1
|
Li R, Ma L, Geng Y, Chen X, Zhu J, Zhu H, Wang D. Uteroplacental microvascular remodeling in health and disease. Acta Physiol (Oxf) 2025; 241:e70035. [PMID: 40156319 DOI: 10.1111/apha.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
The microvascular system is essential for delivering oxygen and nutrients to tissues while removing metabolic waste. During pregnancy, the uteroplacental microvascular system undergoes extensive remodeling to meet the increased demands of the fetus. Key adaptations include vessel dilation and increases in vascular volume, density, and permeability, all of which ensure adequate placental perfusion while maintaining stable maternal blood pressure. Structural and functional abnormalities in the uteroplacental microvasculature are associated with various gestational complications, posing both immediate and long-term risks to the health of both mother and infant. In this review, we describe the changes in uteroplacental microvessels during pregnancy, discuss the pathogenic mechanisms underlying diseases such as preeclampsia, fetal growth restriction, and gestational diabetes, and summarize current clinical and research approaches for monitoring microvascular health. We also provide an update on research models for gestational microvascular complications and explore solutions to several unresolved challenges. With advancements in research techniques, we anticipate significant progress in understanding and managing these diseases, ultimately leading to new therapeutic strategies to improve maternal and fetal health.
Collapse
Affiliation(s)
- Ruizhi Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Ma
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yingchun Geng
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaoxue Chen
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiaxi Zhu
- Life Sciences, Faculty of Arts & Science, University of Toronto - St. George Campus, Toronto, Ontario, Canada
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Dong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Smith J, Powell M, Cromartie W, Smith S, Jones K, Castillo A, Shaw J, Editone J, Howard A, Tatum R, Smith A, Fisher B, Booz GW, Cunningham M. Intrauterine growth-restricted pregnant rats, from placental ischemic dams, display preeclamptic-like symptoms: A new rat model of preeclampsia. Physiol Rep 2024; 12:e70112. [PMID: 39482843 PMCID: PMC11527824 DOI: 10.14814/phy2.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
Preeclampsia (PE) is characterized by de novo hypertension (HTN) and is often associated with intrauterine growth restriction (IUGR). Hallmarks of PE are placental ischemia, decreased nitric oxide (NO) bioavailability, oxidative stress (OS), and organ damage in the kidneys and brain. This study aims to characterize a new model of PE using pregnant IUGR rats from hypertensive placental ischemic dams. It is hypothesized that pregnant IUGR rats from hypertensive placental ischemic dams will have elevated blood pressure (BP), OS, and organ damage. In this study, pregnant rats are divided into two groups: normal pregnant (NP) and hypertensive placental ischemic dams (RUPP). Offspring from NP and RUPP dams were mated at 10 weeks of age to generate pregnant IUGR (IUGR Preg) and pregnant control (CON Preg) rats. BP and other markers of PE were evaluated during late gestation. Pregnant IUGR rats had elevated BP and systemic OS. The maternal body weight of pregnant IUGR rats and their pups' weights were decreased, while the brains were enlarged with elevated OS. In summary, pregnant IUGR rats, born from hypertensive placental ischemic dams, have HTN and increased systemic and brain OS, with larger brain sizes and smaller pups. Furthermore, this study shows that pregnant IUGR rats exhibit a preeclamptic-like phenotype, suggesting a new epigenetic model of PE.
Collapse
Affiliation(s)
- Jonna Smith
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Madison Powell
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Whitney Cromartie
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Savanna Smith
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Kylie Jones
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Angie Castillo
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Jordan Shaw
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Joseph Editone
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Ahfiya Howard
- School of Social WorkTexas A & M University‐CommerceCommerceTexasUSA
| | - Robert Tatum
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Alex Smith
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Brandon Fisher
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - George W. Booz
- Department of Pharmacology & ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Mark Cunningham
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
3
|
Ormesher L, Worton SA, Best A, Dodd SR, Dempsey A, Cottrell EC, Glossop H, Chmiel C, Wu HY, Hardwick B, Hennessy S, Johnstone ED, Myers JE. CHronic hypERtension and L-citRulline studY (CHERRY): an Early-Phase Randomised Controlled Trial in Pregnancy. Reprod Sci 2024; 31:560-568. [PMID: 37789125 PMCID: PMC10827856 DOI: 10.1007/s43032-023-01335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/20/2023] [Indexed: 10/05/2023]
Abstract
Oral supplementation with L-citrulline, which is sequentially converted to L-arginine then nitric oxide, improves vascular biomarkers and reduces blood pressure in non-pregnant, hypertensive human cohorts and pregnant mice with a pre-eclampsia-like syndrome. This early-phase randomised feasibility trial assessed the acceptability of L-citrulline supplementation to pregnant women with chronic hypertension and its effects on maternal BP and other vascular outcomes. Pregnant women with chronic hypertension were randomised at 12-16 weeks to receive 3-g L-citrulline twice daily (n = 24) or placebo (n = 12) for 8 weeks. Pregnant women reported high acceptability of oral L-citrulline. Treatment increased maternal plasma levels of citrulline, arginine and the arginine:asymmetric dimethylarginine ratio, particularly in women reporting good compliance. L-citrulline had no effect on diastolic BP (L-citrulline: - 1.82 95% CI (- 5.86, 2.22) vs placebo: - 5.00 95% CI (- 12.76, 2.76)), uterine artery Doppler or angiogenic biomarkers. Although there was no effect on BP, retrospectively, this study was underpowered to detect BP changes < 9 mmHg, limiting the conclusions about biological effects. The increase in arginine:asymmetric dimethylarginine ratio was less than in non-pregnant populations, which likely reflects altered pharmacokinetics of pregnancy, and further pharmacokinetic assessment of L-citrulline in pregnancy is advised.Trial Registration EudraCT 2015-005792-25 (2017-12-22) and ISRCTN12695929 (2018-09-20).
Collapse
Affiliation(s)
- Laura Ormesher
- Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Stephanie A Worton
- Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Ashley Best
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, UK
| | - Susanna R Dodd
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, UK
| | - Alice Dempsey
- Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Elizabeth C Cottrell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Heather Glossop
- Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Catherine Chmiel
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Hoi Yee Wu
- Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Ben Hardwick
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, UK
| | - Sophie Hennessy
- Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, UK
| | - Edward D Johnstone
- Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Jenny E Myers
- Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Bertozzi-Matheus M, Bueno-Pereira TO, Nunes PR, Sandrim VC. EGCG, a Green Tea Compound, Increases NO Production and Has Antioxidant Action in a Static and Shear Stress In Vitro Model of Preeclampsia. Antioxidants (Basel) 2024; 13:158. [PMID: 38397756 PMCID: PMC10886151 DOI: 10.3390/antiox13020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Preeclampsia (PE) is a gestational hypertensive disease characterized by endothelial dysfunction. Epigallocatechin-3-gallate (EGCG), the main compound in green tea, is a promising therapeutic target for the disease. By activating eNOS, EGCG increased NO production and exerted an important antioxidant action, but its specific impact in the context of PE remains understudied. The aim of this study is to evaluate the effects of EGCG on endothelial function in static and shear stress in in vitro models of PE. Endothelial cells were incubated with healthy (HP) and preeclamptic (PE) pregnant women's plasma, and the latter group was treated with EGCG. Additionally, NOS (L-NAME) and PI3K protein (LY249002) inhibitors were also used. The levels of NO, ROS, and O2•- were evaluated, as well as the antioxidant potential. These investigations were also carried out in a shear stress model. We found that EGCG increases the NO levels, which were reduced in the PE group. This effect was attenuated with the use of L-NAME and LY249002. Furthermore, EGCG increased the antioxidant capacity of PE, but its action decreased with LY294002. In cells subjected to shear stress, EGCG increased nitrite levels in the PE group and maintained its action on the antioxidant capacity. This is the first study of the effects of EGCG in this experimental model, as well as the investigation of its effects along with shear stress. Our findings suggest that EGCG improves parameters of endothelial dysfunction in vitro, making it a promising target in the search for treatments for the disease.
Collapse
Affiliation(s)
| | | | | | - Valeria Cristina Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (M.B.-M.); (T.O.B.-P.); (P.R.N.)
| |
Collapse
|
5
|
Enebe JT, Dim CC, Omeke AC. Maternal antioxidant micronutrient deficiencies among pre-eclamptic women in Enugu, Nigeria: a cross-sectional analytical study. J Int Med Res 2023; 51:3000605231209159. [PMID: 37940611 PMCID: PMC10637183 DOI: 10.1177/03000605231209159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVES To determine the prevalence of antioxidant micronutrient deficiencies in pregnant women with pre-eclampsia and healthy pregnant women, and to assess the relationships between trace element deficiency in pregnancy and the severity of pre-eclampsia in Enugu, Nigeria. METHODS We performed a secondary analysis of a cross-sectional analytical study of serum concentrations of copper, selenium, zinc, magnesium, and manganese in 81 pregnant women with pre-eclampsia and healthy pregnant women (controls) who were matched for age, gestational age, body mass index, and parity. This study was performed at the University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu. Participants' sera were analyzed with an atomic absorption spectrophotometer. RESULTS Trace element deficiencies were common and similar between women with pre-eclampsia and controls. However, women with pre-eclampsia were more likely to be deficient in manganese than controls (odds ratio = 2.28, 95% confidence interval: 1.90-2.75). Among the micronutrients studied, only manganese concentrations were significantly lower in women without severe symptoms of pre-eclampsia than in those with severe symptoms of pre-eclampsia. CONCLUSIONS Micronutrient deficiency is common in pregnant women with pre-eclampsia and in healthy pregnant women in Enugu, Nigeria. Only manganese deficiency is higher in women with pre-eclampsia than in healthy pregnant women.
Collapse
Affiliation(s)
- Joseph Tochukwu Enebe
- Department of Obstetrics and Gynaecology, Enugu State University of Science and Technology, College of Medicine/Teaching Hospital, Enugu, Nigeria
| | - Cyril Chukwudi Dim
- Department of Obstetrics and Gynaecology, College of Medicine, University of Nigeria Ituku/Ozalla Campus, Enugu state, Nigeria
| | - Akudo Chidimma Omeke
- Department of Obstetrics and Gynaecology, Enugu State University of Science and Technology, College of Medicine/Teaching Hospital, Enugu, Nigeria
| |
Collapse
|
6
|
Yang C, Baker PN, Granger JP, Davidge ST, Tong C. Long-Term Impacts of Preeclampsia on the Cardiovascular System of Mother and Offspring. Hypertension 2023; 80:1821-1833. [PMID: 37377011 DOI: 10.1161/hypertensionaha.123.21061] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Preeclampsia is a pregnancy-specific complication that is associated with an increased postpartum risk of cardiovascular disease (CVD) in both women and their offspring, although the underlying mechanisms have yet to be fully elucidated. Nevertheless, differential methylation of cytosine-phosphate-guanosine islands and alterations in the expression of microRNA, associated with an elevated risk of CVD, have been observed in women and their children following preeclampsia. Among this specific population, genetic and epigenetic factors play crucial roles in the development of CVD in later life. A series of biomolecules involved in inflammation, oxidative stress, and angiogenesis may link pregnancy vascular bed disorders in preeclampsia to the pathogenesis of future CVD and thus could be valuable for the prediction and intervention of long-term CVD in women with a history of preeclampsia and their offspring. Here, we present insights into the cardiovascular structure and functional changes of women with a history of preeclampsia and their offspring. With a focus on various underlying mechanisms, the conclusions from this review are expected to provide more potential diagnostics and treatment strategies for clinical practice.
