1
|
Zhang C, Xie S, Malek M. SNAP-25: A biomarker of synaptic loss in neurodegeneration. Clin Chim Acta 2025; 571:120236. [PMID: 40058720 DOI: 10.1016/j.cca.2025.120236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Synaptic dysfunction is one of the most important markers of neurodegenerative diseases, which contribute to cognitive decline and the loss of neurons. Synaptosomal-associated protein 25 (SNAP-25) is a member of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which plays a significant role in the exocytosis of synaptic vesicles and the release of neurotransmitters. Recent studies have shown that expression levels of SNAP-25 are altered in various neurodegenerative disorders, including Alzheimer's disease (AD), Huntington's disease (HD), and Creutzfeldt-Jakob disease (CJD). These investigations led to the consideration of SNAP-25 as a potential biomarker of synaptic degeneration. Understanding the role of SNAP-25 in neurodegeneration will aid in early diagnosis, disease monitoring, and therapeutic development, and will also provide new insights into synaptic dysfunction as a main feature of neurodegenerative diseases. Therefore, this paper explores the physiological role of SNAP-25, its involvement in synaptic pathology, and the implications of its dysregulation in neurodegenerative conditions, such as AD, HD, and CJD. Literature regarding cerebrospinal fluid (CSF) SNAP-25 levels as a diagnostic marker were reviewed and its applications in detecting the progression of the disease have been discussed. Additionally, the limitations of SNAP-25 as a biomarker, including variability across studies and the need for further validation have been addressed.
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Neurology, Tiantai People's Hospital of Zhejiang Province, Tiantai Branch of Zhejiang Provincial People's Hospital, Hangzhou Medical College, Taizhou, Zhejiang 317200, China.
| | - Shanshan Xie
- Xinjiang Key Laboratory of Mental Development and Learning Science, Xinjiang Normal University, Urumqi, Xinjiang 830000, China
| | - Melika Malek
- Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Bentivenga GM, Baiardi S, Mastrangelo A, Zenesini C, Mammana A, Polischi B, Capellari S, Parchi P. Diagnostic and prognostic value of cerebrospinal fluid SNAP-25 and neurogranin in Creutzfeldt-Jakob disease in a clinical setting cohort of rapidly progressive dementias. Alzheimers Res Ther 2023; 15:150. [PMID: 37684653 PMCID: PMC10485978 DOI: 10.1186/s13195-023-01300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND The levels of synaptic markers synaptosomal-associated protein 25 (SNAP-25) and neurogranin (Ng) have been shown to increase early in the cerebrospinal fluid (CSF) of patients with Creutzfeldt-Jakob disease (CJD) and to have prognostic potential. However, no validation studies assessed these biomarkers' diagnostic and prognostic value in a large clinical setting cohort of rapidly progressive dementia. METHODS In this retrospective study, using commercially available immunoassays, we measured the levels of SNAP-25, Ng, 14-3-3, total-tau (t-tau), neurofilament light chain (NfL), and phospho-tau181 (p-tau) in CSF samples from consecutive patients with CJD (n = 220) or non-prion rapidly progressive dementia (np-RPD) (n = 213). We evaluated and compared the diagnostic accuracy of each CSF biomarker and biomarker combination by receiver operating characteristics curve (ROC) analyses, studied SNAP-25 and Ng CSF concentrations distribution across CJD subtypes, and estimated their association with survival using multivariable Cox regression analyses. RESULTS CSF SNAP-25 and Ng levels were higher in CJD than in np-RPD (SNAP-25: 582, 95% CI 240-1250 vs. 115, 95% CI 78-157 pg/ml, p < 0.0001; Ng: 841, 95% CI 411-1473 vs. 390, 95% CI 260-766 pg/ml, p < 0.001). SNAP-25 diagnostic accuracy (AUC 0.902, 95% CI 0.873-0.931) exceeded that of 14-3-3 (AUC 0.853, 95% CI 0.816-0.889), t-tau (AUC 0.878, 95% CI 0.845-0.901), and the t-tau/p-tau ratio (AUC 0.884, 95% CI 0.851-0.916). In contrast, Ng performed worse (AUC 0.697, 95% CI 0.626-0.767) than all other surrogate biomarkers, except for NfL (AUC 0.649, 95% CI 0.593-0.705). SNAP-25 maintained a relatively high diagnostic value even for atypical CJD subtypes (AUC 0.792, 95% CI 0.729-0.854). In Cox regression analyses, SNAP-25 levels were significantly associated with survival in CJD (hazard ratio [HR] 1.71 95% CI 1.40-2.09). Conversely, Ng was associated with survival only in the most rapidly progressive CJD subtypes (sCJD MM(V)1 and gCJD M1) (HR 1.81 95% CI 1.21-2.93). CONCLUSIONS In the clinical setting, CSF SNAP-25 is a viable alternative to t-tau, 14-3-3, and the t-tau/p-tau ratio in discriminating the CJD subtypes from other RPDs. Additionally, SNAP-25 and, to a lesser extent, Ng predict survival in CJD, showing prognostic power in the range of CSF t-tau/14-3-3 and NfL, respectively.
Collapse
Affiliation(s)
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
| | - Andrea Mastrangelo
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
| | - Corrado Zenesini
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Bologna, Italy
| | - Angela Mammana
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Bologna, Italy
| | - Barbara Polischi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Bologna, Italy
| | - Piero Parchi
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy.
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Programma Neuropatologia delle Malattie Neurodegenerative, Bologna, Italy.
| |
Collapse
|
3
|
Abstract
Sporadic Creutzfeldt-Jakob disease (CJD), the most common human prion disease, is generally regarded as a spontaneous neurodegenerative illness, arising either from a spontaneous PRNP somatic mutation or a stochastic PrP structural change. Alternatively, the possibility of an infection from animals or other source remains to be completely ruled out. Sporadic CJD is clinically characterized by rapidly progressive dementia with ataxia, myoclonus, or other neurologic signs and, neuropathologically, by the presence of aggregates of abnormal prion protein, spongiform change, neuronal loss, and gliosis. Despite these common features the disease shows a wide phenotypic variability which was recognized since its early descriptions. In the late 1990s the identification of key molecular determinants of phenotypic expression and the availability of a large series of neuropathologically verified cases led to the characterization of definite clinicopathologic and molecular disease subtypes and to an internationally recognized disease classification. By showing that these disease subtypes correspond to specific agent strain-host genotype combinations, recent transmission studies have confirmed the biologic basis of this classification. The introduction of brain magnetic resonance imaging techniques such as fluid-attenuated inversion recovery and diffusion-weighted imaging sequences and cerebrospinal fluid biomarker assays for the detection of brain-derived proteins as well as real-time quaking-induced conversion assay, allowing the specific detection of prions in accessible biologic fluids and tissues, has significantly contributed to the improved accuracy of the clinical diagnosis of sporadic CJD in recent years.
Collapse
Affiliation(s)
- Inga Zerr
- Department of Neurology, University Hospital, Georg-August-University, Goettingen, Germany.
