1
|
Zhu X, Yang K, Xie J, Feng X, Wu T, Hu M, Wang H, Yu C, Yu X, Hemmatzadeh F, Zhu L, Zhang L. An SDS-NaOH-based method to isolate genome of recombinant adeno-associated virus vectors for physical titer measurement. PLoS One 2025; 20:e0315921. [PMID: 40179116 PMCID: PMC11967980 DOI: 10.1371/journal.pone.0315921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 12/03/2024] [Indexed: 04/05/2025] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) vectors are promising for their safety and sustained expression of genetic payloads across various tissues. These vectors consist of a protein capsid enclosing a 4.7 kb single-stranded DNA genome. Rapid and accurate determination of the physical titers of rAAV vector is crucial for quality control in rAAV manufacturing and precise drug dosage in clinical trials. To prepare vector DNA for genome titer assessment, it is essential to completely degrade unencapsulated DNA and dissociate the capsid. Conventional methods typically involve co-incubation with DNase I to degrade unencapsidated DNA, followed by co-incubation with Proteinase K to cleave protein shells. Here, we present a "Benzonase & SDS-NaOH" pretreatment as an effective alkaline lysis for releasing the vector DNA. In the presence of producer cell crude extract, Benzonase demonstrated superior efficacy in degrading unencapsidated DNA compared to DNase I. Additionally, the use of SDS-NaOH, effective at 65 °C for 30 min, significantly reduces the time required compared to that of Proteinase K at 56 °C for 2 hours. We also showed that the "Benzonase & SDS-NaOH" pretreatment is applicable for vector genome titration in rAAV production, harvest, and purified stock. Moreover, our method is effective for both scAAV and ssAAV forms and across all serotypes, including the thermally stable rAAV5. Overall, this method offers a rapid and straightforward solution to determine rAAV vector genome titers in both purified preparations and during the manufacturing process.
Collapse
Affiliation(s)
- Xiangying Zhu
- Zhejiang Hengyu Biological Technology Co., Ltd., Jiaxing, Zhejiang, China
| | - Keying Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Jinyan Xie
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Xilin Feng
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Tao Wu
- Zhejiang Hengyu Biological Technology Co., Ltd., Jiaxing, Zhejiang, China
| | - Mengjun Hu
- Zhejiang Hengyu Biological Technology Co., Ltd., Jiaxing, Zhejiang, China
| | - Haijian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenghui Yu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaomin Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Liqing Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Linhua Zhang
- Department of Clinical Laboratory, The People’s Hospital of Yuhuan, Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Soth S, Takakura M, Suekawa M, Onishi T, Hirohata K, Hashimoto T, Maruno T, Fukuhara M, Tsunaka Y, Torisu T, Uchiyama S. Quantification of full and empty particles of adeno-associated virus vectors via a novel dual fluorescence-linked immunosorbent assay. Mol Ther Methods Clin Dev 2024; 32:101291. [PMID: 39070291 PMCID: PMC11283060 DOI: 10.1016/j.omtm.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
The adeno-associated virus (AAV) vector is one of the most advanced platforms for gene therapy because of its low immunogenicity and non-pathogenicity. The concentrations of both AAV vector empty particles, which do not contain DNA and do not show any efficacy, and AAV vector full particles (FPs), which contain DNA, are important quality attributes. In this study, a dual fluorescence-linked immunosorbent assay (dFLISA), which uses two fluorescent dyes to quantify capsid and genome titers in a single analysis, was established. In dFLISA, capture of AAV particles, detection of capsid proteins, and release and detection of the viral genome are performed in the same well. We demonstrated that the capsid and genomic titers determined by dFLISA were comparable with those of analytical ultracentrifugation. The FP ratios determined by dFLISA were in good agreement with the expected values. In addition, we showed that dFLISA can quantify the genomic and capsid titers of crude samples. dFLISA can be easily modified for measuring other AAV vector serotypes and AAV vectors with different genome lengths. These features make dFLISA a valuable tool for the future development of AAV-based gene therapies.
Collapse
Affiliation(s)
- Sereirath Soth
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mikako Takakura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Suekawa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Onishi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiichi Hirohata
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tamami Hashimoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuko Fukuhara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsunaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuo Torisu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
3
|
Wang H, Zhou J, Lei J, Mo G, Wu Y, Liu H, Pang Z, Du M, Zhou Z, Paek C, Sun Z, Chen Y, Wang Y, Chen P, Yin L. Engineering of a compact, high-fidelity EbCas12a variant that can be packaged with its crRNA into an all-in-one AAV vector delivery system. PLoS Biol 2024; 22:e3002619. [PMID: 38814985 PMCID: PMC11139299 DOI: 10.1371/journal.pbio.3002619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/09/2024] [Indexed: 06/01/2024] Open
Abstract
The CRISPR-associated endonuclease Cas12a has become a powerful genome-editing tool in biomedical research due to its ease of use and low off-targeting. However, the size of Cas12a severely limits clinical applications such as adeno-associated virus (AAV)-based gene therapy. Here, we characterized a novel compact Cas12a ortholog, termed EbCas12a, from the metagenome-assembled genome of a currently unclassified Erysipelotrichia. It has the PAM sequence of 5'-TTTV-3' (V = A, G, C) and the smallest size of approximately 3.47 kb among the Cas12a orthologs reported so far. In addition, enhanced EbCas12a (enEbCas12a) was also designed to have comparable editing efficiency with higher specificity to AsCas12a and LbCas12a in mammalian cells at multiple target sites. Based on the compact enEbCas12a, an all-in-one AAV delivery system with crRNA for Cas12a was developed for both in vitro and in vivo applications. Overall, the novel smallest high-fidelity enEbCas12a, this first case of the all-in-one AAV delivery for Cas12a could greatly boost future gene therapy and scientific research.
Collapse
Affiliation(s)
- Hongjian Wang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jin Zhou
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jun Lei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Guosheng Mo
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yankang Wu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Huan Liu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ziyan Pang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Mingkun Du
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zihao Zhou
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chonil Paek
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zaiqiao Sun
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yongshun Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yan Wang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Peng Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
PCR-Based Analytical Methods for Quantification and Quality Control of Recombinant Adeno-Associated Viral Vector Preparations. Pharmaceuticals (Basel) 2021; 15:ph15010023. [PMID: 35056080 PMCID: PMC8779925 DOI: 10.3390/ph15010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Recombinant adeno-associated viral vectors (rAAV) represent a gene therapy tool of ever-increasing importance. Their utilization as a delivery vehicle for gene replacement, silencing and editing, among other purposes, demonstrate considerable versatility. Emerging vector utilization in various experimental, preclinical and clinical applications establishes the necessity of producing and characterizing a wide variety of rAAV preparations. Critically important characteristics concerning quality control are rAAV titer quantification and the detection of impurities. Differences in rAAV constructs necessitate the development of highly standardized quantification assays to make direct comparisons of different preparations in terms of assembly or purification efficiency, as well as experimental or therapeutic dosages. The development of universal methods for impurities quantification is rather complicated, since variable production platforms are utilized for rAAV assembly. However, general agreements also should be achieved to address this issue. The majority of methods for rAAV quantification and quality control are based on PCR techniques. Despite the progress made, increasing evidence concerning high variability in titration assays indicates poor standardization of the methods undertaken to date. This review summarizes successes in the field of rAAV quality control and emphasizes ongoing challenges in PCR applications for rAAV characterization. General considerations regarding possible solutions are also provided.
Collapse
|
5
|
Wang SK, Lapan SW, Hong CM, Krause TB, Cepko CL. In Situ Detection of Adeno-associated Viral Vector Genomes with SABER-FISH. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:376-386. [PMID: 33209963 PMCID: PMC7658570 DOI: 10.1016/j.omtm.2020.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022]
Abstract
Gene therapy with recombinant adeno-associated viral (AAV) vectors is a promising modality for the treatment of a variety of human diseases. Nonetheless, there remain significant gaps in our understanding of AAV vector biology, due in part to the lack of robust methods to track AAV capsids and genomes. In this study, we describe a novel application of signal amplification by exchange reaction fluorescence in situ hybridization (SABER-FISH) that enabled the visualization and quantification of individual AAV genomes after vector administration in mice. These genomes could be seen in retinal cells within 3 h of subretinal AAV delivery, were roughly full length, and correlated with vector expression in both photoreceptors and the retinal pigment epithelium. SABER-FISH readily detected AAV genomes in the liver and muscle following retro-orbital and intramuscular AAV injections, respectively, demonstrating its utility in different tissues. Using SABER-FISH, we also found that retinal microglia, a cell type deemed refractory to AAV transduction, are in fact efficiently infected by multiple AAV serotypes, but appear to degrade AAV genomes prior to nuclear localization. Our findings show that SABER-FISH can be used to visualize AAV genomes in situ, allowing for studies of AAV vector biology and the tracking of transduced cells following vector administration.
Collapse
Affiliation(s)
- Sean K Wang
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sylvain W Lapan
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Christin M Hong
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tyler B Krause
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Constance L Cepko
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
6
|
SUMOylation Targets Adeno-associated Virus Capsids but Mainly Restricts Transduction by Cellular Mechanisms. J Virol 2020; 94:JVI.00871-20. [PMID: 32669341 DOI: 10.1128/jvi.00871-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus (AAV) has proven to be a promising candidate for gene therapy due to its nonpathogenic nature, ease of production, and broad tissue tropism. However, its transduction capabilities are not optimal due to the interaction with various host factors within the cell. In a previous study, we identified members of the small ubiquitin-like modifier (SUMO) pathway as significant restriction factors in AAV gene transduction. In the present study, we explored the scope of this restriction by focusing on the AAV capsid and host cell proteins as targets. We show that during vector production, the capsid protein VP2 becomes SUMOylated, as indicated by deletion and point mutations of VP2 or the obstruction of its N terminus via the addition of a tag. We observed that SUMOylated AAV capsids display higher stability than non-SUMOylated capsids. Prevention of capsid SUMOylation by VP2 mutations did not abolish transduction restriction by SUMOylation; however, it reduced activation of gene transduction by shutdown of the cellular SUMOylation pathway. This indicates a link between capsid SUMOylation and SUMOylation of cellular proteins in restricting gene transduction. Infection with AAV triggers general SUMOylation of cellular proteins. In particular, the DAXX protein, a putative host cell restriction factor that can become SUMOylated, is able to restrict AAV gene transduction by reducing the intracellular accumulation of AAV vectors. We also observe that the coexpression of a SUMOylation inhibitor with an AAV2 reporter gene vector increased gene transduction significantly.IMPORTANCE Host factors within the cell are the major mode of restriction of adeno-associated virus (AAV) and keep it from fulfilling its maximum potential as a gene therapy vector. A better understanding of the intricacies of restriction would enable the engineering of better vectors. Via a genome-wide short interfering RNA screen, we identified that proteins of the small ubiquitin-like modifier (SUMO) pathway play an important role in AAV restriction. In this study, we investigate whether this restriction is targeted to the AAV directly or indirectly through host cell factors. The results indicate that both targets act in concert to restrict AAV.
