1
|
Peng SL, Ding Y, Xiang MH, Chen K, Gao XD, Wang N. Enhanced soluble expression and characterization of human N-acetylglucosaminyltransferase IVa in Escherichia coli. Enzyme Microb Technol 2024; 181:110524. [PMID: 39426160 DOI: 10.1016/j.enzmictec.2024.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
N-Glycosylation is one of the most important posttranslational modifications of proteins. Nearly the entire surface of cells and almost all secreted proteins in humans are modified with complex-type N-glycans, whose functions are affected by the number of N-glycan branches. N-Acetylglucosaminyltransferase-IVa (GnT-IVa) is a Golgi glycosyltransferase that transfers a GlcNAc to the α-1,3 mannose arm of the biantennary N-glycan GlcNAc2Man3GlcNAc2 to form a β-1,4 GlcNAc branched structure. The soluble expression of mammalian glycosyltransferases in heterologous hosts is often challenging. In the present study, human GnT-IVa (HsGnT-IVa) was cloned as an N-terminal truncated form that was fused with solubility-enhancing tags or signal peptides and overexpressed in Escherichia coli (E. coli). Our results showed that recombinant HsGnT-IVa could be overexpressed in its highest soluble and active form when the first 87 amino acids were removed and was fused with maltose-binding protein (MBP). By optimizing the induction conditions, the expression level of the recombinant protein was increased to yield approximately 540 mg per liter of culture after affinity purification. The purified enzyme exhibited appropriate glycosyltransferase activity, and the Km value of the acceptor substrate was calculated as 1.1 mM. Characterization of the enzyme revealed that it reached its maximum activity with 5 mM Mn2+ at 37 °C in MES/NaOH (pH 7.0). In addition, the effects of key amino acids in the catalytic and lectin domains on enzyme activity were measured. This work offers an efficient approach for the large-scale production of bioactive HsGnT-IVa, which can be used for in vitro synthesis and functional studies of multiantennary complex-type N-glycans.
Collapse
Affiliation(s)
- Sen-Lin Peng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Yi Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Meng-Hai Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Ken Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Schwalen C, Babu C, Phulera S, Hao Q, Wall D, Nettleton DO, Pathak TP, Siuti P. Scalable Biosynthetic Production of Knotted Peptides Enables ADME and Thermodynamic Folding Studies. ACS OMEGA 2021; 6:29555-29566. [PMID: 34778627 PMCID: PMC8582066 DOI: 10.1021/acsomega.1c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Knotted peptides present a wealth of structurally diverse, biologically active molecules, with the inhibitor cystine knot/knottin class among the most ecologically common ones. Many of these natural products interact with extracellular targets such as voltage-gated ion channels with exquisite selectivity and potency, making them intriguing therapeutic modalities. Such compounds are often produced in low concentrations by intractable organisms, making structural and biological characterization challenging, which is frequently overcome by various expression strategies. Here, we sought to test a biosynthetic route for the expression and study of knotted peptides. We screened expression constructs for a biosynthesized knotted peptide to determine the most influential parameters for successful disulfide folding and used NMR spectroscopic fingerprinting to validate topological structures. We performed pharmacokinetic characterization, which indicated that the interlocking disulfide structure minimizes liabilities of linear peptide sequences, and propose a mechanism by which knotted peptides are cleared. We then developed an assay to monitor solution folding in real time, providing a strategy for studying the folding process during maturation, which provided direct evidence for the importance of backbone organization as the driving force for topology formation.