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and IRCCS Institute of Neurological Sciences, Bologna, Italy
| |
Collapse
|
4
|
Zafar S, Shafiq M, Younas N, Schmitz M, Ferrer I, Zerr I. Prion Protein Interactome: Identifying Novel Targets in Slowly and Rapidly Progressive Forms of Alzheimer's Disease. J Alzheimers Dis 2018; 59:265-275. [PMID: 28671123 DOI: 10.3233/jad-170237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rapidly progressive Alzheimer's disease (rpAD) is a variant of AD distinguished by a rapid decline in cognition and short disease duration from onset to death. While attempts to identify rpAD based on biomarker profile classifications have been initiated, the mechanisms which contribute to the rapid decline and prion mimicking heterogeneity in clinical signs are still largely unknown. In this study, we characterized prion protein (PrP) expression, localization, and interactome in rpAD, slow progressive AD, and in non-dementia controls. PrP along with its interacting proteins were affinity purified with magnetic Dynabeads Protein-G, and were identified using Q-TOF-ESI/MS analysis. Our data demonstrated a significant 1.2-fold decrease in di-glycosylated PrP isoforms specifically in rpAD patients. Fifteen proteins appeared to interact with PrP and only two proteins3/4histone H2B-type1-B and zinc alpha-2 protein3/4were specifically bound with PrP isoform isolated from rpAD cases. Our data suggest distinct PrP involvement in association with the altered PrP interacting protein in rpAD, though the pathophysiological significance of these interactions remains to be established.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Mohsin Shafiq
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Neelam Younas
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Isidre Ferrer
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Network center for biomedical research of neurodegenerative diseases), Institute Carlos III, Ministry of Health, Spain
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
5
|
Zerr I, Zafar S, Schmitz M, Llorens F. Cerebrospinal fluid in Creutzfeldt–Jakob disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:115-124. [DOI: 10.1016/b978-0-12-804279-3.00008-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Ferrer I. Sisyphus in Neverland. J Alzheimers Dis 2018; 62:1023-1047. [PMID: 29154280 PMCID: PMC5870014 DOI: 10.3233/jad-170609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2017] [Indexed: 11/24/2022]
Abstract
The study of life and living organisms and the way in which these interact and organize to form social communities have been central to my career. I have been fascinated by biology, neurology, and neuropathology, but also by history, sociology, and art. Certain current historical, political, and social events, some occurring proximally but others affecting people in apparently distant places, have had an impact on me. Epicurus, Seneca, and Camus shared their philosophical positions which I learned from. Many scientists from various disciplines have been exciting sources of knowledge as well. I have created a world of hypothesis and experiments but I have also got carried away by serendipity following unexpected observations. It has not been an easy path; errors and wanderings are not uncommon, and opponents close to home much more abundant than one might imagine. Ambition, imagination, resilience, and endurance have been useful in moving ahead in response to setbacks. In the end, I have enjoyed my dedication to science and I am grateful to have glimpsed beauty in it. These are brief memories of a Spanish neuropathologist born and raised in Barcelona, EU.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Service of Pathological Anatomy, Bellvitge University Hospital; CIBERNED; Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
7
|
Aslamy A, Thurmond DC. Exocytosis proteins as novel targets for diabetes prevention and/or remediation? Am J Physiol Regul Integr Comp Physiol 2017; 312:R739-R752. [PMID: 28356294 DOI: 10.1152/ajpregu.00002.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022]
Abstract
Diabetes remains one of the leading causes of morbidity and mortality worldwide, affecting an estimated 422 million adults. In the US, it is predicted that one in every three children born as of 2000 will suffer from diabetes in their lifetime. Type 2 diabetes results from combinatorial defects in pancreatic β-cell glucose-stimulated insulin secretion and in peripheral glucose uptake. Both processes, insulin secretion and glucose uptake, are mediated by exocytosis proteins, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes, Sec1/Munc18 (SM), and double C2-domain protein B (DOC2B). Increasing evidence links deficiencies in these exocytosis proteins to diabetes in rodents and humans. Given this, emerging studies aimed at restoring and/or enhancing cellular levels of certain exocytosis proteins point to promising outcomes in maintaining functional β-cell mass and enhancing insulin sensitivity. In doing so, new evidence also shows that enhancing exocytosis protein levels may promote health span and longevity and may also harbor anti-cancer and anti-Alzheimer's disease capabilities. Herein, we present a comprehensive review of the described capabilities of certain exocytosis proteins and how these might be targeted for improving metabolic dysregulation.
Collapse
Affiliation(s)
- Arianne Aslamy
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Debbie C Thurmond
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and .,Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
8
|
Llorens F, Kruse N, Schmitz M, Gotzmann N, Golanska E, Thüne K, Zejneli O, Kanata E, Knipper T, Cramm M, Lange P, Zafar S, Sikorska B, Liberski PP, Mitrova E, Varges D, Schmidt C, Sklaviadis T, Mollenhauer B, Zerr I. Evaluation of α‐synuclein as a novel cerebrospinal fluid biomarker in different forms of prion diseases. Alzheimers Dement 2016; 13:710-719. [DOI: 10.1016/j.jalz.2016.09.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/15/2016] [Accepted: 09/29/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Franc Llorens
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Niels Kruse
- Institute for Neuropathology University Medical Center Göttingen Göttingen Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Nadine Gotzmann
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Ewa Golanska
- Department of Molecular Pathology and Neuropathology Medical University of Lodz Lodz Poland
| | - Katrin Thüne
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Orgeta Zejneli
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy Aristotle University of Thessaloniki Thessaloniki Greece
| | - Eirini Kanata
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy Aristotle University of Thessaloniki Thessaloniki Greece
| | - Tobias Knipper
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
| | - Maria Cramm
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Peter Lange
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology Medical University of Lodz Lodz Poland
| | - Pawel P. Liberski
- Department of Molecular Pathology and Neuropathology Medical University of Lodz Lodz Poland
| | - Eva Mitrova
- Department of Prion Diseases Slovak Medical University Bratislava Bratislava Slovakia
| | - Daniela Varges
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
| | - Christian Schmidt
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy Aristotle University of Thessaloniki Thessaloniki Greece
| | - Brit Mollenhauer
- Institute for Neuropathology University Medical Center Göttingen Göttingen Germany
- Paracelsus‐Elena Klinik Center for Parkinsonism and Movement Disorders Kassel Germany
- Department of Neurosurgery University Medical Center Göttingen Göttingen Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center University Medical Center Göttingen Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Göttingen Germany
| |
Collapse
|
9
|
Proteome Analysis of Potential Synaptic Vesicle Cycle Biomarkers in the Cerebrospinal Fluid of Patients with Sporadic Creutzfeldt-Jakob Disease. Mol Neurobiol 2016; 54:5177-5191. [PMID: 27562179 DOI: 10.1007/s12035-016-0029-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/01/2016] [Indexed: 01/01/2023]
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is the most frequent fatal human prion disease with a rapid progression and unknown mechanism. The synaptic vesicle (SV) cycle pathway has been a hot research field associated with many neurodegenerative diseases that affect synaptic function and thus may affect pathogenesis of the disorder. Here, we used the iTRAQ-based proteomic method and a KEGG pathway enrichment analysis to meticulously analyze all pathways involved in sCJD disease. In total, 1670 proteins were validated in pooled cerebrospinal fluid (CSF) from 20 patients with sCJD compared with that from 13 patients without CJD. The demographic analysis demonstrated that 557 proteins were upregulated and 595 proteins were downregulated with a 1.5-fold change, and 690 proteins involved in 39 pathways changed significantly (p ≤ 0.05) according to the enrichment analysis. The SV cycle pathway and proteins involved were further evaluated, and 14 proteins were confirmed to participate in the SV cycle pathway due to increased expression. Six key proteins, such as AP2A1, SYT1, SNAP25, STXBP1, CLTB, and Rab3a, showed the same trend by western blot as detected by iTRAQ. This is the first study to use high-throughput proteomics to accurately identify and quantify proteins in the SV cycle pathway of a neurodegenerative disease. These results will help define the mechanism and provide new insight into the pathogenetic factors involved in the SV cycle pathway in patients with sCJD. We hope that promising biomarkers can be identified in the CSF of patients with sCJD and other neurodegenerative disorders to help predict disease progression.
Collapse
|
10
|
Llorens F, Thüne K, Schmitz M, Ansoleaga B, Frau-Méndez MA, Cramm M, Tahir W, Gotzmann N, Berjaoui S, Carmona M, Silva CJ, Fernandez-Vega I, José Zarranz J, Zerr I, Ferrer I. Identification of new molecular alterations in fatal familial insomnia. Hum Mol Genet 2016; 25:2417-2436. [PMID: 27056979 DOI: 10.1093/hmg/ddw108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 11/12/2022] Open
Abstract
Fatal familial insomnia is a rare disease caused by a D178N mutation in combination with methionine (Met) at codon 129 in the mutated allele of PRNP (D178N-129M haplotype). FFI is manifested by sleep disturbances with insomnia, autonomic disorders and spontaneous and evoked myoclonus, among other symptoms. This study describes new neuropathological and biochemical observations in a series of eight patients with FFI. The mediodorsal and anterior nuclei of the thalamus have severe neuronal loss and marked astrocytic gliosis in every case, whereas the entorhinal cortex is variably affected. Spongiform degeneration only occurs in the entorhinal cortex. Synaptic and fine granular proteinase K digestion (PrPres) immunoreactivity is found in the entorhinal cortex but not in the thalamus. Interleukin 6, interleukin 10 receptor alpha subunit, colony stimulating factor 3 receptor and toll-like receptor 7 mRNA expression increases in the thalamus in FFI. PrPc levels are significantly decreased in the thalamus, entorhinal cortex and cerebellum in FFI. This is accompanied by a particular PrPc and PrPres band profile. Altered PrP solubility consistent with significantly reduced PrP levels in the cytoplasmic fraction and increased PrP levels in the insoluble fraction are identified in FFI cases. Amyloid-like deposits are only seen in the entorhinal cortex. The RT-QuIC assay reveals that all the FFI samples of the entorhinal cortex are positive, whereas the thalamus is positive only in three cases and the cerebellum in two cases. The present findings unveil particular neuropathological and neuroinflammatory profiles in FFI and novel characteristics of natural prion protein in FFI, altered PrPres and Scrapie PrP (abnormal and pathogenic PrP) patterns and region-dependent putative capacity of PrP seeding.