Collapse
Affiliation(s)
- Chuyu Yang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, China (C.Y., C.T.)
- Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (C.Y., P.N.B., C.T.)
| | - Philip N Baker
- Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (C.Y., P.N.B., C.T.)
- College of Life Sciences, University of Leicester, United Kingdom (P.N.B.)
| | - Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.P.G.)
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology and Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada (S.T.D.)
| | - Chao Tong
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, China (C.Y., C.T.)
- Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (C.Y., P.N.B., C.T.)
| |
Collapse
|
7
|
Salinas-Salmon CE, Murillo-Jauregui C, Gonzales-Isidro M, Espinoza-Pinto V, Mendoza SV, Ruiz R, Vargas R, Perez Y, Montaño J, Toledo L, Badner A, Jimenez J, Peñaranda J, Romero C, Aguilar M, Riveros-Gonzales L, Arana I, Villamor E. Elevation of Pulmonary Artery Pressure in Newborns from High-Altitude Pregnancies Complicated by Preeclampsia. Antioxidants (Basel) 2023; 12:347. [PMID: 36829907 PMCID: PMC9952561 DOI: 10.3390/antiox12020347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
We hypothesized that fetal exposure to the oxidative stress induced by the combined challenge of preeclampsia (PE) and high altitude would induce a significant impairment in the development of pulmonary circulation. We conducted a prospective study in La Paz (Bolivia, mean altitude 3625 m) in which newborns from singleton pregnancies with and without PE were compared (PE group n = 69, control n = 70). We conducted an echocardiographic study in these infants at the median age of two days. The percentage of cesarean deliveries and small for gestational age (SGA) infants was significantly higher in the PE group. Heart rate, respiratory rate, and oxygen saturation did not vary significantly between groups. Estimated pulmonary arterial pressure and pulmonary vascular resistance were 30% higher in newborns exposed to PE and high altitude compared with those exposed only to high altitude. We also detected signs of right ventricular hypertrophy in infants subjected to both exposures. In conclusion, this study provides evidence that the combination of PE and pregnancy at high altitude induces subclinical alterations in the pulmonary circulation of the newborn. Follow-up of this cohort may provide us with valuable information on the potential increased susceptibility to developing pulmonary hypertension or other pulmonary and cardiovascular disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jesús Jimenez
- Instituto Boliviano de Biología de Altura (IBBA), UMSA, La Paz, Bolivia
| | | | - Catherine Romero
- Instituto Boliviano de Biología de Altura (IBBA), UMSA, La Paz, Bolivia
| | - Martha Aguilar
- Instituto Boliviano de Biología de Altura (IBBA), UMSA, La Paz, Bolivia
| | | | | | - Eduardo Villamor
- Maastricht University Medical Center (MUMC+), School for Oncology and Reproduction (GROW), 6202AZ Maastricht, The Netherlands
| |
Collapse
|
8
|
Tuytten R, Syngelaki A, Thomas G, Panigassi A, Brown LW, Ortea P, Nicolaides KH. First-trimester preterm preeclampsia prediction with metabolite biomarkers: differential prediction according to maternal body mass index. Am J Obstet Gynecol 2022:S0002-9378(22)02290-6. [PMID: 36539025 DOI: 10.1016/j.ajog.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Prediction of preeclampsia risk is key to informing effective maternal care. Current screening for preeclampsia at 11 to 13 weeks of gestation using maternal demographic characteristics and medical history with measurements of mean arterial pressure, uterine artery pulsatility index, and serum placental growth factor can identify approximately 75% of women who develop preterm preeclampsia with delivery at <37 weeks of gestation. Further improvements to preeclampsia screening tests will likely require integrating additional biomarkers. Recent research suggests the existence of distinct maternal risk profiles. Therefore, biomarker evaluation should account for the possibility that a biomarker only predicts preeclampsia in a specific maternal phenotype. OBJECTIVE This study aimed to verify metabolite biomarkers as preterm preeclampsia predictors early in pregnancy in all women and across body mass index groups. STUDY DESIGN Observational case-control study drawn from a large prospective study on the early prediction of pregnancy complications in women attending their routine first hospital visit at King's College Hospital, London, United Kingdom, in 2010 to 2015. Pregnant women underwent a complete first-trimester assessment, including the collection of blood samples for biobanking. In 11- to 13-week plasma samples of 2501 singleton pregnancies, the levels of preselected metabolites implicated in the prediction of pregnancy complications were analyzed using a targeted liquid chromatography-mass spectrometry method, yielding high-quality quantification data on 50 metabolites. The ratios of amino acid levels involved in arginine biosynthesis and nitric oxide synthase pathways were added to the list of biomarkers. Placental growth factor and pregnancy-associated plasma protein A were also available for all study subjects, serving as comparator risk predictors. Data on 1635 control and 106 pregnancies complicated by preterm preeclampsia were considered for this analysis, normalized using multiples of medians. Prediction analyses were performed across the following patient strata: all subjects and the body mass index classes of <25, 25 to <30, and ≥30 kg/m2. Adjusted median levels were compared between cases and controls and between each body mass index class group. Odds ratios and 95% confidence intervals were calculated at the mean ±1 standard deviation to gauge clinical prediction merits. RESULTS The levels of 13 metabolites were associated with preterm preeclampsia in the entire study population (P<.05) with particularly significant (P<.01) associations found for 6 of them, namely, 2-hydroxy-(2/3)-methylbutyric acid, 25-hydroxyvitamin D3, 2-hydroxybutyric acid, alanine, dodecanoylcarnitine, and 1-(1Z-octadecenyl)-2-oleoyl-sn-glycero-3-phosphocholine. Fold changes in 7 amino acid ratios, all involving glutamine or ornithine, were also significantly different between cases and controls (P<.01). The predictive performance of some metabolites and ratios differed according to body mass index classification; for example, ornithine (P<.001) and several ornithine-related ratios (P<.0001 to P<.01) were only strongly associated with preterm preeclampsia in the body mass index of <25 kg/m2 group, whereas dodecanoylcarnitine and 3 glutamine ratios were particularly predictive in the body mass index of ≥30 kg/m2 group (P<.01). CONCLUSION Single metabolites and ratios of amino acids related to arginine bioavailability and nitric oxide synthase pathways were associated with preterm preeclampsia risk at 11 to 13 weeks of gestation. Differential prediction was observed according to body mass index classes, supporting the existence of distinct maternal risk profiles. Future studies in preeclampsia prediction should account for the possibility of different maternal risk profiles to improve etiologic and prognostic understanding and, ultimately, clinical utility of screening tests.
Collapse
Affiliation(s)
| | - Argyro Syngelaki
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom
| | | | | | | | | | - Kypros H Nicolaides
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom.
| |
Collapse
|
9
|
Bueno-Pereira TO, Bertozzi-Matheus M, Zampieri GM, Abbade JF, Cavalli RC, Nunes PR, Sandrim VC. Markers of Endothelial Dysfunction Are Attenuated by Resveratrol in Preeclampsia. Antioxidants (Basel) 2022; 11:2111. [PMID: 36358483 PMCID: PMC9686533 DOI: 10.3390/antiox11112111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 09/13/2024] Open
Abstract
Preeclampsia (PE) is characterized by great endothelial dysfunction, decreased nitric oxide (NO) bioavailability, and higher levels of arginase activity. In the present study, we investigated the potential modulatory effects of trans-resveratrol (RSV) on arginase and endothelial dysfunction biomarkers in endothelial cells exposed to plasma from patients with PE and healthy pregnant (HP) women, and umbilical arteries from patients with PE. Human umbilical vein endothelial cells (HUVECs) were incubated with pooled plasma from 10 HP or 10 PE pregnant women and RSV; umbilical arteries from patients with PE were incubated with RSV; intracellular NO and total reactive oxygen species (ROS) levels were assessed using a probe that interacted with these radicals; total arginase activity was evaluated measuring the urea produced; total antioxidant capacity was measured using the ferric reduction ability power (FRAP) assay; and endothelial dysfunction biomarkers were assessed using qPCR in endothelial cells and umbilical arteries. RSV increased NO levels and decreased total arginase activity in endothelial cells incubated with plasma from patients with PE. In addition, RSV increased total antioxidant capacity and downregulated endothelial dysfunction biomarkers, such as intercellular adhesion molecule-1 (ICAM-1), von Willebrand factor (vWF), and Caspase-3, (CASP-3), in endothelial cells and umbilical arteries from PE patients. RSV treatment positively modulated the L-arginine-NO pathway, decreased arginase activity, and increased antioxidant capacity, in addition to downregulating endothelial dysfunction biomarkers.
Collapse
Affiliation(s)
- Thaina Omia Bueno-Pereira
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (Unesp), Sao Paulo 18618-689, Brazil
| | - Mariana Bertozzi-Matheus
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (Unesp), Sao Paulo 18618-689, Brazil
| | - Gabriela Morelli Zampieri
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (Unesp), Sao Paulo 18618-689, Brazil
| | - Joelcio Francisco Abbade
- Department of Pathology, Medical School, Sao Paulo State University (Unesp), Sao Paulo 18618-689, Brazil
| | - Ricardo C. Cavalli
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo 14049-900, Brazil
| | - Priscila Rezeck Nunes
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (Unesp), Sao Paulo 18618-689, Brazil
| | - Valeria Cristina Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University (Unesp), Sao Paulo 18618-689, Brazil
| |
Collapse
|
10
|
Foote CA, Soares RN, Ramirez-Perez FI, Ghiarone T, Aroor A, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. Endothelial Glycocalyx. Compr Physiol 2022; 12:3781-3811. [PMID: 35997082 PMCID: PMC10214841 DOI: 10.1002/cphy.c210029] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The glycocalyx is a polysaccharide structure that protrudes from the body of a cell. It is primarily conformed of glycoproteins and proteoglycans, which provide communication, electrostatic charge, ionic buffering, permeability, and mechanosensation-mechanotransduction capabilities to cells. In blood vessels, the endothelial glycocalyx that projects into the vascular lumen separates the vascular wall from the circulating blood. Such a physical location allows a number of its components, including sialic acid, glypican-1, heparan sulfate, and hyaluronan, to participate in the mechanosensation-mechanotransduction of blood flow-dependent shear stress, which results in the synthesis of nitric oxide and flow-mediated vasodilation. The endothelial glycocalyx also participates in the regulation of vascular permeability and the modulation of inflammatory responses, including the processes of leukocyte rolling and extravasation. Its structural architecture and negative charge work to prevent macromolecules greater than approximately 70 kDa and cationic molecules from binding and flowing out of the vasculature. This also prevents the extravasation of pathogens such as bacteria and virus, as well as that of tumor cells. Due to its constant exposure to shear and circulating enzymes such as neuraminidase, heparanase, hyaluronidase, and matrix metalloproteinases, the endothelial glycocalyx is in a continuous process of degradation and renovation. A balance favoring degradation is associated with a variety of pathologies including atherosclerosis, hypertension, vascular aging, metastatic cancer, and diabetic vasculopathies. Consequently, ongoing research efforts are focused on deciphering the mechanisms that promote glycocalyx degradation or limit its syntheses, as well as on therapeutic approaches to improve glycocalyx integrity with the goal of reducing vascular disease. © 2022 American Physiological Society. Compr Physiol 12: 1-31, 2022.
