1
|
Shim GH, Kim HS, Kim ES, Lee KY, Kim EK, Choi JH. Expression of autotaxin and lysophosphatidic acid receptors 1 and 3 in the developing rat lung and in response to hyperoxia. Free Radic Res 2015; 49:1362-70. [PMID: 26178778 DOI: 10.3109/10715762.2015.1073850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We sought to evaluate lysophosphatidic acid (LPA) signaling improvement in lung development by assessing the expression of autotaxin and LPA receptor 1 and 3 (LPAR1 and LPAR3) in the neonatal rat lung during normal perinatal development and in response to hyperoxia. In the developmental study, rats were sacrificed on days 17, 19, and 21 of gestation; on postnatal days 1, 4, and 7; and at adulthood (postnatal 9 weeks). In the hyperoxia study, 42 postnatal 4-day-old rat pups were divided into seven groups and exposed to either 85% O2 for 24, 72, or 120 h or room air for 0, 24, 72, or 120 h. The rats were then euthanized after 0, 24, 72, and 120 h of exposure. Immunofluorescence demonstrated that autotaxin, LPAR1, and LPAR3 proteins were broadly colocalized in airway epithelial cells, but mainly distributed in vascular endothelial and mesenchymal cells during the first postnatal week. The expression of autotaxin, LPAR1, and LPAR3 were increased during late gestation and then decreased after birth. Autotaxin expression and enzymatic activity were significantly increased at 72 and 120 h after exposure to hyperoxia. LPAR1 and LPAR3 expression was also increased after 120 h of hyperoxic exposure. These findings suggest that LPA-associated molecules were upregulated at birth and induced by hyperoxia in the developing rat lung. Therefore, the LPA pathway may be involved in normal lung development, including vascular development, as well as wound-healing processes of injured neonatal lung tissue, which is at risk of neonatal hyperoxic acute lung injury.
Collapse
Affiliation(s)
- G H Shim
- a Department of Pediatrics , Inje University Sanggye Paik Hospital , Seoul , Korea
| | - H-S Kim
- b Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea
| | - E S Kim
- c Department of Pediatrics , Kangwon National University Hospital, Kangwon National University School of Medicine , Chuncheon , Korea
| | - K-Y Lee
- d Clinical Research Institute of Seoul National University Hospital , Seoul , Korea
| | - E-K Kim
- b Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea
| | - J-H Choi
- b Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea
| |
Collapse
|
2
|
Rosen H, Gonzalez-Cabrera PJ, Sanna MG, Brown S. Sphingosine 1-phosphate receptor signaling. Annu Rev Biochem 2009; 78:743-68. [PMID: 19231986 DOI: 10.1146/annurev.biochem.78.072407.103733] [Citation(s) in RCA: 327] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The sphingosine 1-phosphate (S1P) receptor signaling system is a productive model system. A hydrophobic zwitterionic lysophospholipid ligand with difficult physical properties interacts with five high-affinity G protein-coupled receptors to generate multiple downstream signals. These signals modulate homeostasis and pathology on a steep agonist concentration-response curve. Ligand presence is essential for vascular development and endothelial integrity, while acute increases in ligand concentrations result in cardiac death. Understanding this integrated biochemical system has exemplified the impact of both genetics and chemistry. Developing specific tools with defined biochemical properties for the reversible modulation of signals in real time has been essential to complement insights gained from genetic approaches that may be irreversible and compensated. Despite its knife-edge between life and death, this system, based in part on receptor subtype-selectivity and in part on differential attenuation of deleterious signals, now appears to be on the cusp of meaningful therapy for multiple sclerosis.