Collapse
Affiliation(s)
- Franc Llorens
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Katrin Thüne
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Belén Ansoleaga
- Institute of Neuropathology, Service of Pathological Anatomy, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, and Biomedical Research Center of Neurodegenerative Diseases (CIBERNED) Hospitalet del Llobregat 08907, Spain
| | - Margalida A Frau-Méndez
- Institute of Neuropathology, Service of Pathological Anatomy, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, and Biomedical Research Center of Neurodegenerative Diseases (CIBERNED) Hospitalet del Llobregat 08907, Spain
| | - Maria Cramm
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Waqas Tahir
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Nadine Gotzmann
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Sara Berjaoui
- Institute of Neuropathology, Service of Pathological Anatomy, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, and Biomedical Research Center of Neurodegenerative Diseases (CIBERNED) Hospitalet del Llobregat 08907, Spain
| | - Margarita Carmona
- Institute of Neuropathology, Service of Pathological Anatomy, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, and Biomedical Research Center of Neurodegenerative Diseases (CIBERNED) Hospitalet del Llobregat 08907, Spain
| | - Christopher J Silva
- USDA, Produce Safety & Microbiology Research Unit, Western Regional Research Center, Albany, CA 94710, USA
| | - Ivan Fernandez-Vega
- Pathology Department University Hospital Araba, and Brain Bank Araba University Hospital, Basque Biobank for Research (O+eHun), Alava 01009, Spain
| | - Juan José Zarranz
- Neurology Department, University Hospital Cruces, University of the Basque Country, Bizkaia 48903, Spain
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen 37075, Germany
| | - Isidro Ferrer
- Institute of Neuropathology, Service of Pathological Anatomy, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, and Biomedical Research Center of Neurodegenerative Diseases (CIBERNED) Hospitalet del Llobregat 08907, Spain
| |
Collapse
|
11
|
Ansoleaga B, Garcia-Esparcia P, Llorens F, Hernández-Ortega K, Carmona Tech M, Antonio Del Rio J, Zerr I, Ferrer I. Altered Mitochondria, Protein Synthesis Machinery, and Purine Metabolism Are Molecular Contributors to the Pathogenesis of Creutzfeldt-Jakob Disease. J Neuropathol Exp Neurol 2016; 75:755-769. [PMID: 27297670 DOI: 10.1093/jnen/nlw048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuron loss, synaptic decline, and spongiform change are the hallmarks of sporadic Creutzfeldt-Jakob disease (sCJD), and may be related to deficiencies in mitochondria, energy metabolism, and protein synthesis. To investigate these relationships, we determined the expression levels of genes encoding subunits of the 5 protein complexes of the electron transport chain, proteins involved in energy metabolism, nucleolar and ribosomal proteins, and enzymes of purine metabolism in frontal cortex samples from 15 cases of sCJD MM1 and age-matched controls. We also assessed the protein expression levels of subunits of the respiratory chain, initiation and elongation translation factors of protein synthesis, and localization of selected mitochondrial components. We identified marked, generalized alterations of mRNA and protein expression of most subunits of all 5 mitochondrial respiratory chain complexes in sCJD cases. Expression of molecules involved in protein synthesis and purine metabolism were also altered in sCJD. These findings point to altered mRNA and protein expression of components of mitochondria, protein synthesis machinery, and purine metabolism as components of the pathogenesis of CJD.
Collapse
Affiliation(s)
- Belén Ansoleaga
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Paula Garcia-Esparcia
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Franc Llorens
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Karina Hernández-Ortega
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Margarita Carmona Tech
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - José Antonio Del Rio
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Inga Zerr
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF)
| | - Isidro Ferrer
- From the Institute of Neuropathology, Service of Pathologic Anatomy, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain (BA, PG-E, KH-O, MC, IF); CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Spain (PG-E, KH-O, MC, JAR, IF); Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University and German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany (FL, IZ); Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Department of Cell Biology, University of Barcelona, Barcelona, Spain (JAR); and Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Spain (IF).
| |
Collapse
|
12
|
CSF biomarkers in neurodegenerative and vascular dementias. Prog Neurobiol 2016; 138-140:36-53. [DOI: 10.1016/j.pneurobio.2016.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
|
13
|
Moore RA, Sturdevant DE, Chesebro B, Priola SA. Proteomics analysis of amyloid and nonamyloid prion disease phenotypes reveals both common and divergent mechanisms of neuropathogenesis. J Proteome Res 2014; 13:4620-34. [PMID: 25140793 PMCID: PMC4227561 DOI: 10.1021/pr500329w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Prion
diseases are a heterogeneous group of neurodegenerative disorders
affecting various mammals including humans. Prion diseases are characterized
by a misfolding of the host-encoded prion protein (PrPC) into a pathological isoform termed PrPSc. In wild-type
mice, PrPC is attached to the plasma membrane by a glycosylphosphatidylinositol
(GPI) anchor and PrPSc typically accumulates in diffuse
nonamyloid deposits with gray matter spongiosis. By contrast, when
mice lacking the GPI anchor are infected with the same prion inoculum,
PrPSc accumulates in dense perivascular amyloid plaques
with little or no gray matter spongiosis. In order to evaluate whether
different host biochemical pathways were implicated in these two phenotypically
distinct prion disease models, we utilized a proteomics approach.
In both models, infected mice displayed evidence of a neuroinflammatory
response and complement activation. Proteins involved in cell death
and calcium homeostasis were also identified in both phenotypes. However,
mitochondrial pathways of apoptosis were implicated only in the nonamyloid
form, whereas metal binding and synaptic vesicle transport were more
disrupted in the amyloid phenotype. Thus, following infection with
a single prion strain, PrPC anchoring to the plasma membrane
correlated not only with the type of PrPSc deposition but
also with unique biochemical pathways associated with pathogenesis.
Collapse
Affiliation(s)
- Roger A Moore
- Laboratory of Persistent Viral Diseases and ‡Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases , Hamilton, Montana 59840, United States
| | | | | | | |
Collapse
|
14
|
Zhang Q, Yan W, Bai Y, Zhu Y, Ma J. Repeated formaldehyde inhalation impaired olfactory function and changed SNAP25 proteins in olfactory bulb. INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH 2014; 20:308-12. [PMID: 25131264 DOI: 10.1179/2049396714y.0000000079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Formaldehyde inhalation exposure, which can occur through occupational exposure, can lead to sensory irritation, neurotoxicity, mood disorders, and learning and memory impairment. However, its influence on olfactory function is unclear. OBJECTIVES To investigate the mechanism and the effect of repeated formaldehyde inhalation exposure on olfactory function. METHODS Rats were treated with formaldehyde inhalation (13·5±1·5 ppm, twice 30 minutes/day) for 14 days. Buried food pellet and locomotive activity tests were used to detect olfactory function and locomotion. Western blots were used to evaluate synaptosomal-associated protein 25 (SNAP25) protein levels in the olfactory bulb (OB) lysate and synaptosome, as well as mature and immature olfactory sensory neuron markers, olfactory marker protein (OMP), and Tuj-1. Real-time polymerase chain reaction (PCR) was used to detect SNAP25 mRNA amounts. RESULTS Repeated formaldehyde inhalation exposure impaired olfactory function, whereas locomotive activities were unaffected. SNAP25 protein decreased significantly in the OB, but not in the occipital lobe. SNAP25 also decreased in the OB synaptosome when synaptophysin did not change after formaldehyde treatment. mRNA levels of SNAP25A and SNAP25B were unaffected. Mature and immature olfactory sensory neuron marker, OMP, and Tuj-1, did not change after formaldehyde treatment. CONCLUSION Repeated formaldehyde exposure impaired olfactory function by disturbing SNAP25 protein in the OB.
Collapse
|
15
|
Llorens F, Ansoleaga B, Garcia-Esparcia P, Zafar S, Grau-Rivera O, López-González I, Blanco R, Carmona M, Yagüe J, Nos C, Del Río JA, Gelpí E, Zerr I, Ferrer I. PrP mRNA and protein expression in brain and PrP(c) in CSF in Creutzfeldt-Jakob disease MM1 and VV2. Prion 2013; 7:383-93. [PMID: 24047819 DOI: 10.4161/pri.26416] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Creutzfeldt-Jakob disease (CJD) is a heterogenic neurodegenerative disorder associated with abnormal post-translational processing of cellular prion protein (PrP(c)). CJD displays distinctive clinical and pathological features which correlate with the genotype at the codon 129 (methionine or valine: M or V respectively) in the prion protein gene and with size of the protease-resistant core of the abnormal prion protein PrP(sc) (type 1: 20/21 kDa and type 2: 19 kDa). MM1 and VV2 are the most common sporadic CJD (sCJD) subtypes. PrP mRNA expression levels in the frontal cortex and cerebellum are reduced in sCJD in a form subtype-dependent. Total PrP protein levels and PrP(sc) levels in the frontal cortex and cerebellum accumulate differentially in sCJD MM1 and sCJD VV2 with no relation between PrP(sc) deposition and spongiform degeneration and neuron loss, but with microgliosis, and IL6 and TNF-α response. In the CSF, reduced PrP(c), the only form present in this compartment, occurs in sCJD MM1 and VV2. PrP mRNA expression is also reduced in the frontal cortex in advanced stages of Alzheimer disease, Lewy body disease, progressive supranuclear palsy, and frontotemporal lobe degeneration, but PrP(c) levels in brain varies from one disease to another. Reduced PrP(c) levels in CSF correlate with PrP mRNA expression in brain, which in turn reflects severity of degeneration in sCJD.
