1
|
Baran H, Jan Pietryja M, Kepplinger B. Importance of Modulating Kynurenic Acid Metabolism-Approaches for the Treatment of Dementia. Biomolecules 2025; 15:74. [PMID: 39858468 PMCID: PMC11764436 DOI: 10.3390/biom15010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
In this article, we focus on kynurenic acid metabolism in neuropsychiatric disorders and the biochemical processes involved in memory and cognitive impairment, followed by different approaches in the fight against dementia. Kynurenic acid-a biochemical part of L-tryptophan catabolism-is synthesized from L-kynurenine by kynurenine aminotransferases. Experimental pharmacological studies have shown that elevated levels of kynurenic acid in the brain are associated with impaired learning and that lowering kynurenic acid levels can improve these symptoms. The discovery of new compounds with the ability to block kynurenine aminotransferases opens new therapeutic avenues for the treatment of memory impairment and dementia. The newly developed Helix pomatia snail model of memory can be used for the assessment of novel pharmacological approaches. Dietary supplementation with natural molecular/herbal extracts, exercise, and physical activity have significant impacts on endogenous pharmacology by reducing kynurenic acid synthesis, and these factors are likely to significantly modulate steady-state biological conditions and delay the negative consequences of aging, including the onset of pathological processes.
Collapse
Affiliation(s)
- Halina Baran
- Karl Landsteiner Research Institute for Neurochemistry, Neuropharmacology, Neurorehabilitation and Pain Therapy, 3362 Mauer-Amstetten, Austria;
- Neurophysiology Unit, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Marcelin Jan Pietryja
- St. Francis Herbarium, Monastery of the Franciscan Friars Minor, 40-760 Katowice, Poland;
| | - Berthold Kepplinger
- Karl Landsteiner Research Institute for Neurochemistry, Neuropharmacology, Neurorehabilitation and Pain Therapy, 3362 Mauer-Amstetten, Austria;
- Department of Neurology, Neuropsychiatric Hospital, 3362 Mauer-Amstetten, Austria
| |
Collapse
|
2
|
Zamudio SR, Pichardo-Macías LA, Díaz-Villegas V, Flores-Navarrete IL, Guzmán-Velázquez S. Subchronic cerebrolysin treatment alleviates cognitive impairments and dendritic arborization alterations of granular neurons in the hippocampal dentate gyrus of rats with temporal lobe epilepsy. Epilepsy Behav 2019; 97:96-104. [PMID: 31207446 DOI: 10.1016/j.yebeh.2019.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 11/15/2022]
Abstract
Temporal lobe epilepsy (TLE) is one of the most frequent forms of focal epilepsy; patients with this condition, in addition to exhibiting complex seizures, also exhibit cognitive deficits. In the temporal lobe, the hippocampus, a structure relevant to learning and memory processes, is particularly affected by epilepsy. In animal models of TLE induced by pilocarpine, learning and memory deficiencies associated with changes in synaptic plasticity of the hippocampus have been reported. Cerebrolysin (CBL) is a biologically active mixture of low molecular weight peptides with neuroprotective and neurotrophic effects. The objective of the present study was to determine whether subchronic CBL treatment of rats in the chronic phase of TLE reduces the number and intensity of seizures, and whether CBL treatment can improve cognitive deficits (learning and spatial memory) and dendritic morphology in granular dentate neurons of the hippocampus. Temporal lobe epilepsy (lithium-pilocarpine model) was induced in male Wistar rats (weight, 250-300 g). Two epileptic groups were studied, in which CBL (538 mg/kg) or vehicle was administered intraperitoneally for 5 consecutive days per week for 3 weeks. Respective controls were also included in the study. At the end of treatment, the Barnes maze test (BMT) was used to assess spatial navigational learning and memory. The dendritic morphology of the dentate gyrus was also evaluated using the Golgi-Cox staining method. Results of this study did not support an antiepileptic effect of CBL. Epileptic animals treated with this agent exhibited secondarily generalized seizures similar in frequency and intensity to those of epileptic animals treated only with vehicle. However, when analyzing dendritic morphology of hippocampal granular neurons in these animals, CBL appeared to attenuate dendritic deterioration caused by epilepsy, which was associated with improved cognitive performance of the CBL-treated animals in the BMT compared with vehicle-treated epileptic rats. In conclusion, although CBL did not exert an anticonvulsant effect against secondarily generalized seizures, it can be proposed for use as an add-on therapy in epilepsy management to prevent neuronal alterations, and to improve memory and learning processes.