Collapse
Affiliation(s)
- Hugh Rosen
- Departments of Chemical Physiology and Immunology and The Scripps Research Institute Molecular Screening Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
3
|
The signaling mechanism of the sphingosylphosphorylcholine-induced contraction in cat esophageal smooth muscle cells. Arch Pharm Res 2008; 30:1608-18. [PMID: 18254249 DOI: 10.1007/bf02977331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We investigated the signaling pathway on sphingosinephosphorylcholine (SPC) -induced contraction in cat esophageal smooth muscle cells. SPC induced in a dose-dependent manner contractile effect. We have previously shown that lysophospholipid (LPL) receptor subtypes including the S1P1, S1P2, S1P3, and S1P5 receptor are present in esophageal smooth muscle. Only EDG-5 (S1P2) receptor antibody penetration into permeablilized cells inhibited the SPC-induced contraction. Pertussis toxin (PTX) and specific antibodies to G(i1), G(i2), G(i3) and G(o) inhibited the contraction, implying that SPC-induced contraction depends on PTX-sensitive G(i1), G(i2), G(i3), and G(o) protein. A phospholipase inhibitor U73122 and incubation of permeabilized cells with PLC-beta3 antibody inhibited SPC-induced contraction. The PKC-mediated contraction may be isozyme specific since only PKCepsilon antibody inhibited the contraction. Preincubation with MEK inhibitor PD98059 blocked the SPC-induced contraction, but p38 MAPK inhibitor SB202190 did not. Cotreatment with GF109203X and PD98059 did not show synergistic effects, suggesting that these two kinases are involved in the same signaling pathway in the SPC-induced contraction. The data suggest that S1P-induced contraction in feline esophageal smooth muscle cells depends on activation of the G(i1), G(i2), G(i3) and G(o) proteins and the PLCbeta3 isozyme via the S1P2 receptor, leading to stimulation of a PKCE pathway, which subsequently activates a p44/p42 MAPK pathway.
Collapse
|
4
|
Sawicka E, Zuany-Amorim C, Manlius C, Trifilieff A, Brinkmann V, Kemeny DM, Walker C. Inhibition of Th1- and Th2-mediated airway inflammation by the sphingosine 1-phosphate receptor agonist FTY720. THE JOURNAL OF IMMUNOLOGY 2004; 171:6206-14. [PMID: 14634137 DOI: 10.4049/jimmunol.171.11.6206] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The sphingosine 1-phosphate receptor agonist FTY720 is a novel immunomodulator that sequesters lymphocytes in secondary lymphoid organs and thereby prevents their migration to sites of inflammation. However, there is currently no information available on whether this drug affects Th1 or Th2 cell-mediated lung-inflammatory responses. The effect of FTY720 was therefore investigated in a murine airway inflammation model using OVA-specific, in vitro differentiated, and adoptively transferred Th1 and Th2 cells. Both Th1 and Th2 cells express a similar pattern of FTY720-targeted sphingosine 1-phosphate receptors. The OVA-induced Th1-mediated airway inflammation characterized by increased numbers of lymphocytes and neutrophils in bronchoalveolar lavage fluid was significantly inhibited by oral FTY720 treatment. Similarly, FTY720 suppressed the Th2 cell-induced bronchoalveolar lavage fluid eosinophilia and the infiltration of T lymphocytes and eosinophils into the bronchial tissue. Moreover, the Ag-induced bronchial hyperresponsiveness to inhaled metacholine was almost completely blocked. The inhibitory effect of FTY720 on airway inflammation, induction of bronchial hyperresponsiveness, and goblet cell hyperplasia could be confirmed in an actively Ag-sensitized murine asthma model, clearly indicating that Th2 cell-driven allergic diseases such as asthma could benefit from such treatment.
Collapse
|
5
|
Ghosh M, Stewart A, Tucker DE, Bonventre JV, Murphy RC, Leslie CC. Role of cytosolic phospholipase A(2) in prostaglandin E(2) production by lung fibroblasts. Am J Respir Cell Mol Biol 2004; 30:91-100. [PMID: 12842849 DOI: 10.1165/rcmb.2003-0005oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Prostaglandin (PG)E2 acts in an autocrine fashion to suppress proliferation of lung fibroblasts and production of collagen, and may negatively regulate pulmonary fibrosis. The role of Group IVA cytosolic phospholipase A2 alpha (cPLA2 alpha) in PGE2 production was investigated by comparing lung fibroblasts from wild-type and cPLA2 alpha-deficient mice. Arachidonic acid release from wild-type mouse lung fibroblasts (MLF+/+) was stimulated by serum, A23187 plus phorbol-myristate acetate (PMA), and lysophosphatidic acid (LPA) plus platelet-derived growth factor, but was > or = 80% lower from cPLA2 alpha-deficient MLF (MLF-/-). Transforming growth factor-beta increased cyclooxygenase-2 (COX2) expression to similar levels in MLF+/+ and MLF-/-, but MLF+/+ produced an order of magnitude more PGE2 than MLF-/- in response to A23187/PMA or platelet-derived growth factor/LPA. MLF+/+ synthesized less collagen than MLF-/-, supporting a role for PGE2 in suppressing collagen production. An SV40 immortalized line developed from MLF+/+ released arachidonic acid and expressed COX2 to levels similar to those of primary fibroblasts but produced 30-fold lower amounts of PGE2. Unlike primary fibroblasts, immortalized cells were deficient in microsomal PGE synthase (mPGES) but expressed slightly higher levels of cytosolic PGES. The results demonstrate a primary role for cPLA2 alpha in providing arachidonic acid for PGE2 production in mouse lung fibroblasts and support a role for this pathway in regulating collagen production.