Collapse
Affiliation(s)
- Christopher A. Foote
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Rogerio N. Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Annayya Aroor
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Luis A. Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
11
|
Xu L, Zeng J, Wang H, Liu H. Comparison of Diagnostic Values of Maternal Arginine Concentration for Different Pregnancy Complications: A Systematic Review and Meta-Analysis. Biomedicines 2022; 10:166. [PMID: 35052844 PMCID: PMC8773782 DOI: 10.3390/biomedicines10010166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Abnormal arginine metabolism contributes to the development of intrauterine growth restriction (IUGR), preeclampsia (PE), and gestational diabetes mellitus (GDM), which increase the health burden of mothers and induce adverse birth outcomes. However, associations between maternal arginine concentration and different pregnancy complications have not been systematically compared. The PubMed, ScienceDirect, and Web of Science databases were searched for peer-reviewed publications to evaluate the diagnostic value of plasma arginine concentration in complicated pregnancies. Standardized mean difference (SMD) of the arginine concentration was pooled by a random effects model. The results show that increased maternal arginine concentrations were observed in IUGR (SMD: 0.48; 95% CI: 0.20, 0.76; I2 = 47.0%) and GDM (SMD: 0.46; 95% CI: 0.11, 0.81; I2 = 82.3%) cases but not in PE patients (SMD: 0.21; 95% CI: -0.04, 0.47; I2 = 80.3%) compared with the normal cohorts. Subgroup analyses indicated that the non-fasting circulating arginine concentration in third trimester was increased significantly in GDM and severe IUGR pregnancies, but the change mode was dependent on ethnicity. Additionally, only severe PE persons were accompanied by higher plasma arginine concentrations. These findings suggest that maternal arginine concentration is an important reference for assessing the development of pregnancy complications.
Collapse
Affiliation(s)
| | | | - Huanan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (L.X.); (J.Z.)
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (L.X.); (J.Z.)
| |
Collapse
|
12
|
Zhao H, Li Y, Dong N, Zhang L, Chen X, Mao H, Al-Ameri SAAE, Wang X, Wang Q, Du L, Wang C, Mao H. LncRNA LINC01088 inhibits the function of trophoblast cells, activates the MAPK-signaling pathway and associates with recurrent pregnancy loss. Mol Hum Reprod 2021; 27:gaab047. [PMID: 34264302 DOI: 10.1093/molehr/gaab047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/16/2021] [Indexed: 11/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been reported to be involved in various cellular processes and to participate in a variety of human diseases. Recently, increasing studies have reported that lncRNAs are related to many reproductive diseases, such as pathogenesis of recurrent pregnancy loss (RPL), preeclampsia (PE) and gestational diabetes mellitus (GDM). In this study, we aimed to investigate the effect of LINC01088 in trophoblast cells and its potential role in pathogenesis of RPL. LINC01088 was found to be upregulated in first-trimester chorionic villi tissues from RPL patients. Increased LINC01088 repressed proliferation, migration and invasion of trophoblast cells, and promoted apoptosis of trophoblast cells. Further exploration indicated that LINC01088 decreased the production of nitric oxide (NO) by binding and increasing Arginase-1 and decreasing eNOS protein levels. Importantly, JNK and p38 MAPK-signaling pathways were active after overexpression of LINC01088. In conclusion, our studies demonstrated that LINC01088 plays an important role in the pathogenesis of RPL, and is a potential therapeutic target for the treatment of RPL.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yali Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Nana Dong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Lei Zhang
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xi Chen
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Huihui Mao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Samed Ahmed Al-Ezzi Al-Ameri
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiaoling Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
13
|
Giordano D, Cernaro V, Scilipoti M, Cosentino S, Inferrera R, Fresta J, Andreucci M, Conti G, Buemi M, D'Anna R, Coppolino G. Maternal peripheral blood CD34 + cells for prediction of fetal kidney malformations: results from a case-control analysis. J Matern Fetal Neonatal Med 2021; 34:1679-1682. [PMID: 31315488 DOI: 10.1080/14767058.2019.1645828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE To evaluate the relation between CD34+ cells count in maternal blood and potential development of fetal congenital renal abnormalities. MATERIALS AND METHODS We enrolled 16 women that gave birth to newborns carrying congenital renal malformations over a 3-year period and 48 women with uncomplicated pregnancies (controls) in a 1:3 ratio (three controls per case). RESULTS CD34+ cells in the maternal peripheral blood were significantly lower in the group of women who gave birth to newborns carrying congenital renal malformations compared to the controls (p < .0001). CONCLUSIONS CD34+ cells in maternal blood could be validated as a potential marker to predict the development of possible kidney malformations.
Collapse
Affiliation(s)
- Domenico Giordano
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Valeria Cernaro
- Department of Experimental Medicine, University of Messina, Messina, Italy
| | - Mariagrazia Scilipoti
- Department of Human Pathology in Adulthood and Childhood "G. Barresi", Unit of Pediatric Nephrology and Rheumatology, University of Messina, Messina, Italy
| | - Sonia Cosentino
- Department of Health Sciences, Renal Unit, Magna Graecia University, Catanzaro, Italy
| | - Ramona Inferrera
- Department of Human Pathology in Adulthood and Childhood "G. Barresi", Unit of Pediatric Nephrology and Rheumatology, University of Messina, Messina, Italy
| | - Jlenia Fresta
- Department of Human Pathology in Adulthood and Childhood "G. Barresi", Unit of Pediatric Nephrology and Rheumatology, University of Messina, Messina, Italy
| | - Michele Andreucci
- Department of Health Sciences, Renal Unit, Magna Graecia University, Catanzaro, Italy
| | - Giovanni Conti
- Department of Human Pathology in Adulthood and Childhood "G. Barresi", Unit of Pediatric Nephrology and Rheumatology, University of Messina, Messina, Italy
| | - Michele Buemi
- Department of Experimental Medicine, University of Messina, Messina, Italy
| | - Rosario D'Anna
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Giuseppe Coppolino
- Department of Health Sciences, Renal Unit, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
14
|
Magatti M, Masserdotti A, Cargnoni A, Papait A, Stefani FR, Silini AR, Parolini O. The Role of B Cells in PE Pathophysiology: A Potential Target for Perinatal Cell-Based Therapy? Int J Mol Sci 2021; 22:3405. [PMID: 33810280 PMCID: PMC8037408 DOI: 10.3390/ijms22073405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
The pathophysiology of preeclampsia (PE) is poorly understood; however, there is a large body of evidence that suggests a role of immune cells in the development of PE. Amongst these, B cells are a dominant element in the pathogenesis of PE, and they have been shown to play an important role in various immune-mediated diseases, both as pro-inflammatory and regulatory cells. Perinatal cells are defined as cells from birth-associated tissues isolated from term placentas and fetal annexes and more specifically from the amniotic membrane, chorionic membrane, chorionic villi, umbilical cord (including Wharton's jelly), the basal plate, and the amniotic fluid. They have drawn particular attention in recent years due to their ability to modulate several aspects of immunity, making them promising candidates for the prevention and treatment of various immune-mediated diseases. In this review we describe main findings regarding the multifaceted in vitro and in vivo immunomodulatory properties of perinatal cells, with a focus on B lymphocytes. Indeed, we discuss evidence on the ability of perinatal cells to inhibit B cell proliferation, impair B cell differentiation, and promote regulatory B cell formation. Therefore, the findings discussed herein unveil the possibility to modulate B cell activation and function by exploiting perinatal immunomodulatory properties, thus possibly representing a novel therapeutic strategy in PE.
Collapse
Affiliation(s)
- Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (A.C.); (A.P.); (F.R.S.); (A.R.S.)
| | - Alice Masserdotti
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, 00168 Roma, Italy;
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (A.C.); (A.P.); (F.R.S.); (A.R.S.)
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (A.C.); (A.P.); (F.R.S.); (A.R.S.)
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, 00168 Roma, Italy;
| | - Francesca Romana Stefani
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (A.C.); (A.P.); (F.R.S.); (A.R.S.)
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (M.M.); (A.C.); (A.P.); (F.R.S.); (A.R.S.)
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, 00168 Roma, Italy;
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Roma, Italy
| |
Collapse
|
15
|
Pinto-Souza CC, Coeli-Lacchini F, Luizon MR, Cavalli RC, Lacchini R, Sandrim VC. Effects of arginase genetic polymorphisms on nitric oxide formation in healthy pregnancy and in preeclampsia. Nitric Oxide 2021; 109-110:20-25. [PMID: 33676021 DOI: 10.1016/j.niox.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/22/2021] [Accepted: 02/27/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIMS Preeclampsia is associated with reduced nitric oxide (NO) bioavailability. Arginase is related to NO synthesis, but relatively unexplored in preeclampsia. However, no previous study has examined whether variations in ARG1 and ARG2 genes affect NO bioavailability and the risk of preeclampsia. Here, we compared the alleles and genotypes of single nucleotide polymorphisms (SNPs) in ARG1 (rs2781659; rs2781667; rs2246012; rs17599586) and ARG2 (rs3742879; rs10483801) in healthy pregnant women and preeclampsia, and examined whether these SNPs affect plasma nitrite concentrations (a marker of NO formation) in these groups. METHODS Genotypes for the ARG1 and ARG2 SNPs were determined by Taqman probe and plasma nitrite by an ozone-based chemiluminescence assay. RESULTS Regarding ARG1 SNPs, the GG genotype and G allele frequencies for rs2781659, and the C allele frequencies for rs2246012 were higher in preeclampsia compared to healthy pregnant women. Moreover, the GG genotype for rs2781659 and the TT genotype for rs2781667 were associated with higher plasma nitrite in healthy pregnant. We found no association of ARG2 polymorphisms with preeclampsia or nitrite levels in the study groups. CONCLUSIONS Our results suggest that SNPs of ARG1 increase the risk of preeclampsia and modulate plasma nitrite levels in healthy pregnant women.
Collapse
Affiliation(s)
- Caroline C Pinto-Souza
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Distrito Rubiao Junior, Botucatu, São Paulo, 18618-689, Brazil
| | - Fernanda Coeli-Lacchini
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Marcelo R Luizon
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Ricardo C Cavalli
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, 14049-900, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto School of Nursing, University of Sao Paulo (USP), Ribeirao Preto, Sao Paulo, 14049-900, Brazil
| | - Valeria C Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Distrito Rubiao Junior, Botucatu, São Paulo, 18618-689, Brazil.
| |
Collapse
|
16
|
Shin YY, An SM, Jeong JS, Yang SY, Lee GS, Hong EJ, Jeung EB, Kim SC, An BS. Comparison of steroid hormones in three different preeclamptic models. Mol Med Rep 2021; 23:252. [PMID: 33537808 PMCID: PMC7893799 DOI: 10.3892/mmr.2021.11891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
Preeclampsia (PE) is a complication of pregnancy and is characterized by hypertension and proteinuria, threatening both the mother and the fetus. However, the etiology of PE has not yet been fully understood. Since the imbalance of steroid hormones is associated with the pathogenesis of PE, investigating steroidogenic mechanisms under various PE conditions is essential to understand the entire spectrum of pregnancy disorders. Therefore, the current study established three PE in vitro and in vivo models, and compared the levels of steroid hormones and steroidogenic enzymes within them. In cellular PE models induced by hypoxia, N‑nitro‑L‑arginine methyl ester hydrocholride (L‑NAME) and catechol‑o‑methyltransferase inhibitor, the levels of steroid hormones, including pregnenolone (P5), progesterone (P4), dehydroepiandrosterone (DHEA) and testosterone tended to decrease during steroidogenesis. Injection of L‑NAME in pregnant rats led to a reduction in the levels of estradiol and P4 through regulation of cholesterol side‑chain cleavage enzyme (CYP11A1) and 3β‑hydroxysteroid dehydrogenase/δ5 4‑isomerase type 1 (HSD3B1), whereas rats treated with COMT‑I exhibited elevated levels of P5 and DHEA by regulation of the CYP11A1 and aromatase cytochrome P450 (CYP19A1) in the placenta and plasma. The reduced uterine perfusion pressure operation decreased CYP11A1 and increased CYP19A1 expression in placental tissues, whereas steroid hormone levels were not altered. In conclusion, the results of the present study suggest that the induction of PE conditions dysregulates the steroid hormones via regulation of steroidogenic enzymes, depending on specific PE symptoms. These findings can contribute to the development of novel diagnostic and therapeutic modalities for PE, by monitoring and supplying appropriate levels of steroid hormones.