Collapse
Affiliation(s)
- Sergio R Zamudio
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico.
| | - Luz A Pichardo-Macías
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Verónica Díaz-Villegas
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Itzel L Flores-Navarrete
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Sonia Guzmán-Velázquez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| |
Collapse
|
3
|
Intranasal Cerebrolysin Attenuates Learning and Memory Impairments in D-galactose-Induced Senescence in Mice. Exp Gerontol 2016; 87:16-22. [PMID: 27894939 DOI: 10.1016/j.exger.2016.11.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/11/2016] [Accepted: 11/21/2016] [Indexed: 11/20/2022]
Abstract
Neurotrophic factors are currently being considered as pro-cognitive therapeutic approaches for management of cognitive deficits. This study aims to evaluate the effects of intranasal (i.n.) or intraperitoneal (i.p.) administration of Cerebrolysin (CBL) (as a mixture of neurotrophic factors) on the d-galactose-induced oxidative stress, apoptosis and memory as well as learning impairment in mice. For this purpose, CBL (1, 2.5, 5 ml/kg/i.p.) or (1 ml/kg/i.n.), were administrated daily in d-galactose-received (100 mg/kg/subcutaneous (s.c.)) mice model of aging for eight weeks. Spatial and recognition memories were assessed by the Morris water maze and novel object recognition tasks. Brain and blood of animals were analysed for oxidative stress biomarkers including malondialdehyde, total antioxidant capacity, glutathione peroxidase and superoxide dismutase. Apoptosis rate in the hippocampus was evaluated by TUNEL staining of brain tissue. 5 ml/kg/i.p. dose of CBL increased the locomotor activity but, 1 ml/kg/i.p. dose didn't show detectable behavioural or molecular effects on aged mice. Treatment with 2.5 ml/kg/i.p. and 1 ml/kg/i.n. doses attenuated d-galactose-impaired spatial and recognition memories. Results showed an obvious increase in the antioxidant biomarkers and decrease in the malondialdehyde levels both in the blood and brain of aged mice in 2.5 ml/kg/i.p. dose, and only in the brain in 1 ml/kg/i.n. dose of CBL. Anti-apoptotic effects also were seen in the same dose/rout of CBL administration in aged animals. This study proves the usefulness of i.n. CBL administration as a non-invasive and efficient method of drug delivery to the brain to improve aging-induced oxidative stress, apoptosis and learning as well as memory impairment.
Collapse
|
4
|
Baran H, Staniek K, Bertignol-Spörr M, Attam M, Kronsteiner C, Kepplinger B. Effects of Various Kynurenine Metabolites on Respiratory Parameters of Rat Brain, Liver and Heart Mitochondria. Int J Tryptophan Res 2016; 9:17-29. [PMID: 27226722 PMCID: PMC4872644 DOI: 10.4137/ijtr.s37973] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/13/2016] [Accepted: 03/29/2016] [Indexed: 01/09/2023] Open
Abstract
Previously, we demonstrated that the endogenous glutamate receptor antagonist kynurenic acid dose-dependently and significantly affected rat heart mitochondria. Now we have investigated the effects of L-tryptophan, L-kynurenine, 3-hydroxykynurenine and kynurenic, anthranilic, 3-hydroxyanthranilic, xanthurenic and quinolinic acids on respiratory parameters (ie, state 2, state 3), respiratory control index (RC) and ADP/oxygen ratio in brain, liver and heart mitochondria of adult rats. Mitochondria were incubated with glutamate/malate (5 mM) or succinate (10 mM) and in the presence of L-tryptophan metabolites (1 mM) or in the absence, as control. Kynurenic and anthranilic acids significantly reduced RC values of heart mitochondria in the presence of glutamate/malate. Xanthurenic acid significantly reduced RC values of brain mitochondria in the presence of glutamate/malate. Furthermore, 3-hydroxykynurenine and 3-hydroxyanthranilic acid decreased RC values of brain, liver and heart mitochondria using glutamate/malate. In the presence of succinate, 3-hydroxykynurenine and 3-hydroxyanthranilic acid affected RC values of brain mitochondria, whereas in liver and heart mitochondria only 3-hydroxykynurenine lowered RC values significantly. Furthermore, lowered ADP/oxygen ratios were observed in brain mitochondria in the presence of succinate with 3-hydroxykynurenine and 3-hydroxyanthranilic acid, and to a lesser extent with glutamate/malate. In addition, 3-hydroxyanthranilic acid significantly lowered the ADP/oxygen ratio in heart mitochondria exposed to glutamate/malate, while in the liver mitochondria only a mild reduction was found. Tests of the influence of L-tryptophan and its metabolites on complex I in liver mitochondria showed that only 3-hydroxykynurenine, 3-hydroxyanthranilic acid and L-kynurenine led to a significant acceleration of NADH-driven complex I activities. The data indicate that L-tryptophan metabolites had different effects on brain, liver and heart mitochondria. Alterations of L-tryptophan metabolism might have an impact on the bioenergetic activities of brain, liver and/or heart mitochondria and might be involved in the development of clinical symptoms such as cardiomyopathy, hepatopathy and dementia.