Collapse
|
7
|
Xu J, DeVries SH, Zhu Y. Quantification of Adeno-Associated Virus with Safe Nucleic Acid Dyes. Hum Gene Ther 2020; 31:1086-1099. [PMID: 32368927 DOI: 10.1089/hum.2020.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated virus (AAV) is the most commonly used viral vector for both biological and gene therapeutic applications. Although many methods have been developed to measure quantity attributes of AAV, they are often technically challenging and time-consuming. Here, we report a method to titer AAV with GelGreen® dye, a safe green fluorescence nucleic acid dye recently engineered by Biotium company (Fremont, CA). This method, hereinafter referred to as GelGreen method, provides a fast (∼30 min) and reliable strategy for AAV titration. To validate GelGreen method, we measured genome titer of an AAV reference material AAV8RSM and compared our titration results with those determined by Reference Material Working Group (ARMWG). We showed that GelGreen results and capsid enzyme-linked immunosorbent assay results are comparable with each other. We also showed that GelRed® dye, a red fluorescence dye from Biotium, can be used to directly "visualize" AAV genome titer on a conventional gel imager, presenting an especially direct approach to estimate viral quantity. Finally, we showed that GelGreen and GelRed dyes can also be used to quantify self-complementary AAV (scAAV) and crudely purified AAV samples. In summary, we described a technique to titer AAV by using new generation of safe DNA dyes. This technique is simple, safe, reliable, and cost efficient. It has potential to be broadly applied for quantifying and normalizing AAV viral vectors.
Collapse
Affiliation(s)
- Jian Xu
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Steven H DeVries
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yongling Zhu
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
8
|
Gorgannezhad L, Sreejith KR, Zhang J, Kijanka G, Christie M, Stratton H, Nguyen NT. Microfluidic Array Chip for Parallel Detection of Waterborne Bacteria. MICROMACHINES 2019; 10:E883. [PMID: 31888270 PMCID: PMC6952809 DOI: 10.3390/mi10120883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
The polymerase chain reaction (PCR) is a robust technique used to make multiple copies of a segment of DNA. However, the available PCR platforms require elaborate and time-consuming operations or costly instruments, hindering their application. Herein, we introduce a sandwiched glass-polydimethylsiloxane (PDMS)-glass microchip containing an array of reactors for the real-time PCR-based detection of multiple waterborne bacteria. The PCR solution was loaded into the array of reactors in a single step utilising capillary filling, eliminating the need for pumps, valves, and liquid handling instruments. Issues of generating and trapping bubbles during the loading chip step were addressed by creating smooth internal reactor surfaces. Triton X-100 was used to enhance PCR compatibility in the chip by minimising the nonspecific adsorption of enzymes. A custom-made real-time PCR instrument was also fabricated to provide thermal cycling to the array chip. The microfluidic device was successfully demonstrated for microbial faecal source tracking (MST) in water.
Collapse
Affiliation(s)
- Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (L.G.); (K.R.S.); (J.Z.); (H.S.)
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia;
| | - Kamalalayam Rajan Sreejith
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (L.G.); (K.R.S.); (J.Z.); (H.S.)
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (L.G.); (K.R.S.); (J.Z.); (H.S.)
| | - Gregor Kijanka
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia;
| | - Melody Christie
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia;
| | - Helen Stratton
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (L.G.); (K.R.S.); (J.Z.); (H.S.)
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia;
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia; (L.G.); (K.R.S.); (J.Z.); (H.S.)
| |
Collapse
|
9
|
Choi WM, Kim HH, Kim MH, Cinar R, Yi HS, Eun HS, Kim SH, Choi YJ, Lee YS, Kim SY, Seo W, Lee JH, Shim YR, Kim YE, Yang K, Ryu T, Hwang JH, Lee CH, Choi HS, Gao B, Kim W, Kim SK, Kunos G, Jeong WI. Glutamate Signaling in Hepatic Stellate Cells Drives Alcoholic Steatosis. Cell Metab 2019; 30:877-889.e7. [PMID: 31474565 PMCID: PMC6834910 DOI: 10.1016/j.cmet.2019.08.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/15/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
Abstract
Activation of hepatocyte cannabinoid receptor-1 (CB1R) by hepatic stellate cell (HSC)-derived 2-arachidonoylglycerol (2-AG) drives de novo lipogenesis in alcoholic liver disease (ALD). How alcohol stimulates 2-AG production in HSCs is unknown. Here, we report that chronic alcohol consumption induced hepatic cysteine deficiency and subsequent glutathione depletion by impaired transsulfuration pathway. A compensatory increase in hepatic cystine-glutamate anti-porter xCT boosted extracellular glutamate levels coupled to cystine uptake both in mice and in patients with ALD. Alcohol also induced the selective expression of metabotropic glutamate receptor-5 (mGluR5) in HSCs where mGluR5 activation stimulated 2-AG production. Consistently, genetic or pharmacologic inhibition of mGluR5 or xCT attenuated alcoholic steatosis in mice via the suppression of 2-AG production and subsequent CB1R-mediated de novo lipogenesis. We conclude that a bidirectional signaling operates at a metabolic synapse between hepatocytes and HSCs through xCT-mediated glutamate-mGluR5 signaling to produce 2-AG, which induces CB1R-mediated alcoholic steatosis.
Collapse
Affiliation(s)
- Won-Mook Choi
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hee-Hoon Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Myung-Ho Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyon-Seung Yi
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Department of Internal Medicine, Chungnam National University, School of Medicine, Daejeon 35015, Republic of Korea
| | - Hyuk Soo Eun
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Department of Internal Medicine, Chungnam National University, School of Medicine, Daejeon 35015, Republic of Korea
| | - Seok-Hwan Kim
- Department of Surgery, Chungnam National University, College of Medicine, Daejeon 35015, Republic of Korea
| | - Young Jae Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Sun Lee
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Department of Internal Medicine, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - So Yeon Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Wonhyo Seo
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun-Hee Lee
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Young-Ri Shim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Ye Eun Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Keungmo Yang
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Tom Ryu
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hueng-Sik Choi
- School of the Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government, Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
10
|
Cui M, Lu Y, Tang C, Zhang R, Wang J, Si Y, Cheng S, Ding W. A Generic Method for Fast and Sensitive Detection of Adeno-Associated Viruses Using Modified AAV Receptor Recombinant Proteins. Molecules 2019; 24:molecules24213973. [PMID: 31684125 PMCID: PMC6864843 DOI: 10.3390/molecules24213973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 01/18/2023] Open
Abstract
Adeno-Associated Viruses (AAV) are widely used gene-therapy vectors for both clinical applications and laboratory investigations. The titering of different AAV preparations is important for quality control purposes, as well as in comparative studies. However, currently available methods are limited in their ability to detect various serotypes with sensitivity and convenience. Here, we took advantage of a newly discovered AAV receptor protein with high affinity to multiple AAV serotypes, and developed an ELISA-like method named “VIRELISA” (virus receptor-linked immunosorbent assay) by adopting fusion with a streptavidin-binding peptide (SBP). It was demonstrated that optimized VIRELISA assays exhibited satisfactory performance for the titering of AAV2. The linear range of AAV2 was 1 × 105 v.g. to 5 × 109 v.g., with an LOD (limit of detection) of 5 × 104 v.g. Testing of VIRELISA for the quantification of AAV1 was also successful. Our study indicated that a generic protocol for the quantification of different serotypes of AAVs was feasible, reliable and cost-efficient. The applications of VIRELISA will not only be of benefit to laboratory research due to its simplicity, but could also potentially be used for monitoring the circulation AAV loads both in clinical trials and in wild type infection of a given AAV serotype.
Collapse
Affiliation(s)
- Mengtian Cui
- Department of Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Yabin Lu
- Department of Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Can Tang
- Department of Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Ran Zhang
- MOE Laboratory of Protein Science and Collaborative Innovation Center of Biotherapy, School of Medicine, Tsinghua University, Beijing 10084, China.
| | - Jing Wang
- Department of Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Yang Si
- Department of Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Shan Cheng
- Department of Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
- Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing 100069, China.
| | - Wei Ding
- Department of Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
- Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
11
|
Li T, Shen Y, Lin F, Fu W, Liu S, Wang C, Liang J, Fan X, Ye X, Tang Y, Ding M, Yang Y, Lei C, Hu S. Targeting RyR2 with a phosphorylation site-specific nanobody reverses dysfunction of failing cardiomyocytes in rats. FASEB J 2019; 33:7467-7478. [PMID: 30885011 DOI: 10.1096/fj.201802354r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic PKA phosphorylation of ryanodine receptor 2 (RyR2) has been shown to increase diastolic sarcoplasmic reticulum (SR) Ca2+ leakage and lead to cardiac dysfunction. We hypothesize that intracellular gene delivery of an RyR2-targeting phosphorylation site-specific nanobody could preserve the contractility of the failing myocardium. In the present study, we acquired RyR2-specific nanobodies from a phage display library that were variable domains of Camelidae heavy chain-only antibodies. One of the nanobodies, AR185, inhibited RyR2 phosphorylation in vitro and was chosen for further investigation. We investigated the potential of adeno-associated virus (AAV)9-mediated cardiac expression of AR185 to combat postischemic heart failure (HF). AAV gene delivery elevated the intracellular expression of the AR185 protein in a rat model of ischemic HF, and this treatment normalized the systolic and diastolic dysfunction of the failing myocardium in vivo by reversing myocardial Ca2+ handling. Furthermore, AR185 gene transfer to failing cardiomyocytes reduced the frequency of SR calcium leaks, thereby restoring the attenuated intracellular calcium transients and SR calcium load. Moreover, AR185 gene transfer inhibited the PKA-mediated phosphorylation of RyR2 in failing cardiomyocytes. Our results provide preclinical experimental evidence that the cardiac expression of RyR2 nanobodies with AAV9 vectors is a promising therapeutic strategy for HF.-Li, T., Shen, Y., Lin, F., Fu, W., Liu, S., Wang, C., Liang, J., Fan, X., Ye, X., Tang, Y., Ding, M., Yang, Y., Lei, C., Hu, S. Targeting RyR2 with a phosphorylation site-specific nanobody reverses dysfunction of failing cardiomyocytes in rats.