Collapse
Affiliation(s)
- Moumita Ghosh
- Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson St., Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
6
|
Whetton AD, Lu Y, Pierce A, Carney L, Spooncer E. Lysophospholipids synergistically promote primitive hematopoietic cell chemotaxis via a mechanism involving Vav 1. Blood 2003; 102:2798-802. [PMID: 12829605 DOI: 10.1182/blood-2002-12-3635] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hematopoiesis is sustained by the proliferation and development of an extremely low number of hematopoietic stem cells resident in the bone marrow. These stem cells can migrate from their bone marrow microenvironment and can be found at low levels in the peripheral blood. The factors that regulate egress or ingress of the stem cells from the marrow include cytokines and chemokines. This process of stem cell trafficking is fundamental to both stem cell biology and stem cell transplantation. We show that primitive hematopoietic cells with cobblestone area-forming cell activity express receptors for and display enhanced motility in response to a new class of stem cell agonists, namely lysophospholipids. These agents synergistically promote chemokine-stimulated cell chemotaxis, a process that is crucial in stem cell homing. The response to lysophospholipids is mediated by Rac, Rho, and Cdc42 G proteins and the hematopoietic-specific guanyl nucleotide exchange factor Vav 1. Inhibitor studies also show a critical role for phosphatidylinositol 3 kinase (PI3K). Lipid mediators, therefore, regulate the critical process of primitive hematopoietic cell motility via a PI3K- and Vav-dependent mechanism and may govern stem cell movement in vivo. These results are of relevance to understanding stem cell trafficking during bone marrow transplantation.
Collapse
Affiliation(s)
- Anthony D Whetton
- Leukaemia Research Fund Cellular Development Unit, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester, M60 1QD, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Wang L, Cummings R, Zhao Y, Kazlauskas A, Sham JKS, Morris A, Georas S, Brindley DN, Natarajan V. Involvement of phospholipase D2 in lysophosphatidate-induced transactivation of platelet-derived growth factor receptor-beta in human bronchial epithelial cells. J Biol Chem 2003; 278:39931-40. [PMID: 12890682 DOI: 10.1074/jbc.m302896200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lysophosphatidate (LPA) mediates multiple cellular responses via heterotrimeric G protein coupled LPA-1, LPA-2, and LPA-3 receptors. Many G protein-coupled receptors stimulate ERK following tyrosine phosphorylation of growth factor receptors; however, the mechanism(s) of transactivation of receptor tyrosine kinases are not well defined. Here, we provide evidence for the involvement of phospholipase D (PLD) in LPA-mediated transactivation of platelet-derived growth factor receptor-beta (PDGF-R beta). In primary cultures of human bronchial epithelial cells (HBEpCs), LPA stimulated tyrosine phosphorylation of PDGF-R beta and threonine/tyrosine phosphorylation of ERK1/2. The LPA-mediated activation of ERK and tyrosine phosphorylation of PDGF-R beta was attenuated by tyrphostin AG 1296, an inhibitor of PDGF-R kinase, suggesting transactivation of PDGF-R by LPA. Furthermore, LPA-, but not PDGF beta-chain homodimer-induced tyrosine phosphorylation of PDGF-R beta was partially blocked by pertussis toxin, indicating coupling of LPA-R(s) to Gi. Exposure of HBEpCs to LPA activated PLD. Butan-1-ol, which acts as an acceptor of phosphatidate generated by the PLD pathway, blocked LPA-mediated transactivation of PDGF-R beta. This effect was not seen with butan-3-ol, suggesting PLD involvement. The role of PLD1 and PLD2 in the PDGF-R beta transactivation by LPA was investigated by infection of cells with adenoviral constructs of wild type and catalytically inactive mutants of PLD. LPA activated both PLD1 and PLD2 in HBEpCs; however, infection of cells with cDNA for wild type PLD2, but not PLD1, increased the tyrosine phosphorylation of PDGF-R beta in response to LPA. Also, the LPA-mediated tyrosine phosphorylation of PDGF-R beta was attenuated by the catalytically inactive mutant mPLD2-K758R. Infection of HBEpCs with adenoviral constructs of wild type hPLD1, mPLD2, and the inactive mutants of hPLD1 and mPLD2 resulted in association of PLD2 wild type and inactive mutant proteins with the PDGF-R beta compared with PLD1. These results show for the first time that transactivation of PDGF-R beta by LPA in HBEpCs is regulated by PLD2.