1
|
Zeng M, Zhang W, Li Y, Yu L. Harnessing adenovirus in cancer immunotherapy: evoking cellular immunity and targeting delivery in cell-specific manner. Biomark Res 2024; 12:36. [PMID: 38528632 DOI: 10.1186/s40364-024-00581-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/09/2024] [Indexed: 03/27/2024] Open
Abstract
Recombinant adenovirus (rAd) regimens, including replication-competent oncolytic adenovirus (OAV) and replication-deficient adenovirus, have been identified as potential cancer therapeutics. OAV presents advantages such as selective replication, oncolytic efficacy, and tumor microenvironment (TME) remodeling. In this perspective, the principles and advancements in developing OAV toolkits are reviewed. The burgeoning rAd may dictate efficacy of conventional cancer therapies as well as cancer immunotherapies, including cancer vaccines, synergy with adoptive cell therapy (ACT), and TME reshaping. Concurrently, we explored the potential of rAd hitchhiking to adoptive immune cells or stem cells, highlighting how this approach facilitates synergistic interactions between rAd and cellular therapeutics at tumor sites. Results from preclinical and clinical trials in which immune and stem cells were infected with rAd have been used to address significant oncological challenges, such as postsurgical residual tumor tissue and metastatic tissue. Briefly, rAd can eradicate tumors through various mechanisms, resulting from tumor immunogenicity, reprogramming of the TME, enhancement of cellular immunity, and effective tumor targeting. In this context, we argue that rAd holds immense potential for enhancing cellular immunity and synergistically improving antitumor effects in combination with novel cancer immunotherapies.
Collapse
Affiliation(s)
- Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd. No, 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China.
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
2
|
Yi L, Ning Z, Xu L, Shen Y, Zhu X, Yu W, Xie J, Meng Z. The combination treatment of oncolytic adenovirus H101 with nivolumab for refractory advanced hepatocellular carcinoma: an open-label, single-arm, pilot study. ESMO Open 2024; 9:102239. [PMID: 38325225 PMCID: PMC10937204 DOI: 10.1016/j.esmoop.2024.102239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND H101, an innovative oncolytic adenovirus, has shown potential in modifying the tumor microenvironment from immunologically 'cold' to 'hot'. When combined with nivolumab, a programmed cell death protein 1 inhibitor, this synergy may offer substantial therapeutic benefits beyond the capabilities of each agent alone. PATIENTS AND METHODS In this pilot study, we assessed the efficacy and safety of combining H101 with nivolumab in advanced hepatocellular carcinoma (HCC) patients who failed prior systemic therapy. The participants received initial oncolytic virus (OV) pretreatment with intratumoral H101 injections (5.0 × 1011 vp/0.5 ml/vial, two vials per lesion) on days 1 and 3. Combination therapy started on day 8, with H101 administered every 2 or 4 weeks and nivolumab (240 mg) injections every 2 weeks. Treatment continued up to 12 months or until disease progression, intolerable toxicity, consent withdrawal, or study conclusion. The primary endpoint was the objective response rate (ORR). RESULTS Between March 2020 and March 2022, 18 of 21 screened patients were assessable, showing an ORR of 11.1% [two cases of partial response (PR) and five cases of stable disease], with extrahepatic injections often leading to favorable outcomes. The disease control rate stood at 38.9%, with a 6-month survival rate of 88.9%. Median progression-free survival was 2.69 months, and overall survival (OS) was 15.04 months. Common adverse events included low-grade fever (100%) and pain related to centesis (33.3%), and no grade 3/4 events were reported. Significantly, local H101 injection showed potential in reversing immune checkpoint inhibitor resistance, evidenced by over 2.5 years of extended OS in PR cases with low α-fetoprotein. Additionally, decreasing neutrophil-to-lymphocyte ratio during OV pretreatment may predict positive outcomes. CONCLUSIONS This study demonstrates the potential efficacy of combining H101 with nivolumab in treating refractory advanced HCC, with well-tolerated toxicities.