Collapse
Affiliation(s)
- Ye Young Shin
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Sung-Min An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Jea Sic Jeong
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eui-Bae Jeung
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Seung Chul Kim
- Department of Obstetrics and Gynecology, Biomedical Research Institute, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| |
Collapse
|
17
|
Bakrania BA, Spradley FT, Drummond HA, LaMarca B, Ryan MJ, Granger JP. Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. Compr Physiol 2020; 11:1315-1349. [PMID: 33295016 PMCID: PMC7959189 DOI: 10.1002/cphy.c200008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE), a hypertensive disorder, occurs in 3% to 8% of pregnancies in the United States and affects over 200,000 women and newborns per year. The United States has seen a 25% increase in the incidence of PE, largely owing to increases in risk factors, including obesity and cardiovascular disease. Although the etiology of PE is not clear, it is believed that impaired spiral artery remodeling of the placenta reduces perfusion, leading to placental ischemia. Subsequently, the ischemic placenta releases antiangiogenic and pro-inflammatory factors, such as cytokines, reactive oxygen species, and the angiotensin II type 1 receptor autoantibody (AT1-AA), among others, into the maternal circulation. These factors cause widespread endothelial activation, upregulation of the endothelin system, and vasoconstriction. In turn, these changes affect the function of multiple organ systems including the kidneys, brain, liver, and heart. Despite extensive research into the pathophysiology of PE, the only treatment option remains early delivery of the baby and importantly, the placenta. While premature delivery is effective in ameliorating immediate risk to the mother, mounting evidence suggests that PE increases risk of cardiovascular disease later in life for both mother and baby. Notably, these women are at increased risk of hypertension, heart disease, and stroke, while offspring are at risk of obesity, hypertension, and neurological disease, among other complications, later in life. This article aims to discuss the current understanding of the diagnosis and pathophysiology of PE, as well as associated organ damage, maternal and fetal outcomes, and potential therapeutic avenues. © 2021 American Physiological Society. Compr Physiol 11:1315-1349, 2021.
Collapse
Affiliation(s)
- Bhavisha A. Bakrania
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Frank T. Spradley
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Heather A. Drummond
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Babbette LaMarca
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael J. Ryan
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Joey P. Granger
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
18
|
Gil‐Villa AM, Alvarez AM, Velásquez‐Berrío M, Rojas‐López M, Cadavid J AP. Role of aspirin‐triggered lipoxin A4, aspirin, and salicylic acid in the modulation of the oxidative and inflammatory responses induced by plasma from women with pre‐eclampsia. Am J Reprod Immunol 2019; 83:e13207. [DOI: 10.1111/aji.13207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/19/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Aura María Gil‐Villa
- Grupo Reproducción Departamento de Microbiología y Parasitología Facultad de Medicina Universidad de Antioquia Medellín Colombia
| | - Angela M. Alvarez
- Grupo Reproducción Departamento de Microbiología y Parasitología Facultad de Medicina Universidad de Antioquia Medellín Colombia
- Red Iberoamericana de Alteraciones Vasculares Asociadas a Transtornos del Embarazo (RIVA‐TREM) Chillán Chile
| | - Manuela Velásquez‐Berrío
- Grupo Reproducción Departamento de Microbiología y Parasitología Facultad de Medicina Universidad de Antioquia Medellín Colombia
| | - Mauricio Rojas‐López
- Grupo de Inmunología Celular e Inmunogenética – Unidad de Citometría de Flujo Sede de Investigación Universitaria (SIU) Universidad de Antioquia Medellín Colombia
| | - Angela P. Cadavid J
- Grupo Reproducción Departamento de Microbiología y Parasitología Facultad de Medicina Universidad de Antioquia Medellín Colombia
- Red Iberoamericana de Alteraciones Vasculares Asociadas a Transtornos del Embarazo (RIVA‐TREM) Chillán Chile
| |
Collapse
|
19
|
Guerby P, Swiader A, Tasta O, Pont F, Rodriguez F, Parant O, Vayssière C, Shibata T, Uchida K, Salvayre R, Negre-Salvayre A. Modification of endothelial nitric oxide synthase by 4-oxo-2(E)-nonenal(ONE) in preeclamptic placentas. Free Radic Biol Med 2019; 141:416-425. [PMID: 31323312 DOI: 10.1016/j.freeradbiomed.2019.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 01/21/2023]
Abstract
Preeclampsia (PE) is a leading cause of pregnancy complications, affecting 3-7% of pregnant women worldwide. The pathophysiology of preeclampsia involves a redox imbalance, oxidative stress and a reduced nitric oxide (NO) bioavailability. The molecular and cellular mechanisms leading to the dysfunction of the placental endothelial NO synthase (eNOS) are not clarified. This study was designed to investigate whether aldehydes generated by lipid peroxidation products (LPP), may contribute to placental eNOS dysfunction in PE. The analysis of placentas from PE-affected patients and normal pregnancies, showed a significant increase in protein carbonyl content, indicative of oxidative stress-induced protein modification, as shown by the accumulation of acrolein, 4-hydroxynonenal (HNE), and 4-oxo-2(E)-nonenal (ONE) adducts in PE placentas. In contrast, the levels of these LPP-adducts were low in placentas from normal pregnancies. Immunofluorescence and confocal experiments pointed out a colocalization of eNOS with ONE-Lys adducts, whereas eNOS was not modified in normal placentas. LC-MS/MS analysis of recombinant eNOS preincubated with ONE, allowed to identify several ONE-modified Lys-containing peptides, confirming that eNOS may undergo post-translational modification by LPP. The preincubation of HTR-8/SVneo human trophoblasts (HTR8) with ONE, resulted in ONE-Lys modification of eNOS and a reduced generation of NO. ONE inhibited the migration of HTR8 trophoblasts in the wound closure model, and this was partly restored by the NO donor, NOC-18, which confirmed the important role of NO in the invasive potential of trophoblasts. In conclusion, placental eNOS is modified by ONE in PE placentas, which emphasizes the sensitivity of this protein to oxidative stress in the disturbed redox environment of preeclamptic pregnancies.
Collapse
Affiliation(s)
- Paul Guerby
- Inserm U-1048, Université de Toulouse, France; Pôle de Gynécologie Obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | | | - Oriane Tasta
- Inserm U-1048, Université de Toulouse, France; Pôle de Gynécologie Obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | | | | | - Olivier Parant
- Pôle de Gynécologie Obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | - Christophe Vayssière
- Pôle de Gynécologie Obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | - Koji Uchida
- Laboratory of Food Chemistry, University of Tokyo, Japan
| | | | | |
Collapse
|
20
|
Dymara-Konopka W, Laskowska M. The Role of Nitric Oxide, ADMA, and Homocysteine in The Etiopathogenesis of Preeclampsia-Review. Int J Mol Sci 2019; 20:ijms20112757. [PMID: 31195628 PMCID: PMC6600256 DOI: 10.3390/ijms20112757] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Preeclampsia is a serious, pregnancy-specific, multi-organ disease process of compound aetiology. It affects 3–6% of expecting mothers worldwide and it persists as a leading cause of maternal and foetal morbidity and mortality. In fact, hallmark features of preeclampsia (PE) result from vessel involvement and demonstrate maternal endothelium as a target tissue. Growing evidence suggests that chronic placental hypoperfusion triggers the production and release of certain agents that are responsible for endothelial activation and injury. In this review, we will present the latest findings on the role of nitric oxide, asymmetric dimethylarginine (ADMA), and homocysteine in the etiopathogenesis of preeclampsia and their possible clinical implications.
Collapse
Affiliation(s)
- Weronika Dymara-Konopka
- Department of Obstetrics and Perinatology, Medical University of Lublin, Poland, 20-950 Lublin, Jaczewskiego 8, Poland.
| | - Marzena Laskowska
- Department of Obstetrics and Perinatology, Medical University of Lublin, Poland, 20-950 Lublin, Jaczewskiego 8, Poland.
| |
Collapse
|
21
|
Guerby P, Swiader A, Augé N, Parant O, Vayssière C, Uchida K, Salvayre R, Negre-Salvayre A. High glutathionylation of placental endothelial nitric oxide synthase in preeclampsia. Redox Biol 2019; 22:101126. [PMID: 30738311 PMCID: PMC6370867 DOI: 10.1016/j.redox.2019.101126] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
Decreased nitric oxide (NO) bioavailability plays a critical role in the pathophysiology of preeclampsia (PE). Recent evidence indicates that S-glutathionylation may occur on the endothelial nitric oxide synthase (eNOS), leading to eNOS uncoupling, characterized by a decreased NO production and an increased generation of superoxide anion (O2•-). We hypothesized that eNOS glutathionylation may occur in PE placentas and participate in eNOS dysfunction. The glutathionylation of eNOS was investigated in thirteen PE-affected patients and in nine normal pregnancies. Immunofluorescence, confocal microscopy and western-blot experiments carried out on eNOS immunoprecipitates, revealed a high level of eNOS glutathionylation in PE placentas, mostly reversed by dithiotreitol (DTT), thus indicative of S-glutathionylation. In order to investigate whether eNOS glutathionylation may alter trophoblast migration, an important event occurring during early placentation, cultured HTR-8/SVneo human trophoblasts (HTR8) were exposed either to low pO2 (O2 1%) or to pO2 changes (O2 1-20%), in order to generate oxidative stress. Trophoblasts exposed to low pO2, did not undergo oxidative stress nor eNOS S-glutathionylation, and were able to generate NO and migrate in a wound closure model. In contrast, trophoblasts submitted to low/high pO2 changes, exhibited oxidative stress and a (DTT reversible) S-glutathionylation of eNOS, associated with reduced NO production and migration. The autonomous production of NO seemed necessary for the migratory potential of HTR8, as suggested by the inhibitory effect of eNOS silencing by small interfering RNAs, and the eNOS inhibitor L-NAME, in low pO2 conditions. Finally, the addition of the NO donor, NOC-18 (5 µM), restored in part the migration of HTR8, thereby emphasizing the role of NO in trophoblast homeostasis. In conclusion, the high level of eNOS S-glutathionylation in PE placentas provides new insights in the mechanism of eNOS dysfunction in this disease.