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nitz T, Eisenblätter T, Psathaki K, Galla HJ. Serum-derived factors weaken the barrier properties of cultured porcine brain capillary endothelial cells in vitro. Brain Res 2003; 981:30-40. [PMID: 12885423 DOI: 10.1016/s0006-8993(03)02834-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cultured cerebral capillary endothelial cells are often used as a functional in vitro model of the blood-brain barrier (BBB) to determine drug uptake or to study barrier properties. Usually serum is supplemented to these cultures for cell proliferation. Here, we demonstrate the effect of serum and the serum-derived factors lysophosphatidic acid (LPA) and vascular endothelial growth factor (VEGF) on the barrier properties of cultured porcine brain capillary endothelial cells (PBCEC). Serum prevents tight junction formation of confluent PBCEC monolayers and moreover, opens already established tight junctions shown by decreasing transendothelial electrical resistances (TER). These effects are highly polarised with serum almost exclusively acting from the basolateral side of the cell culture. Immunocytochemistry of PBCEC revealed a delocalisation of the cell border lining tight junction proteins ZO-1, occludin and claudin-5 when serum was added. A serum fraction of 67 kDa was isolated by size-exclusion chromatography, identified as albumin and found to cause a serum-like decrease of the TER. However, fatty acid-free serum albumin does not develop this barrier weakening effect, indicating that small protein-bound factors might be responsible. For instance, serum-bound LPA demonstrated a TER-decreasing effect as well, but in contrast to serum mainly when added to the apical side of PBCEC. Addition of VEGF caused a serum-like decrease of the TER with the same polar effect; however, VEGF will be denatured by heat and could thus not be the heat-sensitive factor. Thus, we hypothesise that serum contains a variety of factors which weaken the tightness of a PBCEC monolayer from the apical side as expected but also from the basolateral side. Although the structure of the 67 kDa factor could not be analysed, this finding is of importance for in vitro models not only of the blood-brain barrier mostly using serum-containing media.
Collapse
Affiliation(s)
- Thorsten Nitz
- Institut für Biochemie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 2, 48149 Münster, Germany
| | | | | | | |
Collapse
|
9
|
Nanjundan M, Possmayer F. Pulmonary phosphatidic acid phosphatase and lipid phosphate phosphohydrolase. Am J Physiol Lung Cell Mol Physiol 2003; 284:L1-23. [PMID: 12471011 DOI: 10.1152/ajplung.00029.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The lung contains two distinct forms of phosphatidic acid phosphatase (PAP). PAP1 is a cytosolic enzyme that is activated through fatty acid-induced translocation to the endoplasmic reticulum, where it converts phosphatidic acid (PA) to diacylglycerol (DAG) for the biosynthesis of phospholipids and neutral lipids. PAP1 is Mg(2+) dependent and sulfhydryl reagent sensitive. PAP2 is a six-transmembrane-domain integral protein localized to the plasma membrane. Because PAP2 degrades sphingosine-1-phosphate (S1P) and ceramide-1-phosphate in addition to PA and lyso-PA, it has been renamed lipid phosphate phosphohydrolase (LPP). LPP is Mg(2+) independent and sulfhydryl reagent insensitive. This review describes LPP isoforms found in the lung and their location in signaling platforms (rafts/caveolae). Pulmonary LPPs likely function in the phospholipase D pathway, thereby controlling surfactant secretion. Through lowering the levels of lyso-PA and S1P, which serve as agonists for endothelial differentiation gene receptors, LPPs regulate cell division, differentiation, apoptosis, and mobility. LPP activity could also influence transdifferentiation of alveolar type II to type I cells. It is considered likely that these lipid phosphohydrolases have critical roles in lung morphogenesis and in acute lung injury and repair.