Collapse
Affiliation(s)
- Christopher
J. Schwalen
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Charles Babu
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Swastik Phulera
- Chemical
Biology and Therapeutics, Novartis Institutes
for Biomedical Research, Cambridge Massachusetts, 02139, United States
| | - Qin Hao
- Pharmacokinetic
Sciences, Novartis Institutes for Biomedical
Research, Cambridge, Massachusetts 02139, United States
| | - Daniel Wall
- Pharmacokinetic
Sciences, Novartis Institutes for Biomedical
Research, Cambridge, Massachusetts 02139, United States
| | - David O. Nettleton
- Pharmacokinetic
Sciences, Novartis Institutes for Biomedical
Research, Cambridge, Massachusetts 02139, United States
| | - Tejas P. Pathak
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Piro Siuti
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Deng L, Xue X, Shen C, Song X, Wang C, Wang N. Insulin chains as efficient fusion tags for prokaryotic expression of short peptides. Protein Expr Purif 2017; 138:46-55. [DOI: 10.1016/j.pep.2017.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/22/2017] [Accepted: 06/30/2017] [Indexed: 01/02/2023]
|
4
|
Vu TTT, Jeong B, Krupa M, Kwon U, Song JA, Do BH, Nguyen MT, Seo T, Nguyen AN, Joo CH, Choe H. Soluble Prokaryotic Expression and Purification of Human Interferon Alpha-2b Using a Maltose-Binding Protein Tag. J Mol Microbiol Biotechnol 2016; 26:359-368. [PMID: 27463335 DOI: 10.1159/000446962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/19/2016] [Indexed: 12/09/2022] Open
Abstract
Human interferon alpha-2b (IFNα-2b) has therapeutic applications as an antiviral and antiproliferative drug and has been used for a wide range of indications. Efficient production of IFNα-2b in Escherichia coli has been difficult because the protein tends to form inclusion bodies. This obstacle has garnered interest in efficiently expressing IFNα-2b and overcoming its poor solubility. In this study, seven N-terminal fusion partners - hexahistidine (His6), thioredoxin, glutathione S-transferase (GST), maltose-binding protein (MBP), N-utilization substance protein A, protein disulfide bond isomerase (PDI), and b'a' domain of PDI - were tested for soluble overexpression of codon-optimized IFNα-2b in E. coli. Low temperature increased the expression level of all of the tagged proteins except for the GST fusion. All the tags, except for His6 and GST, improved solubility. We purified IFNα-2b from the MBP-tagged fusion using immobilized metal affinity chromatography and anion exchange chromatography, and obtained a final yield of 7.2 mg from an initial 500-ml culture. The endotoxin level was 0.46 EU/µg. Biological activity was demonstrated using a luciferase assay, which showed a dose-dependent response with a calculated EC50 of 10.3 ± 5.9 pM. Our results demonstrate that using an MBP-tagged fusion is an efficient way to produce pure IFNα-2b.
Collapse
Affiliation(s)
- Thu Trang Thi Vu
- Department of Physiology and Bio-Medical Institute of Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ke N, Berkmen M. Production of Disulfide‐Bonded Proteins in
Escherichia coli. ACTA ACUST UNITED AC 2014; 108:16.1B.1-16.1B.21. [DOI: 10.1002/0471142727.mb1601bs108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Na Ke
- New England Biolabs Ipswich Massachusetts
| | | |
Collapse
|
6
|
Nausch H, Huckauf J, Koslowski R, Meyer U, Broer I, Mikschofsky H. Recombinant production of human interleukin 6 in Escherichia coli. PLoS One 2013; 8:e54933. [PMID: 23372793 PMCID: PMC3553018 DOI: 10.1371/journal.pone.0054933] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/18/2012] [Indexed: 02/02/2023] Open
Abstract
In this study, we compared basic expression approaches for the efficient expression of bioactive recombinant human interleukin-6 (IL6), as an example for a difficult-to-express protein. We tested these approaches in a laboratory scale in order to pioneer the commercial production of this protein in Escherichia coli (E. coli). Among the various strategies, which were tested under Research and Development (R&D) conditions, aggregation-prone IL6 was solubilized most effectively by co-expressing cytoplasmic chaperones. Expression of a Glutathion-S-Transferase (GST) fusion protein was not efficient to increase IL6 solubility. Alteration of the cultivation temperature significantly increased the solubility in both cases, whereas reduced concentrations of IPTG to induce expression of the T7lac-promotor only had a positive effect on chaperone-assisted expression. The biological activity was comparable to that of commercial IL6. Targeting the expressed protein to an oxidizing environment was not effective in the generation of soluble IL6. Taken together, the presence of chaperones and a lowered cultivation temperature seem effective to isolate large quantities of soluble IL6. This approach led to in vivo soluble, functional protein fractions and reduces purification and refolding requirements caused by downstream purification procedures. The final yield of soluble recombinant protein averaged approximately 2.6 mg IL6/liter of cell culture. These findings might be beneficial for the development of the large-scale production of IL6 under the conditions of current good manufacturing practice (cGMP).