Collapse
Affiliation(s)
- L Yi
- Department of Integrative Oncology, Shanghai, China; Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Z Ning
- Department of Integrative Oncology, Shanghai, China; Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - L Xu
- Department of Integrative Oncology, Shanghai, China; Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Y Shen
- Department of Integrative Oncology, Shanghai, China; Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - X Zhu
- Department of Integrative Oncology, Shanghai, China; Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - W Yu
- Department of Integrative Oncology, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - J Xie
- Department of Integrative Oncology, Shanghai, China; Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Z Meng
- Department of Integrative Oncology, Shanghai, China; Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther 2022; 7:117. [PMID: 35387984 PMCID: PMC8987060 DOI: 10.1038/s41392-022-00951-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses (OVs) are emerging as potentially useful platforms in treatment methods for patients with tumors. They preferentially target and kill tumor cells, leaving healthy cells unharmed. In addition to direct oncolysis, the essential and attractive aspect of oncolytic virotherapy is based on the intrinsic induction of both innate and adaptive immune responses. To further augment this efficacious response, OVs have been genetically engineered to express immune regulators that enhance or restore antitumor immunity. Recently, combinations of OVs with other immunotherapies, such as immune checkpoint inhibitors (ICIs), chimeric antigen receptors (CARs), antigen-specific T-cell receptors (TCRs) and autologous tumor-infiltrating lymphocytes (TILs), have led to promising progress in cancer treatment. This review summarizes the intrinsic mechanisms of OVs, describes the optimization strategies for using armed OVs to enhance the effects of antitumor immunity and highlights rational combinations of OVs with other immunotherapies in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China
- College of Bioengineering, Sichuan University of Science & Engineering, No. 519, Huixing Road, 643000, Zigong, Sichuan, People's Republic of China
| | - Daoyuan Xie
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Li J, Wang W, Wang J, Cao Y, Wang S, Zhao J. Viral Gene Therapy for Glioblastoma Multiforme: A Promising Hope for the Current Dilemma. Front Oncol 2021; 11:678226. [PMID: 34055646 PMCID: PMC8155537 DOI: 10.3389/fonc.2021.678226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM), as one of the most common malignant brain tumors, was limited in its treatment effectiveness with current options. Its invasive and infiltrative features led to tumor recurrence and poor prognosis. Effective treatment and survival improvement have always been a challenge. With the exploration of genetic mutations and molecular pathways in neuro-oncology, gene therapy is becoming a promising therapeutic approach. Therapeutic genes are delivered into target cells with viral vectors to act specific antitumor effects, which can be used in gene delivery, play an oncolysis effect, and induce host immune response. The application of engineering technology makes the virus vector used in genetics a more prospective future. Recent advances in viral gene therapy offer hope for treating brain tumors. In this review, we discuss the types and designs of viruses as well as their study progress and potential applications in the treatment of GBM. Although still under research, viral gene therapy is promising to be a new therapeutic approach for GBM treatment in the future.
Collapse
Affiliation(s)
- Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Abudoureyimu M, Lai Y, Tian C, Wang T, Wang R, Chu X. Oncolytic Adenovirus-A Nova for Gene-Targeted Oncolytic Viral Therapy in HCC. Front Oncol 2019; 9:1182. [PMID: 31781493 PMCID: PMC6857090 DOI: 10.3389/fonc.2019.01182] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers worldwide, particularly in China. Despite the development of HCC treatment strategies, the survival rate remains unpleasant. Gene-targeted oncolytic viral therapy (GTOVT) is an emerging treatment modality-a kind of cancer-targeted therapy-which creates viral vectors armed with anti-cancer genes. The adenovirus is a promising agent for GAOVT due to its many advantages. In spite of the oncolytic adenovirus itself, the host immune response is the determining factor for the anti-cancer efficacy. In this review, we have summarized recent developments in oncolytic adenovirus engineering and the development of novel therapeutic genes utilized in HCC treatment. Furthermore, the diversified roles the immune response plays in oncolytic adenovirus therapy and recent attempts to modulate immune responses to enhance the anti-cancer efficacy of oncolytic adenovirus have been discussed.
Collapse
Affiliation(s)
- Mubalake Abudoureyimu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Yongting Lai
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, China
| | - Chuan Tian
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Li X, Yuan L, Zhao J, Yang H, Yang Y, Zhang Y, Cun B. Adenovirus-based strategies enhance antitumor capability through p53-mediated downregulation of MGMT in uveal melanoma. Cancer Biol Ther 2017; 18:194-199. [PMID: 28278076 DOI: 10.1080/15384047.2017.1294287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Uveal melanoma (UM) is an intractable disease with a low survival rates, despite adequate local treatment, as a result of its metastatic characteristics. Thus, new therapeutic strategies, including combinations of novel gene therapy and traditional chemotherapy, are under investigation to improve long-term prognosis. Dacarbazine or DTIC, an alkylating agent which results in DNA methylation, is most commonly used to treat melanoma but the response is very limited. The O6-methylguanine DNA methyl transferase (MGMT), a DNA repair protein, is involved in chemoresistance in DTIC treatment. We previously investigated a combination of oncolytic adenovirus H101 and the alkylating agent DTIC in the treatment of UM cells in vitro and observed a synergistic antitumor effect. In this study, we validated this result and report an enhanced therapeutic effect in vivo. Our findings also demonstrated that the oncolytic adenovirus H101 decreased MGMT levels via accumulation of p53 overcoming DTIC chemoresistance. Therefore, the clinical therapeutic efficacy of DTIC in the treatment of UM might be improved using this adenovirus-based combination therapy.