Collapse
Affiliation(s)
- Tian Li
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China.,Department of Biophysics, Team SMMU-China of International Genetically Engineered Machine (iGEM) Competitions, Second Military Medical University, Shanghai, China
| | - Yafeng Shen
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Fangxing Lin
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Wenyan Fu
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuowu Liu
- Department of Biophysics, Team SMMU-China of International Genetically Engineered Machine (iGEM) Competitions, Second Military Medical University, Shanghai, China
| | - Chuqi Wang
- Department of Biophysics, Team SMMU-China of International Genetically Engineered Machine (iGEM) Competitions, Second Military Medical University, Shanghai, China
| | - Jizhou Liang
- Department of Biophysics, Team SMMU-China of International Genetically Engineered Machine (iGEM) Competitions, Second Military Medical University, Shanghai, China
| | - Xiaoyan Fan
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Xuting Ye
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Ying Tang
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Min Ding
- Pharchoice Therapeutics Incorporated, Shanghai, China
| | - Yongji Yang
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Changhai Lei
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China.,Department of Biophysics, Team SMMU-China of International Genetically Engineered Machine (iGEM) Competitions, Second Military Medical University, Shanghai, China
| | - Shi Hu
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China.,Department of Biophysics, Team SMMU-China of International Genetically Engineered Machine (iGEM) Competitions, Second Military Medical University, Shanghai, China
| |
Collapse
|
12
|
Gamlin PD, Alexander JJ, Boye SL, Witherspoon CD, Boye SE. SubILM Injection of AAV for Gene Delivery to the Retina. Methods Mol Biol 2019; 1950:249-262. [PMID: 30783978 PMCID: PMC6700748 DOI: 10.1007/978-1-4939-9139-6_14] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Adeno-associated virus (AAV) has emerged as the vector of choice for delivering genes to the retina. Indeed, the first gene therapy to receive FDA approval in the United States is an AAV-based treatment for the inherited retinal disease, Leber congenital amaurosis-2. Voretigene neparvovec (Luxturna™) is delivered to patients via subretinal (SR) injection, an invasive surgical procedure that requires detachment of photoreceptors (PRs) from the retinal pigment epithelium (RPE). It has been reported that subretinal administration of vector under the cone-exclusive fovea leads to a loss of central retinal structure and visual acuity in some patients. Due to its technical difficulty and potential risks, alternatives to SR injection have been explored in primates. Intravitreally (Ivt) delivered AAV transduces inner retina and foveal cones, but with low efficiency. Novel AAV capsid variants identified via rational design or directed evolution have offered only incremental improvements, and have failed to promote pan-inner retinal transduction or significant outer retinal transduction beyond the fovea. Problems with retinal transduction by Ivt-delivered AAV include dilution in the vitreous, potential antibody-mediated neutralization of capsid in this nonimmune privileged space, and the presence of the inner limiting membrane (ILM), a basement membrane separating the vitreous from the neural retina. We have developed an alternative "subILM" injection method that overcomes all three hurdles. Specifically, vector is placed in a surgically induced, hydrodissected space between the ILM and neural retina. We have shown that subILM injection promotes more efficient retinal transduction by AAV than Ivt injection, and results in uniform and extensive transduction of retinal ganglion cells (RGCs) beneath the subILM bleb. We have also demonstrated transduction of Muller glia, ON bipolar cells, and photoreceptors by subILM injection. Our results confirm that the ILM is a major barrier to transduction by AAV in primate retina and that, when it is circumvented, the efficiency and depth to which AAV2 promotes transduction of multiple retinal cell classes is greatly enhanced. Here we describe in detail methods for vector preparation, vector dilution, and subILM injection as performed in macaque (Macaca sp.).
Collapse
Affiliation(s)
- Paul D Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - John J Alexander
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Sanford L Boye
- Department of Pediatrics and the Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - C Douglas Witherspoon
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shannon E Boye
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
13
|
Li T, Shen Y, Su L, Fan X, Lin F, Ye X, Ding D, Tang Y, Yang Y, Lei C, Hu S. Cardiac adenovirus-associated viral Presenilin 1 gene delivery protects the left ventricular function of the heart via regulating RyR2 function in post-ischaemic heart failure. J Drug Target 2018. [PMID: 29521549 DOI: 10.1080/1061186x.2018.1450412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Post-ischaemic heart failure is a major cause of death worldwide. Reperfusion of infarcted heart tissue after myocardial infarction has been an important medical intervention to improve outcomes. However, disturbances in Ca2+ and redox homeostasis at the cellular level caused by ischaemia/reperfusion remain major clinical challenges. In this study, we investigated the potential of adeno-associated virus (AAV)-9-mediated cardiac expression of a Type-2 ryanodine receptor (RyR2) degradation-associated gene, Presenilin 1 (PSEN1), to combat post-ischaemic heart failure. Adeno-associated viral PSEN1 gene delivery elevated PSEN1 protein expression in a post-infarction rat heart failure model, and this administration normalised the contractile dysfunction of the failing myocardium in vivo and in vitro by reversing myocardial Ca2+ handling and function. Moreover, PSEN1 gene transfer to failing cardiomyocytes reduced sarcoplasmic reticulum (SR) Ca2+ leak, thereby restoring the diminished intracellular Ca2+ transients and SR Ca2+ load. Moreover, PSEN1 gene transfer reversed the phosphorylation of RyR2 in failing cardiomyocytes. However, selective autophagy inhibition did not prevent the PSEN1-induced blockade of RyR2 degradation, making the participation of autophagy in PSEN1-associated RyR2 degradation unlikely. Our results established a role of the cardiac expression of PSEN1 with AAV9 vectors as a promising therapeutic approach for post-ischaemic heart failure.
Collapse
Affiliation(s)
- Tian Li
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| | - Yafeng Shen
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| | - Li Su
- b School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Xiaoyan Fan
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| | - Fangxing Lin
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| | - Xuting Ye
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| | - Dianer Ding
- c Pharchoice Therapeutics Inc , Shanghai , China
| | - Ying Tang
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| | - Yongji Yang
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| | - Changhai Lei
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| | - Shi Hu
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| |
Collapse
|
14
|
Vannoy CH, Xiao W, Lu P, Xiao X, Lu QL. Efficacy of Gene Therapy Is Dependent on Disease Progression in Dystrophic Mice with Mutations in the FKRP Gene. Mol Ther Methods Clin Dev 2017; 5:31-42. [PMID: 28480302 PMCID: PMC5415313 DOI: 10.1016/j.omtm.2017.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/20/2017] [Indexed: 01/17/2023]
Abstract
Loss-of-function mutations in the Fukutin-related protein (FKRP) gene cause limb-girdle muscular dystrophy type 2I (LGMD2I) and other forms of congenital muscular dystrophy-dystroglycanopathy that are associated with glycosylation defects in the α-dystroglycan (α-DG) protein. Systemic administration of a single dose of recombinant adeno-associated virus serotype 9 (AAV9) vector expressing human FKRP to a mouse model of LGMD2I at various stages of disease progression was evaluated. The results demonstrate rescue of functional glycosylation of α-DG and muscle function, along with improvements in muscle structure at all disease stages versus age-matched untreated cohorts. Nevertheless, mice treated in the latter stages of disease progression revealed a decrease in beneficial effects of the treatment. The results provide a proof of concept for future clinical trials in patients with FKRP-related muscular dystrophy and demonstrate that AAV-mediated gene therapy can potentially benefit patients at all stages of disease progression, but earlier intervention would be highly preferred.
Collapse
Affiliation(s)
- Charles Harvey Vannoy
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Carolinas Healthcare System, Charlotte, NC 28203, USA
| | - Will Xiao
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Carolinas Healthcare System, Charlotte, NC 28203, USA
| | - Peijuan Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Carolinas Healthcare System, Charlotte, NC 28203, USA
| | - Xiao Xiao
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Carolinas Healthcare System, Charlotte, NC 28203, USA
| |
Collapse
|
15
|
Singer J, Manzano-Szalai K, Fazekas J, Thell K, Bentley-Lukschal A, Stremnitzer C, Roth-Walter F, Weghofer M, Ritter M, Pino Tossi K, Hörer M, Michaelis U, Jensen-Jarolim E. Proof of concept study with an HER-2 mimotope anticancer vaccine deduced from a novel AAV-mimotope library platform. Oncoimmunology 2016; 5:e1171446. [PMID: 27622022 PMCID: PMC5006910 DOI: 10.1080/2162402x.2016.1171446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 01/17/2023] Open
Abstract
Background: Anticancer vaccines could represent a valuable complementary strategy to established therapies, especially in settings of early stage and minimal residual disease. HER-2 is an important target for immunotherapy and addressed by the monoclonal antibody trastuzumab. We have previously generated HER-2 mimotope peptides from phage display libraries. The synthesized peptides were coupled to carriers and applied for epitope-specific induction of trastuzumab-like IgG. For simplification and to avoid methodological limitations of synthesis and coupling chemistry, we herewith present a novel and optimized approach by using adeno-associated viruses (AAV) as effective and high-density mimotope-display system, which can be directly used for vaccination. Methods: An AAV capsid display library was constructed by genetically incorporating random peptides in a plasmid encoding the wild-type AAV2 capsid protein. AAV clones, expressing peptides specifically reactive to trastuzumab, were employed to immunize BALB/c mice. Antibody titers against human HER-2 were determined, and the isotype composition and functional properties of these were tested. Finally, prophylactically immunized mice were challenged with human HER-2 transfected mouse D2F2/E2 cells. Results: HER-2 mimotope AAV-vaccines induced antibodies specific to human HER-2. Two clones were selected for immunization of mice, which were subsequently grafted D2F2/E2 cells. Both mimotope AAV clones delayed the growth of tumors significantly, as compared to controls. Conclusion: In this study, a novel mimotope AAV-based platform was created allowing the isolation of mimotopes, which can be directly used as anticancer vaccines. The example of trastuzumab AAV-mimotopes demonstrates that this vaccine strategy could help to establish active immunotherapy for breast-cancer patients.