Collapse
Affiliation(s)
- Henrik Nausch
- Department of Agrobiotechnology, Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany
| | - Jana Huckauf
- Department of Agrobiotechnology, Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany
| | | | | | - Inge Broer
- Department of Agrobiotechnology, Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany
- * E-mail:
| | - Heike Mikschofsky
- Department of Agrobiotechnology, Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
7
|
Salinas G, Pellizza L, Margenat M, Fló M, Fernández C. Tuned Escherichia coli as a host for the expression of disulfide-rich proteins. Biotechnol J 2011; 6:686-99. [DOI: 10.1002/biot.201000335] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/05/2011] [Accepted: 03/15/2011] [Indexed: 12/28/2022]
|
8
|
Francis DM, Page R. Strategies to optimize protein expression in E. coli. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2010; Chapter 5:5.24.1-5.24.29. [PMID: 20814932 PMCID: PMC7162232 DOI: 10.1002/0471140864.ps0524s61] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recombinant protein expression in Escherichia coli (E. coli) is simple, fast, inexpensive, and robust, with the expressed protein comprising up to 50 percent of the total cellular protein. However, it also has disadvantages. For example, the rapidity of bacterial protein expression often results in unfolded/misfolded proteins, especially for heterologous proteins that require longer times and/or molecular chaperones to fold correctly. In addition, the highly reductive environment of the bacterial cytosol and the inability of E. coli to perform several eukaryotic post-translational modifications results in the insoluble expression of proteins that require these modifications for folding and activity. Fortunately, multiple, novel reagents and techniques have been developed that allow for the efficient, soluble production of a diverse range of heterologous proteins in E. coli. This overview describes variables at each stage of a protein expression experiment that can influence solubility and offers a summary of strategies used to optimize soluble expression in E. coli.
Collapse
|
9
|
Kelly Yan W, Goette M, Hofmann G, Zaror I, Sim J. High-level soluble expression, purification and characterization of active human midkine from Escherichia coli. Protein Expr Purif 2010; 70:270-6. [DOI: 10.1016/j.pep.2009.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/20/2009] [Accepted: 10/26/2009] [Indexed: 02/04/2023]
|
10
|
Pokoj S, Lauer I, Fötisch K, Himly M, Mari A, Enrique E, Miguel-Moncin MDMS, Lidholm J, Vieths S, Scheurer S. Pichia pastoris is superior to E. coli for the production of recombinant allergenic non-specific lipid-transfer proteins. Protein Expr Purif 2010; 69:68-75. [DOI: 10.1016/j.pep.2009.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/10/2009] [Accepted: 08/30/2009] [Indexed: 10/20/2022]
|
11
|
de Marco A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact 2009; 8:26. [PMID: 19442264 PMCID: PMC2689190 DOI: 10.1186/1475-2859-8-26] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/14/2009] [Indexed: 12/22/2022] Open
Abstract
Bacteria are simple and cost effective hosts for producing recombinant proteins. However, their physiological features may limit their use for obtaining in native form proteins of some specific structural classes, such as for instance polypeptides that undergo extensive post-translational modifications. To some extent, also the production of proteins that depending on disulfide bridges for their stability has been considered difficult in E. coli. Both eukaryotic and prokaryotic organisms keep their cytoplasm reduced and, consequently, disulfide bond formation is impaired in this subcellular compartment. Disulfide bridges can stabilize protein structure and are often present in high abundance in secreted proteins. In eukaryotic cells such bonds are formed in the oxidizing environment of endoplasmic reticulum during the export process. Bacteria do not possess a similar specialized subcellular compartment, but they have both export systems and enzymatic activities aimed at the formation and at the quality control of disulfide bonds in the oxidizing periplasm. This article reviews the available strategies for exploiting the physiological mechanisms of bactera to produce properly folded disulfide-bonded proteins.