Collapse
Affiliation(s)
- Xun Li
- a Department of Clinical Skills Center , Kunming Medical University , Kunming , Yunnan , China
| | - Ling Yuan
- b Department of Ophthalmology , The First Affiliated Hospital of Kunming Medical University , Kunming , Yunnan , China
| | - Jianfeng Zhao
- b Department of Ophthalmology , The First Affiliated Hospital of Kunming Medical University , Kunming , Yunnan , China
| | - Hui Yang
- a Department of Clinical Skills Center , Kunming Medical University , Kunming , Yunnan , China
| | - Yunzhi Yang
- a Department of Clinical Skills Center , Kunming Medical University , Kunming , Yunnan , China
| | - Yanfei Zhang
- b Department of Ophthalmology , The First Affiliated Hospital of Kunming Medical University , Kunming , Yunnan , China
| | - Biyun Cun
- a Department of Clinical Skills Center , Kunming Medical University , Kunming , Yunnan , China
| |
Collapse
|
7
|
Fernandes J. Oncogenes: The Passport for Viral Oncolysis Through PKR Inhibition. BIOMARKERS IN CANCER 2016; 8:101-10. [PMID: 27486347 PMCID: PMC4966488 DOI: 10.4137/bic.s33378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023]
Abstract
The transforming properties of oncogenes are derived from gain-of-function mutations, shifting cell signaling from highly regulated homeostatic to an uncontrolled oncogenic state, with the contribution of the inactivating mutations in tumor suppressor genes P53 and RB, leading to tumor resistance to conventional and target-directed therapy. On the other hand, this scenario fulfills two requirements for oncolytic virus infection in tumor cells: inactivation of tumor suppressors and presence of oncoproteins, also the requirements to engage malignancy. Several of these oncogenes have a negative impact on the main interferon antiviral defense, the double-stranded RNA-activated protein kinase (PKR), which helps viruses to spontaneously target tumor cells instead of normal cells. This review is focused on the negative impact of overexpression of oncogenes on conventional and targeted therapy and their positive impact on viral oncolysis due to their ability to inhibit PKR-induced translation blockage, allowing virion release and cell death.
Collapse
Affiliation(s)
- Janaina Fernandes
- NUMPEX-BIO, Campus Xerém, Federal University of Rio de Janeiro, Duque de Caxias, Rio de Janeiro, Brazil.; Institute for Translational Research on Health and Environment in the Amazon Region-INPeTAm, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Tetzlaff MT, Teh BS, Timme TL, Fujita T, Satoh T, Tabata KI, Mai WY, Vlachaki MT, Amato RJ, Kadmon D, Miles BJ, Ayala G, Wheeler TM, Aguilar-Cordova E, Thompson TC, Butler EB. Expanding the Therapeutic Index of Radiation Therapy by Combining In Situ Gene Therapy in the Treatment of Prostate Cancer. Technol Cancer Res Treat 2016; 5:23-36. [PMID: 16417399 DOI: 10.1177/153303460600500104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The advances in radiotherapy (3D-CRT, IMRT) have enabled high doses of radiation to be delivered with the least possible associated toxicity. However, the persistence of cancer (local recurrence after radiotherapy) despite these increased doses as well as distant failure suggesting the existence of micro-metastases, especially in the case of higher risk disease, have underscored the need for continued improvement in treatment strategies to manage local and micro-metastatic disease as definitively as possible. This has prompted the idea that an increase in the therapeutic index of radiotherapy might be achieved by combining it with in situ gene therapy. The goal of these combinatorial therapies is to maximize the selective pressure against cancer cell growth while minimizing treatment-associated toxicity. Major efforts utilizing different gene therapy strategies have been employed in conjunction with radiotherapy. We reviewed our and other published clinical trials utilizing this combined radio-genetherapy approach including their associated pre-clinical in vitro and in vivo models. The use of in situ gene therapy as an adjuvant to radiation therapy dramatically reduced cell viability in vitro and tumor growth in vivo. No significant worsening of the toxicities normally observed in single-modality approaches were identified in Phase I/II clinical studies. Enhancement of both local and systemic T-cell activation was noted with this combined approach suggesting anti-tumor immunity. Early clinical outcome including biochemical and biopsy data was very promising. These results demonstrate the increased therapeutic efficacy achieved by combining in situ gene therapy with radiotherapy in the management of local prostate cancer. The combined approach maximizes tumor control, both local-regional and systemic through radio-genetherapy induced cytotoxicity and anti-tumor immunity.
Collapse
Affiliation(s)
- Michael T Tetzlaff
- Scott Department of Urology, Baylor College of Medicine, 6560 Fannin, ST 2100, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Oncolytic virotherapy is a cancer treatment in which replication-competent viruses are used that specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells. Anecdotal evidence of the effectiveness of this strategy has existed since the late nineteenth century, but advances and innovations in biotechnological methods in the 1980s and 1990s led to a renewed interest in this type of therapy. Multiple clinical trials investigating the use of agents constructed from a wide range of viruses have since been performed, and several of these enrolled patients with urological malignancies. Data from these clinical trials and from preclinical studies revealed a number of challenges to the effectiveness of oncolytic virotherapy that have prompted the development of further sophisticated strategies. Urological cancers have a range of distinctive features, such as specific genetic mutations and cell surface markers, which enable improving both effectiveness and safety of oncolytic virus treatments. The strategies employed in creating advanced oncolytic agents include alteration of the virus tropism, regulating transcription and translation of viral genes, combination with chemotherapy, radiotherapy or gene therapy, arming viruses with factors that stimulate the immune response against tumour cells and delivery technologies to ensure that the viral agent reaches its target tissue.
