1
|
Ries M. Enzyme replacement therapy and beyond-in memoriam Roscoe O. Brady, M.D. (1923-2016). J Inherit Metab Dis 2017; 40:343-356. [PMID: 28314976 DOI: 10.1007/s10545-017-0032-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 11/28/2022]
Abstract
Lysosomal storage disorders are strong candidates for the development of specific innovative therapies. The discovery of enzyme deficiencies is an important milestone in understanding the underlying cause of disease. Being able to replace the first missing enzyme in a lysosomal storage required three decades of dedicated research. Successful drug development for lysosomal storage disorders was fostered by the U.S. Orphan Drug Act. Various optimization strategies have the potential to overcome the current limitations of enzyme replacement therapies. In addition, substrate reduction therapies are an alternative approach to treat lysosomal storage disorders, chemical chaperones enhance residual enzyme activity, and small molecules can facilitate substrate transport through subcellular compartments. Bone-marrow derived multipotent stem cells and gene therapies have received FDA orphan drug designation status. The science of small clinical trials played an essential role: non-neurological endpoints, biomarker, and regulatory alignment are key factors in successful drug development for lysosomal storage disorders. Being able to treat brain disease is the next frontier. This review is dedicated to the memory of Roscoe O. Brady, an early pioneer in the research of lysosomal storage diseases.
Collapse
Affiliation(s)
- Markus Ries
- Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- Center for Rare Disorders, Heidelberg University Hospital, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Shen JS, Busch A, Day TS, Meng XL, Yu CI, Dabrowska-Schlepp P, Fode B, Niederkrüger H, Forni S, Chen S, Schiffmann R, Frischmuth T, Schaaf A. Mannose receptor-mediated delivery of moss-made α-galactosidase A efficiently corrects enzyme deficiency in Fabry mice. J Inherit Metab Dis 2016; 39:293-303. [PMID: 26310963 PMCID: PMC4754329 DOI: 10.1007/s10545-015-9886-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 01/02/2023]
Abstract
Enzyme replacement therapy (ERT) is an effective treatment for several lysosomal storage disorders (LSDs). Intravenously infused enzymes are taken up by tissues through either the mannose 6-phosphate receptor (M6PR) or the mannose receptor (MR). It is generally believed that M6PR-mediated endocytosis is a key mechanism for ERT in treating LSDs that affect the non-macrophage cells of visceral organs. However, the therapeutic efficacy of MR-mediated delivery of mannose-terminated enzymes in these diseases has not been fully evaluated. We tested the effectiveness of a non-phosphorylated α-galactosidase A produced from moss (referred to as moss-aGal) in vitro and in a mouse model of Fabry disease. Endocytosis of moss-aGal was MR-dependent. Compared to agalsidase alfa, a phosphorylated form of α-galactosidase A, moss-aGal was more preferentially targeted to the kidney. Cellular localization of moss-aGal and agalsidase alfa in the heart and kidney was essentially identical. A single injection of moss-aGal led to clearance of accumulated substrate in the heart and kidney to an extent comparable to that achieved by agalsidase alfa. This study suggested that mannose-terminated enzymes may be sufficiently effective for some LSDs in which non-macrophage cells are affected, and that M6P residues may not always be a prerequisite for ERT as previously considered.
Collapse
Affiliation(s)
- Jin-Song Shen
- Institute of Metabolic Disease, Baylor Research Institute, 3812 Elm Street, Dallas, TX, 75226, USA.