Collapse
Affiliation(s)
- Ario de Marco
- Cogentech, IFOM-IEO Campus for Oncogenomic, via Adamello, 16 - 20139, Milano, Italy.
| |
Collapse
|
12
|
Lefebvre J, Boileau G, Manjunath P. Recombinant expression and affinity purification of a novel epididymal human sperm-binding protein, BSPH1. Mol Hum Reprod 2008; 15:105-14. [DOI: 10.1093/molehr/gan077] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Toxins from cone snails: properties, applications and biotechnological production. Appl Microbiol Biotechnol 2008; 79:1-9. [PMID: 18340446 PMCID: PMC2755758 DOI: 10.1007/s00253-008-1385-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/24/2008] [Accepted: 01/25/2008] [Indexed: 11/12/2022]
Abstract
Cone snails are marine predators that use venoms to immobilize their prey. The venoms of these mollusks contain a cocktail of peptides that mainly target different voltage- and ligand-gated ion channels. Typically, conopeptides consist of ten to 30 amino acids but conopeptides with more than 60 amino acids have also been described. Due to their extraordinary pharmacological properties, conopeptides gained increasing interest in recent years. There are several conopeptides used in clinical trials and one peptide has received approval for the treatment of pain. Accordingly, there is an increasing need for the production of these peptides. So far, most individual conopeptides are synthesized using solid phase peptide synthesis. Here, we describe that at least some of these peptides can be obtained using prokaryotic or eukaryotic expression systems. This opens the possibility for biotechnological production of also larger amounts of long chain conopeptides for the use of these peptides in research and medical applications.
Collapse
|
14
|
Vitzithum K, Lauber T, Kreutzmann P, Schulz A, Sommerhoff CP, Rösch P, Marx UC. LEKTI domain 15 is a functional Kazal-type proteinase inhibitor. Protein Expr Purif 2008; 57:45-56. [DOI: 10.1016/j.pep.2007.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 08/16/2007] [Accepted: 08/27/2007] [Indexed: 11/28/2022]
|
15
|
Rabhi-Essafi I, Sadok A, Khalaf N, Fathallah DM. A strategy for high-level expression of soluble and functional human interferon alpha as a GST-fusion protein in E. coli. Protein Eng Des Sel 2007; 20:201-9. [PMID: 17430974 DOI: 10.1093/protein/gzm012] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Escherichia coli is the most extensively used host for the production of recombinant proteins. However, most of the eukaryotic proteins are typically obtained as insoluble, misfolded inclusion bodies that need solubilization and refolding. To achieve high-level expression of soluble recombinant human interferon alpha (rhIFNalpha) in E. coli, we have first constructed a recombinant expression plasmid (pGEX-hIFNalpha2b), in which we merged the hIFNalpha2b cDNA with the glutathione S-transferase (GST) coding sequence downstream of the tac-inducible promoter. Using this plasmid, we have achieved 70% expression of soluble rhIFNalpha2b as a GST fusion protein using E. coli BL21 strain, under optimized environmental factors such as culture growth temperature and inducer (IPTG) concentration. However, release of the IFN moiety from the fusion protein by thrombin digestion was not optimal. Therefore, we have engineered the expression cassette to optimize the amino acid sequence at the GST-IFN junction and to introduce E. coli preferred codon within the thrombin cleavage site. We have used the engineered plasmid (pGEX-Delta-hIFNalpha2b) and the modified E. coli trxB(-)/gor(-) (Origami) strain to overcome the problem of removing the GST moiety while expressing soluble rhIFNalpha2b. Our results show the production of soluble and functional rhIFNalpha2b at a yield of 100 mg/l, without optimization of any step of the process. The specific biological activity of the purified soluble rhIFNalpha2b was equal to 2.0 x 10(8) IU/mg when compared with the WHO IFNalpha standard. Our data are the first to show that high yield production of soluble and functional rhIFNalpha2b tagged with GST can be achieved in E. coli.