Collapse
Affiliation(s)
- Zahid Delwar
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaixin Zhang
- Department of Urology, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul S Rennie
- Prostate Research Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - William Jia
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
10
|
Newton HB. Molecular neuro-oncology and the development of targeted therapeutic strategies for brain tumors Part 4: p53 signaling pathway. Expert Rev Anticancer Ther 2014; 5:177-91. [PMID: 15757449 DOI: 10.1586/14737140.5.1.177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain tumors are a diverse group of malignancies that remain refractory to conventional treatment approaches. Molecular neuro-oncology has now begun to clarify the transformed phenotype of brain tumors and identify oncogenic pathways that might be amenable to targeted therapy. Loss of the tumor suppressor gene p53 and its encoded protein are the most common genetic events in human cancer and are a frequent occurrence in brain tumors. p53 functions as a transcription factor and is responsible for the transactivation and repression of key genes involved in cell growth, apoptosis and the cell cycle. Mutation of the p53 gene or dysfunction of its signaling pathway are early events in the transformation process of astrocytic gliomas. The majority of mutations are missense and occur in the conserved regions of the gene, within exons 5 through 8. Molecular therapeutic strategies to normalize p53 signaling in cells with mutant p53 include pharmacologic rescue of mutant protein, gene therapy approaches, small-molecule agonists of downstream inhibitory genes, antisense approaches and oncolytic viruses. Other strategies include activation of normal p53 activity, inhibition of mdm2-mediated degradation of p53 and blockade of p53 nuclear export. Further development of targeted therapies designed to restore or enhance p53 function, and evaluation of these new agents in clinical trials, will be needed to improve survival and quality of life for patients with brain tumors.
Collapse
Affiliation(s)
- Herbert B Newton
- Dardinger Neuro-Oncology Center, Department of Neurology, Ohio State University Hospitals, 465 Means Hall, 1654 Upham Drive, Columbus, OH 43210, USA.
| |
Collapse
|
11
|
Liu RY, Peng JL, Li YQ, Huang BJ, Lin HX, Zhou L, Luo HL, Huang W. Tumor-specific cytolysis caused by an E1B55K-attenuated adenovirus in nasopharyngeal carcinoma is augmented by cisplatin. Anat Rec (Hoboken) 2013; 296:1833-41. [PMID: 24136729 DOI: 10.1002/ar.22813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 12/27/2022]
Abstract
An E1B55K-attenuated adenovirus, dl1520, has been shown to replicate selectively in and lyse tumor cells. In this study, the antitumor activities of dl1520, alone or in combination with the chemotherapeutic agent cisplatin, were investigated in nasopharyngeal carcinoma (NPC) cells. The results demonstrated that dl1520 replicated in and destroyed NPC cells, and induced apoptosis in vitro. In a nude mouse xenograft model, dl1520 significantly inhibited the growth of NPC cell xenografts, and the viral replication was associated with tumor regression. Importantly, the antitumor activity of dl1520 was augmented by the addition of cisplatin both in vitro and in vivo, showing that dl1520 and cisplatin have a synergistic anti-NPC effect. These data suggest that dl1520 exerts an efficient anti-NPC activity through oncolysis and the induction of apoptosis, which is enhanced synergistically by cisplatin. These findings indicate that oncolytic viral therapeutics using the E1B55K-attenuated adenovirus dl1520 could be promising in the comprehensive treatment of NPC, especially in combination with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Ran-Yi Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Dey M, Auffinger B, Lesniak MS, Ahmed AU. Antiglioma oncolytic virotherapy: unattainable goal or a success story in the making? Future Virol 2013; 8:675-693. [PMID: 24910708 DOI: 10.2217/fvl.13.47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Initial observations from as early as the mid-1800s suggested that patients suffering from hematological malignancies would transiently go into remission upon naturally contracting viral infections laid the foundation for the oncolytic virotherapy research field. Since then, research focusing on anticancer oncolytic virotherapy has rapidly evolved. Today, oncolytic viral vectors have been engineered to stimulate and manipulate the host immune system, selectively targeting tumor tissues while sparing non-neoplastic cells. Glioblastoma multiforme, the most common adult primary brain tumor, has a disasterous history. It is one of the most deadly cancers known to humankind. Over the last century our understanding of this disease has grown exponentially. However, the median survival of patients suffering from this disease has only been extended by a few months. Even with the best, most aggressive modern therapeutic approaches available, malignant gliomas are still virtually 100% fatal. Motivated by the desperate need to find effective treatment strategies, more investments have been applied to oncolytic virotherapy preclinical and clinical studies. In this review we will discuss the antiglioma oncolytic virotherapy research field. We will survey its history and the principles laid down to serve as basis for preclinical works. We will also debate the variety of viral vectors used, their clinical applications, the lessons learned from clinical trials and possible future directions.