Collapse
Affiliation(s)
- Paul Guerby
- Inserm U-1048, Université de Toulouse, France; Pôle de gynécologie obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | | | | | - Olivier Parant
- Pôle de gynécologie obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | - Christophe Vayssière
- Pôle de gynécologie obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | - Koji Uchida
- Laboratory of Food Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
22
|
Malik A, Jee B, Gupta SK. Preeclampsia: Disease biology and burden, its management strategies with reference to India. Pregnancy Hypertens 2018; 15:23-31. [PMID: 30825923 DOI: 10.1016/j.preghy.2018.10.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 11/19/2022]
Abstract
Preeclampsia is the cause of significant maternal and fetal mortality and morbidity. It is characterized by new-onset hypertension and proteinuria after 20 weeks of gestation. Preeclamptic women and children born from preeclamptic pregnancies are at greater risk to develop severe cardiovascular complications and metabolic syndromes later in life. The incidence of preeclampsia is estimated to be seven times higher in developing countries as compared to the developed countries. This review summarizes the pathophysiology of preeclampsia, emerging new hypothesis of its origin, risk factors that make women susceptible to developing preeclampsia and the potential of various biomarkers being studied to predict preeclampsia. The health care of developing countries is continuously challenged by substantial burden of maternal and fetal mortality. India despite being a fast developing country, is still far behind in achieving the required maternal mortality rates as per Millennium Development Goals set by the World Health Organization. Further, this review discusses the prevalence of preeclampsia in India, health facilities to manage preeclampsia, current guidelines and protocols followed and government policies to combat this complication in Indian condition.
Collapse
Affiliation(s)
- Ankita Malik
- Reproductive Cell Biology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| | - Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi 110 001, India
| | - Satish Kumar Gupta
- Reproductive Cell Biology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| |
Collapse
|
23
|
Das UN. Angiogenic, Antiangiogenic Molecules, and Bioactive Lipids in Preeclampsia. Am J Hypertens 2017; 30:864-870. [PMID: 28830084 DOI: 10.1093/ajh/hpx120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/30/2017] [Indexed: 12/24/2022] Open
|
24
|
Berkane N, Liere P, Oudinet JP, Hertig A, Lefèvre G, Pluchino N, Schumacher M, Chabbert-Buffet N. From Pregnancy to Preeclampsia: A Key Role for Estrogens. Endocr Rev 2017; 38:123-144. [PMID: 28323944 DOI: 10.1210/er.2016-1065] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 02/28/2017] [Indexed: 02/08/2023]
Abstract
Preeclampsia (PE) results in placental dysfunction and is one of the primary causes of maternal and fetal mortality and morbidity. During pregnancy, estrogen is produced primarily in the placenta by conversion of androgen precursors originating from maternal and fetal adrenal glands. These processes lead to increased plasma estrogen concentrations compared with levels in nonpregnant women. Aberrant production of estrogens could play a key role in PE symptoms because they are exclusively produced by the placenta and they promote angiogenesis and vasodilation. Previous assessments of estrogen synthesis during PE yielded conflicting results, possibly because of the lack of specificity of the assays. However, with the introduction of reliable analytical protocols using liquid chromatography/mass spectrometry or gas chromatography/mass spectrometry, more recent studies suggest a marked decrease in estradiol levels in PE. The aim of this review is to summarize current knowledge of estrogen synthesis, regulation in the placenta, and biological effects during pregnancy and PE. Moreover, this review highlights the links among the occurrence of PE, estrogen biosynthesis, angiogenic factors, and cardiovascular risk factors. A close link between estrogen dysregulation and PE occurrence might validate estrogen levels as a biomarker but could also reveal a potential approach for prevention or cure of PE.
Collapse
Affiliation(s)
- Nadia Berkane
- Department of Gynecology and Obstetrics of University Hospital of Geneva, 1205, Genève, Switzerland.,U1195, INSERM and University Paris Sud, 94276 Kremlin Bicêtre, France
| | - Philippe Liere
- U1195, INSERM and University Paris Sud, 94276 Kremlin Bicêtre, France
| | - Jean-Paul Oudinet
- U1195, INSERM and University Paris Sud, 94276 Kremlin Bicêtre, France
| | - Alexandre Hertig
- Department of Nephrology, Tenon Hospital, APHP, 75020 Paris, France.,University of Pierre and Marie Curie, Sorbonne University, Paris 06, 75005 Paris, France.,Unité Mixte de Recherche Scientifique 1155, F-75020 Paris, France
| | - Guillaume Lefèvre
- University of Pierre and Marie Curie, Sorbonne University, Paris 06, 75005 Paris, France.,Department of Biochemistry and Hormonology, Tenon Hospital, APHP, F-75020 Paris, France
| | - Nicola Pluchino
- Department of Gynecology and Obstetrics of University Hospital of Geneva, 1205, Genève, Switzerland
| | | | - Nathalie Chabbert-Buffet
- University of Pierre and Marie Curie, Sorbonne University, Paris 06, 75005 Paris, France.,Department of Obstetrics, Gynecology and Reproductive Medicine, Tenon Hospital, APHP, F-75020 Paris, France.,INSERM, UMR-S938, Centre de Recherche Saint-Antoine, F-75012 Paris, France
| |
Collapse
|
25
|
Laganà AS, Giordano D, Loddo S, Zoccali G, Vitale SG, Santamaria A, Buemi M, D'Anna R. Decreased Endothelial Progenitor Cells (EPCs) and increased Natural Killer (NK) cells in peripheral blood as possible early markers of preeclampsia: a case-control analysis. Arch Gynecol Obstet 2017; 295:867-872. [PMID: 28243732 DOI: 10.1007/s00404-017-4296-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/10/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE Endothelial Progenitor Cells (EPCs) and Natural Killer (NK) cells were recently advocates in the pathogenesis of preeclampsia (PE), since they can be mobilized into the bloodstream and may orchestrate vascular endothelium function. The aim of our study was to evaluate in early pregnancy circulating EPCs and NK cells in peripheral blood in women who later developed PE compared to uncomplicated pregnancies. METHODS We prospectively enrolled pregnant women at 9+0-11+6 weeks of gestation at the time of first-trimester integrated screening for trisomy 21, who underwent peripheral venous blood (20 mL) sample. We included only women who later developed PE (cases) and women with uncomplicated pregnancy (controls), matched for maternal age, parity, and Body Mass Index. In these groups, we evaluated the levels of CD16+CD45+CD56+ NK cells and CD34+CD133+VEGF-R2+ EPCs in peripheral blood samples previously stored. RESULTS EPCs were significantly lower (p < 0.001), whereas NK cells were significantly higher (p < 0.001) in PE group compared to uncomplicated pregnancies during the first trimester. CONCLUSION The evaluation of EPCs and NK cells in peripheral blood during the first trimester may be considered an effective screening for the early identification of women at risk of developing PE.
Collapse
Affiliation(s)
- Antonio Simone Laganà
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy.
| | - Domenico Giordano
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Saverio Loddo
- Department of Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe Zoccali
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Salvatore Giovanni Vitale
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Angelo Santamaria
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Michele Buemi
- Department of Experimental Medicine, University of Messina, Messina, Italy
| | - Rosario D'Anna
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| |
Collapse
|
26
|
Phipps E, Prasanna D, Brima W, Jim B. Preeclampsia: Updates in Pathogenesis, Definitions, and Guidelines. Clin J Am Soc Nephrol 2016; 11:1102-1113. [PMID: 27094609 PMCID: PMC4891761 DOI: 10.2215/cjn.12081115] [Citation(s) in RCA: 382] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Preeclampsia is becoming an increasingly common diagnosis in the developed world and remains a high cause of maternal and fetal morbidity and mortality in the developing world. Delay in childbearing in the developed world feeds into the risk factors associated with preeclampsia, which include older maternal age, obesity, and/or vascular diseases. Inadequate prenatal care partially explains the persistent high prevalence in the developing world. In this review, we begin by presenting the most recent concepts in the pathogenesis of preeclampsia. Upstream triggers of the well described angiogenic pathways, such as the heme oxygenase and hydrogen sulfide pathways, as well as the roles of autoantibodies, misfolded proteins, nitric oxide, and oxidative stress will be described. We also detail updated definitions, classification schema, and treatment targets of hypertensive disorders of pregnancy put forth by obstetric and hypertensive societies throughout the world. The shift has been made to view preeclampsia as a systemic disease with widespread endothelial damage and the potential to affect future cardiovascular diseases rather than a self-limited occurrence. At the very least, we now know that preeclampsia does not end with delivery of the placenta. We conclude by summarizing the latest strategies for prevention and treatment of preeclampsia. A better understanding of this entity will help in the care of at-risk women before delivery and for decades after.
Collapse
Affiliation(s)
- Elizabeth Phipps
- Department of Nephrology/Medicine, Jacobi Medical Center at Albert Einstein College of Medicine, Bronx, New York; and
| | - Devika Prasanna
- Department of Nephrology/Medicine, Jacobi Medical Center at Albert Einstein College of Medicine, Bronx, New York; and
| | - Wunnie Brima
- Department of Medicine, James J. Peters Veterans Affairs Medical Center, New York, New York
| | - Belinda Jim
- Department of Nephrology/Medicine, Jacobi Medical Center at Albert Einstein College of Medicine, Bronx, New York; and
| |
Collapse
|
27
|
Burke SD, Zsengellér ZK, Khankin EV, Lo AS, Rajakumar A, DuPont JJ, McCurley A, Moss ME, Zhang D, Clark CD, Wang A, Seely EW, Kang PM, Stillman IE, Jaffe IZ, Karumanchi SA. Soluble fms-like tyrosine kinase 1 promotes angiotensin II sensitivity in preeclampsia. J Clin Invest 2016; 126:2561-74. [PMID: 27270170 DOI: 10.1172/jci83918] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 04/07/2016] [Indexed: 12/11/2022] Open
Abstract
Preeclampsia is a hypertensive disorder of pregnancy in which patients develop profound sensitivity to vasopressors, such as angiotensin II, and is associated with substantial morbidity for the mother and fetus. Enhanced vasoconstrictor sensitivity and elevations in soluble fms-like tyrosine kinase 1 (sFLT1), a circulating antiangiogenic protein, precede clinical signs and symptoms of preeclampsia. Here, we report that overexpression of sFlt1 in pregnant mice induced angiotensin II sensitivity and hypertension by impairing endothelial nitric oxide synthase (eNOS) phosphorylation and promoting oxidative stress in the vasculature. Administration of the NOS inhibitor l-NAME to pregnant mice recapitulated the angiotensin sensitivity and oxidative stress observed with sFlt1 overexpression. Sildenafil, an FDA-approved phosphodiesterase 5 inhibitor that enhances NO signaling, reversed sFlt1-induced hypertension and angiotensin II sensitivity in the preeclampsia mouse model. Sildenafil treatment also improved uterine blood flow, decreased uterine vascular resistance, and improved fetal weights in comparison with untreated sFlt1-expressing mice. Finally, sFLT1 protein expression inversely correlated with reductions in eNOS phosphorylation in placental tissue of human preeclampsia patients. These data support the concept that endothelial dysfunction due to high circulating sFLT1 may be the primary event leading to enhanced vasoconstrictor sensitivity that is characteristic of preeclampsia and suggest that targeting sFLT1-induced pathways may be an avenue for treating preeclampsia and improving fetal outcomes.