Collapse
|
16
|
Liu S, Wang L, Wang W, Lin J, Han J, Sun H, Guo H, Sun R, Wu Q. TSC-36/FRP inhibits vascular smooth muscle cell proliferation and migration. Exp Mol Pathol 2005; 80:132-40. [PMID: 16256108 DOI: 10.1016/j.yexmp.2005.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 07/25/2005] [Indexed: 11/20/2022]
Abstract
OBJECTIVE In-stent restenosis is a vascular proliferation/migration disorder characterized by hyperplasia of vascular smooth muscle cells (VSMCs). Because mounting evidence suggests that the therapeutic potential of anti-proliferation and anti-migration therapy, we investigated possible inhibitory effects of the matricellular protein TGF-beta-stimulated clone 36 (TSC-36) on vascular smooth muscle cell proliferation and migration in vitro and in vivo. METHODS Human umbilical artery smooth muscle cells (SMCs) were treated with inducting agents daidzein or estradiol. TSC-36 expression was detected by nested competitive PCR and in situ hybridization. TSC-36 was expressed in Origami (DE3) cells. The recombinant protein was used to immunize rabbits to produce polyclonal antibodies. VSMCs were treated with various concentrations of recombinant TSC-36 (rTSC-36) protein and daidzein. The MTT assay was used to analyze for cell proliferation. A transwell system was used to detect cell migration. Flow cytometry was used to detect cell phase. A rat carotid artery balloon injury model was duplicated. The rats were treated with daidzein or solvent control. Animals were sacrificed 5 weeks later, and injured arteries were taken for pathology and histology. RESULTS TSC-36 mRNA and protein expression was induced in SMCs. Cell proliferation and migration were inhibited by rTSC-36. rTSC-36 caused accumulation of SMCs in G2 phase. The inducting agent daidzein decreased neo-intima proliferation. TSC-36 mRNA and protein expression was induced and expressed in the neo-intima. CONCLUSION TSC-36 can be induced in VSMCs and inhibits VSMCs proliferation in vitro and in vivo.
Collapse
Affiliation(s)
- Shu Liu
- Department of Pathophysiology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Braud S, Belin P, Dassa J, Pardo L, Mourier G, Caruana A, Priest BT, Dulski P, Garcia ML, Ménez A, Boulain JC, Gasparini S. BgK, a disulfide-containing sea anemone toxin blocking K+ channels, can be produced in Escherichia coli cytoplasm as a functional tagged protein. Protein Expr Purif 2005; 38:69-78. [PMID: 15477084 DOI: 10.1016/j.pep.2004.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/20/2004] [Indexed: 11/20/2022]
Abstract
BgK, a sea anemone peptide consisting of 37 amino acid residues and 3 disulfide bonds, blocks voltage-gated potassium (Kv1) channels. Here, we report a method for producing tagged BgK in Escherichia coli, as a soluble cytoplasmic protein. First, using peptidic synthesis, we show that addition of a 15 residue peptide (S.Tag) at the BgK C-terminus does not affect its biological activity. Then, a synthetic DNA sequence encoding BgK was constructed and cloned to produce a BgK-S.Tag hybrid in the cytoplasm of E. coli. The presence of S.Tag did not only facilitate detection, quantification, and purification of the recombinant protein, but also increased the production yield by more than two orders of magnitude. Moreover, use of an E. coli OrigamiB(DE3)pLacI strain also increased production; up to 5.8-7.5mg of BgK-S.Tag or mutated BgK(F6A)-S.Tag was produced per liter of culture and could be functionally characterized in crude extracts. Using a two-step purification procedure (affinity chromatography and RP-HPLC), we obtained 1.8-2.8mg of purified recombinant protein per liter of culture. The recombinant peptides displayed functional properties similar to those of native BgK or BgK(F6A).