Collapse
Affiliation(s)
- Josef Singer
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria; Biomedical International R+D GmbH, Vienna, Austria
| | - Krisztina Manzano-Szalai
- Biomedical International R+D GmbH, Vienna, Austria; Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna, and University Vienna, Vienna, Austria
| | - Judit Fazekas
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria; Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna, and University Vienna, Vienna, Austria
| | - Kathrin Thell
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria; Biomedical International R+D GmbH, Vienna, Austria
| | - Anna Bentley-Lukschal
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna , Vienna, Austria
| | - Caroline Stremnitzer
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna , Vienna, Austria
| | - Franziska Roth-Walter
- Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna, and University Vienna , Vienna, Austria
| | | | | | | | | | - Uwe Michaelis
- MediGene AG, Martinsried, Germany; ImevaX GmbH Munich, Germany
| | - Erika Jensen-Jarolim
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria; Biomedical International R+D GmbH, Vienna, Austria; Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna, and University Vienna, Vienna, Austria
| |
Collapse
|
16
|
Schlegel P, Huditz R, Meinhardt E, Rapti K, Geis N, Most P, Katus HA, Müller OJ, Bekeredjian R, Raake PW. Locally Targeted Cardiac Gene Delivery by AAV Microbubble Destruction in a Large Animal Model. Hum Gene Ther Methods 2016; 27:71-8. [DOI: 10.1089/hgtb.2015.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Philipp Schlegel
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Regina Huditz
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Eric Meinhardt
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Kleopatra Rapti
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Nicolas Geis
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Patrick Most
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hugo A. Katus
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Oliver J. Müller
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Raffi Bekeredjian
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Philip W. Raake
- Department of Internal Medicine III, Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Hölscher C, Sonntag F, Henrich K, Chen Q, Beneke J, Matula P, Rohr K, Kaderali L, Beil N, Erfle H, Kleinschmidt JA, Müller M. The SUMOylation Pathway Restricts Gene Transduction by Adeno-Associated Viruses. PLoS Pathog 2015; 11:e1005281. [PMID: 26625259 PMCID: PMC4666624 DOI: 10.1371/journal.ppat.1005281] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/25/2015] [Indexed: 12/21/2022] Open
Abstract
Adeno-associated viruses are members of the genus dependoviruses of the parvoviridae family. AAV vectors are considered promising vectors for gene therapy and genetic vaccination as they can be easily produced, are highly stable and non-pathogenic. Nevertheless, transduction of cells in vitro and in vivo by AAV in the absence of a helper virus is comparatively inefficient requiring high multiplicity of infection. Several bottlenecks for AAV transduction have previously been described, including release from endosomes, nuclear transport and conversion of the single stranded DNA into a double stranded molecule. We hypothesized that the bottlenecks in AAV transduction are, in part, due to the presence of host cell restriction factors acting directly or indirectly on the AAV-mediated gene transduction. In order to identify such factors we performed a whole genome siRNA screen which identified a number of putative genes interfering with AAV gene transduction. A number of factors, yielding the highest scores, were identified as members of the SUMOylation pathway. We identified Ubc9, the E2 conjugating enzyme as well as Sae1 and Sae2, enzymes responsible for activating E1, as factors involved in restricting AAV. The restriction effect, mediated by these factors, was validated and reproduced independently. Our data indicate that SUMOylation targets entry of AAV capsids and not downstream processes of uncoating, including DNA single strand conversion or DNA damage signaling. We suggest that transiently targeting SUMOylation will enhance application of AAV in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | - Qingxin Chen
- German Cancer Research Center, Heidelberg, Germany
| | - Jürgen Beneke
- VIROQUANT-CellNetworks RNAi Screening Facility, BIOQUANT Center University Heidelberg, Heidelberg, Germany
| | - Petr Matula
- Biomedical Computer Vision Group, Dept. Bioinformatics and Functional Genomics, University of Heidelberg, BIOQUANT, IPMB, and German Cancer Research Center, Heidelberg, Germany
| | - Karl Rohr
- Biomedical Computer Vision Group, Dept. Bioinformatics and Functional Genomics, University of Heidelberg, BIOQUANT, IPMB, and German Cancer Research Center, Heidelberg, Germany
| | - Lars Kaderali
- University Medicine Greifswald, Institute for Bioinformatics, Greifswald, Germany
| | - Nina Beil
- VIROQUANT-CellNetworks RNAi Screening Facility, BIOQUANT Center University Heidelberg, Heidelberg, Germany
| | - Holger Erfle
- VIROQUANT-CellNetworks RNAi Screening Facility, BIOQUANT Center University Heidelberg, Heidelberg, Germany
| | | | - Martin Müller
- German Cancer Research Center, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
18
|
Piedra J, Ontiveros M, Miravet S, Penalva C, Monfar M, Chillon M. Development of a rapid, robust, and universal picogreen-based method to titer adeno-associated vectors. Hum Gene Ther Methods 2015; 26:35-42. [PMID: 25640021 DOI: 10.1089/hgtb.2014.120] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) are promising vectors in preclinical and clinical assays for the treatment of diseases with gene therapy strategies. Recent technological advances in amplification and purification have allowed the production of highly purified rAAV vector preparations. Although quantitative polymerase chain reaction (qPCR) is the current method of choice for titrating rAAV genomes, it shows high variability. In this work, we report a rapid and robust rAAV titration method based on the quantitation of encapsidated DNA with the fluorescent dye PicoGreen®. This method allows detection from 3×10(10) viral genome/ml up to 2.4×10(13) viral genome/ml in a linear range. Contrasted with dot blot or qPCR, the PicoGreen-based assay has less intra- and interassay variability. Moreover, quantitation is rapid, does not require specific primers or probes, and is independent of the rAAV pseudotype analyzed. In summary, development of this universal rAAV-titering method may have substantive implications in rAAV technology.
Collapse
Affiliation(s)
- Jose Piedra
- 1 Vector Production Unit, Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona , Bellaterra 08193, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Tan SZK, Ganella DE, Dick ALW, Duncan JR, Ong-Palsson E, Bathgate RAD, Kim JH, Lawrence AJ. Spatial Learning Requires mGlu5 Signalling in the Dorsal Hippocampus. Neurochem Res 2015; 40:1303-10. [DOI: 10.1007/s11064-015-1595-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/26/2015] [Accepted: 04/30/2015] [Indexed: 12/12/2022]
|
20
|
Lin Y, Sun Z. In vivo pancreatic β-cell-specific expression of antiaging gene Klotho: a novel approach for preserving β-cells in type 2 diabetes. Diabetes 2015; 64:1444-58. [PMID: 25377875 PMCID: PMC4375073 DOI: 10.2337/db14-0632] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein expression of an antiaging gene, Klotho, was depleted in pancreatic islets in patients with type 2 diabetes mellitus (T2DM) and in db/db mice, an animal model of T2DM. The objective of this study was to investigate whether in vivo expression of Klotho would preserve pancreatic β-cell function in db/db mice. We report for the first time that β-cell-specific expression of Klotho attenuated the development of diabetes in db/db mice. β-Cell-specific expression of Klotho decreased hyperglycemia and enhanced glucose tolerance. The beneficial effects of Klotho were associated with significant improvements in T2DM-induced decreases in number of β-cells, insulin storage levels in pancreatic islets, and glucose-stimulated insulin secretion from pancreatic islets, which led to increased blood insulin levels in diabetic mice. In addition, β-cell-specific expression of Klotho decreased intracellular superoxide levels, oxidative damage, apoptosis, and DNAJC3 (a marker for endoplasmic reticulum stress) in pancreatic islets. Furthermore, β-cell-specific expression of Klotho increased expression levels of Pdx-1 (insulin transcription factor), PCNA (a marker of cell proliferation), and LC3 (a marker of autophagy) in pancreatic islets in db/db mice. These results reveal that β-cell-specific expression of Klotho improves β-cell function and attenuates the development of T2DM. Therefore, in vivo expression of Klotho may offer a novel strategy for protecting β-cells in T2DM.
Collapse
Affiliation(s)
- Yi Lin
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
21
|
Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520:186-91. [PMID: 25830891 PMCID: PMC4393360 DOI: 10.1038/nature14299] [Citation(s) in RCA: 1990] [Impact Index Per Article: 199.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 02/05/2015] [Indexed: 12/11/2022]
Abstract
The RNA-guided endonuclease Cas9 has emerged as a versatile genome-editing platform. However, the size of the commonly used Cas9 from Streptococcus pyogenes (SpCas9) limits its utility for basic research and therapeutic applications that use the highly versatile adeno-associated virus (AAV) delivery vehicle. Here, we characterize six smaller Cas9 orthologues and show that Cas9 from Staphylococcus aureus (SaCas9) can edit the genome with efficiencies similar to those of SpCas9, while being more than 1 kilobase shorter. We packaged SaCas9 and its single guide RNA expression cassette into a single AAV vector and targeted the cholesterol regulatory gene Pcsk9 in the mouse liver. Within one week of injection, we observed >40% gene modification, accompanied by significant reductions in serum Pcsk9 and total cholesterol levels. We further assess the genome-wide targeting specificity of SaCas9 and SpCas9 using BLESS, and demonstrate that SaCas9-mediated in vivo genome editing has the potential to be efficient and specific.
Collapse
Affiliation(s)
- F Ann Ran
- 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Society of Fellows, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Le Cong
- 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Winston X Yan
- 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Graduate Program in Biophysics, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David A Scott
- 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jonathan S Gootenberg
- 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Andrea J Kriz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bernd Zetsche
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Ophir Shalem
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Xuebing Wu
- 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Phillip A Sharp
- 1] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Feng Zhang
- 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [4] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
22
|
Muscle and heart function restoration in a limb girdle muscular dystrophy 2I (LGMD2I) mouse model by systemic FKRP gene delivery. Mol Ther 2014; 22:1890-9. [PMID: 25048216 DOI: 10.1038/mt.2014.141] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/16/2014] [Indexed: 01/01/2023] Open
Abstract
Mutations in fukutin-related protein (FKRP) gene cause a wide spectrum of disease phenotypes including the mild limb-girdle muscular dystrophy 2I (LGMD2I), the severe Walker-Warburg syndrome, and muscle-eye-brain disease. FKRP deficiency results in α-dystroglycan (α-DG) hypoglycosylation in the muscle and heart, which is a biochemical hallmark of dystroglycanopathies. To study gene replacement therapy, we generated and characterized a new mouse model of LGMD2I harboring the human mutation leucine 276 to isoleucine (L276I) in the mouse alleles. The homozygous knock-in mice (L276I(KI)) mimic the classic late onset phenotype of LGMD2I in both skeletal and cardiac muscles. Systemic delivery of human FKRP gene by AAV9 vector in the L276I(KI) mice, at either neonatal age or at the age of 9 months, rendered body wide FKRP expression and restored glycosylation of α-DG in both skeletal and cardiac muscles. FKRP gene therapy ameliorated dystrophic pathology and cardiomyopathy such as muscle degeneration, fibrosis, and myofiber membrane leakage, resulting in restoration of muscle and heart contractile functions. Thus, these results demonstrated that the treatment based on FKRP gene replacement was effective.
Collapse
|
23
|
Vannoy CH, Xu L, Keramaris E, Lu P, Xiao X, Lu QL. Adeno-associated virus-mediated overexpression of LARGE rescues α-dystroglycan function in dystrophic mice with mutations in the fukutin-related protein. Hum Gene Ther Methods 2014; 25:187-96. [PMID: 24635668 DOI: 10.1089/hgtb.2013.151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multiple genes (e.g., POMT1, POMT2, POMGnT1, ISPD, GTDC2, B3GALNT2, FKTN, FKRP, and LARGE) are known to be involved in the glycosylation pathway of α-dystroglycan (α-DG). Mutations of these genes result in muscular dystrophies with wide phenotypic variability. Abnormal glycosylation of α-DG with decreased extracellular ligand binding activity is a common biochemical feature of these genetic diseases. While it is known that LARGE overexpression can compensate for defects in a few aforementioned genes, it is unclear whether it can also rescue defects in FKRP function. We examined adeno-associated virus (AAV)-mediated LARGE or FKRP overexpression in two dystrophic mouse models with loss-of-function mutations: (1) Large(myd) (LARGE gene) and (2) FKRP(P448L) (FKRP gene). The results agree with previous findings that overexpression of LARGE can ameliorate the dystrophic phenotypes of Large(myd) mice. In addition, LARGE overexpression in the FKRP(P448L) mice effectively generated functional glycosylation (hyperglycosylation) of α-DG and improved dystrophic pathologies in treated muscles. Conversely, FKRP transgene overexpression failed to rescue the defect in glycosylation and improve the phenotypes of the Large(myd) mice. Our findings suggest that AAV-mediated LARGE gene therapy may still be a viable therapeutic strategy for dystroglycanopathies with FKRP deficiency.