Collapse
Affiliation(s)
- Meera Nanjundan
- Department of Obstetrics and Gynaecology, Canadian Institutes of Health Research Group in Fetal and Neonatal Health and Development, The University of Western Ontario, 339 Windermere Road, London, Ontario, Canada N6A 5A5
| | | |
Collapse
|
10
|
Lee T, Kim J, Sohn U. Sphingosylphosphorylcholine-induced contraction of feline ileal smooth muscle cells is mediated by Galphai3 protein and MAPK. Cell Signal 2002; 14:989-97. [PMID: 12359304 DOI: 10.1016/s0898-6568(02)00032-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We studied the mechanism of sphingosylphosphorylcholine (SPC)-induced contraction in feline ileal smooth muscle cells. Western blotting revealed that G protein subtypes of Galpha(i1), Galpha(i3) and Galpha(o) existed in feline ileum. Galpha(i3) antibody penetration into permeabilized cells decreased SPC-induced contraction. In addition, incubation of [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTPgammaS) with membrane fraction increased its binding to Galpha(i3) subtype after SPC treatment, suggesting that the signalling pathways invoked by SPC were mediated by Galpha(i3) protein. MAPK kinase (MEK) inhibitor PD98059 blocked the contraction significantly, but p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 did not. Chelerythrine and neomycin also inhibited the contraction. However, cotreatment of PD98059 and chelerythrine showed no significant difference. Phosphorylation of p44/42 MAPK was increased by SPC treatment, which was reversed by pretreatment of inhibitors of signalling molecules that decreased SPC-induced contraction previously. The same result was obtained in the assay of MAPK activity.
Collapse
Affiliation(s)
- Tai Lee
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul 156-756, Republic of Korea
| | | | | |
Collapse
|
11
|
Koide Y, Hasegawa T, Takahashi A, Endo A, Mochizuki N, Nakagawa M, Nishida A. Development of novel EDG3 antagonists using a 3D database search and their structure-activity relationships. J Med Chem 2002; 45:4629-38. [PMID: 12361389 DOI: 10.1021/jm020080c] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sphingosine-1-phosphate (S1P) is an intracellular second messenger and an extracellular mediator through endothelial differentiation gene (EDG) receptors, which are a novel class of G-protein-coupled receptors. Although EDG has attracted much attention because of its various roles, no selective agonists or antagonists have yet been developed. This could account for the delay in clarifying the physiological roles of members of the EDG family. Because precise structural information on EDG receptors is not yet available, pharmacophore models were generated based on structural information for S1P using the rational drug design software Catalyst. Novel antagonists, 2-alkylthiazolidine-4-carboxylic acids, were retrieved from a three-dimensional database search using the pharmacophore models, and these showed activity for EDG3. On the basis of their nonphosphoric acid structure, more potent antagonists, 2-(m- or p-heptylphenyl)thiazolidine-4-carboxylic acid, were developed.