| | | | - Taniqua S Day
- Institute of Metabolic Disease, Baylor Research Institute, 3812 Elm Street, Dallas, TX, 75226, USA
| | - Xing-Li Meng
- Institute of Metabolic Disease, Baylor Research Institute, 3812 Elm Street, Dallas, TX, 75226, USA
| | - Chun I Yu
- Baylor Institute for Immunology Research, Dallas, TX, 75204, USA
| | | | | | | | - Sabrina Forni
- Institute of Metabolic Disease, Baylor Research Institute, 3812 Elm Street, Dallas, TX, 75226, USA
| | - Shuyuan Chen
- Baylor Research Institute, Dallas, TX, 75226, USA
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, 3812 Elm Street, Dallas, TX, 75226, USA
| | | | | |
Collapse
|
3
|
Meghdari M, Gao N, Abdullahi A, Stokes E, Calhoun DH. Carboxyl-terminal truncations alter the activity of the human α-galactosidase A. PLoS One 2015; 10:e0118341. [PMID: 25719393 PMCID: PMC4342250 DOI: 10.1371/journal.pone.0118341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 01/13/2015] [Indexed: 12/17/2022] Open
Abstract
Fabry disease is an X-linked inborn error of glycolipid metabolism caused by deficiency of the human lysosomal enzyme, α-galactosidase A (αGal), leading to strokes, myocardial infarctions, and terminal renal failure, often leading to death in the fourth or fifth decade of life. The enzyme is responsible for the hydrolysis of terminal α-galactoside linkages in various glycolipids. Enzyme replacement therapy (ERT) has been approved for the treatment of Fabry disease, but adverse reactions, including immune reactions, make it desirable to generate improved methods for ERT. One approach to circumvent these adverse reactions is the development of derivatives of the enzyme with more activity per mg. It was previously reported that carboxyl-terminal deletions of 2 to 10 amino acids led to increased activity of about 2 to 6-fold. However, this data was qualitative or semi-quantitative and relied on comparison of the amounts of mRNA present in Northern blots with αGal enzyme activity using a transient expression system in COS-1 cells. Here we follow up on this report by constructing and purifying mutant enzymes with deletions of 2, 4, 6, 8, and 10 C-terminal amino acids (Δ2, Δ4, Δ6, Δ8, Δ10) for unambiguous quantitative enzyme assays. The results reported here show that the kcat/Km approximately doubles with deletions of 2, 4, 6 and 10 amino acids (0.8 to 1.7-fold effect) while a deletion of 8 amino acids decreases the kcat/Km (7.2-fold effect). These results indicate that the mutated enzymes with increased activity constructed here would be expected to have a greater therapeutic effect on a per mg basis, and could therefore reduce the likelihood of adverse infusion related reactions in Fabry patients receiving ERT treatment. These results also illustrate the principle that in vitro mutagenesis can be used to generate αGal derivatives with improved enzyme activity.
Collapse
Affiliation(s)
- Mariam Meghdari
- Chemistry Dept., City College of New York, New York, NY, USA
| | - Nicholas Gao
- Chemistry Dept., City College of New York, New York, NY, USA
| | - Abass Abdullahi
- Biology & Medical Lab Technology, Bronx Community College, Bronx, NY, USA
| | - Erin Stokes
- Chemistry Dept., City College of New York, New York, NY, USA
| | - David H. Calhoun
- Chemistry Dept., City College of New York, New York, NY, USA
- * E-mail:
| |
Collapse
|
4
|
Unzueta U, Vázquez F, Accardi G, Mendoza R, Toledo-Rubio V, Giuliani M, Sannino F, Parrilli E, Abasolo I, Schwartz S, Tutino ML, Villaverde A, Corchero JL, Ferrer-Miralles N. Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories: production of human alpha-galactosidase A. Appl Microbiol Biotechnol 2015; 99:5863-74. [DOI: 10.1007/s00253-014-6328-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/12/2014] [Accepted: 12/14/2014] [Indexed: 12/28/2022]
|
5
|
Corchero JL, Mendoza R, Lorenzo J, Rodríguez-Sureda V, Domínguez C, Vázquez E, Ferrer-Miralles N, Villaverde A. Integrated approach to produce a recombinant, his-tagged human α-galactosidase a in mammalian cells. Biotechnol Prog 2011; 27:1206-17. [DOI: 10.1002/btpr.637] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 02/16/2011] [Indexed: 11/06/2022]
|
6
|