Collapse
Affiliation(s)
- Sandrine Braud
- Département d'Ingénierie et d'Etudes des Protéines, CEA Saclay, 91191 Gif sur Yvette cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shimizu T, Shibata H, Araya T, Nakatsu T, Miyairi K, Okuno T, Kato H. Expression, purification, and crystallization of endopolygalacturonase from a pathogenic fungus, Stereum purpureum, in Escherichia coli. Protein Expr Purif 2005; 44:130-5. [PMID: 16061394 DOI: 10.1016/j.pep.2005.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 05/30/2005] [Accepted: 06/02/2005] [Indexed: 11/20/2022]
Abstract
Endopolygalacturonases (EC 3.2.1.15) catalyze random hydrolysis of the alpha-1,4 glycosidic linkages in polygalacturonic acid, a component of pectin. Previously, we reported crystal structures of endogenously produced Stereum purprureum endopolygalacturonase I (endoPG I), both in its native form and complexed with its product, galacturonate. However, the substrate-binding mechanism of endoPG I is still unclear, because crystals have not yet been obtained with a substrate analog, or with mutant enzymes that can bind substrates. We describe here an expression system using Escherichia coli and a purification method to prepare functionally active endoPG I for such mutation and crystallographic studies. Expression in E. coli strain Origami (DE3) provided a soluble and active enzyme with proper disulfide bond formation, whereas the enzyme expressed in BL21 (DE3) was localized in inclusion bodies. A sufficient amount of recombinant endoPG I produced by Origami (DE3) was purified by a single-step procedure using cation exchange chromatography. The specific activity of recombinant endoPG I was equivalent to that of the enzyme produced by S. purpureum. Recombinant endoPG I was crystallized under the same conditions as those used for the native enzyme produced by S. purpureum. The crystals diffracted beyond 1.0 A resolution with synchrotron radiation.
Collapse
Affiliation(s)
- Tetsuya Shimizu
- Kinetic Crystallography Research Team, Membrane Dynamics Research Group, RIKEN, Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Lehmann K, Hoffmann S, Neudecker P, Suhr M, Becker WM, Rösch P. High-yield expression in Escherichia coli, purification, and characterization of properly folded major peanut allergen Ara h 2. Protein Expr Purif 2004; 31:250-9. [PMID: 14550644 DOI: 10.1016/s1046-5928(03)00190-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Allergic reactions to peanuts are a serious health problem because of their high prevalence, associated with potential severity, and chronicity. One of the three major allergens in peanut, Ara h 2, is a member of the conglutin family of seed storage proteins. Ara h 2 shows high sequence homology to proteins of the 2S albumin family. Presently, only very few structural data from allergenic proteins of this family exist. For a detailed understanding of the molecular mechanisms of food-induced allergies and for the development of therapeutic strategies knowledge of the high-resolution three-dimensional structure of allergenic proteins is essential. We report a method for the efficient large-scale preparation of properly folded Ara h 2 for structural studies and report CD-spectroscopic data. In contrast to other allergenic 2S albumins, Ara h 2 exists as a single continuous polypeptide chain in peanut seeds, and thus heterologous expression in Escherichia coli was possible. Ara h 2 was expressed as Trx-His-tag fusion protein in E. coli Origami (DE3), a modified E. coli strain with oxidizing cytoplasm which allows the formation of disulfide bridges. It could be shown that recombinant Ara h 2, thus overexpressed and purified, and the allergen isolated from peanuts are identical as judged from immunoblotting, analytical HPLC, and circular dichroism spectra.