Collapse
Affiliation(s)
- Mahua Dey
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | - Brenda Auffinger
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | - Atique U Ahmed
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Sharon D, Schümann M, MacLeod S, McPherson R, Chaurasiya S, Shaw A, Hitt MM. 2-aminopurine enhances the oncolytic activity of an E1b-deleted adenovirus in hepatocellular carcinoma cells. PLoS One 2013; 8:e65222. [PMID: 23750246 PMCID: PMC3672087 DOI: 10.1371/journal.pone.0065222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/23/2013] [Indexed: 01/01/2023] Open
Abstract
Adenoviruses with deletions of viral genes have been extensively studied as potential cancer therapeutics. Although a high degree of cancer selectivity has been demonstrated with these conditionally replicating adenoviruses, low levels of virus replication can be detected in normal cells. Furthermore, these mutations were also found to reduce the activity of the replicating viruses in certain cancer cells. Recent studies have shown that co-administration of chemotherapeutic drugs may increase the activity of these viruses without affecting their specificity. We constructed an adenovirus with deletions of both the E1b and the VA-RNA genes and found that replication of this virus was selective for human hepatocellular carcinoma (HCC) cell lines when compared to normal cell lines. Furthermore, we show that 2-aminopurine (2′AP) treatment selectively enhanced virus replication and virus-mediated death of HCC cells. 2′AP did not compensate for the loss of VA-RNA activities, but rather the loss of an E1b-55K activity, such as the DNA damage response, suggesting that co-administration of 2′AP derivatives that block host DNA damage response, may increase the oncolytic activity of AdΔE1bΔVA without reducing its selectivity for HCC cells.
Collapse
Affiliation(s)
- David Sharon
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Schümann
- Institut für Virologie, Klinikum der Philipps-Universität Marburg, Marburg, Germany
| | - Sheena MacLeod
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Robyn McPherson
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Andrew Shaw
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Mary M. Hitt
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
14
|
Wang G, Li G, Liu H, Yang C, Yang X, Jin J, Liu X, Qian Q, Qian W. E1B 55-kDa deleted, Ad5/F35 fiber chimeric adenovirus, a potential oncolytic agent for B-lymphocytic malignancies. J Gene Med 2009; 11:477-85. [PMID: 19340843 DOI: 10.1002/jgm.1326] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Conditionally replicative adenovirus (CRAd) provides a promising strategy for solid tumor therapy. However, relatively few studies have been addressed on hematopoietic malignancies. We previously found that ZD55, a serotype 5 (Ad5)-based, E1B 55-kDa deleted CRAd, inhibited leukemic cell growth and induced apoptosis. In the present study, we employed SG235, a new CRAd with both an E1B 55-kDa deletion and an Ad5/F35 chimeric fiber, for the treatment of B-cell tumors. METHODS CRAd SG235 was engineered not to express adenovirus E1B 55-kDa gene, and the wild-type Ad5 fiber was replaced by a chimeric Ad5/35 fiber containing an Ad5 tail, an Ad35 shaft and an Ad35 knob. Using in vitro and in vivo experiments, the infectivity and selective cytotoxicity of SG235 on B-cell tumor lines were evaluated. Apoptosis-related signaling elements were investigated. RESULTS SG235 significantly suppressed malignant B-cell growth in vitro and in vivo. In addition to selective cytolysis, SG235-induced apoptosis in the tumor cells. Upon SG235 infection, levels of cleaved forms of caspase-3 and poly(adenosine diphosphate-ribose) polymerase increased, suggesting that SG235 induces apoptosis in malignant B-cells by activating a caspase cascade. Furthermore, SG235 infection resulted in an up-regulated level of Bax, as well as down-regulated levels of xIAP, cIAP and survivin, suggesting that infection of SG235 induces apoptosis in B-cell tumor lines by affecting both apoptosis-promoting and -inhibiting intracellular signaling elements. CONCLUSIONS CRAd SG235 may serve as a potential anticancer agent, or a therapeutic vehicle for harboring anticancer genes, in B-cell tumor treatment.
Collapse
Affiliation(s)
- Guohua Wang
- Institute of Hematology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Glioblastoma multiforme is the most common form of primary brain cancer. In the past decade, virotherapy of tumors has gained credence, particularly in glioma management, as these tumors are not completely resectable and tend to micro-metastasize. Adenoviral vectors have an advantage over other viral vectors in that they are relatively non-toxic and do not integrate in the genome. However, the lack of coxsackie and adenovirus receptors on surface of gliomas provides for inefficient transduction of wild-type adenoviral vectors in these tumors. By targeting receptors that are overexpressed in gliomas, modified adenoviral constructs have been shown to efficiently infect glioma cells. In addition, by taking advantage of tumor-specific promoter elements, oncolytic adenoviral vectors offer the promise of selective tumor-specific replication. This dual targeting strategy has enabled specificity in both laboratory and pre-clinical settings. This review examines current trends in adenoviral virotherapy of gliomas, with an emphasis on targeting modalities and future clinical applications.