Weignerová L, Simerská P, Křen V. α-Galactosidases and their applications in biotransformations. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420802583416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Downregulation of α-galactosidase A upregulates CD77: functional impact for Fabry nephropathy. Kidney Int 2009; 75:399-407. [DOI: 10.1038/ki.2008.576] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Kato T, Park EY. Specific expression of GFPuv-β1,3-N-acetylglucosaminyltransferase 2 fusion protein in fat body of Bombyx mori silkworm larvae using signal peptide. Biochem Biophys Res Commun 2007; 359:543-8. [PMID: 17544364 DOI: 10.1016/j.bbrc.2007.05.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Bombyxin (bx) and prophenoloxidase-activating enzyme (ppae) signal peptides from Bombyx mori, their modified signal peptides, and synthetic signal peptides were investigated for the secretion of GFP(uv)-beta1,3-N-acetylglucosaminyltransferase 2 (GGT2) fusion protein in B. mori Bm5 cells and silkworm larvae using cysteine protease deficient B. mori multiple nucleopolyhedrovirus (BmMNPV-CP(-)) and its bacmid. The secretion efficiencies of all signal peptides were 15-30% in Bm5 cells and 24-30% in silkworm larvae, while that of the +16 signal peptide was 0% in Bm5 cells and 1% in silkworm larvae. The fusion protein that contained the +16 signal peptide was expressed specifically in the endoplasmic reticulum (ER) and in the fractions of cell precipitations. Ninety-four percent of total intracellular beta1,3-N-acetylglucosaminyltransferase (beta3GnT) activity was detected in cell precipitations following the 600, 8000, and 114,000g centrifugations. In the case of the +38 signal peptide, 60% of total intracellular activity was detected in the supernatant from the 114,000g spin, and only 1% was found in the precipitate. Our results suggest that the +16 signal peptide might be situated in the transmembrane region and not cleaved by signal peptidase in silkworm or B. mori cells. Therefore, the fusion protein connected to the +16 signal peptide stayed in the fat body of silkworm larvae with biological function, and was not secreted extracellularly.
Collapse
Affiliation(s)
- Tatsuya Kato
- Laboratory of Biotechnology, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | | |
Collapse
|
9
|
Akeboshi H, Chiba Y, Kasahara Y, Takashiba M, Takaoka Y, Ohsawa M, Tajima Y, Kawashima I, Tsuji D, Itoh K, Sakuraba H, Jigami Y. Production of recombinant beta-hexosaminidase A, a potential enzyme for replacement therapy for Tay-Sachs and Sandhoff diseases, in the methylotrophic yeast Ogataea minuta. Appl Environ Microbiol 2007; 73:4805-12. [PMID: 17557860 PMCID: PMC1951009 DOI: 10.1128/aem.00463-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 05/24/2007] [Indexed: 01/28/2023] Open
Abstract
Human beta-hexosaminidase A (HexA) is a heterodimeric glycoprotein composed of alpha- and beta-subunits that degrades GM2 gangliosides in lysosomes. GM2 gangliosidosis is a lysosomal storage disease in which an inherited deficiency of HexA causes the accumulation of GM2 gangliosides. In order to prepare a large amount of HexA for a treatment based on enzyme replacement therapy (ERT), recombinant HexA was produced in the methylotrophic yeast Ogataea minuta instead of in mammalian cells, which are commonly used to produce recombinant enzymes for ERT. The problem of antigenicity due to differences in N-glycan structures between mammalian and yeast glycoproteins was potentially resolved by using alpha-1,6-mannosyltransferase-deficient (och1Delta) yeast as the host. Genes encoding the alpha- and beta-subunits of HexA were integrated into the yeast cell, and the heterodimer was expressed together with its isozymes HexS (alphaalpha) and HexB (betabeta). A total of 57 mg of beta-hexosaminidase isozymes, of which 13 mg was HexA (alphabeta), was produced per liter of medium. HexA was purified with immobilized metal affinity column for the His tag attached to the beta-subunit. The purified HexA was treated with alpha-mannosidase to expose mannose-6-phosphate (M6P) residues on the N-glycans. The specific activities of HexA and M6P-exposed HexA (M6PHexA) for the artificial substrate 4MU-GlcNAc were 1.2 +/- 0.1 and 1.7 +/- 0.3 mmol/h/mg, respectively. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern suggested a C-terminal truncation in the beta-subunit of the recombinant protein. M6PHexA was incorporated dose dependently into GM2 gangliosidosis patient-derived fibroblasts via M6P receptors on the cell surface, and degradation of accumulated GM2 ganglioside was observed.