Collapse
Affiliation(s)
- Yuuki Koide
- Drug Research Department, Tokyo Research Laboratories, TOA EIYO Ltd., 2-293-3 Amanuma, Saitama 330-0834, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Cummings RJ, Parinandi NL, Zaiman A, Wang L, Usatyuk PV, Garcia JGN, Natarajan V. Phospholipase D activation by sphingosine 1-phosphate regulates interleukin-8 secretion in human bronchial epithelial cells. J Biol Chem 2002; 277:30227-35. [PMID: 12039947 DOI: 10.1074/jbc.m111078200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine 1-phosphate (S1P), a potent bioactive sphingolipid, has been implicated in many critical cellular events, including a regulatory role in the pathogenesis of airway inflammation. We investigated the participation of S1P as an inflammatory mediator by assessing interleukin-8 (IL-8) secretion and phospholipase D (PLD) activation in human bronchial epithelial cells (Beas-2B). S1P(1), S1P(3), S1P(4), S1P(5), and weak S1P(2) receptors were detected in Beas-2B and primary human bronchial epithelial cells. S1P stimulated a rapid activation of PLD, which was nearly abolished by pertussis toxin (PTX) treatment, consistent with S1P receptor/G(i) protein coupling. S1P also markedly induced Beas-2B secretion of IL-8, a powerful neutrophil chemoattractant and activator, in a PTX-sensitive manner. This S1P-mediated response was dependent on transcription as indicated by a strong induction of IL-8 promoter-mediated luciferase activity in transfected Beas-2B cells and a complete inhibition by actinomycin D. Beas-2B exposure to 1-butanol, which converts the PLD-generated phosphatidic acid (PA) to phosphatidylbutanol by a transphosphatidylation reaction, significantly attenuated the S1P-induced IL-8 secretion, indicating the involvement of PLD-derived PA in the signaling pathway. Inhibition of 12-O-tetradecanoyl-phorbol-13-acetate-stimulated IL-8 production by 1-butanol further strengthened this observation. Blocking protein kinase C and Rho kinase also attenuated S1P-induced IL-8 secretion. Our data suggest that PLD-derived PA, protein kinase C, and Rho are important signaling components in S1P-mediated IL-8 secretion by human bronchial epithelial cells.
Collapse
Affiliation(s)
- Rhett J Cummings
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Lindberg J, Ekeroth J, Konradsson P. Efficient synthesis of phospholipids from glycidyl phosphates. J Org Chem 2002; 67:194-9. [PMID: 11777459 DOI: 10.1021/jo010734+] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
New efficient routes to enantiopure phospholipids, starting from (S)-glycidol, are described. Lysophosphatidic acids and phosphatidic acids were obtained in good overall yields from (S)-glycidol, in only three and four steps, respectively. Moreover, the strategy can also be used to produce phosphatidylcholines in three steps. Using dialkylphosphoramidites, (S)-glycidol was phosphorylated to give (R)-1-O-glycidyl dialkyl phosphates. Regiospecific epoxide opening, using hexadecanol or cesium palmitate, followed by phosphate deprotection, provided lysophosphatidic acids. 2-O-Esterification prior to phosphate deprotection provided 1,2-O-diacyl and 1-O-alkyl-2-O-acyl phosphatidic acids. Phosphorylation of (S)-glycidol using phosphorus oxychloride followed by in situ treatment with choline tosylate produced (R)-glycidyl phosphocholine. Subsequent nucleophilic opening of the epoxide using cesium palmitate produced 1-O-palmitoyl-sn-glycero-3-phosphocholine, which has been used in syntheses of phosphatidylcholines.
Collapse
Affiliation(s)
- Jan Lindberg
- Department of Chemistry, Linköping University, SE-581 83 Linköping, Sweden
| | | | | |
Collapse
|
14
|
Hornuss C, Hammermann R, Fuhrmann M, Juergens UR, Racké K. Human and rat alveolar macrophages express multiple EDG receptors. Eur J Pharmacol 2001; 429:303-8. [PMID: 11698050 DOI: 10.1016/s0014-2999(01)01329-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endothelial differentiation gene (EDG) receptors are a new family of eight G protein-coupled receptors for the lysophospholipids lysophosphatitic acid and sphingosine-1-phosphate. In the present experiments, the expression of EDG receptors in rat and human alveolar macrophages was studied by reverse transcription-polymerase chain reaction (RT-PCR). In alveolar macrophages of both species, mRNA for multiple EDG receptors could be detected, but the pattern of expression was different in both species. In human alveolar macrophages, mRNA for EDG1, EDG2, EDG4, EDG7 receptors and, to a lesser extent, for the EDG7 receptor was detected, whereas in rat macrophages, mRNA for EDG2, EDG5 receptors and, to a lesser extent, for the EDG6 receptor was found. In functional experiments, it was observed that lysophosphatitic acid and sphingosine-1-phosphate can stimulate O(2)(-) generation in rat and human alveolar macrophages suggesting that lysophosphatitic acid and sphingosine-1-phosphate possibly acting via EDG receptors may play a role in controlling the activation of macrophages.
Collapse
Affiliation(s)
- C Hornuss
- Institute of Pharmacology and Toxicology, University of Bonn, Reuterstrasse 2b, D-53113 Bonn, Germany
| | | | | | | | | |
Collapse
|