Collapse
Affiliation(s)
- Halina Baran
- Neurophysiology, Institute of Physiology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna.; Karl Landsteiner Research Institute for Neurochemistry, Neuropharmacology, Neurorehabilitation and Pain Treatment, Mauer-Amstetten, Austria
| | - Katrin Staniek
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna
| | - Melanie Bertignol-Spörr
- Neurophysiology, Institute of Physiology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna.; Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna
| | - Martin Attam
- Neurophysiology, Institute of Physiology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna.; Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna
| | - Carina Kronsteiner
- Karl Landsteiner Research Institute for Neurochemistry, Neuropharmacology, Neurorehabilitation and Pain Treatment, Mauer-Amstetten, Austria
| | - Berthold Kepplinger
- Karl Landsteiner Research Institute for Neurochemistry, Neuropharmacology, Neurorehabilitation and Pain Treatment, Mauer-Amstetten, Austria
| |
Collapse
|
5
|
Loukavenko EA, Wolff M, Poirier GL, Dalrymple-Alford JC. Impaired spatial working memory after anterior thalamic lesions: recovery with cerebrolysin and enrichment. Brain Struct Funct 2015; 221:1955-70. [PMID: 25725627 DOI: 10.1007/s00429-015-1015-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 02/17/2015] [Indexed: 12/20/2022]
Abstract
Lesions to the anterior thalamic nuclei (ATN) in rats produce robust spatial memory deficits that reflect their influence as part of an extended hippocampal system. Recovery of spatial working memory after ATN lesions was examined using a 30-day administration of the neurotrophin cerebrolysin and/or an enriched housing environment. As expected, ATN lesions in standard-housed rats given saline produced severely impaired reinforced spatial alternation when compared to standard-housed rats with sham lesions. Both cerebrolysin and enrichment substantially improved this working memory deficit, including accuracy on trials that required attention to distal cues for successful performance. The combination of cerebrolysin and enrichment was more effective than either treatment alone when the delay between successive runs in a trial was increased to 40 s. Compared to the intact rats, ATN lesions in standard-housed groups produced substantial reduction in c-Fos expression in the retrosplenial cortex, which remained low after cerebrolysin and enrichment treatments. Evidence that multiple treatment strategies restore some memory functions in the current lesion model reinforces the prospect for treatments in human diencephalic amnesia.
Collapse
Affiliation(s)
- Elena A Loukavenko
- Department of Psychology, New Zealand Brain Research Institute, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
| | - Mathieu Wolff
- Univ.Bordeaux,INCIA, UMR 5287, 33400, Talence, France. .,CNRS, INCIA, UMR 5287, 33400, Talence, France.