Collapse
Affiliation(s)
- Franc Llorens
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain; Department of Neurology; Clinical Dementia Center and DZNE; University Medical School; Georg-August University; Göttingen, Germany
| | - Belén Ansoleaga
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| | - Paula Garcia-Esparcia
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| | - Saima Zafar
- Department of Neurology; Clinical Dementia Center and DZNE; University Medical School; Georg-August University; Göttingen, Germany
| | - Oriol Grau-Rivera
- CJD-Unit and Alzheimer disease and Other Cognitive Disorders Unit; Department of Neurology; Hospital Clínic; Barcelona, Spain
| | - Irene López-González
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| | - Rosi Blanco
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| | - Margarita Carmona
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| | - Jordi Yagüe
- CJD-Unit and Alzheimer disease and Other Cognitive Disorders Unit; Department of Neurology; Hospital Clínic; Barcelona, Spain; Department of Immunology; Hospital Clinic; Barcelona, Spain
| | - Carlos Nos
- General Subdirectorate of Surveillance and Response to Emergencies in Public Health; Department of Public Health in Catalonia; Barcelona, Spain
| | - José Antonio Del Río
- CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain; Molecular and Cellular Neurobiotechnology; Catalonian Institute for Bioengineering (IBEC); Parc Científic de Barcelona; Barcelona, Spain; Department of Cell Biology; University of Barcelona; Barcelona, Spain
| | - Ellen Gelpí
- Neurological Tissue Bank of the Biobanc-Hospital; Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS); Barcelona, Spain
| | - Inga Zerr
- Department of Neurology; Clinical Dementia Center and DZNE; University Medical School; Georg-August University; Göttingen, Germany
| | - Isidre Ferrer
- Institute of Neuropathology; IDIBELL-University Hospital Bellvitge; University of Barcelona; Hospitalet de Llobregat; Barcelona, Spain; CIBERNED (Network Center for Biomedical Research of Neurodegenerative Diseases); Institute Carlos III; Ministry of Health; Madrid, Spain
| |
Collapse
|
16
|
Hilton KJ, Cunningham C, Reynolds RA, Perry VH. Early Hippocampal Synaptic Loss Precedes Neuronal Loss and Associates with Early Behavioural Deficits in Three Distinct Strains of Prion Disease. PLoS One 2013; 8:e68062. [PMID: 23840812 PMCID: PMC3694005 DOI: 10.1371/journal.pone.0068062] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/24/2013] [Indexed: 11/18/2022] Open
Abstract
Prion diseases are fatal neurodegenerative diseases of the CNS that are associated with the accumulation of misfolded cellular prion protein. There are several different strains of prion disease defined by different patterns of tissue vacuolation in the brain and disease time course, but features of neurodegeneration in these strains have not been extensively studied. Our previous studies using the prion strains ME7, 79A and 22L showed that infected mice developed behavioural deficits in the same sequence and temporal pattern despite divergent end-stage neuropathology. Here the objective was to address the hypothesis that synaptic loss would occur early in the disease in all three strains, would precede neuronal death and would be associated with the early behavioural deficits. C57BL/6 mice inoculated with ME7, 79A, or 22L-infected brain homogenates were behaviourally assessed on species typical behaviours previously shown to change during progression and euthanised when all three strains showed statistically significant impairment on these tasks. A decrease in labelling with the presynaptic marker synaptophysin was observed in the stratum radiatum of the hippocampus in all three strains, when compared to control animals. Negligible cell death was seen by TUNEL at this time point. Astrocyte and microglial activation and protease resistant prion protein (PrPSc) deposition were assessed in multiple brain regions and showed some strain specificity but also strongly overlapping patterns. This study shows that despite distinct pathology, multiple strains lead to early synaptic degeneration in the hippocampus, associated with similar behavioural deficits and supports the idea that the initiation of synaptic loss is a primary target of the misfolded prion agent.
Collapse
Affiliation(s)
- Kathryn J. Hilton
- School of Biological Sciences, Southampton General Hospital, Southampton, United Kingdom
| | - Colm Cunningham
- Trinity College Institute of Neuroscience & School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| | - Richard A. Reynolds
- School of Biological Sciences, Southampton General Hospital, Southampton, United Kingdom
| | - V. Hugh Perry
- School of Biological Sciences, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
17
|
Basu U, Guan LL, Moore SS. Functional genomics approach for identification of molecular processes underlying neurodegenerative disorders in prion diseases. Curr Genomics 2013; 13:369-78. [PMID: 23372423 PMCID: PMC3401894 DOI: 10.2174/138920212801619223] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/30/2012] [Accepted: 05/30/2012] [Indexed: 12/11/2022] Open
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) are infectious neurodegenerative disorders leading to death. These include Cresutzfeldt-Jakob disease (CJD), familial, sporadic and variant CJD and kuru in humans; and animal TSEs include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease (CWD) of mule deer and elk, and transmissible mink encephalopathy. All these TSEs share common pathological features such as accumulation of mis-folded prion proteins in the central nervous system leading to cellular dysfunction and cell death. It is important to characterize the molecular pathways and events leading to prion induced neurodegeneration. Here we discuss the impact of the functional genomics approaches including microarrays, subtractive hybridization and microRNA profiling in elucidating transcriptional cascades at different stages of disease. Many of these transcriptional changes have been observed in multiple neurodegenerative diseases which may aid in identification of biomarkers for disease. A comprehensive characterization of expression profiles implicated in neurodegenerative disorders will undoubtedly advance our understanding on neuropathology and dysfunction during prion disease and other neurodegenerative disorders. We also present an outlook on the future work which may focus on analysis of structural genetic variation, genome and transcriptome sequencing using next generation sequencing with an integrated approach on animal and human TSE related studies.
Collapse
Affiliation(s)
- Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | | | | |
Collapse
|
18
|
Last V, Williams A, Werling D. Inhibition of cytosolic Phospholipase A2 prevents prion peptide-induced neuronal damage and co-localisation with Beta III Tubulin. BMC Neurosci 2012; 13:106. [PMID: 22928663 PMCID: PMC3496594 DOI: 10.1186/1471-2202-13-106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 08/21/2012] [Indexed: 11/10/2022] Open
Abstract
Background Activation of phospholipase A2 (PLA2) and the subsequent metabolism of arachidonic acid (AA) to prostaglandins have been shown to play an important role in neuronal death in neurodegenerative disease. Here we report the effects of the prion peptide fragment HuPrP106-126 on the PLA2 cascade in primary cortical neurons and translocation of cPLA2 to neurites. Results Exposure of primary cortical neurons to HuPrP106-126 increased the levels of phosphorylated cPLA2 and caused phosphorylated cPLA2 to relocate from the cell body to the cellular neurite in a PrP-dependent manner, a previously unreported observation. HuPrP106-126 also induced significant AA release, an indicator of cPLA2 activation; this preceded synapse damage and subsequent cellular death. The novel translocation of p-cPLA2 postulated the potential for exposure to HuPrP106-126 to result in a re-arrangement of the cellular cytoskeleton. However p-cPLA2 did not colocalise significantly with F-actin, intermediate filaments, or microtubule-associated proteins. Conversely, p-cPLA2 did significantly colocalise with the cytoskeletal protein beta III tubulin. Pre-treatment with the PLA2 inhibitor, palmitoyl trifluoromethyl ketone (PACOCF3) reduced cPLA2 activation, AA release and damage to the neuronal synapse. Furthermore, PACOCF3 reduced expression of p-cPLA2 in neurites and inhibited colocalisation with beta III tubulin, resulting in protection against PrP-induced cell death. Conclusions Collectively, these findings suggest that cPLA2 plays a vital role in the action of HuPrP106-126 and that the colocalisation of p-cPLA2 with beta III tubulin could be central to the progress of neurodegeneration caused by prion peptides. Further work is needed to define exactly how PLA2 inhibitors protect neurons from peptide-induced toxicity and how this relates to intracellular structural changes occurring in neurodegeneration.
