One 2015; 10:e0136817. [PMID: 26334628 PMCID: PMC4559457 DOI: 10.1371/journal.pone.0136817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/07/2015] [Indexed: 12/29/2022] Open
Abstract
The development of antigen-targeted therapeutics is dependent on the preferential expression of tumor-associated antigens (TAA) at targetable levels on the tumor. Tumor-associated antigens can be generated de novo or can arise from altered expression of normal basal proteins, such as the up-regulation of human epidermal growth factor receptor 2 (Her2/ErbB2). To properly assess the development of Her2 therapeutics in an immune tolerant model, we previously generated a transgenic mouse model in which expression of the human Her2 protein was present in both the brain and mammary tissue. This mouse model has facilitated the development of Her2 targeted therapies in a clinically relevant and suitable model. While heterozygous Her2+/- mice appear to develop in a similar manner to wild type mice (Her2-/-), it has proven difficult to generate homozygous Her2+/+ mice, potentially due to embryonic lethality. In this study, we performed whole genome sequencing to determine if the integration site of the Her2 transgene was responsible for this lethality. Indeed, we report that the Her2 transgene had integrated into the Pds5b (precocious dissociation of sisters) gene on chromosome 5, as a 162 copy concatemer. Furthermore, our findings demonstrate that Her2+/+ mice, similar to Pds5b-/- mice, are embryonic lethal and confirm the necessity for Pds5b in embryonic development. This study confirms the value of whole genome sequencing in determining the integration site of transgenes to gain insight into associated phenotypes.
Collapse
|
36
|
Wang F, Li S, Zhao H, Bian L, Chen L, Zhang Z, Zhong X, Ma L, Yu X. Expression and Characterization of the RKOD DNA Polymerase in Pichia pastoris. PLoS One 2015; 10:e0131757. [PMID: 26134129 PMCID: PMC4489709 DOI: 10.1371/journal.pone.0131757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/05/2015] [Indexed: 01/02/2023] Open
Abstract
The present study assessed high-level expression of the KOD DNA polymerase in Pichia pastoris. Thermococcus kodakaraensis KOD1 is a DNA polymerase that is widely used in PCR. The DNA coding sequence of KOD was optimized based on the codon usage bias of P. pastoris and synthesized by overlapping PCR, and the nonspecific DNA-binding protein Sso7d from the crenarchaeon Sulfolobus solfataricus was fused to the C-terminus of KOD. The resulting novel gene was cloned into a pHBM905A vector and introduced into P. pastoris GS115 for secretory expression. The yield of the target protein reached approximately 250 mg/l after a 6-d induction with 1% (v/v) methanol in shake flasks. This yield is much higher than those of other DNA polymerases expressed heterologously in Escherichia coli. The recombinant enzyme was purified, and its enzymatic features were studied. Its specific activity was 19,384 U/mg. The recombinant KOD expressed in P. pastoris exhibited excellent thermostability, extension rate and fidelity. Thus, this report provides a simple, efficient and economic approach to realize the production of a high-performance thermostable DNA polymerase on a large scale. This is the first report of the expression in yeast of a DNA polymerase for use in PCR.
Collapse
Affiliation(s)
- Fei Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, People’s Republic of China
| | - Shuntang Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, People’s Republic of China
| | - Hui Zhao
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, People’s Republic of China
| | - Lu Bian
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, People’s Republic of China
| | - Liang Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, People’s Republic of China
| | - Zhen Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, People’s Republic of China
| | - Xing Zhong
- Department of Bioengineering, Zhixing College of HuBei University, Wuhan, People’s Republic of China
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, People’s Republic of China
- * E-mail: (LM); (XY)
| | - Xiaolan Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, People’s Republic of China
- * E-mail: (LM); (XY)
| |
Collapse
|
37
|
Mikkelsen JG. Nonviral Gene Therapy—The Challenge of Mobilizing DNA. SOMATIC GENOME MANIPULATION 2015:69-104. [DOI: 10.1007/978-1-4939-2389-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
38
|
Wong SP, Argyros O, Harbottle RP. Sustained expression from DNA vectors. ADVANCES IN GENETICS 2014; 89:113-152. [PMID: 25620010 DOI: 10.1016/bs.adgen.2014.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA vectors have the potential to become powerful medical tools for treatment of human disease. The human body has, however, developed a range of defensive strategies to detect and silence foreign or misplaced DNA, which is more typically encountered during infection or chromosomal damage. A clinically relevant human gene therapy vector must overcome or avoid these protections whilst delivering sustained levels of therapeutic gene product without compromising the vitality of the recipient host. Many non-viral DNA vectors trigger these defense mechanisms and are subsequently destroyed or rendered silent. Thus, without modification or considered design, the clinical utility of a typical DNA vector is fundamentally limited due to the transient nature of its transgene expression. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for its successful clinical application and subsequently remains, therefore, one of the main strategic tasks of non-viral gene therapy research. In this chapter we will describe our current understanding of the mechanisms that can destroy or silence DNA vectors and discuss strategies, which have been utilized to improve their sustenance and the level and duration of their transgene expression.