Collapse
Affiliation(s)
- Hiromi Akeboshi
- Research Center for Glycoscience, AIST Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yasuda K, Chang HH, Wu HL, Ishii S, Fan JQ. Efficient and rapid purification of recombinant human alpha-galactosidase A by affinity column chromatography. Protein Expr Purif 2005; 37:499-506. [PMID: 15358377 DOI: 10.1016/j.pep.2004.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 07/04/2004] [Indexed: 10/26/2022]
Abstract
The lysosomal enzyme alpha-galactosidase A (alpha-Gal A) metabolizes neutral glycosphingolipids that possess alpha-galactoside residues at the non-reducing terminus, and inherited defects in the activity of alpha-Gal A lead to Fabry disease. We describe here an efficient and rapid purification procedure for recombinant alpha-Gal A by sequential Concanavalin A (Con A)-Sepharose and immobilized thio-alpha-galactoside (thio-Gal) agarose column chromatography. Optimal elution conditions for both columns were obtained using overexpressed human alpha-Gal A. We recommend the use of a mixture of 0.9 M methyl alpha-mannoside and 0.9 M methyl alpha-glucoside in 0.1 M acetate buffer (pH 6.0) with 0.1 M NaCl for the maximum recovery of glycoproteins with multiple high-mannose type sugar chains from Con A column chromatography, and that the Con A column should not be reused for the purification of glycoproteins that are used for structural studies. Binding of the enzyme to the thio-Gal column requires acidic condition at pH 4.8. A galactose-containing buffer (25 mM citrate-phosphate buffer, pH 5.5, with 0.1 M galactose, and 0.1 M NaCl) was used to elute alpha-Gal A. This procedure is especially useful for the purification of mutant forms of alpha-Gal A, which are not stable under conventional purification techniques. A protocol that purifies an intracellular mutant alpha-Gal A (M279I) expressed in COS-7 cells within 6h at 62% overall yield is presented.
Collapse
Affiliation(s)
- Kayo Yasuda
- Department of Human Genetics, Mount Sinai School of Medicine, Box 1498, Fifth Avenue at 100th Street, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
11
|
Montfort M, Garrido E, Hopwood JJ, Grinberg D, Chabás A, Vilageliu L. Expression and functional characterization of human mutant sulfamidase in insect cells. Mol Genet Metab 2004; 83:246-51. [PMID: 15542396 DOI: 10.1016/j.ymgme.2004.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 06/29/2004] [Accepted: 07/02/2004] [Indexed: 11/23/2022]
Abstract
Mucopolysaccharidosis IIIA (MPS IIIA; Sanfilippo syndrome) is an autosomal recessive lysosomal disorder caused by the deficiency of sulfamidase (EC 3.10.1.1), required for the degradation of the mucopolysaccharide heparan sulfate. The molecular defects of 26 unrelated Spanish MPS IIIA patients were recently reported by our group. Here we describe the heterologous expression, using a baculovirus system, of the cDNAs corresponding to eight out of the 14 mutant alleles present in this patient group and the characterization of the corresponding mutant enzymes. In particular, we expressed the following alleles: p.S66W, p.R74H, p.Q85R, p.R206P, p.L386R, p.R433W, p.R433Q, and c.1079delC (previously named as c.1091delC), and the two variants of the polymorphism p.R456H. The expression of the mutant alleles and the characterization of the corresponding enzymes revealed that their activity was severely compromised. Only mutations p.S66W and p.R206P retained low levels of residual activity. However, Western blot analysis showed in all cases the presence of the expected two forms of the sulfamidase, the precursor and the mature proteins, indicating a normal processing of the mutant enzyme.