Collapse
Affiliation(s)
- Victoria Last
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA, UK.
| | | | | |
Collapse
|
19
|
Llorens F, Del Río JA. Unraveling the neuroprotective mechanisms of PrP (C) in excitotoxicity. Prion 2012; 6:245-51. [PMID: 22437735 DOI: 10.4161/pri.19639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Knowledge of the natural roles of cellular prion protein (PrP (C) ) is essential to an understanding of the molecular basis of prion pathologies. This GPI-anchored protein has been described in synaptic contacts, and loss of its synaptic function in complex systems may contribute to the synaptic loss and neuronal degeneration observed in prionopathy. In addition, Prnp knockout mice show enhanced susceptibility to several excitotoxic insults, GABAA receptor-mediated fast inhibition was weakened, LTP was modified and cellular stress increased. Although little is known about how PrP (C) exerts its function at the synapse or the downstream events leading to PrP (C) -mediated neuroprotection against excitotoxic insults, PrP (C) has recently been reported to interact with two glutamate receptor subunits (NR2D and GluR6/7). In both cases the presence of PrP (C) blocks the neurotoxicity induced by NMDA and Kainate respectively. Furthermore, signals for seizure and neuronal cell death in response to Kainate in Prnp knockout mouse are associated with JNK3 activity, through enhancing the interaction of GluR6 with PSD-95. In combination with previous data, these results shed light on the molecular mechanisms behind the role of PrP (C) in excitotoxicity. Future experimental approaches are suggested and discussed.
Collapse
Affiliation(s)
- Franc Llorens
- Molecular and Cellular Neurobiotechnology Group, Institut de Bioenginyeria de Catalunya (IBEC), Parc Científic de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
20
|
Sisó S, González L, Blanco R, Chianini F, Reid HW, Jeffrey M, Ferrer I. Neuropathological changes correlate temporally but not spatially with selected neuromodulatory responses in natural scrapie. Neuropathol Appl Neurobiol 2011; 37:484-99. [PMID: 21114681 DOI: 10.1111/j.1365-2990.2010.01152.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Neuropathological changes classically associated with sheep scrapie do not always correlate with clinical disease. We aimed to determine if selected neuromodulatory responses were altered during the course of the infection as it has been described in Creutzfeldt-Jakob disease and experimental bovine spongiform encephalopathy. METHODS Hemi-brains from healthy sheep and natural scrapie cases at two stages of infection were examined for biochemical alterations related to the expression of type I metabotropic glutamatergic receptors (mGluR(1) ) and type I adenosine receptors I (A(1) R), and of selected downstream intermediate signalling targets. Immunohistochemistry for different scrapie-related neuropathological changes was performed in the contralateral hemi-brains. RESULTS PrP(d) deposition, spongiform change, astrocytosis and parvalbumin expression were significantly altered in brains from clinically affected sheep compared with preclinical cases and negative controls; the latter also showed significantly higher immunoreactivity for synaptophysin than clinical cases. Between clinically affected and healthy sheep, no differences were found in the protein levels of mGluR(1) , while phospholipase Cβ1 expression in terminally ill sheep was increased in some brain areas but decreased in others. Adenyl cyclase 1 and A(1) R levels were significantly lower in various brain areas of affected sheep. No abnormal biochemical expression levels of these markers were found in preclinically infected sheep. CONCLUSIONS These findings point towards an involvement of mGluR(1) and A(1) R downstream pathways in natural scrapie. While classical prion disease lesions and neuromodulatory responses converge in some affected regions, they do not do so in others suggesting that there are independent regulatory factors for distinct degenerative and neuroprotective responses.
Collapse
Affiliation(s)
- S Sisó
- Veterinary Laboratories Agency Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK.
| | | | | | | | | | | | | |
Collapse
|
21
|
Tortosa R, Castells X, Vidal E, Costa C, Ruiz de Villa MDC, Sánchez A, Barceló A, Torres JM, Pumarola M, Ariño J. Central nervous system gene expression changes in a transgenic mouse model for bovine spongiform encephalopathy. Vet Res 2011; 42:109. [PMID: 22035425 PMCID: PMC3225326 DOI: 10.1186/1297-9716-42-109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 10/28/2011] [Indexed: 12/04/2022] Open
Abstract
Gene expression analysis has proven to be a very useful tool to gain knowledge of the factors involved in the pathogenesis of diseases, particularly in the initial or preclinical stages. With the aim of finding new data on the events occurring in the Central Nervous System in animals affected with Bovine Spongiform Encephalopathy, a comprehensive genome wide gene expression study was conducted at different time points of the disease on mice genetically modified to model the bovine species brain in terms of cellular prion protein. An accurate analysis of the information generated by microarray technique was the key point to assess the biological relevance of the data obtained in terms of Transmissible Spongiform Encephalopathy pathogenesis. Validation of the microarray technique was achieved by RT-PCR confirming the RNA change and immunohistochemistry techniques that verified that expression changes were translated into variable levels of protein for selected genes. Our study reveals changes in the expression of genes, some of them not previously associated with prion diseases, at early stages of the disease previous to the detection of the pathological prion protein, that might have a role in neuronal degeneration and several transcriptional changes showing an important imbalance in the Central Nervous System homeostasis in advanced stages of the disease. Genes whose expression is altered at early stages of the disease should be considered as possible therapeutic targets and potential disease markers in preclinical diagnostic tool development. Genes non-previously related to prion diseases should be taken into consideration for further investigations.
Collapse
Affiliation(s)
- Raül Tortosa
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zampieri M, Legname G, Segre D, Altafini C. A system-level approach for deciphering the transcriptional response to prion infection. Bioinformatics 2011; 27:3407-14. [DOI: 10.1093/bioinformatics/btr580] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Choi JK, Jeon YC, Lee DW, Oh JM, Lee HP, Jeong BH, Carp RI, Koh YH, Kim YS. A Drosophila model of GSS syndrome suggests defects in active zones are responsible for pathogenesis of GSS syndrome. Hum Mol Genet 2010; 19:4474-89. [PMID: 20829230 DOI: 10.1093/hmg/ddq379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have established a Drosophila model of Gerstmann-Sträussler-Scheinker (GSS) syndrome by expressing mouse prion protein (PrP) having leucine substitution at residue 101 (MoPrP(P101L)). Flies expressing MoPrP(P101L), but not wild-type MoPrP (MoPrP(3F4)), showed severe defects in climbing ability and early death. Expressed MoPrP(P101L) in Drosophila was differentially glycosylated, localized at the synaptic terminals and mainly present as deposits in adult brains. We found that behavioral defects and early death of MoPrP(P101L) flies were not due to Caspase 3-dependent programmed cell death signaling. In addition, we found that Type 1 glutamatergic synaptic boutons in larval neuromuscular junctions of MoPrP(P101L) flies showed significantly increased numbers of satellite synaptic boutons. Furthermore, the amount of Bruchpilot and Discs large in MoPrP(P101L) flies was significantly reduced. Brains from scrapie-infected mice showed significantly decreased ELKS, an active zone matrix marker compared with those of age-matched control mice. Thus, altered active zone structures at the molecular level may be involved in the pathogenesis of GSS syndrome in Drosophila and scrapie-infected mice.
Collapse
Affiliation(s)
- Jin-Kyu Choi
- Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyangdong Dongangu, Anyang, Gyeonggi-Do, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu Y, Ye Z, Yang H, Zhou L, Fan D, He S, Chui D. Disturbances of soluble N-ethylmaleimide-sensitive factor attachment proteins in hippocampal synaptosomes contribute to cognitive impairment after repetitive formaldehyde inhalation in male rats. Neuroscience 2010; 169:1248-54. [DOI: 10.1016/j.neuroscience.2010.05.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
|
25
|
Pocchiari M, Poleggi A, Principe S, Graziano S, Cardone F. Genomic and post-genomic analyses of human prion diseases. Genome Med 2009; 1:63. [PMID: 19566915 PMCID: PMC2703872 DOI: 10.1186/gm63] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Prion diseases share common features of neurodegenerative disorders, infectious diseases and pathologies linked to misfolded proteins. Whether these aspects are independently and fortuitously present in prion diseases or are somewhat linked together remains unsettled, but the contribution of genomic, proteomic, metabolomic and spectroscopic techniques might give insights into this puzzle, and likely give hope for therapy to patients. Although the prion protein gene (PRNP) governs most of the clinical and pathological features of prion diseases and plays a pivotal role in determining host susceptibility, there are still many uncertainties and unknown risk factors that need to be clarified and identified. Several genes, other than PRNP, have recently been found to be associated with a risk of developing sporadic or variant Creutzfeldt-Jakob disease, but these novel data have been produced in a relatively small number of patients and controls and, therefore, need further confirmation. The same criticism applies to the identification of the over 20 new cerebrospinal fluid or plasma markers of disease. Some of these markers seem related to the massive brain damage that occurs, rather than being specific to prion infection. Nevertheless, genomic and post-genomic approaches have shown that these techniques are very powerful, and the best way to overcome the scantiness of samples would be to encourage strong collaboration between different centers of excellence in prion diseases. In this review, we describe the most recent and outstanding advances offered by genomics and post-genomics analyses in the field of human prion diseases.