Collapse
Affiliation(s)
- Charles H Vannoy
- 1 McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center , Carolinas Healthcare System, Charlotte, NC 28231
| | | | | | | | | | | |
Collapse
|
24
|
Wagner A, Röhrs V, Kedzierski R, Fechner H, Kurreck J. A novel method for the quantification of adeno-associated virus vectors for RNA interference applications using quantitative polymerase chain reaction and purified genomic adeno-associated virus DNA as a standard. Hum Gene Ther Methods 2013; 24:355-63. [PMID: 23987130 DOI: 10.1089/hgtb.2013.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are promising tools in gene therapy, but accurate quantification of the vector dose remains a critical issue for their successful application. We therefore aimed at the precise determination of the titer of self-complementary AAV (scAAV) vectors to improve the reliability of RNA interference (RNAi)-mediated knockdown approaches. Vector titers were initially determined by quantitative polymerase chain reaction (qPCR) using four primer sets targeting different regions within the AAV vector genome (VG) and either coiled or linearized plasmid standards. Despite very low variability between replicates in each assay, these quantification experiments revealed up to 20-fold variation in vector titers. Therefore, we developed a novel approach for the reproducible determination of titers of scAAV vectors based on the use of purified genomic vector DNA as a standard (scAAVStd). Consistent results were obtained in qPCR assays using the four primer sets mentioned above. RNAi-mediated silencing of human cyclophilin B (hCycB) by short hairpin RNA-expressing scAAV vectors was investigated in HeLa cells using two independent vector preparations. We found that the required vector titers for efficient knockdown differed by a factor of 3.5 between both preparations. Hence, we also investigated the number of internalized scAAV vectors, termed transduction units (TUs). TUs were determined by qPCR applying the scAAVStd. Very similar values for 80% hCycB knockdown were obtained for the two AAV vector preparations. Thus, only the determination of TUs, rather than vector concentration, allows for reproducible results in functional analyses using AAV vectors.
Collapse
Affiliation(s)
- Anke Wagner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin 13355, Germany
| | | | | | | | | |
Collapse
|
25
|
Scheffer KD, Popa-Wagner R, Florin L. Isolation and characterization of pathogen-bearing endosomes enable analysis of endosomal escape and identification of new cellular cofactors of infection. Methods Mol Biol 2013; 1064:101-13. [PMID: 23996252 DOI: 10.1007/978-1-62703-601-6_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many pathogens, including viruses, bacteria, as well as bacterial toxins, enter their target cells by endocytosis leading to accumulation of pathogenic and cellular proteins in endosomes. Here, we present detailed experimental instructions on isolation of endosomes after virus infection and their subsequent biomolecular characterization. The isolation of endosomes is based on discontinuous sucrose gradient centrifugation, where different endosomal compartments accumulate at a specific sucrose interface. This enables the enrichment and separation of the virus-interacting and co-internalized cell-surface receptors and membrane-associated proteins. The endosomal fractions can be further analyzed by Western blot or quantitative real-time PCR, which reveals changes in the viral protein or DNA content during the processes of endocytosis and endosomal escape. In addition, comparative quantitative mass spectrometry enables the identification of unknown host-cell factors required for infection.
Collapse
Affiliation(s)
- Konstanze D Scheffer
- Department of Medical Microbiology and Hygiene, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | |
Collapse
|
26
|
Ganella DE, Callander GE, Ma S, Bye CR, Gundlach AL, Bathgate RAD. Modulation of feeding by chronic rAAV expression of a relaxin-3 peptide agonist in rat hypothalamus. Gene Ther 2012; 20:703-16. [PMID: 23135160 DOI: 10.1038/gt.2012.83] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 08/30/2012] [Accepted: 09/20/2012] [Indexed: 11/09/2022]
Abstract
Relaxin-3 is a neuropeptide that is abundantly expressed by discrete brainstem neuron populations that broadly innervate forebrain areas rich in the relaxin-3 G-protein-coupled-receptor, RXFP3. Acute and subchronic central administration of synthetic relaxin-3 or an RXFP3-selective agonist peptide, R3/I5, increase feeding and body weight in rats. Intrahypothalamic injection of relaxin-3 also increases feeding. In this study, we developed a recombinant adeno-associated virus 1/2 (rAAV1/2) vector that drives expression and constitutive secretion of bioactive R3/I5 and assessed the effect of intrahypothalamic injections on daily food intake and body weight gain in adult male rats over 8 weeks. In vitro testing revealed that the vector rAAV1/2-fibronectin (FIB)-R3/I5 directs the constitutive secretion of bioactive R3/I5 peptide. Bilateral injection of rAAV1/2-FIB-R3/I5 vector into the paraventricular nucleus produced an increase in daily food intake and body weight gain (P<0.01, ~23%, respectively), relative to control treatment. In a separate cohort of rats, quantitative polymerase chain reaction analysis of hypothalamic mRNA revealed strong expression of R3/I5 transgene at 3 months post-rAAV1/2-FIB-R3/I5 infusion. Levels of mRNA transcripts for the relaxin-3 receptor RXFP3, the hypothalamic 'feeding' peptides neuropeptide Y, AgRP and POMC, and the reproductive hormone, GnRH, were all similar to control, whereas vasopressin and oxytocin (OT) mRNA levels were reduced by ~25% (P=0.051) and ~50% (P<0.005), respectively, in rAAV1/2-FIB-R3/I5-treated rats (at 12 weeks, n=9/8 rats per group). These data demonstrate for the first time that R3/I5 is effective in modulating feeding in the rat by chronic hypothalamic RXFP3 activation and suggest a potential underlying mechanism involving altered OT signalling. Importantly, there was no desensitization of the feeding response over the treatment period and no apparent deleterious health effects, indicating that targeting the relaxin-3-RXFP3 system may be an effective long-term therapy for eating disorders.
Collapse
Affiliation(s)
- D E Ganella
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Han T, Abdel-Motal UM, Chang DK, Sui J, Muvaffak A, Campbell J, Zhu Q, Kupper TS, Marasco WA. Human anti-CCR4 minibody gene transfer for the treatment of cutaneous T-cell lymphoma. PLoS One 2012; 7:e44455. [PMID: 22973452 PMCID: PMC3433438 DOI: 10.1371/journal.pone.0044455] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/03/2012] [Indexed: 01/23/2023] Open
Abstract
Background Although several therapeutic options have become available for patients with Cutaneous T-cell Lymphoma (CTCL), no therapy has been curative. Recent studies have demonstrated that CTCL cells overexpress the CC chemokine receptor 4 (CCR4). Methodology/Principal Findings In this study, a xenograft model of CTCL was established and a recombinant adeno-associated viral serotype 8 (AAV8) vector expressing a humanized single-chain variable fragment (scFv)-Fc fusion (scFvFc or “minibody”) of anti-CCR4 monoclonal antibody (mAb) h1567 was evaluated for curative treatment. Human CCR4+ tumor-bearing mice treated once with intravenous infusion of AAV8 virions encoding the h1567 (AAV8-h1567) minibody showed anti-tumor activity in vivo and increased survival. The AAV8-h1567 minibody notably increased the number of tumor-infiltrating Ly-6G+ FcγRIIIa(CD16A)+ murine neutrophils in the tumor xenografts over that of AAV8-control minibody treated mice. Furthermore, in CCR4+ tumor-bearing mice co-treated with AAV8-h1567 minibody and infused with human peripheral blood mononuclear cells (PBMCs), marked tumor infiltration of human CD16A+ CD56+ NK cells was observed. The h1567 minibody also induced in vitro ADCC activity through both mouse neutrophils and human NK cells. Conclusions/Significance Overall, our data demonstrate that the in vivo anti-tumor activity of h1567 minibody is mediated, at least in part, through CD16A+ immune effector cell ADCC mechanisms. These data further demonstrate the utility of the AAV-minibody gene transfer system in the rapid evaluation of candidate anti-tumor mAbs and the potency of h1567 as a potential novel therapy for CTCL.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/therapeutic use
- Blotting, Western
- DNA Primers/genetics
- Dependovirus/genetics
- Flow Cytometry
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Genetic Vectors/metabolism
- Humans
- Image Processing, Computer-Assisted
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/metabolism
- Immunohistochemistry
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/therapy
- Mice
- Mice, SCID
- Real-Time Polymerase Chain Reaction
- Receptors, CCR4/metabolism
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/metabolism
- Transduction, Genetic
Collapse
Affiliation(s)
- Thomas Han
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ussama M. Abdel-Motal
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - De-Kuan Chang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jianhua Sui
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Asli Muvaffak
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James Campbell
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Skin Disease Research Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Quan Zhu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas S. Kupper
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Skin Disease Research Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (WAM); (TSK)
| | - Wayne A. Marasco
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (WAM); (TSK)
| |
Collapse
|
28
|
Ketzer P, Haas SF, Engelhardt S, Hartig JS, Nettelbeck DM. Synthetic riboswitches for external regulation of genes transferred by replication-deficient and oncolytic adenoviruses. Nucleic Acids Res 2012; 40:e167. [PMID: 22885302 PMCID: PMC3505972 DOI: 10.1093/nar/gks734] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Therapeutic gene transfer by replication-defective viral vectors or, for cancer treatment, by replication-competent oncolytic viruses shows high promise for treatment of major diseases. To ensure safety, timing or dosing in patients, external control of therapeutic gene expression is desirable or even required. In this study, we explored the potential of artificial aptazymes, ligand-dependent self-cleaving ribozymes, as an innovative tool for regulation of therapeutic gene expression. Importantly, aptazymes act on RNA intrinsically, independent of regulatory protein–nucleic acid interactions and stoichiometry, are non-immunogenic and of small size. These are key advantages compared with the widely used inducible promoters, which were also reported to lose regulation at high copy numbers, e.g. after replication of oncolytic viruses. We characterized aptazymes in therapeutic gene transfer utilizing adenovectors (AdVs), adeno-associated vectors (AAVs) and oncolytic adenoviruses (OAds), which are all in advanced clinical testing. Our results show similar aptazyme-mediated regulation of gene expression by plasmids, AdVs, AAVs and OAds. Insertion into the 5′-, 3′- or both untranslated regions of several transgenes resulted in ligand-responsive gene expression. Notably, aptazyme regulation was retained during OAd replication and spread. In conclusion, our study demonstrates the fidelity of aptazymes in viral vectors and oncolytic viruses and highlights the potency of riboswitches for medical applications.