| | - Guillaume L Poirier
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, AAB201, Station 19, 1015, Lausanne, Switzerland
| | - John C Dalrymple-Alford
- Department of Psychology, New Zealand Brain Research Institute, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand. .,Department of Medicine, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
6
|
Kao CY, Hsu YC, Liu JW, Lee DC, Chung YF, Chiu IM. The mood stabilizer valproate activates human FGF1
gene promoter through inhibiting HDAC and GSK-3 activities. J Neurochem 2013; 126:4-18. [DOI: 10.1111/jnc.12292] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Chien-Yu Kao
- Division of Regenerative Medicine; Institute of Cellular and System Medicine; National Health Research Institutes; Miaoli Taiwan
- Graduate Program of Biotechnology in Medicine; Institute of Molecular Medicine; National Tsing Hua University; Hsinchu Taiwan
| | - Yi-Chao Hsu
- Division of Regenerative Medicine; Institute of Cellular and System Medicine; National Health Research Institutes; Miaoli Taiwan
| | - Jen-Wei Liu
- Division of Regenerative Medicine; Institute of Cellular and System Medicine; National Health Research Institutes; Miaoli Taiwan
- Department of Life Sciences; National Chung Hsing University; Taichung Taiwan
| | - Don-Ching Lee
- Division of Regenerative Medicine; Institute of Cellular and System Medicine; National Health Research Institutes; Miaoli Taiwan
| | - Yu-Fen Chung
- Division of Regenerative Medicine; Institute of Cellular and System Medicine; National Health Research Institutes; Miaoli Taiwan
| | - Ing-Ming Chiu
- Division of Regenerative Medicine; Institute of Cellular and System Medicine; National Health Research Institutes; Miaoli Taiwan
- Graduate Program of Biotechnology in Medicine; Institute of Molecular Medicine; National Tsing Hua University; Hsinchu Taiwan
- Department of Life Sciences; National Chung Hsing University; Taichung Taiwan
| |
Collapse
|
7
|
Álvarez XA, Figueroa J, Muresanu D. Peptidergic drugs for the treatment of traumatic brain injury. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.12.95] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Traumatic brain injury (TBI) is a devastating medical condition that has an enormous socioeconomic impact because it affects more than 10 million people annually worldwide and is associated with high rates of hospitalization, mortality and disability. Although TBI survival has improved continuously for decades, particularly in developing countries, implementation of an effective drug therapy for TBI represents an unmet clinical need. All confirmatory trials conducted to date with drugs targeting a single TBI pathological pathway failed to show clinical efficacy, probably because TBI pathophysiology involves multiple cellular and molecular mechanisms of secondary brain damage. According to current scientific evidence of the participation of peptide-mediated mechanisms in the processes of brain injury and repair after TBI, peptidergic drugs represent a multimodal therapy alternative to improve acute outcome and long-term recovery in TBI patients. Preliminary randomized-controlled clinical trials and open-label studies conducted to date with the peptidergic drug Cerebrolysin® (Ever Neuro Pharma GmbH, Unterach, Austria) and with the endogenous neuropeptides progesterone and erythropoietin, showed positive clinical results. Cerebrolysin-treated patients had a faster clinical recovery, a shorter hospitalization time and a better long-term outcome. Treatment with progesterone showed advantages over placebo regarding TBI mortality and clinical outcome, whereas erythropoietin only reduced mortality. Further validation of these promising findings in confirmatory randomized-controlled clinical trials is warranted. This article reviews the scientific basis and clinical evidence on the development of multimodal peptidergic drugs as a therapeutic option for the effective treatment of TBI patients.
Collapse
Affiliation(s)
| | - Jesús Figueroa
- Rehabilitation Department, Santiago University Hospital, Santiago de Compostela, Spain
| | - Dafin Muresanu
- Department of Neurology, University of Medicine & Pharmacy ‘Iuliu Hatieganu’, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Zechel S, Werner S, Unsicker K, von Bohlen und Halbach O. Expression and Functions of Fibroblast Growth Factor 2 (FGF-2) in Hippocampal Formation. Neuroscientist 2010; 16:357-73. [DOI: 10.1177/1073858410371513] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Among the 23 members of the fibroblast growth factor (FGF) family, FGF-2 is the most abundant one in the central nervous system. Its impact on neural cells has been profoundly investigated by in vitro and in vivo studies as well as by gene knockout analyses during the past 2 decades. Key functions of FGF-2 in the nervous system include roles in neurogenesis, promotion of axonal growth, differentiation in development, and maintenance and plasticity in adulthood. From a clinical perspective, its prominent role for the maintenance of lesioned neurons (e.g., ischemia and following transection of fiber tracts) is of particular relevance. In the unlesioned brain, FGF-2 is involved in synaptic plasticity and processes attributed to learning and memory. The focus of this review is on the expression of FGF-2 and its receptors in the hippocampal formation and the physiological and pathophysiological roles of FGF-2 in this region during development and adulthood.