Collapse
|
28
|
Kasawara KT, Cotechini T, Macdonald-Goodfellow SK, Surita FG, Pinto e Silva JL, Tayade C, Othman M, Ozolinš TRS, Graham CH. Moderate Exercise Attenuates Lipopolysaccharide-Induced Inflammation and Associated Maternal and Fetal Morbidities in Pregnant Rats. PLoS One 2016; 11:e0154405. [PMID: 27124733 PMCID: PMC4849647 DOI: 10.1371/journal.pone.0154405] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/13/2016] [Indexed: 12/21/2022] Open
Abstract
Fetal growth restriction (FGR) and coagulopathies are often associated with aberrant maternal inflammation. Moderate-intensity exercise during pregnancy has been shown to increase utero-placental blood flow and to enhance fetal nutrition as well as fetal and placental growth. Furthermore, exercise is known to reduce inflammation. To evaluate the effect of moderate-intensity exercise on inflammation associated with the development of maternal coagulopathies and FGR, Wistar rats were subjected to an exercise regime before and during pregnancy. To model inflammation-induced FGR, pregnant rats were administered daily intraperitoneal injections of E. coli lipopolysaccharide (LPS) on gestational days (GD) 13.5–16.5 and sacrificed at GD 17.5. Control rats were injected with saline. Maternal hemostasis was assessed by thromboelastography. Moderate-intensity exercise prevented LPS-mediated increases in white blood cell counts measured on GD 17.5 and improved maternal hemostasis profiles. Importantly, our data reveal that exercise prevented LPS-induced FGR. Moderate-intensity exercise initiated before and maintained during pregnancy may decrease the severity of maternal and perinatal complications associated with abnormal maternal inflammation.
Collapse
Affiliation(s)
- Karina T. Kasawara
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Obstetrics and Gynaecology, University of Campinas, Campinas, SP, Brazil
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | | | - Fernanda G. Surita
- Department of Obstetrics and Gynaecology, University of Campinas, Campinas, SP, Brazil
| | - João L. Pinto e Silva
- Department of Obstetrics and Gynaecology, University of Campinas, Campinas, SP, Brazil
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Maha Othman
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Terence R. S. Ozolinš
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Charles H. Graham
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- * E-mail:
| |
Collapse
|
29
|
Ahmed A, Ramma W. Unravelling the theories of pre-eclampsia: are the protective pathways the new paradigm? Br J Pharmacol 2016; 172:1574-86. [PMID: 25303561 PMCID: PMC4354257 DOI: 10.1111/bph.12977] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 09/30/2014] [Accepted: 10/05/2014] [Indexed: 01/03/2023] Open
Abstract
Pre-eclampsia is a vascular disorder of pregnancy where anti-angiogenic factors, systemic inflammation and oxidative stress predominate, but none can claim to cause pre-eclampsia. This review provides an alternative to the ‘two-stage model’ of pre-eclampsia in which abnormal spiral arteries modification leads to placental hypoxia, oxidative stress and aberrant maternal systemic inflammation. Very high maternal soluble fms-like tyrosine kinase-1 (sFlt-1 also known as sVEGFR) and very low placenta growth factor (PlGF) are unique to pre-eclampsia; however, abnormal spiral arteries and excessive inflammation are also prevalent in other placental disorders. Metaphorically speaking, pregnancy can be viewed as a car with an accelerator and brakes, where inflammation, oxidative stress and an imbalance in the angiogenic milieu act as the ‘accelerator’. The ‘braking system’ includes the protective pathways of haem oxygenase 1 (also referred as Hmox1 or HO-1) and cystathionine-γ-lyase (also known as CSE or Cth), which generate carbon monoxide (CO) and hydrogen sulphide (H2S) respectively. The failure in these pathways (brakes) results in the pregnancy going out of control and the system crashing. Put simply, pre-eclampsia is an accelerator–brake defect disorder. CO and H2S hold great promise because of their unique ability to suppress the anti-angiogenic factors sFlt-1 and soluble endoglin as well as to promote PlGF and endothelial NOS activity. The key to finding a cure lies in the identification of cheap, safe and effective drugs that induce the braking system to keep the pregnancy vehicle on track past the finishing line.
Collapse
Affiliation(s)
- Asif Ahmed
- Vascular Therapeutics Unit, Aston Medical School, Aston University, Birmingham, UK
| | | |
Collapse
|
30
|
Ahmed A, Rezai H, Broadway-Stringer S. Evidence-Based Revised View of the Pathophysiology of Preeclampsia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 956:355-374. [PMID: 27873232 DOI: 10.1007/5584_2016_168] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Preeclampsia is a life-threatening vascular disorder of pregnancy due to a failing stressed placenta. Millions of women risk death to give birth each year and globally each year, almost 300,000 lose their life in this process and over 500,000 babies die as a consequence of preeclampsia. Despite decades of research, we lack pharmacological agents to treat it. Maternal endothelial oxidative stress is a central phenomenon responsible for the preeclampsia phenotype of high maternal blood pressure and proteinuria. In 1997, it was proposed that preeclampsia arises due to the loss of VEGF activity, possibly due to elevation in anti-angiogenic factor, soluble Flt-1 (sFlt-1). Researchers showed that high sFlt-1 and soluble endoglin (sEng) elicit the severe preeclampsia phenotype in pregnant rodents. We demonstrated that heme oxygenase-1 (HO-1)/carbon monoxide (CO) pathway prevents placental stress and suppresses sFlt-1 and sEng release. Likewise, hydrogen sulphide (H2S)/cystathionine-γ-lyase (Cth) systems limit sFlt-1 and sEng and protect against the preeclampsia phenotype in mice. Importantly, H2S restores placental vasculature, and in doing so improves lagging fetal growth. These molecules act as the inhibitor systems in pregnancy and when they fail, preeclampsia is triggered. In this review, we discuss what are the hypotheses and models for the pathophysiology of preeclampsia on the basis of Bradford Hill causation criteria for disease causation and how further in vivo experimentation is needed to establish 'proof of principle'. Hypotheses that fail to meet the Bradford Hill causation criteria include abnormal spiral artery remodelling and inflammation and should be considered associated or consequential to the disorder. In contrast, the protection against cellular stress hypothesis that states that the protective pathways mitigate cellular stress by limiting elevation of anti-angiogenic factors or oxidative stress and the subsequent clinical signs of preeclampsia appear to fulfil most of Bradford Hill causation criteria. Identifying the candidates on the roadmap to this pathway is essential in developing diagnostics and therapeutics to target the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Asif Ahmed
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK.
| | - Homira Rezai
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| | - Sophie Broadway-Stringer
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| |
Collapse
|
31
|
Harapan H, Yeni CM. The role of microRNAs on angiogenesis and vascular pressure in preeclampsia: The evidence from systematic review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2015. [DOI: 10.1016/j.ejmhg.2015.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
Oyston CJ, Stanley JL, Baker PN. Potential targets for the treatment of preeclampsia. Expert Opin Ther Targets 2015; 19:1517-30. [DOI: 10.1517/14728222.2015.1088004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Barnea ER, Vialard F, Moindjie H, Ornaghi S, Dieudonne MN, Paidas MJ. PreImplantation Factor (PIF*) endogenously prevents preeclampsia: Promotes trophoblast invasion and reduces oxidative stress. J Reprod Immunol 2015; 114:58-64. [PMID: 26257082 DOI: 10.1016/j.jri.2015.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/15/2015] [Accepted: 06/08/2015] [Indexed: 12/17/2022]
Abstract
Preeclampsia is a unique pregnancy disorder whose patho-physiology is initiated early in gestation, while clinical manifestations typically occur in mid-to-late pregnancy. Thus, prevention should optimally be initiated in early gestation. The intimate interaction between PIF, secreted early by viable embryos, and its host-mother provides insight into putative mechanisms of preeclampsia prevention. PIF is instrumental at the two critical events underlying preeclampsia. At first, shallow implantation leads to impaired placentation, oxidative stress, protein misfolding, and endothelial dysfunction. Later in gestation, hyper-oxygenation due to overflow of maternally derived oxygenated blood compromises the placenta. The first is likely involved in early preeclampsia occurrence due to reduced effectiveness of trophoblast/uterus interaction. The latter is observed with later-onset preeclampsia, caused by a breakdown in placental blood flow regulation. We reported that 1. PIF promotes implantation, endometrium receptivity, trophoblast invasion and increases pro-tolerance trophoblastic HLA-G expression and, 2. PIF protects against oxidative stress and protein misfolding, interacting with specific targets in embryo, 3. PIF regulates systemic immunity to reduce oxidative stress. Using PIF as an early preventative preeclampsia intervention could ameliorate or even prevent the disease, whose current main solution is early delivery.
Collapse
Affiliation(s)
- E R Barnea
- Society for the Investigation of Early Pregnancy, 1697 Lark Lane, Cherry Hill, NJ 08003, USA; BioIncept, LLC, 1697 Lark Lane, Cherry Hill, NJ 08003, USA.
| | - F Vialard
- UPRES-EA 2493, Université de Versailles-St-Quentin, Unité de Formation et de Recherche des Sciences de la Santé-Simone Veil, Montigny-le-Bretonneux, France; Department of Biology of Reproduction, Cytogenetic, Gynecology and Obstetrics, Centre Hospitalier de Poissy-Saint Germain, 23 Boulevard Gambetta, Poissy, France.
| | - H Moindjie
- Department of Biology of Reproduction, Cytogenetic, Gynecology and Obstetrics, Centre Hospitalier de Poissy-Saint Germain, 23 Boulevard Gambetta, Poissy, France.
| | - S Ornaghi
- Department of Obstetrics and Gynecology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, Milano, Italy; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Women and Children's Center For Blood Disorders and Preeclampsia Advancement, Yale University School of Medicine, 333 Cedar Street, FMB 339B, New Haven, CT 06520-8063, USA.
| | - M N Dieudonne
- UPRES-EA 2493, Université de Versailles-St-Quentin, Unité de Formation et de Recherche des Sciences de la Santé-Simone Veil, Montigny-le-Bretonneux, France.
| | - M J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Women and Children's Center For Blood Disorders and Preeclampsia Advancement, Yale University School of Medicine, 333 Cedar Street, FMB 339B, New Haven, CT 06520-8063, USA.
| |
Collapse
|
34
|
Bassareo PP, Mussap M, Bassareo V, Flore G, Mercuro G. Nitrergic system and plasmatic methylarginines: Evidence of their role in the perinatal programming of cardiovascular diseases. Clin Chim Acta 2015; 451:21-7. [PMID: 26004093 DOI: 10.1016/j.cca.2015.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/17/2015] [Indexed: 01/28/2023]
Abstract
Atherosclerosis, in turn preceded by endothelial dysfunction, underlies a series of important cardiovascular diseases. Reduced bioavailability of endothelial nitric oxide, by increasing vascular tone and promoting platelet aggregation, leukocyte adhesion, and smooth muscle cell proliferation, plays a key role in the onset of the majority of cardiovascular diseases. In addition, high blood levels of asymmetric dimethylarginine, a potent inhibitor of nitric oxide synthesis, are associated with future development of adverse cardiovascular events and cardiac death. Recent reports have demonstrated that another methylarginine, i.e., symmetric dimethylarginine, is also involved in the onset of endothelial dysfunction and hypertension. Almost a decade ago, prematurity at birth and intrauterine growth retardation were first associated with a potential negative influence on the cardiovascular apparatus, thus constituting risk factors or leading to early onset of cardiovascular diseases. This condition is referred to as cardiovascular perinatal programming. Accordingly, cardiovascular morbidity and mortality are higher among former preterm adults than in those born at term. The aim of this paper was to undertake a comprehensive literature review focusing on cellular and biochemical mechanisms resulting in both reduced nitric oxide bioavailability and increased methylarginine levels in subjects born preterm. Evidence of the involvement of these compounds in the perinatal programming of cardiovascular risk are also discussed.