Collapse
Affiliation(s)
- Suet Ping Wong
- Leukocyte Biology Section, National Heart & Lung Institute, Imperial College London, London, UK
| | - Orestis Argyros
- Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Richard P Harbottle
- DNA Vector Research, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
39
|
Establishment and characterization of human engineered cells stably expressing large extracellular matrix proteins. Arch Pharm Res 2013; 37:149-56. [DOI: 10.1007/s12272-013-0294-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/10/2013] [Indexed: 10/26/2022]
|
40
|
Cho YS, Lee SY, Kim DS, Nam YK. Characterization of stable fluorescent transgenic marine medaka (Oryzias dancena) lines carrying red fluorescent protein gene driven by myosin light chain 2 promoter. Transgenic Res 2013; 22:849-59. [PMID: 23188170 DOI: 10.1007/s11248-012-9675-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/14/2012] [Indexed: 01/09/2023]
Abstract
Stable transgenic germlines carrying the red fluorescence protein (RFP) gene (rfp) driven by fast skeletal myosin light chain-2 gene (mlc2f) promoter were established in a truly euryhaline fish species, the marine medaka (Oryzias dancena; Beloniformes). Transgenic lines contained transgene copy numbers varying from a single copy to more than 230 copies per genome. Although the transgenic founders displayed mosaic and/or ectopic expression of the RFP signal, the resultant F1 transgenics and their progeny showed consistently stable transmission of the transgenic locus and uniform RFP signal through several subsequent generations. In adult transgenics, an authentic brilliant red fluorescence was achieved over the skeletal muscles of the transgenic individuals, which might be sufficient for ornamental display. Expression analysis of the transgenic mRNAs indicated that rfp transcripts were predominantly expressed in the skeletal muscles. Different transgenic lines displayed different levels of transgene expression at the mRNA, protein, and phenotypic levels. However, the efficiency of transgene expression was independent of the transgene copy number. The RFP protein levels were consistently stable in the transgenic fish muscles through several generations, up to F5. The results of this study suggest that transgenic marine medaka that acquire strong fluorescent signals in their skeletal muscles can be developed as a promising, novel ornamental fish for display in both freshwater and seawater aquaria.
Collapse
Affiliation(s)
- Young Sun Cho
- Institute of Marine Living Modified Organisms, Pukyong National University, Busan 608-737, Korea
| | | | | | | |
Collapse
|
41
|
Koirala A, Conley SM, Naash MI. A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium. Biomaterials 2013; 34:7158-67. [PMID: 23796578 DOI: 10.1016/j.biomaterials.2013.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/02/2013] [Indexed: 10/26/2022]
Abstract
Ocular gene therapy has been extensively explored in recent years as a therapeutic avenue to target diseases of the cornea, retina and retinal pigment epithelium (RPE). Adeno-associated virus (AAV)-mediated gene therapy has shown promise in several RPE clinical trials but AAVs have limited payload capacity and potential immunogenicity. Traditionally however, non-viral alternatives have been plagued by low transfection efficiency, short-term expression and low expression levels. Recently, these drawbacks have begun to be overcome by the use of specialty carriers such as polylysine, liposomes, or polyethyleneimines, and by inclusion of suitable DNA elements to enhance gene expression and longevity. Recent advancements in the field have yielded non-viral vectors that have favorable safety profiles, lack immunogenicity, exhibit long-term elevated gene expression, and show efficient transfection in the retina and RPE, making them poised to transition to clinical applications. Here we discuss the advancements in nanotechnology and vector engineering that have improved the prospects for clinical application of non-viral gene therapy in the RPE.