Collapse
Affiliation(s)
- Suvobroto Nandi
- The University of Chicago, The Brain Tumor Center, Chicago, Illinois 60637, USA
| | | |
Collapse
|
16
|
Logunov DY, Scheblyakov DV, Zubkova OV, Shmarov MM, Rakovskaya IV, Gurova KV, Tararova ND, Burdelya LG, Naroditsky BS, Ginzburg AL, Gudkov AV. Mycoplasma infection suppresses p53, activates NF-kappaB and cooperates with oncogenic Ras in rodent fibroblast transformation. Oncogene 2008; 27:4521-31. [PMID: 18408766 DOI: 10.1038/onc.2008.103] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Prokaryotes of the genus Mycoplasma are the smallest cellular organisms that persist as obligate extracellular parasites. Although mycoplasma infection is known to be associated with chromosomal instability and can promote malignant transformation, the mechanisms underlying these phenomena remain unknown. Since persistence of many cellular parasites requires suppression of apoptosis in host cells, we tested the effect of mycoplasma infection on the activity of the p53 and nuclear factor (NF)-kappaB pathways, major mechanisms controlling programmed cell death. To monitor the activity of p53 and NF-kappaB in mycoplasma-infected cells, we used a panel of reporter cell lines expressing the bacterial beta-galactosidase gene under the control of p53- or NF-kappaB-responsive promoters. Cells incubated with media conditioned with different species of mycoplasma showed constitutive activation of NF-kappaB and reduced activation of p53, common characteristics of the majority of human tumor cells, with M. arginini having the strongest effect among the species tested. Moreover, mycoplasma infection reduced the expression level and inducibility of an endogenous p53-responsive gene, p21(waf1), and inhibited apoptosis induced by genotoxic stress. Infection with M. arginini made rat and mouse embryo fibroblasts susceptible to transformation with oncogenic H-Ras, whereas mycoplasma-free cells underwent irreversible p53-dependent growth arrest. Mycoplasma infection was as effective as shRNA-mediated knockdown of p53 expression in making rodent fibroblasts permissive to Ras-induced transformation. These observations indicate that mycoplasma infection plays the role of a p53-suppressing oncogene that cooperates with Ras in cell transformation and suggest that the carcinogenic and mutagenic effects of mycoplasma might be due to inhibition of p53 tumor suppressor function by this common human parasite.
Collapse
Affiliation(s)
- D Y Logunov
- Gamaleya Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Au T, Thorne S, Korn WM, Sze D, Kirn D, Reid TR. Minimal hepatic toxicity of Onyx-015: spatial restriction of coxsackie-adenoviral receptor in normal liver. Cancer Gene Ther 2006; 14:139-50. [PMID: 17139321 PMCID: PMC7091580 DOI: 10.1038/sj.cgt.7700988] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We administered an adenoviral vector, Onyx-015, into the hepatic artery of patients with metastatic colorectal cancer involving the liver. Thirty-five patients enrolled in this multi-institutional phase I/II trial received up to eight arterial infusions of up to 2 × 1012 viral particles. Hepatic toxicity was the primary dose-limiting toxicity observed in preclinical models. However, nearly 200 infusions of this adenoviral vector were administered directly into the hepatic artery without significant toxicity. Therefore, we undertook this analysis to determine the impact of repeated adenoviral exposure on hepatic function. Seventeen patients were treated at our institution, providing a detailed data set on the changes in hepatic function following repeated exposure to adenovirus. No changes in hepatic function occurred with the first treatment of Onyx-015 among these patients. Transient increases in transaminase levels occurred in one patient starting with the second infusion and transient increases in bilirubin was observed in two patients starting with the fifth treatment. These changes occurred too early to be explained by viral-mediated lysis of hepatocytes. In addition, viremia was observed starting 3–5 days after the viral infusion in half of the patient, but was not associated with hepatic toxicity. To further understand the basis for the minimal hepatic toxicity of adenoviral vectors, we evaluated the replication of adenovirus in primary hepatocytes and tumor cells in culture and the expression of the coxsackie-adenoviral receptor (CAR) in normal liver and colon cancer metastatic to the liver. We found that adenovirus replicates poorly in primary hepatocytes but replicates efficiently in tumors including tumors derived from hepatocytes. In addition, we found that CAR is localized at junctions between hepatocytes and is inaccessible to hepatic blood flow. CAR is not expressed on tumor vasculature but is expressed on tumor cells. Spatial restriction of CAR to the intercellular space in normal liver and diminished replication of adenovirus in hepatocytes may explain the minimal toxicity observed following repeated hepatic artery infusions with Onyx-015.
Collapse
Affiliation(s)
- T Au
- Palo Alto Veteran's Administration Health Care System and Stanford University, Stanford, CA USA
| | - S Thorne
- Palo Alto Veteran's Administration Health Care System and Stanford University, Stanford, CA USA
| | - W M Korn
- University of California, San Francisco, CA USA
| | - D Sze
- Palo Alto Veteran's Administration Health Care System and Stanford University, Stanford, CA USA
| | - D Kirn
- Oxford University, Jennerex Biotherapeutics, San Francisco, CA USA
| | - T R Reid
- Palo Alto Veteran's Administration Health Care System and Stanford University, Stanford, CA USA
| |
Collapse
|
19
|
Glockzin G, Mantwill K, Jurchott K, Bernshausen A, Ladhoff A, Royer HD, Gansbacher B, Holm PS. Characterization of the recombinant adenovirus vector AdYB-1: implications for oncolytic vector development. J Virol 2006; 80:3904-11. [PMID: 16571807 PMCID: PMC1440461 DOI: 10.1128/jvi.80.8.3904-3911.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Conditionally replicating adenoviruses are a promising new modality for the treatment of cancer. However, early clinical trials demonstrate that the efficacy of current vectors is limited. Interestingly, DNA replication and production of viral particles do not always correlate with virus-mediated cell lysis and virus release depending on the vector utilized for infection. However, we have previously reported that nuclear accumulation of the human transcription factor YB-1 by regulating the adenoviral E2 late promoter facilitates viral DNA replication of E1-deleted adenovirus vectors which are widely used for cancer gene therapy. Here we report the promotion of virus-mediated cell killing as a new function of the human transcription factor YB-1. In contrast to the E1A-deleted vector dl312 the first-generation adenovirus vector AdYB-1, which overexpresses YB-1 under cytomegalovirus promoter control, led to necrosis-like cell death, virus production, and viral release after infection of A549 and U2OS tumor cell lines. Our data suggest that the integration of YB-1 in oncolytic adenoviruses is a promising strategy for developing oncolytic vectors with enhanced potency against different malignancies.