Collapse
Affiliation(s)
- Pier Paolo Bassareo
- Department of Cardiovascular and Neurological Sciences, University of Cagliari, Cagliari, Italy.
| | - Michele Mussap
- Department of Laboratory Medicine, IRCCS San Martino-IST, University Hospital, National Institute for Cancer Research, Genova, Italy
| | - Valentina Bassareo
- Department of Toxicology, CNR Institute of Neuroscience, Section of Cagliari, National Institute of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Giovanna Flore
- Department of Cardiovascular and Neurological Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppe Mercuro
- Department of Cardiovascular and Neurological Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
35
|
Bernardi FC, Vuolo F, Petronilho F, Michels M, Ritter C, Dal-Pizzol F. Plasma nitric oxide, endothelin-1, arginase and superoxide dismutase in the plasma and placentae from preeclamptic patients. ACTA ACUST UNITED AC 2015; 87:713-9. [DOI: 10.1590/0001-3765201520140069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 08/25/2014] [Indexed: 11/21/2022]
Abstract
The aim of this study was to determine parameters of NO metabolism in plasma and placenta of preeclamptic (PE) patients. It was conducted a case-control study at São José Hospital, Brazil. Thirty-three PE and 33 normotensive pregnant were included in the study. The diagnosis of PE was established in accordance with the definitions of American College of Obstetricians and Gynecologists. Peripheral venous blood and placenta samples were obtained at postpartum period. Plasma NO levels and SOD activity were significantly lower and endothelin-1 levels and arginase activity were significantly higher in PE women when compared to controls. None of the analyzed parameters were different in the placenta between groups. Our findings suggest that parameters associated with NO metabolism are altered only at the systemic level, but not in placenta of PE patients.
Collapse
|
36
|
Cytokines, angiogenic, and antiangiogenic factors and bioactive lipids in preeclampsia. Nutrition 2015; 31:1083-95. [PMID: 26233865 DOI: 10.1016/j.nut.2015.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/07/2015] [Accepted: 03/19/2015] [Indexed: 02/03/2023]
Abstract
Preeclampsia is a low-grade systemic inflammatory condition in which oxidative stress and endothelial dysfunction occurs. Plasma levels of soluble receptor for vascular endothelial growth factor (VEGFR)-1, also known as sFlt1 (soluble fms-like tyrosine kinase 1), an antiangiogenic factor have been reported to be elevated in preeclampsia. It was reported that pregnant mice deficient in catechol-O-methyltransferase (COMT) activity show a preeclampsia-like phenotype due to a deficiency or absence of 2-methoxyoestradiol (2-ME), a natural metabolite of estradiol that is elevated during the third trimester of normal human pregnancy. Additionally, autoantibodies (AT1-AAs) that bind and activate the angiotensin II receptor type 1 a (AT1 receptor) also have a role in preeclampsia. None of these abnormalities are consistently seen in all the patients with preeclampsia and some of them are not specific to pregnancy. Preeclampsia could occur due to an imbalance between pro- and antiangiogenic factors. VEGF, an angiogenic factor, is necessary for the transport of polyunsaturated fatty acids (PUFAs) to endothelial cells. Hence reduced VEGF levels decrease the availability of PUFAs to endothelial cells. This leads to a decrease in the formation of anti-inflammatory and angiogenic factors: lipoxins, resolvins, protectins, and maresins from PUFAs. Lipoxins, resolvins, protectins, maresins, and PUFAs suppress insulin resistance; activation of leukocytes, platelets, and macrophages; production of interleukin-6 and tumor necrosis factor-α; and oxidative stress and endothelial dysfunction; and enhance production of prostacyclin and nitric oxide (NO). Estrogen enhances the formation of lipoxin A4 and NO. PUFAs also augment the production of NO and inhibit the activity of angiotensin-converting enzyme and antagonize the actions of angiotensin II. Thus, PUFAs can prevent activation of angiotensin II receptor type 1 a (AT1 receptor). Patients with preeclampsia have decreased plasma phospholipid concentrations of arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), the precursors of lipoxins (from AA), resolvins (from EPA and DHA), and protectins (from DHA) and prostaglandin E1 (PGE1 from DGLA: dihomo-γ-linolenic acid) and prostacyclin (PGI2 derived from AA). Based on these evidences, it is proposed that preeclampsia may occur due to deficiency of PUFAs and their anti-inflammatory products: lipoxins, resolvins, protectins, and maresins.
Collapse
|
37
|
Hansson SR, Nääv Å, Erlandsson L. Oxidative stress in preeclampsia and the role of free fetal hemoglobin. Front Physiol 2015; 5:516. [PMID: 25628568 PMCID: PMC4292435 DOI: 10.3389/fphys.2014.00516] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/16/2014] [Indexed: 02/04/2023] Open
Abstract
Preeclampsia is a leading cause of pregnancy complications and affects 3-7% of pregnant women. This review summarizes the current knowledge of a new potential etiology of the disease, with a special focus on hemoglobin-induced oxidative stress. Furthermore, we also suggest hemoglobin as a potential target for therapy. Gene and protein profiling studies have shown increased expression and accumulation of free fetal hemoglobin in the preeclamptic placenta. Predominantly due to oxidative damage to the placental barrier, fetal hemoglobin leaks over to the maternal circulation. Free hemoglobin and its metabolites are toxic in several ways; (a) ferrous hemoglobin (Fe(2+)) binds strongly to the vasodilator nitric oxide (NO) and reduces the availability of free NO, which results in vasoconstriction, (b) hemoglobin (Fe(2+)) with bound oxygen spontaneously generates free oxygen radicals, and (c) the heme groups create an inflammatory response by inducing activation of neutrophils and cytokine production. The endogenous protein α1-microglobulin, with radical and heme binding properties, has shown both ex vivo and in vivo to have the ability to counteract free hemoglobin-induced placental and kidney damage. Oxidative stress in general, and more specifically fetal hemoglobin-induced oxidative stress, could play a key role in the pathology of preeclampsia seen both in the placenta and ultimately in the maternal endothelium.
Collapse
Affiliation(s)
- Stefan R. Hansson
- Department of Obstetrics and Gynecology, Institute for Clinical Sciences, Lund UniversityLund, Sweden
| | | | | |
Collapse
|
38
|
Erbaş H, Bal O, Çakır E. Effect of rosuvastatin on arginase enzyme activity and polyamine production in experimental breast cancer. Balkan Med J 2015; 32:89-95. [PMID: 25759778 DOI: 10.5152/balkanmedj.2015.15611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/08/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Breast cancer is the most common malignant tumour of women around the world. As a key enzyme of the urea cycle, arginase leads to the formation of urea and ornithine from L-arginine. In the patients with several different cancers, arginase has been found to be higher and reported to be a useful biological marker. AIMS The aim of this study was to investigate the effect of rosuvastatin on serum and cancer tissue arginase enzyme activity, and ornithine and polyamine (putrescine, spermidine, spermine) levels. STUDY DESIGN Animal experiment. METHODS In this study, 50 male Balb/c mice were used. Erchlich acid tumour cells were injected into the subcutaneous part of their left foot. The mice were divided into five groups: healthy control group, healthy treatment, tumour control, treatment 1 and treatment 2. Then, 1 mg/kg and 20 mg/kg doses of rosuvastatin were given intraperitoneally. Serum and tissue arginase enzyme activities and tissue ornithine levels were determined spectrophotometrically. HPLC measurement of polyamines were applied. RESULTS Increased serum arginase activity and polyamine levels were significantly decreased with rosuvastatin treatment. In the tumour tissue, arginase activity and ornithine levels were significantly decreased in treatment groups compared to the tumour group. Tissue polyamine levels also decreased with rosuvastatin treatment. CONCLUSION We suggest that rosuvastatin may have some protective effects on breast cancer development as it inhibits arginase enzyme activity and ornithine levels, precursors of polyamines, and also polyamine levels. This protective effect may be through the induction of nitric oxide (NO) production via nitric oxide synthase (NOS). As a promising anticancer agent, the net effects of rosuvastatin in this mechanism should be supported with more advanced studies and new parameters.
Collapse
Affiliation(s)
- Hakan Erbaş
- Department of Medical Biochemistry, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Oğuz Bal
- Department of Medical Biochemistry, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Erol Çakır
- Department of Medical Biochemistry, Trakya University Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
39
|
Bolnick JM, Kilburn BA, Bolnick AD, Diamond MP, Singh M, Hertz M, Dai J, Armant DR. Sildenafil Prevents Apoptosis of Human First-Trimester Trophoblast Cells Exposed to Oxidative Stress: Possible Role for Nitric Oxide Activation of 3',5'-cyclic Guanosine Monophosphate Signaling. Reprod Sci 2014; 22:718-24. [PMID: 25431453 DOI: 10.1177/1933719114557894] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human first-trimester trophoblast cells proliferate at low O2, but survival is compromised by oxidative stress, leading to uteroplacental insufficiency. The vasoactive drug, sildenafil citrate (Viagra, Sigma, St Louis, Missouri), has proven useful in reducing adverse pregnancy outcomes. An important biological function of this pharmaceutical is its action as an inhibitor of cyclic guanosine monophosphate (cGMP) phosphodiesterase type 5 activity, which suggests that it could have beneficial effects on trophoblast survival. To investigate whether sildenafil can prevent trophoblast cell death, human first-trimester villous explants and the HTR-8/SVneo cytotrophoblast cell line were exposed to hypoxia and reoxygenation (H/R) to generate oxidative stress, which induces apoptosis. Apoptosis was optimally inhibited during H/R by 350 ng/mL sildenafil. Sildenafil-mediated survival was reversed by l-N(G)-nitro-l-arginine methyl ester hydrochloride or cGMP antagonist, indicating a dependence on both nitric oxide (NO) and cGMP. Indeed, either a cGMP agonist or an NO generator was cytoprotective independent of sildenafil. These findings suggest a novel intervention route for patients with recurrent pregnancy loss or obstetrical placental disorders.
Collapse
Affiliation(s)
- Jay M Bolnick
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Brian A Kilburn
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alan D Bolnick
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA, USA
| | - Manvinder Singh
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael Hertz
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jing Dai
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - D Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA Program in Reproductive and Adult Endocrinology, NICHD, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
40
|
Fetal hemoglobin in preeclampsia: a new causative factor, a tool for prediction/diagnosis and a potential target for therapy. Curr Opin Obstet Gynecol 2014; 25:448-55. [PMID: 24185004 DOI: 10.1097/gco.0000000000000022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Preeclampsia, one of the leading causes of pregnancy complications, affects 3-7% of pregnant women. This review summarizes the present knowledge of a new potential cause of the disease and suggests a method for its prediction/diagnosis and a possible treatment, both based on the recent findings on the involvement of fetal hemoglobin (HbF) and the heme and radical scavenging protein A1M (alpha-1-microglobulin). RECENT FINDINGS Gene and protein profiling studies have independently shown that increased amount of free HbF is accumulated in the preeclampsia placenta. As a result of a predominantly oxidative damage to the blood-placenta barrier, HbF leaks over to the maternal blood circulation. Elevated levels can be measured already in the first trimester, and later in pregnancy, the levels correlate with the blood pressure in women with preeclampsia. Ex-vivo data show that the human protein A1M, an endogeneous antioxidation protection protein, can prevent Hb-induced damage to the placenta, restore the blood-placental barrier and prevent maternal tissue damage. SUMMARY Free HbF may provide both a predictive and a diagnostic clinical biomarker from the first trimester. A1M has the potential as a future pharmacological treatment for preeclampsia.