Collapse
Affiliation(s)
- Adarsha Koirala
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
42
|
Voigtlander R, Haase R, Mück-Hausl M, Zhang W, Boehme P, Lipps HJ, Schulz E, Baiker A, Ehrhardt A. A Novel Adenoviral Hybrid-vector System Carrying a Plasmid Replicon for Safe and Efficient Cell and Gene Therapeutic Applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e83. [PMID: 23549553 PMCID: PMC3650243 DOI: 10.1038/mtna.2013.11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In dividing cells, the two aims a gene therapeutic approach should accomplish are efficient nuclear delivery and retention of therapeutic DNA. For stable transgene expression, therapeutic DNA can either be maintained by somatic integration or episomal persistence of which the latter approach would diminish the risk of insertional mutagenesis. As most monosystems fail to fulfill both tasks with equal efficiency, hybrid-vector systems represent promising alternatives. Our hybrid-vector system synergizes high-capacity adenoviral vectors (HCAdV) for efficient delivery and the scaffold/matrix attachment region (S/MAR)–based pEPito plasmid replicon for episomal persistence. After proving that this plasmid replicon can be excised from adenovirus in vitro, colony forming assays were performed. We found an increased number of colonies of up to sevenfold in cells that received the functional plasmid replicon proving that the hybrid-vector system is functional. Transgene expression could be maintained for 6 weeks and the extrachromosomal plasmid replicon was rescued. To show efficacy in vivo, the adenoviral hybrid-vector system was injected into C57Bl/6 mice. We found that the plasmid replicon can be released from adenoviral DNA in murine liver resulting in long-term transgene expression. In conclusion, we demonstrate the efficacy of our novel HCAdV-pEPito hybrid-vector system in vitro and in vivo.
Collapse
Affiliation(s)
- Richard Voigtlander
- 1] Virology, Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Munich, Germany [2] Current address: Research Laboratory Endocrinology, University Hospital Essen, Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mazón MJ, Zanuy S, Muñoz I, Carrillo M, Gómez A. Luteinizing Hormone Plasmid Therapy Results in Long-Lasting High Circulating Lh and Increased Sperm Production in European Sea Bass (Dicentrarchus labrax)1. Biol Reprod 2013; 88:32. [DOI: 10.1095/biolreprod.112.102640] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
44
|
Gracey Maniar LE, Maniar JM, Chen ZY, Lu J, Fire AZ, Kay MA. Minicircle DNA vectors achieve sustained expression reflected by active chromatin and transcriptional level. Mol Ther 2012. [PMID: 23183534 DOI: 10.1038/mt.2012.244] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Current efforts in nonviral gene therapy are plagued by a pervasive difficulty in sustaining therapeutic levels of delivered transgenes. Minicircles (plasmid derivatives with the same expression cassette but lacking a bacterial backbone) show sustained expression and hold promise for therapeutic use where persistent transgene expression is required. To characterize the widely-observed silencing process affecting expression of foreign DNA in mammals, we used a system in which mouse liver presented with either plasmid or minicircle consistently silences plasmid but not minicircle expression. We found that preferential silencing of plasmid DNA occurs at a nuclear stage that precedes transport of mRNA to the cytoplasm, evident from a consistent >25-fold minicircle/plasmid transcript difference observed in both nuclear and total RNA. Among possible mechanisms of nuclear silencing, our data favor chromatin-linked transcriptional blockage rather than targeted degradation, aberrant processing, or compromised mRNA transport. In particular, we observe dramatic enrichment of H3K27 trimethylation on plasmid sequences. Also, it appears that Pol II can engage the modified plasmid chromatin, potentially in a manner that is not productive in the synthesis of high levels of new transcript. We outline a scenario in which sustained differences at the chromatin level cooperate to determine the activity of foreign DNA.
Collapse
Affiliation(s)
- Lia E Gracey Maniar
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
45
|
Wang HS, Chen ZJ, Zhang G, Ou XL, Yang XL, Wong CKC, Giesy JP, Du J, Chen SY. A novel micro-linear vector for in vitro and in vivo gene delivery and its application for EBV positive tumors. PLoS One 2012; 7:e47159. [PMID: 23077563 PMCID: PMC3471901 DOI: 10.1371/journal.pone.0047159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/10/2012] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The gene delivery vector for DNA-based therapy should ensure its transfection efficiency and safety for clinical application. The Micro-Linear vector (MiLV) was developed to improve the limitations of traditional vectors such as viral vectors and plasmids. METHODS The MiLV which contained only the gene expression cassette was amplified by polymerase chain reaction (PCR). Its cytotoxicity, transfection efficiency in vitro and in vivo, duration of expression, pro-inflammatory responses and potential application for Epstein-Barr virus (EBV) positive tumors were evaluated. RESULTS Transfection efficiency for exogenous genes transferred by MiLV was at least comparable with or even greater than their corresponding plasmids in eukaryotic cell lines. MiLV elevated the expression and prolonged the duration of genes in vitro and in vivo when compared with that of the plasmid. The in vivo pro-inflammatory response of MiLV group was lower than that of the plasmid group. The MEKK1 gene transferred by MiLV significantly elevated the sensitivity of B95-8 cells and transplanted tumor to the treatment of Ganciclovir (GCV) and sodium butyrate (NaB). CONCLUSIONS The present study provides a safer, more efficient and stable MiLV gene delivery vector than plasmid. These advantages encourage further development and the preferential use of this novel vector type for clinical gene therapy studies.