Collapse
Affiliation(s)
- Maurizio Pocchiari
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | |
Collapse
|
26
|
Auvergnon N, Reibel S, Touret M, Honnorat J, Baron T, Giraudon P, Bencsik A. Altered expression of CRMPs in the brain of bovine spongiform encephalopathy-infected mice during disease progression. Brain Res 2009; 1261:1-6. [DOI: 10.1016/j.brainres.2009.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/09/2008] [Accepted: 01/03/2009] [Indexed: 11/30/2022]
|
27
|
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland,
| | - Frank Baumann
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland,
| | - Juliane Bremer
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland,
| |
Collapse
|
28
|
Yun SW, Gerlach M, Riederer P, Klein MA. Oxidative stress in the brain at early preclinical stages of mouse scrapie. Exp Neurol 2006; 201:90-8. [PMID: 16806186 DOI: 10.1016/j.expneurol.2006.03.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 02/28/2006] [Accepted: 03/24/2006] [Indexed: 11/26/2022]
Abstract
Oxidative stress has been shown to be involved in the pathogenesis of neurodegenerative diseases including prion diseases. Although a growing body of evidence suggests direct involvement of oxidative stress in the pathogenesis of prion diseases, it is still not clear whether oxidative stress is a causative early event in these conditions or a secondary phenomenon commonly found in the progression of neurodegenerative diseases. Using a mouse scrapie model, we assessed oxidative stress in the brain at various stages of the disease progression and observed significantly increased concentration of lipid peroxidation markers, malondialdehyde and 4-hydroxyalkenals, and mRNA level of an oxidative stress response enzyme, heme oxygenase-1, at early preclinical stages of scrapie. The changes preceded dramatic synaptic loss demonstrated by immunohistochemical staining of a synaptic protein, synaptophysin. These findings imply that the brain undergoes oxidative stress even from an early stage of prion invasion into the brain. Given the well-known deleterious effects of reactive-oxygen-species-mediated damage in the brain, it is considered that the oxidative stress at the preclinical stage of prion diseases may predispose the brain to neurodegenerative mechanisms that characterize the diseases.
Collapse
Affiliation(s)
- Seong-Wook Yun
- Clinical Neurochemistry and NPF Center of Excellence Research Laboratories, Clinic of Psychiatry and Psychotherapy, University of Wurzburg, 97080 Wurzburg, Germany.
| | | | | | | |
Collapse
|
29
|
Vidal E, Márquez M, Tortosa R, Costa C, Serafín A, Pumarola M. Immunohistochemical approach to the pathogenesis of bovine spongiform encephalopathy in its early stages. J Virol Methods 2006; 134:15-29. [PMID: 16406559 DOI: 10.1016/j.jviromet.2005.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 11/11/2005] [Accepted: 11/15/2005] [Indexed: 01/21/2023]
Abstract
An immunohistochemical and histochemical study was carried out on the brains of nine cases of BSE-diagnosed cattle as part of the surveillance plan in Catalonia, Spain. The animals had no clinical symptoms reported and were thus at early stages of the disease. The first part of the study consisted of a characterization of PrP(BSE) deposits throughout the encephalon. The behaviour of the different immuno-labelling patterns was analysed and tropism of some patterns towards certain brain areas was described. This tropism is principally directed to the brain stem region; however, an association of the stellate pattern was found with areas where PrP(BSE) is deposited less abundantly, such as the cerebral cortex. Secondly, distinct pathogenesis mechanisms that take place in the early stages of BSE, which would include these cases were investigated. This study describes the glial response to the presence of PrP(BSE) (using antibodies against astrocytic glial fibrillary acidic protein and lectin from Griffonia simplicifolia to identify microglia), the presence of mild oxidative stress phenomena (antibodies against metallothioneins I and II and against nitrated aminoacidic residues: nitrotyrosine), the apparent absence of apoptotic cellular death (cleaved caspase 3) and the preservation of synaptic proteins synaptophysin and small synaptosome-associated 25 kDa protein immuno-labelling. Finally, no alteration of the extra-cellular matrix was detected with the use of Wisteria floribunda agglutinin, a marker for perineuronal nets.
Collapse
Affiliation(s)
- E Vidal
- Priocat Laboratory, CReSA, Veterinary Faculty, Autonomous University of Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Dron M, Bailly Y, Beringue V, Haeberlé AM, Griffond B, Risold PY, Tovey MG, Laude H, Dandoy-Dron F. Scrg1 is induced in TSE and brain injuries, and associated with autophagy. Eur J Neurosci 2005; 22:133-46. [PMID: 16029203 DOI: 10.1111/j.1460-9568.2005.04172.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have previously identified Scrg1, a gene with increased cerebral mRNA levels in transmissible spongiform encephalopathies (TSE) such as scrapie, bovine spongiform encephalopathy and Creutzfeldt-Jakob disease. In this study, Scrg1-immunoreactive cells, essentially neurons, were shown to be widely distributed throughout the brain of scrapie-infected mice, while only rare and weakly immunoreactive cells could be detected in the brain of non-infected normal mice. Induction of the protein was confirmed by Western blot analysis. At the ultrastructural level, Scrg1 protein was associated with dictyosomes of the Golgi apparatus and autophagic vacuoles in the central neurons of the scrapie-infected mice. These results suggested a role for Scrg1 in the pathological changes observed in TSE. We have generated transgenic mice specifically expressing Scrg1 in neurons. No significant differences in the time course of the disease were detected between transgenic and non-transgenic mice infected with scrapie prions. However, tight association of Scrg1 with autophagic vacuoles was again observed in brain neurons of infected transgenic mice. High levels of the protein were also detected in degenerating Purkinje cells of Ngsk Prnp 0/0 mice overexpressing the Prnd gene coding for doppel, a neurotoxic paralogue of the prion protein. Furthermore, induction of Scrg1 protein was observed in the brain of mice injured by canine distemper virus or gold thioglucose treatment. Taken together, our results indicate that Scrg1 is associated with neurodegenerative processes in TSE, but is not directly linked to dysregulation of prion protein.
Collapse
Affiliation(s)
- Michel Dron
- CNRS UPR-9045, Laboratoire d'Oncologie Virale, 7 rue Guy Môquet BP-8, 94801 Villejuif Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Xiang W, Windl O, Westner IM, Neumann M, Zerr I, Lederer RM, Kretzschmar HA. Cerebral gene expression profiles in sporadic Creutzfeldt-Jakob disease. Ann Neurol 2005; 58:242-57. [PMID: 16049922 DOI: 10.1002/ana.20551] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pathomechanism of sporadic Creutzfeldt-Jakob disease (sCJD) in the central nervous system is insufficiently understood. The aims of this study were to identify differentially regulated genes in the frontal cortex of sCJD and to profile the gene expression patterns in sCJD by using Affymetrix HGU133A microarrays (Affymetrix, Santa Clara, CA). The microarray data were generated by dChip and analyzed by Significance Analysis of Microarray (SAM) software. A comparison between control and sCJD samples identified 79 upregulated and 275 downregulated genes, which showed at least 1.5- and 2-fold changes, respectively, in sCJD frontal cortex, with an estimated false discovery rate of 5% or less. The major alterations in sCJD brains included upregulation of the genes encoding immune and stress-response factors and elements involved in cell death and cell cycle, as well as prominent downregulation of genes encoding synaptic proteins. A comparison of the molecular subtypes of sCJD showed various expression patterns associated with particular subtypes. The range of the upregulated genes and the degree of the increased expression appeared to be correlated with the degree of the neuropathological alterations in particular subtypes. Conspicuously, sCJD brains showed a great similarity with ageing human brains, both in the global expression patterns and in the identified differentially expressed genes.