Collapse
Affiliation(s)
- Katrin Lehmann
- Lehrstuhl Biopolymere, Universität Bayreuth 30, Universitaetsstrasse 30, 95440, Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Richard C, Drider D, Elmorjani K, Marion D, Prévost H. Heterologous expression and purification of active divercin V41, a class IIa bacteriocin encoded by a synthetic gene in Escherichia coli. J Bacteriol 2004; 186:4276-84. [PMID: 15205430 PMCID: PMC421597 DOI: 10.1128/jb.186.13.4276-4284.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 03/22/2004] [Indexed: 11/20/2022] Open
Abstract
Divercin V41, a class IIa bacteriocin with strong antilisterial activity, is produced by Carnobacterium divergens V41. To express a recombinant version of divercin V41, we constructed a synthetic gene that encodes the mature divercin V41 peptide and then overexpressed the gene in pET-32b by using the T7 RNA polymerase promoter in the Escherichia coli Origami (DE3)(pLysS) strain. The DvnRV41 peptide was expressed as a translational fusion protein with thioredoxin and accumulated in the cell cytoplasm in a soluble anti-Listeria active form. The fusion protein was then purified and cleaved to obtain pure, soluble, folded DvnRV41 (462 microg per 20 ml of culture). This paper describes the first design of a synthetic bacteriocin gene and the first bacteriocin expressed in the E. coli cytoplasm.
Collapse
Affiliation(s)
- Christelle Richard
- Laboratoire de Microbiologie Alimentaire et Industrielle, ENITIAA, BP 82225, 44322 Nantes 3, France
| | | | | | | | | |
Collapse
|
21
|
Ortenberg R, Beckwith J. Functions of thiol-disulfide oxidoreductases in E. coli: redox myths, realities, and practicalities. Antioxid Redox Signal 2003; 5:403-11. [PMID: 13678528 DOI: 10.1089/152308603768295140] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A large family of enzymes contributes to the thiol-disulfide redox environment of the cells of most organisms. These proteins belong to pathways that carry out a variety of reactions, including the promotion of disulfide bond formation in extracytoplasmic proteins, the isomerization of proteins with incorrect disulfide bonds, and the reduction of disulfide bonds in the active sites of cytoplasmic proteins. Although the redox activities of these proteins measured in vitro often is consistent with the role (oxidant or reductant) these proteins perform in vivo, this is not always the case. The measured redox potentials can even suggest a function for a protein opposite of that which it carries out in the cell. Structural features of such proteins can contribute to a direction of electron transfer inconsistent with the redox potential. Furthermore, the environment in which such proteins are found may determine the protein's physiological role. Detailed analysis of these proteins in Escherichia coli provides strains that are useful for biotechnological purposes. Increasing the activity of certain of these proteins in the cell envelope or altering the thiol-disulfide redox environment of the cytoplasm to make it more oxidizing enhances the yield of useful disulfide bond-containing proteins such as tissue plasminogen activator and immunoglobulins.
Collapse
Affiliation(s)
- Ron Ortenberg
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
22
|
Schuhmann B, Seitz V, Vilcinskas A, Podsiadlowski L. Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2003; 53:125-133. [PMID: 12811766 DOI: 10.1002/arch.10091] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel defensin-like peptide was identified in the greater wax moth, Galleria mellonella. It was discovered in a haemocyte cDNA bank enriched with transcripts upregulated after immune challenge via subtractive hybridisation and suppressive PCR. The deduced amino acid sequence of the defensin-like peptide exhibits similarities to the antifungal peptides drosomycin from Drosophila melanogaster and heliomicin from Heliothis virescens. Therefore, it has been termed gallerimycin. Upregulation of gallerimycin after stimulation of the immune system by LPS-injection was demonstrated by quantitative real-time PCR. A full-size cDNA was cloned and overexpressed in Escherichia coli Origami cells in order to obtain a functional peptide with disulfide bridges. The recombinant peptide was active against the entomopathogenic fungus Metarhizium anisopliae, but not against yeast, gram-negative and gram-positive bacteria.