Collapse
Affiliation(s)
- Magda Montfort
- Departament de Genètica, Universitat de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Garman SC, Garboczi DN. The molecular defect leading to Fabry disease: structure of human alpha-galactosidase. J Mol Biol 2004; 337:319-35. [PMID: 15003450 DOI: 10.1016/j.jmb.2004.01.035] [Citation(s) in RCA: 281] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 01/16/2004] [Accepted: 01/21/2004] [Indexed: 01/01/2023]
Abstract
Fabry disease is an X-linked lysosomal storage disease afflicting 1 in 40,000 males with chronic pain, vascular degeneration, cardiac impairment, and other symptoms. Deficiency in the lysosomal enzyme alpha-galactosidase (alpha-GAL) causes an accumulation of its substrate, which ultimately leads to Fabry disease symptoms. Here, we present the structure of the human alpha-GAL glycoprotein determined by X-ray crystallography. The structure is a homodimer with each monomer containing a (beta/alpha)8 domain with the active site and an antiparallel beta domain. N-linked carbohydrate appears at six sites in the glycoprotein dimer, revealing the basis for lysosomal transport via the mannose-6-phosphate receptor. To understand how the enzyme cleaves galactose from glycoproteins and glycolipids, we also determined the structure of the complex of alpha-GAL with its catalytic product. The catalytic mechanism of the enzyme is revealed by the location of two aspartic acid residues (D170 and D231), which act as a nucleophile and an acid/base, respectively. As a point mutation in alpha-GAL can lead to Fabry disease, we have catalogued and plotted the locations of 245 missense and nonsense mutations in the three-dimensional structure. The structure of human alpha-GAL brings Fabry disease into the realm of molecular diseases, where insights into the structural basis of the disease phenotypes might help guide the clinical treatment of patients.
Collapse
Affiliation(s)
- Scott C Garman
- Structural Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook II, 12441 Parklawn Drive, Rockville, MD 20852, USA.
| | | |
Collapse
|
13
|
Shabalin KA, Kulminskaya AA, Savel’ev AN, Shishlyannikov SM, Neustroev KN. Enzymatic properties of α-galactosidase from Trichoderma reesei in the hydrolysis of galactooligosaccharides. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(01)00482-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Chen Y, Jin M, Egborge T, Coppola G, Andre J, Calhoun DH. Expression and characterization of glycosylated and catalytically active recombinant human alpha-galactosidase A produced in Pichia pastoris. Protein Expr Purif 2000; 20:472-84. [PMID: 11087687 DOI: 10.1006/prep.2000.1325] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fabry disease is an X-linked inborn error of glycolipid metabolism caused by deficiency of the lysosomal enzyme alpha-galactosidase A. This enzyme is responsible for the hydrolysis of terminal alpha-galactoside linkages in various glycolipids. An improved method of production of recombinant alpha-galactosidase A for use in humans is needed in order to develop new approaches for enzyme therapy. Human alpha-galactosidase A for use in enzyme therapy has previously been obtained from human sources and from recombinant clones derived from human cells, CHO cells, and insect cells. In this report we describe the construction of clones of the methylotrophic yeast Pichia pastoris that produce recombinant human alpha-galactosidase A. Recombinant human alpha-galactosidase A is secreted by these Pichia clones and the level of production is more than 30-fold greater than that of previously used methods. Production was optimized using variations in temperature, pH, cDNA copy number, and other variables using shake flasks and a bioreactor. Expression of the human enzyme increased with increasing cDNA copy number at 25 degrees C, but not at the standard growth temperature of 30 degrees C. The recombinant alpha-galactosidase A was purified to homogeneity using ion exchange (POROS 20 CM, POROS 20 HQ) and hydrophobic (Toso-ether, Toso-butyl) chromatography with a BioCAD HPLC Workstation. Purified recombinant alpha-galactosidase A was taken up by fibroblasts derived from Fabry disease patients and normal enzyme levels could be restored under these conditions. Analysis of the carbohydrate present on the recombinant enzyme indicated the predominant presence of N-linked high-mannose structures rather than complex carbohydrates.
Collapse
Affiliation(s)
- Y Chen
- Department of Chemistry, City College of New York, 138th Street and Convent Avenue, New York, New York 10031, USA
| | | | | | | | | | | |
Collapse
|