Collapse
Affiliation(s)
- Sabrina Zechel
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Sandra Werner
- Department of Molecular Embryology, Institute of Anatomy & Cell Biology, University of Freiburg, Freiburg, Germany
| | - Klaus Unsicker
- Department of Molecular Embryology, Institute of Anatomy & Cell Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
9
|
Abstract
Cerebrolysin is a parenterally administered, porcine brain-derived peptide preparation that has pharmacodynamic properties similar to those of endogenous neurotrophic factors. In several randomized, double-blind trials of up to 28 weeks' duration in patients with Alzheimer's disease, Cerebrolysin was superior to placebo in improving global outcome measures and cognitive ability. A large, randomized comparison of Cerebrolysin, donepezil or combination therapy showed beneficial effects on global measures and cognition for all three treatment groups compared with baseline. Although not as extensively studied in patients with vascular dementia, Cerebrolysin has also shown beneficial effects on global measures and cognition in this patient population. Cerebrolysin was generally well tolerated in clinical trials, with dizziness (or vertigo) being the most frequently reported adverse event. Although further studies with Cerebrolysin, including longer term trials and further exploration of its use in combination with cholinesterase inhibitors, are needed to more clearly determine its place in the management of Alzheimer's disease and vascular dementia, available data suggest that Cerebrolysin is a useful addition to the treatment options available for dementia.
Collapse
|
10
|
Abstract
Cerebrolysin is a parenterally administered, porcine brain-derived peptide preparation that has pharmacodynamic properties similar to those of endogenous neurotrophic factors. In several randomized, double-blind trials of up to 28 weeks' duration in patients with Alzheimer's disease, Cerebrolysin was superior to placebo in improving global outcome measures and cognitive ability. A large, randomized comparison of Cerebrolysin, donepezil or combination therapy showed beneficial effects on global measures and cognition for all three treatment groups compared with baseline. Although not as extensively studied in patients with vascular dementia, Cerebrolysin has also shown beneficial effects on global measures and cognition in this patient population. Cerebrolysin was generally well tolerated in clinical trials, with dizziness (or vertigo) being the most frequently reported adverse event. Although further studies with Cerebrolysin, including longer term trials and further exploration of its use in combination with cholinesterase inhibitors, are needed to more clearly determine its place in the management of Alzheimer's disease and vascular dementia, available data suggest that Cerebrolysin is a useful addition to the treatment options available for dementia.
Collapse
|
11
|
Baran H, Kepplinger B. Cerebrolysin lowers kynurenic acid formation--an in vitro study. Eur Neuropsychopharmacol 2009; 19:161-8. [PMID: 19008081 DOI: 10.1016/j.euroneuro.2008.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 09/10/2008] [Accepted: 09/30/2008] [Indexed: 11/24/2022]
Abstract
The therapeutic effect of Cerebrolysin in the treatment of dementia and brain injury has been proposed because of neurotrophic properties of this compound. Since an increased kynurenine metabolism has been documented in several brain pathologies including dementia the aim of the present study was to investigate the biochemical properties of Cerebrolysin with respect to kynurenic acid (KYNA) formation in an in vitro study. KYNA is an endogenous metabolite of the kynurenine pathway of tryptophan degradation and is an antagonist of the glutamate ionotropic excitatory amino acid and of the nicotine cholinergic receptors. The activities of the KYNA synthesizing enzymes kynurenine aminotransferases I, II and III (KAT I, KAT II and KAT III) in rat liver, and rat and human brain homogenates were analysed in the presence of Cerebrolysin. KAT I, II and III activities were measured using a radio-enzymatic method in the presence of 1 mM pyruvate and 100 microM [H(3)]L-kynurenine. Cerebrolysin, dose-dependently and significantly reduced KAT I, KAT II and KAT III activities of rat liver homogenate. Furthermore, Cerebrolysin exerted a dose-dependent inhibition of rat and human brain KAT I, KAT II and KAT III activities, too. The inhibitory effect of Cerebrolysin was more pronounced for KAT I than for KAT II and KAT III. The present study for the first time demonstrates the ability of Cerebrolysin to lower KYNA formation in rat liver as well as in rat and human brain homogenates. We propose Cerebrolysin as a compound susceptible of therapeutic exploitation in some disorders associated with elevated KYNA metabolism in the brain and/or other tissues. We suggest that the anti-dementia effect of Cerebrolysin observed in Alzheimer patients could be in part due to Cerebrolysin induced reduction of KYNA levels, thus modulating the cholinergic and glutamatergic neurotransmissions.