Collapse
|
23
|
Lauber T, Schulz A, Schweimer K, Adermann K, Marx UC. Homologous proteins with different folds: the three-dimensional structures of domains 1 and 6 of the multiple Kazal-type inhibitor LEKTI. J Mol Biol 2003; 328:205-19. [PMID: 12684009 DOI: 10.1016/s0022-2836(03)00245-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have determined the solution structures of recombinant domain 1 and native domain 6 of the multi-domain Kazal-type serine proteinase inhibitor LEKTI using multi-dimensional NMR spectroscopy. While two of the 15 potential inhibitory LEKTI domains contain three disulfide bonds typical of Kazal-type inhibitors, the remaining 13 domains have only two of these disulfide bridges. Therefore, they may represent a novel type of serine proteinase inhibitor. The first and the sixth LEKTI domain, which have been isolated from human blood ultrafiltrate, belong to this group. In spite of sharing the same disulfide pattern and a sequence identity of about 35% from the first to the fourth cysteine, the two proteins show different structures in this region. The three-dimensional structure of domain 6 consists of two helices and a beta-hairpin structure, and closely resembles the three-dimensional fold of classical Kazal-type serine proteinase inhibitors including the inhibitory binding loop. Domain 6 has been shown to be an efficient, but non-permanent serine proteinase inhibitor. The backbone geometry of its canonical loop is not as well defined as the remaining structural elements, providing a possible explanation for its non-permanent inhibitory activity. We conclude that domain 6 belongs to a subfamily of classical Kazal-type inhibitors, as the third disulfide bond and a third beta-strand are missing. The three-dimensional structure of domain 1 shows three helices and a beta-hairpin, but the central part of the structure differs remarkably from that of domain 6. The sequence adopting hairpin structure in domain 6 exhibits helical conformation in domain 1, and none of the residues within the putative P3 to P3' stretch features backbone angles that resemble those of the canonical loop of known proteinase inhibitors. No proteinase has been found to be inhibited by domain 1. We conclude that domain 1 adopts a new protein fold and is no canonical serine proteinase inhibitor.
Collapse
Affiliation(s)
- Thomas Lauber
- Lehrstuhl für Biopolymere, Universität Bayreuth, Universitätstrasse 30, D-95440 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
24
|
Jiang ST, Tzeng SS, Wu WT, Chen GH. Enhanced expression of chicken cystatin as a thioredoxin fusion form in Escherichia coli AD494(DE3)pLysS and its effect on the prevention of surimi gel softening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:3731-3737. [PMID: 12059151 DOI: 10.1021/jf020053v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The DNA encoding chicken lung cystatin was ligated into a thioredoxin-pET 23a+ expression vector and transformed into Escherichia coli AD494(DE3)pLysS. A high level of soluble recombinant thioredoxin-cystatin (trx-cystatin) was expressed in the cytoplasm of the E. coli transformant. As compared with recombinant cystatin (trx-free), a 38.7% increase of inhibitory activity in the soluble fraction was achieved by introducing the trx fusion protein. Trx-cystatin was purified to electrophoretical homogeneity by 3 min of heating at 90 degrees C and Sephacryl S-100 chromatography. The molecular mass of trx-cystatin was 29 kDa, which was the expected size based on its composition of recombinant trx (16 kDa) and chicken cystatin (13 kDa). The purified trx-cystatin behaved as a thermally stable and papain-like proteinase inhibitor comparable to either recombinant or natural chicken cystatins. The inhibitor could inhibit the gel softening of mackerel surimi.
Collapse
Affiliation(s)
- Shann-Tzong Jiang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan 202, Republic of China.
| | | | | | | |
Collapse
|