Collapse
Affiliation(s)
- Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- * E-mail: (JD); (HSW)
| | - Zhuo-Jia Chen
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xue-Ling Ou
- Department of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangzhou, People’s Republic of China
| | - Xiang-Ling Yang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Chris K. C. Wong
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, People’s Republic of China
| | - John P. Giesy
- Department of Veterinary Biomedical Sciences & Toxicological Center, University of Saskatchewan, Saskatchewan, Canada
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- * E-mail: (JD); (HSW)
| | - Shou-Yi Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
46
|
Sato M, Akasaka E, Saitoh I, Ohtsuka M, Watanabe S. In vivogene transfer in mouse preimplantation embryos after intraoviductal injection of plasmid DNA and subsequentin vivoelectroporation. Syst Biol Reprod Med 2012; 58:278-87. [DOI: 10.3109/19396368.2012.688088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Han Z, Koirala A, Makkia R, Cooper MJ, Naash MI. Direct gene transfer with compacted DNA nanoparticles in retinal pigment epithelial cells: expression, repeat delivery and lack of toxicity. Nanomedicine (Lond) 2012; 7:521-39. [PMID: 22356602 DOI: 10.2217/nnm.11.158] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM To evaluate the safety of compacted DNA nanoparticles (NPs) in retinal pigment epithelial (RPE) cells. MATERIALS & METHODS Enhanced GFP expression cassettes controlled by the RPE-specific vitelloform macular dystrophy promoter were constructed with and without a bacterial backbone and compacted into NPs formulated with polyethylene glycol-substituted lysine 30-mers. Single or double subretinal injections were administered in adult BALB/c mice. Expression levels of enhanced GFP, proinflammatory cytokines and neutrophil/macrophage mediators, and retinal function by electroretinogram were evaluated at different time-points postinjection. RESULTS Immunohistochemistry and real-time PCR demonstrated that NPs specifically transfect RPE cells at a higher efficiency than naked DNA and similar results were observed after the second injection. At 6 h postinjections, a transient inflammatory response was observed in all cohorts, including saline, indicating an adverse effect to the injection procedure. Subsequently, no inflammation was detected in all experimental groups. CONCLUSION This study demonstrates the safety and efficacy of NP-mediated RPE gene transfer therapy following multiple subretinal administrations.
Collapse
Affiliation(s)
- Zongchao Han
- Department of Cell Biology, University of Oklahoma Health Sciences Center, BMSB 781, 940 Stanton L Young Blvd, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
48
|
Lee JH, Lee MJ. Liposome-Mediated Cancer Gene Therapy: Clinical Trials and their Lessons to Stem Cell Therapy. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.2.433] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Abstract
The process of moving a novel drug such as an adeno-associated viral vector from the bench top to bedside is an arduous process requiring coordination and skill from multiple laboratories and regulatory agencies. Proceeding to a phase I safety trial in humans after most of the proof-of-concept data have been acquired may take several years. During this time, agencies including the FDA, NIH Office of Biotechnology Activities (OBA), and Recombinant DNA Advisory Committee (RAC) along with the investigator's team will develop a series of preclinical toxicology and biodistribution studies in order to develop a safety profile for the intended novel drug. In this chapter, key features of the pharm-tox study design and conduct will be discussed. Highlighted features include choosing a sufficient animal number and species to use in testing, dose determination, typical toxicological assays performed, the use of Standard Operating Procedures in respect to good laboratory practices compliancy, and role of the Quality Assurance Unit.
Collapse
|
50
|
Catanese DJ, Fogg JM, Schrock DE, Gilbert BE, Zechiedrich L. Supercoiled Minivector DNA resists shear forces associated with gene therapy delivery. Gene Ther 2012; 19:94-100. [PMID: 21633394 PMCID: PMC3252587 DOI: 10.1038/gt.2011.77] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/04/2011] [Accepted: 03/09/2011] [Indexed: 02/08/2023]
Abstract
Supercoiled DNAs varying from 281 to 5302 bp were subjected to shear forces generated by aerosolization or sonication. DNA shearing strongly correlated with length. Typical sized plasmids (≥ 3000 bp) degraded rapidly. DNAs 2000-3000 bp persisted ~10 min. Even in the absence of condensing agents, supercoiled DNA <1200 bp survived nebulization, and increased forces of sonication were necessary to shear it. Circular vectors were considerably more resistant to shearing than linear vectors of the same length. DNA supercoiling afforded additional protection. These results show the potential of shear-resistant Minivector DNAs to overcome one of the major challenges associated with gene therapy delivery.
Collapse
Affiliation(s)
- D J Catanese
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - J M Fogg
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - D E Schrock
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- University of Texas MD Anderson Cancer Center School of Health Sciences, Houston, TX, USA
| | - B E Gilbert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - L Zechiedrich
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
- University of Texas MD Anderson Cancer Center School of Health Sciences, Houston, TX, USA
| |
Collapse
|