Collapse
Affiliation(s)
- Patrick Ketzer
- Helmholtz-University Group Oncolytic Adenoviruses, Deutsches Krebsforschungszentrum (DKFZ, German Cancer Research Center) and Department of Dermatology, Heidelberg University Hospital, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
29
|
Callander GE, Ma S, Ganella DE, Wimmer VC, Gundlach AL, Thomas WG, Bathgate RAD. Silencing relaxin-3 in nucleus incertus of adult rodents: a viral vector-based approach to investigate neuropeptide function. PLoS One 2012; 7:e42300. [PMID: 22876314 PMCID: PMC3410922 DOI: 10.1371/journal.pone.0042300] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 07/05/2012] [Indexed: 11/18/2022] Open
Abstract
Relaxin-3, the most recently identified member of the relaxin peptide family, is produced by GABAergic projection neurons in the nucleus incertus (NI), in the pontine periventricular gray. Previous studies suggest relaxin-3 is a modulator of stress responses, metabolism, arousal and behavioural activation. Knockout mice and peptide infusions in vivo have significantly contributed to understanding the function of this conserved neuropeptide. Yet, a definitive role remains elusive due to discrepancies between models and a propensity to investigate pharmacological effects over endogenous function. To investigate the endogenous function of relaxin-3, we generated a recombinant adeno-associated viral (rAAV) vector expressing microRNA against relaxin-3 and validated its use to knock down relaxin-3 in adult rats. Bilateral stereotaxic infusion of rAAV1/2 EmGFP miR499 into the NI resulted in significant reductions in relaxin-3 expression as demonstrated by ablation of relaxin-3-like immunoreactivity at 3, 6 and 9 weeks and by qRT-PCR at 12 weeks. Neuronal health was unaffected as transduced neurons in all groups retained expression of NeuN and stained for Nissl bodies. Importantly, qRT-PCR confirmed that relaxin-3 receptor expression levels were not altered to compensate for reduced relaxin-3. Behavioural experiments confirmed no detrimental effects on general health or well-being and therefore several behavioural modalities previously associated with relaxin-3 function were investigated. The validation of this viral vector-based model provides a valuable alternative to existing in vivo approaches and promotes a shift towards more physiologically relevant investigations of endogenous neuropeptide function.
Collapse
Affiliation(s)
- Gabrielle E. Callander
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria, Australia
- Florey Neuroscience Institutes, The University of Melbourne, Victoria, Australia
- * E-mail: (GEC); (RADB)
| | - Sherie Ma
- Florey Neuroscience Institutes, The University of Melbourne, Victoria, Australia
- Department of Medicine (Austin Health), The University of Melbourne, Victoria, Australia
| | - Despina E. Ganella
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria, Australia
- Florey Neuroscience Institutes, The University of Melbourne, Victoria, Australia
| | - Verena C. Wimmer
- Florey Neuroscience Institutes, The University of Melbourne, Victoria, Australia
| | - Andrew L. Gundlach
- Florey Neuroscience Institutes, The University of Melbourne, Victoria, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia
| | - Walter G. Thomas
- School of Biomedical Sciences, University of Queensland, Queensland, Australia
| | - Ross A. D. Bathgate
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria, Australia
- Florey Neuroscience Institutes, The University of Melbourne, Victoria, Australia
- * E-mail: (GEC); (RADB)
| |
Collapse
|
30
|
Naumer M, Popa-Wagner R, Kleinschmidt JA. Impact of capsid modifications by selected peptide ligands on recombinant adeno-associated virus serotype 2-mediated gene transduction. J Gen Virol 2012; 93:2131-2141. [PMID: 22764318 DOI: 10.1099/vir.0.044735-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vectors based on adeno-associated virus serotype 2 (AAV2) belong to today's most promising and most frequently used viral vectors in human gene therapy. Like in many other vector systems, the broad but non-specific tropism limits their use for certain cell types or tissues. One approach to screen for transduction-improved vectors is the selection of random peptide libraries displayed directly on the AAV2 capsid. Although the AAV2 library system has been widely applied for the successful selection of improved gene therapy vectors, it remains unknown which steps of the transduction process are most affected and therefore critical for the selection of targeting peptides. Attachment to the cell surface is the first essential step of AAV-mediated gene transduction; however, our experiments challenge the conventional belief that enhanced gene transfer is equivalent to more efficient cell binding of recombinant AAV2 vectors. A comparison of the various steps of gene transfer by vectors carrying a wild-type AAV2 capsid or displaying two exemplary peptide ligands selected from AAV2 random libraries on different human tumour cell lines demonstrated strong alterations in cell binding, cellular uptake, as well as intracellular processing of these vectors. Combined, our results suggest that entry and post-entry events are decisive for the selection of the peptides NDVRSAN and GPQGKNS rather than their cell binding efficiency.
Collapse
Affiliation(s)
- Matthias Naumer
- German Cancer Research Center (DKFZ), Department of Tumorvirology, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Ruth Popa-Wagner
- German Cancer Research Center (DKFZ), Department of Tumorvirology, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Jürgen A Kleinschmidt
- German Cancer Research Center (DKFZ), Department of Tumorvirology, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| |
Collapse
|
31
|
The threefold protrusions of adeno-associated virus type 8 are involved in cell surface targeting as well as postattachment processing. J Virol 2012; 86:9396-408. [PMID: 22718833 DOI: 10.1128/jvi.00209-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adeno-associated virus (AAV) has attracted considerable interest as a vector for gene therapy owing its lack of pathogenicity and the wealth of available serotypes with distinct tissue tropisms. One of the most promising isolates for vector development, based on its superior gene transfer efficiency to the liver in small animals compared to AAV type 2 (AAV2), is AAV8. Comparison of the in vivo gene transduction of rAAV2 and rAAV8 in mice showed that single amino acid exchanges in the 3-fold protrusions of AAV8 in the surface loops comprised of residues 581 to 584 and 589 to 592 to the corresponding amino acids of AAV2 and vice versa had a strong influence on transduction efficiency and tissue tropism. Surprisingly, not only did conversion of AAV8 to AAV2 cap sequences increase the transduction efficiency and change tissue tropism but so did the reciprocal conversion of AAV2 to AAV8. Insertion of new peptide motifs at position 590 in AAV8 also enabled retargeting of AAV8 capsids to specific tissues, suggesting that these sequences can interact with receptors on the cell surface. However, a neutralizing monoclonal antibody that binds to amino acids (588)QQNTA(592) of AAV8 does not prevent cell binding and virus uptake, indicating that this region is not necessary for receptor binding but rather that the antibody interferes with an essential step of postattachment processing in which the 3-fold protrusion is also involved. This study supports a multifunctional role of the 3-fold region of AAV capsids in the infection process.
Collapse
|
32
|
Impact of VP1-specific protein sequence motifs on adeno-associated virus type 2 intracellular trafficking and nuclear entry. J Virol 2012; 86:9163-74. [PMID: 22696661 DOI: 10.1128/jvi.00282-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adeno-associated virus type 2 (AAV2) has gained much interest as a gene delivery vector. A hallmark of AAV2-mediated gene transfer is an intracellular conformational change of the virus capsid, leading to the exposure of infection-relevant protein domains. These protein domains, which are located on the N-terminal portion of the structural proteins VP1 and VP2, include a catalytic phospholipase A(2) domain and three clusters of basic amino acids. We have identified additional protein sequence motifs located on the VP1/2 N terminus that also proved to be obligatory for virus infectivity. These motifs include signals that are known to be involved in protein interaction, endosomal sorting and signal transduction in eukaryotic cells. Among different AAV serotypes they are highly conserved and mutation of critical amino acids of the respective motifs led to a severe infection-deficient phenotype. In particular, mutation of a YXXQ-sequence motif significantly reduced accumulation of virus capsids around the nucleus in comparison to wild-type AAV2. Interestingly, intracellular trafficking of AAV2 was shown to be independent of PLA(2) activity. Moreover, mutation of three PDZ-binding motifs, which are located consecutively at the very tip of the VP1 N terminus, revealed a nuclear transport-defective phenotype, suggesting a role in nuclear uptake of the virus through an as-yet-unknown mechanism.
Collapse
|
33
|
Abstract
Reference standard materials (RSMs) exist for a variety of biologics including vaccines but are not readily available for gene therapy vectors. To date, a recombinant adeno-associated virus serotype 2 RSM (rAAV2 RSM) has been produced and characterized and was made available to the scientific community in 2010. In addition, a rAAV8 RSM has been produced and will be characterized in the coming months. The use of these reference materials by members of the gene therapy field facilitates the calibration of individual laboratory vector-specific internal standards and the eventual comparison of preclinical and clinical data based on common dosage units. Normalization of data to determine therapeutic dose ranges of rAAV vectors for each particular tissue target and disease indication is important information that can enhance the safety and protection of patients.
Collapse
|
34
|
Mapping a neutralizing epitope onto the capsid of adeno-associated virus serotype 8. J Virol 2012; 86:7739-51. [PMID: 22593150 DOI: 10.1128/jvi.00218-12] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Adeno-associated viruses (AAVs) are small single-stranded DNA viruses that can package and deliver nongenomic DNA for therapeutic gene delivery. AAV8, a liver-tropic vector, has shown great promise for the treatment of hemophilia A and B. However, as with other AAV vectors, host anti-capsid immune responses are a deterrent to therapeutic success. To characterize the antigenic structure of this vector, cryo-electron microscopy and image reconstruction (cryo-reconstruction) combined with molecular genetics, biochemistry, and in vivo approaches were used to define an antigenic epitope on the AAV8 capsid surface for a neutralizing monoclonal antibody, ADK8. Docking of the crystal structures of AAV8 and a generic Fab into the cryo-reconstruction for the AAV8-ADK8 complex identified a footprint on the prominent protrusions that flank the 3-fold axes of the icosahedrally symmetric capsid. Mutagenesis and cell-binding studies, along with in vitro and in vivo transduction assays, showed that the major ADK8 epitope is formed by an AAV variable region, VRVIII (amino acids 586 to 591 [AAV8 VP1 numbering]), which lies on the surface of the protrusions facing the 3-fold axis. This region plays a role in AAV2 and AAV8 cellular transduction. Coincidently, cell binding and trafficking assays indicate that ADK8 affects a postentry step required for successful virus trafficking to the nucleus, suggesting a probable mechanism of neutralization. This structure-directed strategy for characterizing the antigenic regions of AAVs can thus generate useful information to help re-engineer vectors that escape host neutralization and are hence more efficacious.
Collapse
|
35
|
Schinkel S, Bauer R, Bekeredjian R, Stucka R, Rutschow D, Lochmüller H, Kleinschmidt JA, Katus HA, Müller OJ. Long-term preservation of cardiac structure and function after adeno-associated virus serotype 9-mediated microdystrophin gene transfer in mdx mice. Hum Gene Ther 2012; 23:566-75. [PMID: 22248393 DOI: 10.1089/hum.2011.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dystrophin plays an important role in muscle contraction, linking the intracellular cytoskeleton to the extracellular matrix. Mutations of the dystrophin gene leading to a complete loss of the protein cause Duchenne muscular dystrophy (DMD), frequently associated with severe cardiomyopathy. Early clinical trials in DMD using gene transfer to skeletal muscle are underway, but gene transfer to dystrophic cardiac muscle has not yet been tested in humans. The aim of this study was to develop an optimized protocol for cardiac gene therapy in the mouse model of dystrophin deficiency (mdx), using a cardiac promoter for expression of a microdystrophin (μDys) transgene packaged into an adeno-associated virus serotype 9 vector (AAV9). In this study adult mdx mice were intravenously injected with 1×10(12) genomic particles of AAV9 vectors carrying a cDNA encoding μDys under the control of either a ubiquitously active cytomegalovirus (CMV) promoter or a cardiac-specific CMV-enhanced myosin light chain (MLC0.26) promoter. After 10 months, both AAV9 vectors led to sustained μDys expression in cardiac muscle, but the MLC promoter conferred about 4-fold higher protein levels. AAV9-CMV-MLC0.26-μDys resulted in significant protection of cardiac morphology and function as assessed by histopathology, echocardiography, and left ventricular catheterization. In conclusion, we established an AAV9-mediated gene transfer approach for efficient and specific long-term μDys expression in the hearts of mdx mice, resulting in a sustained therapeutic effect. Thus, this approach might be a basis for further translation into a treatment strategy for DMD-associated cardiomyopathy.