Collapse
Affiliation(s)
- Gabriel Glockzin
- Institut fuer Experimentelle Onkologie und Therapieforschung, Technische Universitaet Muenchen, Klinikum rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
MacRae EJ, Giannoudis A, Ryan R, Brown NJ, Hamdy FC, Maitland N, Lewis CE. Gene therapy for prostate cancer: current strategies and new cell-based approaches. Prostate 2006; 66:470-94. [PMID: 16353250 DOI: 10.1002/pros.20388] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prostate cancer is the most commonly diagnosed cancer in adult males in the Western world. It accounts for one in ten cancer cases and is the second leading cause of cancer death in men, after lung cancer. A number of curative treatments are available for patients with localized prostate cancer such as radical prostatectomy, radiotherapy, or brachytherapy. However, a proportion of these men will develop progressive disease, and some will present de novo with advanced and metastatic prostate cancer, which is amenable to palliation only with androgen-withdrawal therapy. Most of these patients will eventually develop hormone refractory disease which is incurable, and for whom gene therapy, if feasible may develop as an alternative treatment option. In this review we discuss the gene therapy vectors and strategies that are currently in use, new cell-based approaches, discuss their advantages and disadvantages, and review the potential or proven pre-clinical and clinical efficacy in prostate cancer models/patients.
Collapse
Affiliation(s)
- E J MacRae
- Tumour Targeting Group, University of Sheffield Medical School, Beech Hill Road, Sheffield, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Gene Therapy for Lung Diseases. PRINCIPLES OF MOLECULAR MEDICINE 2006. [PMCID: PMC7121178 DOI: 10.1007/978-1-59259-963-9_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gene therapy is under development for a variety of lung disease, both those caused by single gene defects, such as cystic fibrosis and α1-antitrypsin deficiency, and multifactorial diseases such as cancer, asthma, lung fibrosis, and ARDS. Both viral and nonviral approaches have been explored, the major limitation to the former being the inability to repeatedly administer, which renders this approach perhaps more applicable to conditions requiring single administration, such as cancer. Progress in development and clinical trials in each of these diseases is reviewed, together with some potential newer approaches for the future.
Collapse
|
22
|
Shmulevitz M, Marcato P, Lee PWK. Unshackling the links between reovirus oncolysis, Ras signaling, translational control and cancer. Oncogene 2005; 24:7720-8. [PMID: 16299532 DOI: 10.1038/sj.onc.1209041] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reovirus has an inherent preference for replicating in cells with dysregulated growth factor signaling cascades that comprise Ras activation. Precisely how reovirus exploits the host cell Ras pathway is unclear, but there is evidence suggesting that activated Ras signaling is important for efficient viral protein synthesis. Defining the molecular mechanism of reovirus oncolysis will shed light on reovirus replication and important aspects of cellular transformation, Ras signaling cascades and regulation of protein translation.
Collapse
Affiliation(s)
- Maya Shmulevitz
- Department of Microbiology and Immunology, Dalhousie University, 7P Sir Charles Tupper Medical Building, Halifax, NS, Canada
| | | | | |
Collapse
|
23
|
Yotnda P, Davis AR, Hicks MJ, Templeton NS, Brenner MK, Benner MK. Liposomal enhancement of the antitumor activity of conditionally replication-competent adenoviral plasmids. Mol Ther 2004; 9:489-95. [PMID: 15093179 DOI: 10.1016/j.ymthe.2004.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 01/27/2004] [Indexed: 10/26/2022] Open
Abstract
Many human tumors have a functional deficiency in p53. Numerous studies have taken advantage of this phenomenon to use a conditionally replication-competent adenovirus (Ad dl1520) that will grow in and lyse tumor cells while sparing normal tissues. However, success has been limited, in part due to difficulties in reaching a sufficiently high proportion of tumor cells. Preexisting or developing immune responses directed toward viral proteins further decrease the efficacy of the approach. We have developed a liposome-encapsulated conditionally replication-competent plasmid based on the dl1520 virus. Like the parent virus, this plasmid generates infectious particles following transfection of p53-defective, but not p53-wild-type tumor cells, but unlike the parent virus it is able to infect CAR-negative tumor cells. The antitumor efficacy of this infectious plasmid was demonstrated in mice with xenografted human tumors, in which it was active after both local and intravenous administration for subcutaneous tumors and following intravenous administration for disseminated malignancy. Activity was retained systemically, even in the presence of neutralizing antibody. Such liposomally encapsulated conditionally replication-competent plasmids may complement the use of conventional viral particles, particularly in settings in which liver uptake of adenoviral vector is undesirable or there are problematic inhibitory effects from humoral immune responses.