Collapse
Affiliation(s)
- Wei Xiang
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Rodríguez A, Freixes M, Dalfó E, Martín M, Puig B, Ferrer I. Metabotropic glutamate receptor/phospholipase C pathway: A vulnerable target to Creutzfeldt-Jakob disease in the cerebral cortex. Neuroscience 2005; 131:825-32. [PMID: 15749337 DOI: 10.1016/j.neuroscience.2004.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2004] [Indexed: 10/25/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the cerebral cortex. Altered glutamatergic transmission has been suggested as having a central role in many neurodegenerative diseases. Metabotropic glutamate receptors (mGluRs) are coupled to intracellular signal transduction via G proteins, and they mediate slower responses than ionotropic glutamate receptors. Group I mGluRs are positively coupled to phospholipase C beta1 (PLCbeta1). Creutzfeldt-Jakob disease (CJD) is a human transmissible spongiform encephalopathy associated with a dysfunction in the membrane glycoprotein PrP which is converted into an abnormal isoform, with a predominant beta-sheet structure, that is pathogenic and partially resistant to protease digestion. Proteins associated with the signal transduction of group I mGluRs were examined in the frontal cortex (area 8) of 12 cases with sCJD and four age-matched controls, by means of gel electrophoresis and Western blotting of total homogenates. Densitometric analysis of the bands demonstrated decreased expression levels of PLCbeta1 and PLCgamma, a non-related phospholipase which is a substrate of tyrosine kinase, in CJD cases when compared with controls. Novel protein kinase C delta (nPKCdelta) has also been found to be significantly decreased in CJD cases. However, no modifications in mGluR1 cPKCalpha expression levels are found in CJD when compared with controls. No modifications in PLCbeta1 solubility in PBS-, deoxycholate- and sodium dodecylsulphate-soluble fractions have been observed in CJD when compared with controls. Finally, no interactions between PLCbeta1 and PrP, as revealed by immunoprecipitation assays, have been found in CJD and controls. The present results show, for the first time, reduced expression levels of phospholipases, particularly PLCbeta1, which may interfere with group I mGluR signaling in the cerebral cortex in CJD. These abnormalities are not the result of abnormal PLC solubility or interactions with PrP. Selective involvement of group I mGluRs may have functional effects on glutamatergic transmission modulation and processing in CJD.
Collapse
Affiliation(s)
- A Rodríguez
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, c/ Feixa llarga sn, 08907 Hospitalet de Llobregat, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Sandberg MK, Löw P. Altered interaction and expression of proteins involved in neurosecretion in scrapie-infected GT1-1 cells. J Biol Chem 2004; 280:1264-71. [PMID: 15528199 DOI: 10.1074/jbc.m411439200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prions cause transmissible and fatal diseases that are associated with spongiform degeneration, astrogliosis, and loss of axon terminals in the brains. To determine the expression of proteins involved in neurosecretion and synaptic functions after prion infection, gonadotropin-releasing hormone neuronal cell line subclone (GT1-1) was infected with the RML scrapie strain and analyzed by Western blotting, real time PCR, and immunohistochemistry. As revealed by Western blotting of lysates exposed to different temperatures, the levels of complexed SNAP-25, syntaxin 1A, and synaptophysin were decreased in scrapie-infected GT1-1 cells (ScGT1-1), whereas the level of monomeric forms of these proteins was increased and correlated to the level of scrapie prion protein (PrPSc). However, when complex formation was prevented by prolonged heating of samples in SDS, the levels of monomeric SNAP-25, syntaxin 1A and synaptophysin in ScGT1-1 cells were decreased in comparison to GT1-1 cells. The reduced level of SNAP-25 was observed as early as 32 days postinfection. Increased mRNA levels of both splice variants SNAP-25a and -b in ScGT1-1 cells were seen. No difference in the morphology, neuritic outgrowth or distribution of SNAP-25, syntaxin 1A, or synaptophysin could be observed in ScGT1-1 cells. Treatment with quinacrine or pentosan polysulfate cleared the PrPSc from the ScGT1-1 cell cultures, and the increase in levels of monomeric SNAP-25 and synaptophysin was reversible. These results indicate that a scrapie infection can cause changes in the expression of proteins involved in neuronal secretion, which may be of pathogenetic relevance for the axon terminal changes seen in prion-infected brains.
Collapse
Affiliation(s)
- Malin K Sandberg
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8 B2: 5, Stockholm, S-171 77, Sweden.
| | | |
Collapse
|
34
|
Chin LS, Vavalle JP, Li L. Staring, a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation. J Biol Chem 2002; 277:35071-9. [PMID: 12121982 DOI: 10.1074/jbc.m203300200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syntaxin 1 is an essential component of the neurotransmitter release machinery, and regulation of syntaxin 1 expression levels is thought to contribute to the mechanism underlying learning and memory. However, the molecular events that control the degradation of syntaxin 1 remain undefined. Here we report the identification and characterization of a novel RING finger protein, Staring, that interacts with syntaxin 1. Staring is expressed throughout the brain, where it exists in both cytosolic and membrane-associated pools. Staring binds and recruits the brain-enriched E2 ubiquitin-conjugating enzyme UbcH8 to syntaxin 1 and facilitates the ubiquitination and proteasome-dependent degradation of syntaxin 1. These findings suggest that Staring is a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Lih-Shen Chin
- Department of Pharmacology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322-3090, USA
| | | | | |
Collapse
|
35
|
Bazan NG, Colangelo V, Lukiw WJ. Prostaglandins and other lipid mediators in Alzheimer's disease. Prostaglandins Other Lipid Mediat 2002; 68-69:197-210. [PMID: 12432919 DOI: 10.1016/s0090-6980(02)00031-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the central nervous system (CNS), prostaglandin (PG) and other bioactive lipids regulate vital aspects of neural membrane biology, including protein-lipid interactions, trans-membrane and trans-synaptic signaling. However, a series of highly reactive PGs, free fatty acids, lysophospolipids, eicosanoids, platelet-activating factor, and reactive oxygen species (ROS), all generated by enhanced phospholipase A2 (PLA2) activity and arachidonic acid (AA) release, participate in cellular injury, particularly in neurodegeneration. PLA2 activation and PG production are among the earliest initiating events in triggering brain-damage pathways, which can lead to long-term neurologic deficits. Altered membrane-associated PLA2 activities have been correlated with several forms of acute and chronic brain injury, including cerebral trauma, ischemic damage, induced seizures in the brain and epilepsy, schizophrenia, and in particular, Alzheimer's disease (AD). Biochemical mechanisms of PLA2 overactivation and its pathophysiological consequences on CNS structure and function have been extensively studied using animal models and brain cells in culture triggered with PLA2 inducers, PGs, cytokines, and related lipid mediators. Moreover, the expression of both COX-2 and PLA2 appears to be strongly activated during Alzheimer's disease (AD), indicating the importance of inflammatory gene pathways as a response to brain injury. This review addresses some current ideas concerning how brain PLA2 and brain PGs are early and key players in acute neural trauma and in brain-cell damage associated with chronic neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Nicolas G Bazan
- Department of Ophthalmology, LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans 70112, USA.
| | | | | |
Collapse
|
36
|
Fraser JR. What is the basis of transmissible spongiform encephalopathy induced neurodegeneration and can it be repaired? Neuropathol Appl Neurobiol 2002; 28:1-11. [PMID: 11849558 DOI: 10.1046/j.1365-2990.2002.00376.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Once an animal becomes infected with a prion disease, or transmissible spongiform encephalopathy (TSE), the progression of infection is relentless and inevitably fatal, although often with such prolonged incubation periods that an alternative cause of death can intervene. Infection has been compared to 'setting a clock' which then runs inexorably as the disease spreads, usually through the lymphoreticular system and then via peripheral nerves to the central nervous system (CNS), although the mechanism controlling the protracted progression is not known. Clinical disease develops as characteristic degenerative changes in the CNS progress, but the molecular basis for this pathology is not clear, particularly the relationship between the deposition of abnormal PrP and neuronal dysfunction. Recent research has identified several means of slowing (if not stopping) the clock when infection has not yet reached the CNS; although the potential for later stage therapies seems limited, neuroprotective strategies which have been shown to be effective in other neurodegenerative conditions may also ameliorate TSE induced CNS pathology. This review focuses on our current knowledge of the key events following infection of the CNS and the opportunities for intervention once the CNS has become infected.