Collapse
Affiliation(s)
- Stefanie Schinkel
- Department of Internal Medicine III, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Naumer M, Ying Y, Michelfelder S, Reuter A, Trepel M, Müller OJ, Kleinschmidt JA. Development and validation of novel AAV2 random libraries displaying peptides of diverse lengths and at diverse capsid positions. Hum Gene Ther 2012; 23:492-507. [PMID: 22171602 DOI: 10.1089/hum.2011.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Libraries based on the insertion of random peptide ligands into the capsid of adeno-associated virus type 2 (AAV2) have been widely used to improve the efficiency and selectivity of the AAV vector system. However, so far only libraries of 7-mer peptide ligands have been inserted at one well-characterized capsid position. Here, we expanded the combinatorial AAV2 display system to a panel of novel AAV libraries, displaying peptides of 5, 7, 12, 19, or 26 amino acids in length at capsid position 588 or displaying 7-mer peptides at position 453, the most prominently exposed region of the viral capsid. Library selections on two unrelated cell types-human coronary artery endothelial cells and rat cardiomyoblasts-revealed the isolation of cell type-characteristic peptides of different lengths mediating strongly improved target-cell transduction, except for the 26-mer peptide ligands. Characterization of vector selectivity by transduction of nontarget cells and comparative gene-transduction analysis using a panel of 44 human tumor cell lines revealed that insertion of different-length peptides allows targeting of distinct cellular receptors for cell entry with similar efficiency, but with different selectivity. The application of such novel AAV2 libraries broadens the spectrum of targetable receptors by capsid-modified AAV vectors and provides the opportunity to choose the best suited targeting ligand for a certain application from a number of different candidates.
Collapse
Affiliation(s)
- Matthias Naumer
- German Cancer Research Center (DKFZ), Department of Tumorvirology, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
de Backer MWA, Garner KM, Luijendijk MCM, Adan RAH. Recombinant adeno-associated viral vectors. Methods Mol Biol 2012; 789:357-76. [PMID: 21922421 DOI: 10.1007/978-1-61779-310-3_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Recombinant adeno-associated viral (rAAV) vectors can be used to locally or systemically enhance or silence gene expression. They are relatively nonimmunogenic and can transduce dividing and nondividing cells, and different rAAV serotypes may transduce diverse cell types. Therefore, rAAV vectors are excellent tools to study the function of neuropeptides in local brain areas. In this chapter, we describe a protocol to produce high-titer, in vivo grade, rAAV vector stocks. The protocol includes an Iodixanol gradient, an anion exchange column and a desalting/concentration step and can be used for every serotype. In addition, a short protocol for rAAV injections into the brain and directions on how to detect and localize transduced cells are given.
Collapse
Affiliation(s)
- Marijke W A de Backer
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, Utrecht University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
38
|
Novel random peptide libraries displayed on AAV serotype 9 for selection of endothelial cell-directed gene transfer vectors. Gene Ther 2011; 19:800-9. [PMID: 21956692 DOI: 10.1038/gt.2011.143] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have demonstrated the potential of random peptide libraries displayed on adeno-associated virus (AAV)2 to select for AAV2 vectors with improved efficiency for cell type-directed gene transfer. AAV9, however, may have advantages over AAV2 because of a lower prevalence of neutralizing antibodies in humans and more efficient gene transfer in vivo. Here we provide evidence that random peptide libraries can be displayed on AAV9 and can be utilized to select for AAV9 capsids redirected to the cell type of interest. We generated an AAV9 peptide display library, which ensures that the displayed peptides correspond to the packaged genomes and performed four consecutive selection rounds on human coronary artery endothelial cells in vitro. This screening yielded AAV9 library capsids with distinct peptide motifs enabling up to 40-fold improved transduction efficiencies compared with wild-type (wt) AAV9 vectors. Incorporating sequences selected from AAV9 libraries into AAV2 capsids could not increase transduction as efficiently as in the AAV9 context. To analyze the potential on endothelial cells in the intact natural vascular context, human umbilical veins were incubated with the selected AAV in situ and endothelial cells were isolated. Fluorescence-activated cell sorting analysis revealed a 200-fold improved transduction efficiency compared with wt AAV9 vectors. Furthermore, AAV9 vectors with targeting sequences selected from AAV9 libraries revealed an increased transduction efficiency in the presence of human intravenous immunoglobulins, suggesting a reduced immunogenicity. We conclude that our novel AAV9 peptide library is functional and can be used to select for vectors for future preclinical and clinical gene transfer applications.
Collapse
|
39
|
Abstract
Recombinant adeno-associated viral (rAAV) vectors mediate the safe and long-term correction of genetic diseases following a single administration. Preclinical studies in animal models and human trials have shown rAAV vector persistence and safety. In some trials, sustained or transient transgene expression has been demonstrated in humans treated for alpha-1 antitrypsin deficiency, LPL deficiency, hemophilia B and cystic fibrosis, and sustained correction of inherited blindness has been reported by three groups. For human use, rAAV vectors are manufactured and tested in compliance with current Good Manufacturing Practices as outlined in the Code of Federal Regulations (21CFR) or European Good Manufacturing Practices (Eudralex, Volume 4, GMP Guidelines, 2003/94/CE and 91/356/EEC). Manufacturing control, as well as product quality is evaluated by quality control testing and all manufacturing, facilities, and testing activities are reviewed by the quality assurance department. In-process specifications are set and in-process testing is conducted to confirm that the manufacturing process is controlled, aseptic, and performs consistently. Final product is tested to ensure release specifications are met for identity, safety, purity, potency, and stability.
Collapse
Affiliation(s)
- Richard O Snyder
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | | |
Collapse
|
40
|
Liver-specific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits transgene expression in the liver. Gene Ther 2010; 18:403-10. [PMID: 21150938 PMCID: PMC3686499 DOI: 10.1038/gt.2010.157] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Vectors based on adeno-associated virus (AAV) are effective in gene delivery in vivo. Tissue-specific gene expression is often needed to minimize ectopic expression in unintended cells and undesirable consequences. Here we investigated if incorporation of target sequences of tissue-specific microRNA (miRNA) into AAV vectors could inhibit ectopic expression in tissues such as the liver and hematopoietic cells. First we inserted liver-specific miR-122 target sequences (miR-122T) into the 3′ untranslated region (UTR) of a number of AAV vectors. After intravenous delivery in mice, we found that 5 copies of the 20mer miR-122T reduced liver expression of luciferase by 50-fold and β-galactosidase (LacZ) by 70-fold. Five copies of miR-122T also reduced mRNA levels of a secretable protein (myostatin propeptide) from the AAV vector plasmid by 23–fold in the liver. However, gene expression in other tissues including the heart was not inhibited. Similarly, we inserted 4 copies of miR-142-3pT or miR-142-5pT, both hematopoietic lineage-specific, into the 3′ UTR of the AAV-luciferase vector. We wished to see if they could prolong transgene expression by inhibiting expression in antigen-presenting cells. However, in vivo luciferase gene expression in major tissues declined with time regardless of the miR-142 target sequences used. Quantitative analysis of the vector DNA in various tissues revealed that the decline of transgene expression in vivo was mainly due to promoter shut-off other than loss of AAV-transduced cells by immune destruction. Moreover, transgene expression was not detected in circulating mononuclear cells after delivering AAV9 vector with or without miR142T. These results demonstrate that live-specific miR-122 target sequence in AAV vectors was highly efficient in reducing liver expression, whereas hematopoietic miR-142 target sequences were ineffective in preventing decline of AAV vector gene expression in non-hematopoietic tissues resulted from promoter shut-off.
Collapse
|
41
|
Rothe D, Wajant G, Grunert HP, Zeichhardt H, Fechner H, Kurreck J. Rapid construction of adeno-associated virus vectors expressing multiple short hairpin RNAs with high antiviral activity against echovirus 30. Oligonucleotides 2010; 20:191-8. [PMID: 20649454 DOI: 10.1089/oli.2010.0236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
RNA interference has proven to be a powerful tool to inhibit viruses. For the prevention of viral escape, multiple short hairpin RNAs (shRNAs) will have to be employed. This article describes a rapid procedure for the generation of shRNA expression cassettes by parallel cloning as well as a simple strategy for the combination of selected units. After delivery of the shRNA expression cassettes with adeno-associated virus vectors, inhibition of echovirus 30 as well as silencing of an important cellular cofactor of virus replication were achieved. The procedure has the potential to be generally applicable for silencing of multiple endogenous targets or viruses.
Collapse
Affiliation(s)
- Diana Rothe
- Institute of Industrial Genetics, University of Stuttgart, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
42
|
de Backer MWA, Brans MAD, Luijendijk MC, Garner KM, Adan RAH. Optimization of adeno-associated viral vector-mediated gene delivery to the hypothalamus. Hum Gene Ther 2010; 21:673-82. [PMID: 20073991 DOI: 10.1089/hum.2009.169] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To efficiently deliver genes and short hairpin RNAs to the hypothalamus we aimed to optimize the transduction efficiency of adeno-associated virus (AAV) in the rat hypothalamus. We compared the transduction efficiencies of AAV2 vectors pseudotyped with AAV1, AAV8, and mosaic AAV1/2 and AAV2/8 coats with that of an AAV2 coated vector after injection into the lateral hypothalamus of rats. In addition, we determined the transduction areas and the percentage of neurons infected after injection of various titers and volumes of two AAV1-pseudotyped vectors in the paraventricular hypothalamus (PVN). Successful gene delivery to the hypothalamus was achieved with AAV1-pseudotyped AAV vectors. The optimal approach to transduce an area, with the size of the PVN, was to inject 1 x 10(9) genomic copies of an AAV1-pseudotyped vector in a volume of 1 microl. At a radius of 0.05 mm from the injection site almost all neurons were transduced. In addition, overexpression of AgRP with the optimal approach resulted in an increase in food intake and body weight when compared with AAV-GFP.
Collapse
Affiliation(s)
- Marijke W A de Backer
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, Utrecht University Medical Center Utrecht, Universiteitsweg 100, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
Giove TJ, Sena-Esteves M, Eldred WD. Transduction of the inner mouse retina using AAVrh8 and AAVrh10 via intravitreal injection. Exp Eye Res 2010; 91:652-9. [PMID: 20723541 DOI: 10.1016/j.exer.2010.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/08/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
Abstract
Adeno-associated virus (AAV) is a proven, safe and effective vector for gene delivery in the retina. There are over 100 serotypes of AAV, and AAV2 through AAV9 have been evaluated in the retina. Each AAV serotype has different cell tropism and transduction efficiency. Intravitreal injections of AAV into the eye tend to transduce cells in the ganglion cell layer (GCL), while subretinal injections tend to transduce retinal pigment epithelium and photoreceptors. Efficient transduction of the inner retina beyond the GCL is not well established with the current methodologies and serotypes used to date. In this study, we compared the cellular tropism of AAVrh8 and AAVrh10 vectors encoding enhanced green fluorescent protein (EGFP) using intravitreal injections. We found that AAVrh8 largely transduced cells in the GCL and also amacrine cells in the inner nuclear layer (INL), as well as Müller and horizontal cells. Inner retinal transduction with AAVrh10 was similar to AAVrh8, but AAVrh10 appeared to also transduce bipolar cells. The transduction efficiency as measured by the intensity of EGFP signal was 3.5 fold higher in horizontal cells transduced with AAVrh10 than AAVrh8. Glial fibrillary accessory protein (GFAP) levels were increased in Müller cells in transduced areas for both serotypes. The results of this study suggest that AAVrh8 and AAVrh10 may be excellent vector candidates to deliver genetic material to the INL, particularly for amacrine and horizontal cells, however they may also cause cellular stress as shown by increased glial GFAP expression.