Collapse
|
41
|
Nitric oxide (NO) reversed TNF-α inhibition of trophoblast interaction with endothelial cellular networks. Placenta 2014; 35:417-21. [DOI: 10.1016/j.placenta.2014.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 03/03/2014] [Accepted: 03/10/2014] [Indexed: 12/25/2022]
|
42
|
Spaans F, de Vos P, Bakker WW, van Goor H, Faas MM. Danger signals from ATP and adenosine in pregnancy and preeclampsia. Hypertension 2014; 63:1154-60. [PMID: 24688119 DOI: 10.1161/hypertensionaha.114.03240] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Floor Spaans
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Hypertensive disorders represent major causes of pregnancy-related maternal mortality worldwide. Similar to the non-pregnant population, hypertension is the most common medical disorder encountered during pregnancy and is estimated to occur in about 6-8 % of pregnancies. A recent report highlighted hypertensive disorders as one of the major causes of pregnancy-related maternal deaths in the USA, accounting for 579 (12.3 %) of the 4,693 maternal deaths that occurred between 1998 and 2005. In low-income and middle-income countries, preeclampsia and its convulsive form, eclampsia, are associated with 10-15 % of direct maternal deaths. The optimal timing and choice of therapy for hypertensive pregnancy disorders involves carefully weighing the risk-versus-benefit ratio for each individual patient, with an overall goal of improving maternal and fetal outcomes. In this review, we have compared and contrasted the recommendations from different treatment guidelines and outlined some newer perspectives on management. We aim to provide a clinically oriented guide to the drug treatment of hypertension in pregnancy.
Collapse
Affiliation(s)
- Catherine M Brown
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | | |
Collapse
|
44
|
Craici IM, Wagner SJ, Weissgerber TL, Grande JP, Garovic VD. Advances in the pathophysiology of pre-eclampsia and related podocyte injury. Kidney Int 2014; 86:275-85. [PMID: 24573315 PMCID: PMC4117806 DOI: 10.1038/ki.2014.17] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/04/2013] [Accepted: 11/14/2013] [Indexed: 12/12/2022]
Abstract
Pre-eclampsia is a pregnancy-specific hypertensive disorder that may lead to serious maternal and fetal complications. It is a multisystem disease that is commonly, but not always, accompanied by proteinuria. Its cause(s) remain unknown, and delivery remains the only definitive treatment. It is increasingly recognized that many pathophysiological processes contribute to this syndrome, with different signaling pathways converging at the point of systemic endothelial dysfunction, hypertension, and proteinuria. Different animal models of pre-eclampsia have proven utility for specific aspects of pre-eclampsia research, and offer insights into pathophysiology and treatment possibilities. Therapeutic interventions that specifically target these pathways may optimize pre-eclampsia management and may improve fetal and maternal outcomes. In addition, recent findings regarding placental, endothelial, and podocyte pathophysiology in pre-eclampsia provide unique and exciting possibilities for improved diagnostic accuracy. Emerging evidence suggests that testing for urinary podocytes or their markers may facilitate the prediction and diagnosis of pre-eclampsia. In this review, we explore recent research regarding placental, endothelial, and podocyte pathophysiology. We further discuss new signaling and genetic pathways that may contribute to pre-eclampsia pathophysiology, emerging screening and diagnostic strategies, and potential targeted interventions.
Collapse
Affiliation(s)
- Iasmina M Craici
- Division of Nephrology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Steven J Wagner
- Division of Nephrology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Joseph P Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
45
|
Lowe DT. Comment on Dorniak-Wall et al.'s paper on L-arginine for pre-eclampsia. J Hum Hypertens 2014; 28:282. [PMID: 24430709 DOI: 10.1038/jhh.2013.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- D T Lowe
- Interdisciplinary Pain Management Clinic, Madigan Army Medical Center, Tacoma, WA, USA
| |
Collapse
|
46
|
Cotechini T, Komisarenko M, Sperou A, Macdonald-Goodfellow S, Adams MA, Graham CH. Inflammation in rat pregnancy inhibits spiral artery remodeling leading to fetal growth restriction and features of preeclampsia. ACTA ACUST UNITED AC 2014; 211:165-79. [PMID: 24395887 PMCID: PMC3892976 DOI: 10.1084/jem.20130295] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abnormal maternal inflammation leads to TNF-mediated fetal growth restriction and some features of preeclampsia that can be ameliorated with the nitric oxide mimetic nitroglycerin. Fetal growth restriction (FGR) and preeclampsia (PE) are often associated with abnormal maternal inflammation, deficient spiral artery (SA) remodeling, and altered uteroplacental perfusion. Here, we provide evidence of a novel mechanistic link between abnormal maternal inflammation and the development of FGR with features of PE. Using a model in which pregnant rats are administered low-dose lipopolysaccharide (LPS) on gestational days 13.5–16.5, we show that abnormal inflammation resulted in FGR mediated by tumor necrosis factor-α (TNF). Inflammation was also associated with deficient trophoblast invasion and SA remodeling, as well as with altered uteroplacental hemodynamics and placental nitrosative stress. Moreover, inflammation increased maternal mean arterial pressure (MAP) and was associated with renal structural alterations and proteinuria characteristic of PE. Finally, transdermal administration of the nitric oxide (NO) mimetic glyceryl trinitrate prevented altered uteroplacental perfusion, LPS-induced inflammation, placental nitrosative stress, renal structural and functional alterations, increase in MAP, and FGR. These findings demonstrate that maternal inflammation can lead to severe pregnancy complications via a mechanism that involves increased maternal levels of TNF. Our study provides a rationale for the use of antiinflammatory agents or NO-mimetics in the treatment and/or prevention of inflammation-associated pregnancy complications.
Collapse
Affiliation(s)
- Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|
47
|
Dorniak-Wall T, Grivell RM, Dekker GA, Hague W, Dodd JM. The role of L-arginine in the prevention and treatment of pre-eclampsia: a systematic review of randomised trials. J Hum Hypertens 2013; 28:230-5. [PMID: 24172291 DOI: 10.1038/jhh.2013.100] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/09/2013] [Indexed: 12/27/2022]
Abstract
Pre-eclampsia is a significant health issue in pregnancy, complicating between 2-8% of pregnancies. L-arginine is an important mediator of vasodilation with a potential preventative role in pregnancy related hypertensive diseases. We aimed to systematically review randomised trials in the literature assessing the role of L-arginine in prevention and treatment of pre-eclampsia. We searched the Cochrane Controlled Trials Register, PUBMED, and the Australian and International Clinical Trials Registry, to identify randomised trials involving pregnant women where L-arginine was administered for pre-eclampsia to improve maternal and infant health outcomes. We identified eight randomised trials, seven of which were included. The methodological quality was fair, with a combined sample size of 884 women. For women at risk of pre-eclampsia, L-arginine was associated with a reduction in pre-eclampsia (RR: 0.34, 95% CI: 0.21-0.55), when compared with placebo and a reduction in risk of preterm birth (RR: 0.48 and 95% CI: 0.28 to 0.81). For women with established hypertensive disease, L-arginine was associated with a reduction in pre-eclampsia (RR: 0.21; 95% CI: 0.05-0.98). L-arginine may have a role in the prevention and/or treatment of pre-eclampsia. Further well-designed and adequately powered trials are warranted, both in women at risk of pre-eclampsia and in women with established disease.
Collapse
Affiliation(s)
- T Dorniak-Wall
- The University of Adelaide, Robinson Institute and Discipline of Obstetrics & Gynaecology, Adelaide, South Australia, Australia
| | - R M Grivell
- 1] The University of Adelaide, Robinson Institute and Discipline of Obstetrics & Gynaecology, Adelaide, South Australia, Australia [2] The Women's and Children's Hospital, Department of Perinatal Medicine, North Adelaide, South Australia, Australia
| | - G A Dekker
- 1] The University of Adelaide, Robinson Institute and Discipline of Obstetrics & Gynaecology, Adelaide, South Australia, Australia [2] The Lyell McEwin Hospital, Department of Obstetrics & Gynaecology, Elizabeth, South Australia, Australia
| | - W Hague
- 1] The University of Adelaide, Robinson Institute and Discipline of Obstetrics & Gynaecology, Adelaide, South Australia, Australia [2] The Women's and Children's Hospital, Department of Perinatal Medicine, North Adelaide, South Australia, Australia
| | - J M Dodd
- 1] The University of Adelaide, Robinson Institute and Discipline of Obstetrics & Gynaecology, Adelaide, South Australia, Australia [2] The Women's and Children's Hospital, Department of Perinatal Medicine, North Adelaide, South Australia, Australia
| |
Collapse
|
48
|
Antonios TFT, Nama V, Wang D, Manyonda IT. Microvascular remodelling in preeclampsia: quantifying capillary rarefaction accurately and independently predicts preeclampsia. Am J Hypertens 2013; 26:1162-9. [PMID: 23757401 DOI: 10.1093/ajh/hpt087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Preeclampsia is a major cause of maternal and neonatal mortality and morbidity. The incidence of preeclampsia seems to be rising because of increased prevalence of predisposing disorders, such as essential hypertension, diabetes, and obesity, and there is increasing evidence to suggest widespread microcirculatory abnormalities before the onset of preeclampsia. We hypothesized that quantifying capillary rarefaction could be helpful in the clinical prediction of preeclampsia. METHODS We measured skin capillary density according to a well-validated protocol at 5 consecutive predetermined visits in 322 consecutive white women, of whom 16 subjects developed preeclampsia. RESULTS We found that structural capillary rarefaction at 20-24 weeks of gestation yielded a sensitivity of 0.87 with a specificity of 0.50 at the cutoff of 2 capillaries/field with the area under the curve of the receiver operating characteristic value of 0.70, whereas capillary rarefaction at 27-32 weeks of gestation yielded a sensitivity of 0.75 and a higher specificity of 0.77 at the cutoff of 8 capillaries/field with area under the curve of the receiver operating characteristic value of 0.82. Combining capillary rarefaction with uterine artery Doppler pulsatility index increased the sensitivity and specificity of the prediction. Multivariable analysis shows that the odds of preeclampsia are increased in women with previous history of preeclampsia or chronic hypertension and in those with increased uterine artery Doppler pulsatility index, but the most powerful and independent predictor of preeclampsia was capillary rarefaction at 27-32 weeks. CONCLUSIONS Quantifying structural rarefaction of skin capillaries in pregnancy is a potentially useful clinical marker for the prediction of preeclampsia.
Collapse
Affiliation(s)
- Tarek F T Antonios
- Blood Pressure Unit & Division of Clinical Sciences, St George's, University of London, London, UK
| | | | | | | |
Collapse
|
49
|
Schmidinger M. Understanding and managing toxicities of vascular endothelial growth factor (VEGF) inhibitors. EJC Suppl 2013; 11:172-91. [PMID: 26217127 PMCID: PMC4041401 DOI: 10.1016/j.ejcsup.2013.07.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
50
|
Abstract
Cardiovascular death rates continue to rise for women under age 55, underlying the importance of focusing on female-specific conditions that may increase cardiovascular risk, including pregnancy-related disorders. Hypertension complicates about 5-10 % of pregnancies. Preeclampsia, a pregnancy-specific condition, is characterized by hypertension and proteinuria after 20 weeks of gestation and remains one of the major causes of maternal deaths in the United States. In addition, preeclampsia may have an impact on women's health beyond their pregnancies, and has been associated with increased risks for future hypertension and cardiovascular disease, such as coronary heart disease and stroke. In this review, we discuss the evidence supporting the association between preeclampsia and future hypertension; possible mechanisms that underlie this association; current approach to women with a history of preeclampsia; and future research that is needed in this field in order to deliver optimal and timely medical care to the affected women.
Collapse
|