Collapse
Affiliation(s)
- Halina Baran
- Neurophysiology, Institute of Physiology, Department for Biomedical Sciences, Veterinary Medical University Vienna, Vienna, Austria.
| | | |
Collapse
|
12
|
Turner CA, Akil H, Watson SJ, Evans SJ. The fibroblast growth factor system and mood disorders. Biol Psychiatry 2006; 59:1128-35. [PMID: 16631131 DOI: 10.1016/j.biopsych.2006.02.026] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 12/08/2005] [Accepted: 02/23/2006] [Indexed: 01/17/2023]
Abstract
Recent evidence now suggests the involvement of the fibroblast growth factor (FGF) system in mood disorders. Specifically, several members of the FGF family have been shown to be dysregulated in individuals with major depression. In this review, we will introduce the FGF system in terms of structure and function during development, in adulthood, and in various regions and cell types. We will also review the FGF system as a mediator of neural plasticity. Furthermore, this review will summarize animal as well as human studies. The majority of animal studies have focused on stress, environmental enrichment, pharmacological manipulations, and the hippocampus. By contrast, human studies have focused on volumetric measurements, antidepressant literature, and, most recently, post-mortem microarray experiments. In summary, a reduced tone in the FGF system might alter brain development or remodeling and result in a predisposition or vulnerability to mood disorders, including major depression.
Collapse
Affiliation(s)
- Cortney A Turner
- Department of Psychiatry, Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
13
|
Tohda C, Matsumoto N, Zou K, Meselhy MR, Komatsu K. Abeta(25-35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, A metabolite of protopanaxadiol-type saponins. Neuropsychopharmacology 2004; 29:860-8. [PMID: 15010693 DOI: 10.1038/sj.npp.1300388] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously screened neurite outgrowth activities of several Ginseng drugs in human neuroblastoma, and demonstrated that protopanaxadiol (ppd)-type saponins were active constituents. Since ppd-type saponins are known to be completely metabolized to 20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol (M1) by intestinal bacteria when taken orally, M1 and ginsenoside Rb1, as a representative of ppd-type saponins, were examined for cognitive disorder. In a mouse model of Alzheimer's disease (AD) by Abeta(25-35) i.c.v. injection, impaired spatial memory was recovered by p.o. administration of ginsenoside Rb1 or M1. Although the expression levels of phosphorylated NF-H and synaptophysin were reduced in the cerebral cortex and the hippocampus of Abeta(25-35)-injected mice, their levels in ginsenoside Rb1- and M1-treated mice were almost completely recovered up to control levels. Potencies of the effects were not different between ginsenoside Rb1 and M1 when given orally, suggesting that most of the ginsenoside Rb1 may be metabolized to M1, and M1 is an active principal of ppd-type saponins for the memory improvement. In cultured rat cortical neurons, M1 showed extension activity of axons, but not dendrites. The axon-specific outgrowth was seen even when neuritic atrophy had already progressed in response to administration of Abeta(25-35) as well as in the normal condition. These results suggest that M1 has axonal extension activity in degenerated neurons, and improve memory disorder and synaptic loss induced by Abeta(25-35). M1 was shown to be effective in vitro and in vivo, indicating that Ginseng drugs containing ppd-type saponins may reactivate neuronal function in AD by p.o. administration.