Collapse
Affiliation(s)
- Thomas J Giove
- Laboratory of Visual Neurobiology, Boston University, Department of Biology, 5 Cummington St, Boston, MA 02215, USA
| | | | | |
Collapse
|
44
|
de Backer MWA, Brans MAD, Luijendijk MCM, Garner KM, van den Heuvel DMA, Pasterkamp RJ, Adan RAH. Neuropeptide delivery to the brain: a von Willebrand factor signal peptide to direct neuropeptide secretion. BMC Neurosci 2010; 11:94. [PMID: 20701764 PMCID: PMC2928777 DOI: 10.1186/1471-2202-11-94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 08/11/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple neuropeptides, sometimes with opposing functions, can be produced from one precursor gene. To study the roles of the different neuropeptides encoded by one large precursor we developed a method to overexpress minigenes and establish local secretion. RESULTS We fused the signal peptide from the Von Willebrand Factor (VWF) to a furin site followed by a processed form of the Agouti related protein (AgRP), AgRP(83-132) or alpha-melanocyte stimulating hormone. In vitro, these minigenes were secreted and biologically active. Additionally, the proteins of the minigenes were not transported into projections of primary neurons, thereby ensuring local release. In vivo administration of VWF-AgRP(83-132), using an adeno-associated viral vector as a delivery vehicle, into the paraventricular hypothalamus increased body weight and food intake of these rats compared to rats which received a control vector. CONCLUSIONS This study demonstrated that removal of the N-terminal part of full length AgRP and addition of a VWF signal peptide is a successful strategy to deliver neuropeptide minigenes to the brain and establish local neuropeptide secretion.
Collapse
Affiliation(s)
- Marijke W A de Backer
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, Utrecht University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
Mitchell DAJ, Lerch TF, Hare JT, Chapman MS. A pseudo-plaque method for infectious particle assay and clonal isolation of adeno-associated virus. J Virol Methods 2010; 170:9-15. [PMID: 20708035 DOI: 10.1016/j.jviromet.2010.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 11/16/2022]
Abstract
A colorimetric method has been developed for the detection of adeno-associated virus (AAV) infectious centers in cell culture monolayers. Due to its non-cytopathic nature, AAV has not been amenable to the traditional plaque assay, involving an agar overlay and cellular stains. As a result, an alternate method was required. The pseudo-plaque assay is based on enzyme-catalyzed color development after a fixed cell monolayer is probed with anti-AAV monoclonal antibodies. In spite of chemical fixation, expected to damage the viral genomes and particles, infectious particles can be recovered and amplified for the propagation of viral clones.
Collapse
Affiliation(s)
- Daniel A J Mitchell
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | | | | | | |
Collapse
|
46
|
de Backer MWA, Fitzsimons CP, Brans MAD, Luijendijk MCM, Garner KM, Vreugdenhil E, Adan RAH. An adeno-associated viral vector transduces the rat hypothalamus and amygdala more efficient than a lentiviral vector. BMC Neurosci 2010; 11:81. [PMID: 20626877 PMCID: PMC2912914 DOI: 10.1186/1471-2202-11-81] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 07/13/2010] [Indexed: 12/23/2022] Open
Abstract
Background This study compared the transduction efficiencies of an adeno-associated viral (AAV) vector, which was pseudotyped with an AAV1 capsid and encoded the green fluorescent protein (GFP), with a lentiviral (LV) vector, which was pseudotyped with a VSV-G envelop and encoded the discosoma red fluorescent protein (dsRed), to investigate which viral vector transduced the lateral hypothalamus or the amygdala more efficiently. The LV-dsRed and AAV1-GFP vector were mixed and injected into the lateral hypothalamus or into the amygdala of adult rats. The titers that were injected were 1 × 108 or 1 × 109 genomic copies of AAV1-GFP and 1 × 105 transducing units of LV-dsRed. Results Immunostaining for GFP and dsRed showed that AAV1-GFP transduced significantly more cells than LV-dsRed in both the lateral hypothalamus and the amygdala. In addition, the number of LV particles that were injected can not easily be increased, while the number of AAV1 particles can be increased easily with a factor 100 to 1000. Both viral vectors appear to predominantly transduce neurons. Conclusions This study showed that AAV1 vectors are better tools to overexpress or knockdown genes in the lateral hypothalamus and amygdala of adult rats, since more cells can be transduced with AAV1 than with LV vectors and the titer of AAV1 vectors can easily be increased to transduce the area of interest.
Collapse
Affiliation(s)
- Marijke W A de Backer
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
47
|
Jethwa PH, Warner A, Fowler MJ, Murphy M, de Backer MW, Adan RAH, Barrett P, Brameld JM, Ebling FJP. Short-days induce weight loss in Siberian hamsters despite overexpression of the agouti-related peptide gene. J Neuroendocrinol 2010; 22:564-75. [PMID: 20367758 DOI: 10.1111/j.1365-2826.2010.02001.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many vertebrates express profound annual cycles of body fattening, although it is not clear whether these represent differential activity of the central pathways known to mediate homeostatic control of food intake and energy expenditure, or whether the recent discovery of a major role for pars tuberalis-ependymal signalling points towards novel mechanisms. We examined this in the Siberian hamster (Phodopus sungorus) by using gene transfection to up-regulate a major orexigenic peptide, agouti-related peptide (AgRP), and then determined whether this increased anabolic drive could prevent the short-day induced winter catabolic state. Infusions of a recombinant adeno-associated virus encoding an AgRP construct into the hypothalamus of hamsters in the long-day obese phase of their seasonal cycle produced a 20% gain in body weight over 6 weeks compared to hamsters receiving a control reporter construct, reflecting a significant increase in food intake and a significant decrease in energy expenditure. However, all hamsters showed a significant, prolonged decrease in body weight when exposed to short photoperiods, despite the hamsters expressing the AgRP construct maintaining a higher food intake and lower energy expenditure relative to the control hamsters. Visualisation of the green fluorescent protein reporter and analysis of AgRP-immunoreactivity confirmed widespread expression of the construct in the hypothalamus, which was maintained for the 21-week duration of the study. In conclusion, the over-expression of AgRP in the hypothalamus produced a profoundly obese state but did not block the seasonal catabolic response, suggesting a separation of rheostatic mechanisms in seasonality from those maintaining homeostasis of energy metabolism.
Collapse
Affiliation(s)
- P H Jethwa
- School of Biomedical Sciences, University of Nottingham Medical School, Queens Medical Centre, Nottingham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Heart-targeted adeno-associated viral vectors selected by in vivo biopanning of a random viral display peptide library. Gene Ther 2010; 17:980-90. [DOI: 10.1038/gt.2010.44] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain. Exp Neurol 2009; 222:70-85. [PMID: 20025873 DOI: 10.1016/j.expneurol.2009.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 11/24/2022]
Abstract
Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic delivery to the neonatal rat and minipig striatum. The efficiency of GFP expression and the phenotype of GFP-positive cells were assessed within the forebrain at different time points up to 12 months after surgery. Both rAAV1-GFP and rAAV5-GFP delivery resulted in transduction of the striatum as well as striatal input and output areas, including large parts of the cortex. In both species, rAAV5 resulted in a more widespread transgene expression compared to rAAV1. In neonatal rats, rAAV5 also transduced several other areas such as the olfactory bulbs, hippocampus, and septum. Phenotypic analysis of the GFP-positive cells, performed using immunohistochemistry and confocal microscopy, showed that most of the GFP-positive cells by either serotype were NeuN-positive neuronal profiles. The rAAV5 vector further displayed the ability to transduce non-neuronal cell types in both rats and pigs, albeit at a low frequency. Our results show that striatal delivery of rAAV5 vectors in the neonatal brain represents a useful tool to express genes of interest both in the basal ganglia and the neocortex. Furthermore, we apply, for the first time, viral vector-mediated gene transfer to the pig brain providing the opportunity to study effects of genetic manipulation in this non-primate large animal species. Finally, we generated an atlas of the Göttingen minipig brain for guiding future studies in this large animal species.
Collapse
|
50
|
Veldwijk MR, Herskind C, Sellner L, Radujkovic A, Laufs S, Fruehauf S, Zeller WJ, Wenz F. Normal-tissue radioprotection by overexpression of the copper-zinc and manganese superoxide dismutase genes. Strahlenther Onkol 2009; 185:517-23. [PMID: 19652935 DOI: 10.1007/s00066-009-1973-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 05/11/2009] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Protection of normal tissue against radiation-induced damage may increase the therapeutic ratio of radiotherapy. A promising strategy for testing this approach is gene therapy-mediated overexpression of the copper-zinc (CuZnSOD) or manganese superoxide dismutase (MnSOD) using recombinant adeno-associated viral (rAAV2) vectors. The purpose of this study was to test the modulating effects of the SOD genes on human primary lung fibroblasts (HPLF) after irradiation. MATERIAL AND METHODS HPLF were transduced with rAAV2 vectors containing cDNA for the CuZnSOD, MnSOD or a control gene. The cells were irradiated (1-6 Gy), and gene transfer efficiency, apoptosis, protein expression/activity, and radiosensitivity measured by the colony-forming assay determined. RESULTS After transduction, 90.0% +/- 6.4% of the cells expressed the transgene. A significant fivefold overexpression of both SOD was confirmed by an SOD activity assay (control: 21.1 +/- 12.6, CuZnSOD: 95.1 +/- 17.1, MnSOD: 108.5 +/- 36.0 U SOD/mg protein) and immunohistochemistry. CuZnSOD and MnSOD overexpression resulted in a significant radioprotection of HPLF compared to controls (surviving fraction [SF] ratio SOD/control > 1): CuZnSOD: 1.18-fold (95% confidence interval [CI]: 1.06-1.32; p = 0.005), MnSOD: 1.23-fold (95% CI: 1.07-1.43; p = 0.01). CONCLUSION Overexpression of CuZnSOD and MnSOD in HPLF mediated an increase in clonogenic survival after irradiation compared to controls. In previous works, a lack of radioprotection in SOD-overexpressing tumor cells was observed. Therefore, the present results suggest that rAAV2 vectors are promising tools for the delivery of radioprotective genes in normal tissue.
Collapse
Affiliation(s)
- Marlon R Veldwijk
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|