Collapse
Affiliation(s)
- J R Fraser
- Institute for Animal Health, Neuropathogenesis Unit, Ogston Building, Edinburgh, UK.
| |
Collapse
|
37
|
Giese A, Kretzschmar HA. Prion-induced neuronal damage--the mechanisms of neuronal destruction in the subacute spongiform encephalopathies. Curr Top Microbiol Immunol 2001; 253:203-17. [PMID: 11417136 DOI: 10.1007/978-3-662-10356-2_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Prion diseases are characterized by the accumulation of a specific disease-associated isoform of the prion protein (PrP), termed PrPSc, which is the main, if not the only, component of the infectious agent termed prion. PrPSc is derived by an autocatalytic post-translational process involving conformational changes from the normal host-encoded isoform of the prion protein, termed PrPC. PrPC is a copper-binding glycoprotein attached to the cell membrane of neurons and other cells by means of a GPI anchor. The pattern of neurodegeneration differs between variants of prion disease and is related to the pattern of PrPSc deposition and differences in susceptibility of different cell types to the disease process. The pattern of PrPSc deposition depends on the strain of the agent and the PrP genotype of the host. Strain properties of prions appear to be related to different pathological conformations of PrPSc. Neuronal cell death is a salient feature in the pathology of prion diseases. Histological and electron microscopical studies have shown that cell death in prion disease occurs by apoptosis. Apoptosis of neuronal cells can also be induced in vitro by exposure to PrPSc or a neurotoxic peptide fragment corresponding to amino acids 106-126 of human prion protein (PrP106-126). Both in vitro and in vivo, the toxicity of PrPSc and PrP fragments appears to depend on neuronal expression of PrPC and on microglial activation. Activated microglial cells release pro-inflammatory cytokines and reactive oxygen species. Cell culture experiments suggest an important role of microglia-mediated oxidative stress in the induction of neuronal cell death. Only limited data are available on direct effects of PrPSc on neuronal cells. Potential effects include increased formation of an aberrant transmembrane form of PrP, termed CtmPrP, and changes in plasma membrane properties. In addition to direct and indirect toxic effects of PrPSc, a loss of function of PrPC may contribute to neuronal cell death. Potential mechanisms include disturbances in cerebral copper metabolism and antioxidative defense mechanisms. A better understanding of the pathogenesis of neuronal cell death in prion diseases may also have important therapeutic implications in the future.
Collapse
Affiliation(s)
- A Giese
- Institute of Neuropathology, Ludwig-Maximilians-Universität, Marchioninistr. 17, 81377 München, Germany.
| | | |
Collapse
|
38
|
Arendt T. Alzheimer's disease as a disorder of mechanisms underlying structural brain self-organization. Neuroscience 2001; 102:723-65. [PMID: 11182240 DOI: 10.1016/s0306-4522(00)00516-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mental function has as its cerebral basis a specific dynamic structure. In particular, cortical and limbic areas involved in "higher brain functions" such as learning, memory, perception, self-awareness and consciousness continuously need to be self-adjusted even after development is completed. By this lifelong self-optimization process, the cognitive, behavioural and emotional reactivity of an individual is stepwise remodelled to meet the environmental demands. While the presence of rigid synaptic connections ensures the stability of the principal characteristics of function, the variable configuration of the flexible synaptic connections determines the unique, non-repeatable character of an experienced mental act. With the increasing need during evolution to organize brain structures of increasing complexity, this process of selective dynamic stabilization and destabilization of synaptic connections becomes more and more important. These mechanisms of structural stabilization and labilization underlying a lifelong synaptic remodelling according to experience, are accompanied, however, by increasing inherent possibilities of failure and may, thus, not only allow for the evolutionary acquisition of "higher brain function" but at the same time provide the basis for a variety of neuropsychiatric disorders. It is the objective of the present paper to outline the hypothesis that it might be the disturbance of structural brain self-organization which, based on both genetic and epigenetic information, constantly "creates" and "re-creates" the brain throughout life, that is the defect that underlies Alzheimer's disease (AD). This hypothesis is, in particular, based on the following lines of evidence. (1) AD is a synaptic disorder. (2) AD is associated with aberrant sprouting at both the presynaptic (axonal) and postsynaptic (dendritic) site. (3) The spatial and temporal distribution of AD pathology follows the pattern of structural neuroplasticity in adulthood, which is a developmental pattern. (4) AD pathology preferentially involves molecules critical for the regulation of modifications of synaptic connections, i.e. "morphoregulatory" molecules that are developmentally controlled, such as growth-inducing and growth-associated molecules, synaptic molecules, adhesion molecules, molecules involved in membrane turnover, cytoskeletal proteins, etc. (5) Life events that place an additional burden on the plastic capacity of the brain or that require a particularly high plastic capacity of the brain might trigger the onset of the disease or might stimulate a more rapid progression of the disease. In other words, they might increase the risk for AD in the sense that they determine when, not whether, one gets AD. (6) AD is associated with a reactivation of developmental programmes that are incompatible with a differentiated cellular background and, therefore, lead to neuronal death. From this hypothesis, it can be predicted that a therapeutic intervention into these pathogenetic mechanisms is a particular challenge as it potentially interferes with those mechanisms that at the same time provide the basis for "higher brain function".
Collapse
Affiliation(s)
- T Arendt
- Paul Flechsig Institute of Brain Research, Department of Neuroanatomy, University of Leipzig, Jahnallee 59, D-04109, Leipzig, Germany.
| |
Collapse
|
39
|
Ferrer I, Puig B, Blanco R, Martí E. Prion protein deposition and abnormal synaptic protein expression in the cerebellum in Creutzfeldt-Jakob disease. Neuroscience 2000; 97:715-26. [PMID: 10842016 DOI: 10.1016/s0306-4522(00)00045-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Prion protein (PrP(C)) is a cell membrane-anchored glycoprotein, which is replaced by a pathogenic protease-resistant, beta-sheet-containing isoform (PrP(CJD) or PrP(SC)) in human and animal prion encephalopathies, including sporadic Creutzfeldt-Jakob disease. Cell fractionation methods show that PrP(C) localizes in presynaptic membrane-enriched fractions. Following infection, abnormal PrP accumulates in nerve cell processes and synaptic regions. The present study examines the possible correlation between abnormal PrP deposition and the expression of synaptic proteins controlling neurotransmission in the cerebellum of six 129 Met/Met sporadic cases of Creutzfeldt-Jakob disease. Aggregates of protease-resistant PrP-positive granules, reminiscent of cerebellar glomeruli, were found in the granular cell layer, whereas fine punctate PrP-immunoreactive deposits occurred in the molecular layer. Small numbers of diffuse, irregular plaque-like PrP deposits in the molecular and granular cell layers were present in every case. The somas of Purkinje cells, and stellate, basket and Golgi neurons, were not immunostained. PrP-immunoreactive fibres were found in the album of the cerebellum and hilus of the dentate nucleus. Punctate PrP deposition decorated the neuropil of the dentate nucleus and the surface of dentate neurons. Synaptic protein expression was examined with synaptophysin, synapsin-1, synaptosomal-associated protein of 25,000 mol. wt, syntaxin-1 and Rab3a immunohistochemistry. Reduced synaptophysin, synapsin-1, synaptosomal-associated protein of 25,000 mol. wt, syntaxin-1 and Rab3a immunoreactivity was noted in the granular cell layer in every case, but reduced expression was inconstant in the molecular layer. Synaptophysin accumulated in axon torpedoes, thus indicating abnormal axon transport. Expression of synaptic proteins was relatively preserved in the dentate nucleus, although synaptophysin immunohistochemistry disclosed large coarse pericellular terminals in Creutzfeldt-Jakob disease, instead of the fine granular terminals in control cases, around the soma of dentate neurons. Finally, Rab3a accumulated in the cytoplasm of Purkinje cells, thus suggesting major anomalies in Rab3a transport. These observations demonstrate, for the first time, abnormal expression of crucial synaptic proteins in the cerebellum of cases with Creutzfeldt-Jakob disease. However, abnormal PrP deposition is not proportional to the degree of reduction of synaptic protein expression in the different layers of the cerebellar cortex and in the dentate nucleus. Therefore, it remains to be elucidated how abnormal PrP impacts on the metabolism of proteins linked to exocytosis and neurotransmission, and how abnormal PrP deposition results in eventual synaptic loss.
Collapse
Affiliation(s)
- I Ferrer
- Unidad de Neuropatología, Departamento de Biología Celular y Anatomía Patológica, Universidad de Barcelona, campus de Bellvitge, 08907, Hospitalet de Llobregat, Spain.
| | | | | | | |
Collapse
|
40
|
Jin JK, Choi JK, Lee HG, Kim YS, Carp RI, Choi EK. Increased expression of CaM kinase II alpha in the brains of scrapie-infected mice. Neurosci Lett 1999; 273:37-40. [PMID: 10505646 DOI: 10.1016/s0304-3940(99)00622-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the distribution of calcium/calmodulin-dependent protein kinase II (CaM kinase II) in the brains of mice infected with ME7 scrapie strain. CaM kinase II is an enzyme that plays a major role in the regulation of long-term potentiation, a form of synaptic plasticity associated with learning and memory. Immunoreactivity of CaM kinase II alpha, measured by Western blot, increased markedly in scrapie-infected brains compared with control brains. Immunohistochemically, CaM kinase II alpha immunoreactivity was upregulated in the cerebral cortex and hippocampal CA1 area of scrapie-positive mice infected with ME7 scrapie strain. This result implies that this enzyme is associated with aberrant function of synaptic transmission and LTP of the pyramidal neurons in the hippocampal CA1 area of mice infected with ME7 scrapie strain.
Collapse
Affiliation(s)
- J K Jin
- Institute of Environment & Life Science, Hallym Academy of Sciences, Hallym University, Chunchon, South Korea
| | | | | | | | | | | |
Collapse
|