Collapse
Affiliation(s)
- Chihiro Tohda
- 1Research Center for Ethnomedicines, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, Toyama, Japan
| | | | | | | | | |
Collapse
|
14
|
Yan HQ, Yu J, Kline AE, Letart P, Jenkins LW, Marion DW, Dixon CE. Evaluation of combined fibroblast growth factor-2 and moderate hypothermia therapy in traumatically brain injured rats. Brain Res 2000; 887:134-43. [PMID: 11134598 DOI: 10.1016/s0006-8993(00)03002-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Both the exogenous administration of fibroblast growth factor-2 (FGF-2) or the induction of moderate hypothermia have been shown to attenuate histopathology and improve functional outcome after traumatic brain injury (TBI). Since combined therapeutic strategies may be more beneficial than single therapies, we examined the potential synergistic effect of FGF-2 combined with moderate hypothermia treatment induced 10 min after TBI on functional and histological outcome following controlled cortical impact (CCI) injury. Fifty male Sprague-Dawley rats were randomized to one sham and four CCI treatment groups: Sham+vehicle (VEH); FGF-2 (45 microg/kg/h for 3 h i.v.)+Normothermia (37+/-0.5 degrees C); FGF-2+Hypothermia (32+/-0.5 degrees C for 3 h); VEH+Norm; VEH+Hypo. Vestibulomotor performance on the beam balance and beam-walk (BW) tasks on post-operative days 1-5 and spatial memory acquisition in the Morris water maze (MWM) on days 14-18 were assessed. After 4 weeks survival, histological evaluations (CA(1) and CA(3) cell counts and lesion volume) were performed. MWM performance improved in all treatment groups, but combined treatment was not more efficacious than either alone. The FGF-2+Hypo group performed significantly better than the other injured treatment groups in the BW task. Lastly, no significant group differences in beam balance or histological outcome were observed. These data suggest a suboptimal and incomplete synergy of combined FGF-2 and hypothermia treatment. These data may indicate that either our dose of FGF-2 or combination therapy was not optimized in our model.
Collapse
Affiliation(s)
- H Q Yan
- Brain Trauma Research Center, Department of Neurosurgery, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Kline AE, Montañez S, Bradley HA, Millar CJ, Hernandez TD. Distinctive amygdala kindled seizures differentially affect neurobehavioral recovery and lesion-induced basic fibroblast growth factor (bFGF) expression. Brain Res 2000; 880:38-50. [PMID: 11032988 DOI: 10.1016/s0006-8993(00)02762-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The differing effects of partial seizures on neurobehavioral recovery following anteromedial cortex (AMC) injury in rats have previously been reported. Specifically, convulsive Stage 1 seizures evoked ipsilateral to the lesion during the 6-day post-lesion critical period delayed recovery, while non-convulsive Stage 0 seizures were neutral. The present study was designed to elaborate on that research by examining several potential mechanisms for the seizure-associated difference observed in functional outcome. Anesthetized rats sustained unilateral AMC lesions followed by implantation of a stimulating electrode in the amygdala ipsilateral (Expt. 1) or contralateral (Expt. 2) to the lesion. Beginning 48 h after surgery, animals were kindled to evoke Stage 0 or Stage 1 seizure activity during the critical period. Kindling trials and afterdischarge (AD) were controlled to ascertain their role in functional outcome. Recovery from somatosensory deficits was assessed over a two-month period. The results revealed that (i) Stage 0 seizures did not impact recovery regardless of whether initiated ipsilateral or contralateral to the lesion, (ii) Stage 1 seizures prevented recovery only when initiated in the ipsilateral hemisphere during the post-lesion critical period, and (iii) the detrimental effect of Stage 1 seizures appears to be independent of the number of kindling trials provided and cumulative AD. Thus, to determine why Stage 1 seizures evoked in the hemisphere ipsilateral to the lesion impeded recovery, a separate group of animals (Expt. 3) were kindled accordingly and processed for c-Fos and basic fibroblast growth factor (bFGF) immunohistochemistry. It was hypothesized that Stage 1 seizures evoked in the injured hemisphere prevent recovery by blocking lesion-induced bFGF expression in structures shown to be important for recovery after cortex lesions (e.g., striatum). The results confirmed our hypothesis and suggest that the seizure-associated inhibition of lesion-induced bFGF may alter the growth factor-mediated plasticity necessary for functional recovery.
Collapse
Affiliation(s)
- A E Kline
- Behavioral Neuroscience Program, Department of Psychology, University of Colorado, Campus Box 345, Boulder, CO 80309-0345, USA
| | | | | | | | | |
Collapse
|
16
|
Windholz E, Gschanes A, Windisch M, Fachbach G. Two peptidergic drugs increase the synaptophysin immunoreactivity in brains of 6-week-old rats. THE HISTOCHEMICAL JOURNAL 2000; 32:79-84. [PMID: 10816071 DOI: 10.1023/a:1004053809591] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An increase of synaptic density has been found in the hippocampus, the dendate gyrus and in the entorhinal cortex of 6-week-old rats after 7 days of treatment with the peptidergic drug Cerebrolysin, its peptide preparation E021 and the diluted peptide preparation E021dil. Rats received drugs on postnatal days 1-7 (2.5 ml/kg, each day). Controls received saline. The animals were sacrificed on days 42-48 of their life, after they had undergone behavioural testing in a Morris water maze. Slices of brain were stained immunohistochemically with anti-synaptophysin, a specific marker of presynaptic terminals. The synaptophysin-immunoreactivity of presynaptic terminals was quantified using light microscopy and a computerised image analysis system. Our results showed that rats benefit from the treatment with both drugs. A significant increase in the number of synaptophysin-immunoreactive presynaptic terminals was found in the entorhinal cortex and the hippocampal subfields CA1, CA2, CA3 stratum radiatum and CA3 stratum lucidum. The increased immunoreactive presynaptic terminals found in the present study are in accordance with the positive effects of the drugs on spatial learning and memory in young rats (Gschanes & Windisch 1999).
Collapse
Affiliation(s)
- E Windholz
- Institute of Experimental Pharmacology, JSW--RESEARCH, Graz, Austria
| | | | | | | |
Collapse
|
17
|
Gschanes A, Boado R, Sametz W, Windisch M. The drug cerebrolysin and its peptide fraction E021 increase the abundance of the blood-brain barrier GLUT1 glucose transporter in brains of young and old rats. THE HISTOCHEMICAL JOURNAL 2000; 32:71-7. [PMID: 10816070 DOI: 10.1023/a:1004003008683] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The brain-derived peptidergic drug Cerebrolysin has been found to support the survival of neurons in vitro and in vivo. In the present study, we investigated the effects of Cerebrolysin and its peptide preparation E021 on spatial learning and memory, as well as on the abundance of the blood-brain barrier GLUT1 glucose transporter (GLUT1) in 2-month-old and 24-month-old rats. Young rats were treated with the drugs or saline (2.5 ml/kg/day) daily on postnatal days 1-7, and old rats for 19 consecutive days. For behavioural testing the Morris water maze was used. The abundance of GLUT1 was determined in brain slices by immunocytochemistry. Quantification of the density of the GLUT1 immunostaining was performed using light microscopy and a computerised image analysing system. All drug-treated rats, young and old, exhibit shorter escape latencies in the water maze, on all testing days (p < 0.01), indicating improved cognitive performance. Immunohistochemical data show an age-related decrease of the density of GLUTI (p < 0.05). In young animals, the administration of the drugs led to an increase of the abundance of GLUT1 in all experimental groups (p < 0.01). In old rats, the treatment with Cerebrolysin, but not with E021, resulted in an increase in the immunoreactive GLUT1 (p < 0.01). The elevated abundance of GLUT1 after the administration of both peptidergic substances might be supportive for the cognitive effects of this drug, by causing an improved nutritional supply of glucose to the neurons.
Collapse
Affiliation(s)
- A Gschanes
- Institute of Experimental Pharmacology, Research Initiative Ebewe, Graz, Austria
| | | | | | | |
Collapse
|
18
|
Reinprecht I, Gschanes A, Windisch M, Fachbach G. Two peptidergic drugs increase the synaptophysin immunoreactivity in brains of 24-month-old rats. THE HISTOCHEMICAL JOURNAL 1999; 31:395-401. [PMID: 10462225 DOI: 10.1023/a:1003752208971] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The brain-derived peptidergic drug Cerebrolysin has been found to support the survival of neurones in vitro and in vivo. Positive effects on learning and memory have been demonstrated in various animal models and also in clinical trails. In the present study, the effects of Cerebrolysin and its peptide preparation E021 on the synapse density in the hippocampus, the dentate gyrus and in the entorhinal cortex of 24-month-old rats were investigated. Rats received the drugs or saline for control for 19 consecutive days (2.5 ml/kg per day). Slices of the brains were immunohistochemically stained with anti-synaptophysin, which is a specific marker of presynaptic terminals. Quantification of the synapse density was done by using light microscopy and a computerised image analysing system. Our results clearly showed that the rats benefit from the administration of both drugs, showing an enhancement in the number of synaptophysin-immunostained presynaptic terminals in the entorhinal cortex, the dentate gyrus, and also in the hippocampal subfields CA1, CA2, CA3 stratum lucidum and CA3 stratum radiatum. It can be assumed that these effects are the reason for improved cognitive performances of rats treated with Cerebrolysin and E021.
Collapse
Affiliation(s)
- I Reinprecht
- Institute of Experimental Pharmacology, Research Initiative Ebewe, Graz, Austria
| | | | | | | |
Collapse
|