Collapse
Affiliation(s)
- Patricia Yotnda
- Center for Cell and Gene Therapy, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Collis SJ, Khater K, DeWeese TL. Novel therapeutic strategies in prostate cancer management using gene therapy in combination with radiation therapy. World J Urol 2003; 21:275-89. [PMID: 12920560 DOI: 10.1007/s00345-003-0363-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 07/07/2003] [Indexed: 12/01/2022] Open
Affiliation(s)
- Spencer J Collis
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | |
Collapse
|
25
|
Steffen B, Serve H, Berdel WE, Agrawal S, Linggi B, Büchner T, Hiebert SW, Müller-Tidow C. Specific protein redirection as a transcriptional therapy approach for t(8;21) leukemia. Proc Natl Acad Sci U S A 2003; 100:8448-53. [PMID: 12819347 PMCID: PMC166249 DOI: 10.1073/pnas.1330293100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Important progress has been achieved in the knowledge about the pathogenesis of cancer. However, despite these advances, the therapeutic strategies are still limited. Leukemias are often characterized by specific balanced translocations, with the t(8;21) balanced translocation being the most frequent chromosomal aberration in acute myeloid leukemia (AML). This translocation produces the AML1-ETO fusion protein, which binds to AML1 target promoter sequences. Transcriptional repression of AML1-dependent genes by AML1-ETO and associated corepressors represents the pathogenetic mechanisms of t(8;21). Here, we show that targeting of AML1-ETO to essential, MYB-dependent gene promoters induces t(8;21)-restricted cell death. We constructed a chimeric protein that contained the MYB DNA-binding domain and the AML1-binding domain of myeloid Elf-1-like factor (MEF). This protein associated with AML1-ETO and directed the complex to MYB-responsive promoters in vitro and in vivo. In the presence of AML1-ETO, the chimeric protein repressed the activity of MYB-responsive promoters, rapidly induced apoptosis, and specifically inhibited colony growth. All these effects occurred only in AML1-ETO-positive cells, whereas no adverse effects were observed in cells not expressing AML1-ETO. Taken together, this study demonstrates that redirection of oncogenic proteins can be used as a strategy to dramatically influence their cellular effects, with the ultimate goal to design highly specific therapies for cancer.
Collapse
MESH Headings
- Acute Disease
- Animals
- Apoptosis/physiology
- Binding Sites
- COS Cells
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/ultrastructure
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 8/ultrastructure
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Genes, myb
- Humans
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/therapy
- Macromolecular Substances
- Mice
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Oncogene Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Promoter Regions, Genetic/genetics
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-kit
- Proto-Oncogene Proteins c-myb/chemistry
- Proto-Oncogene Proteins c-myb/physiology
- RUNX1 Translocation Partner 1 Protein
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/physiology
- Substrate Specificity
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic
- Translocation, Genetic
- Tumor Cells, Cultured
- Tumor Stem Cell Assay
Collapse
Affiliation(s)
- Björn Steffen
- Department of Medicine, Hematology/Oncology,
University of Münster, 48129 Münster, Germany; and
Department of Biochemistry, Vanderbilt
University School of Medicine, Nashville, TN 37232
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology,
University of Münster, 48129 Münster, Germany; and
Department of Biochemistry, Vanderbilt
University School of Medicine, Nashville, TN 37232
- To whom correspondence should be addressed at: Department of Medicine,
Hematology/Oncology, University of Münster, Albert-Schweitzer-Strasse 33,
48129 Münster, Germany. E-mail:
| | - Wolfgang E. Berdel
- Department of Medicine, Hematology/Oncology,
University of Münster, 48129 Münster, Germany; and
Department of Biochemistry, Vanderbilt
University School of Medicine, Nashville, TN 37232
| | - Shuchi Agrawal
- Department of Medicine, Hematology/Oncology,
University of Münster, 48129 Münster, Germany; and
Department of Biochemistry, Vanderbilt
University School of Medicine, Nashville, TN 37232
| | - Bryan Linggi
- Department of Medicine, Hematology/Oncology,
University of Münster, 48129 Münster, Germany; and
Department of Biochemistry, Vanderbilt
University School of Medicine, Nashville, TN 37232
| | - Thomas Büchner
- Department of Medicine, Hematology/Oncology,
University of Münster, 48129 Münster, Germany; and
Department of Biochemistry, Vanderbilt
University School of Medicine, Nashville, TN 37232
| | - Scott W. Hiebert
- Department of Medicine, Hematology/Oncology,
University of Münster, 48129 Münster, Germany; and
Department of Biochemistry, Vanderbilt
University School of Medicine, Nashville, TN 37232
| | - Carsten Müller-Tidow
- Department of Medicine, Hematology/Oncology,
University of Münster, 48129 Münster, Germany; and
Department of Biochemistry, Vanderbilt
University School of Medicine, Nashville, TN 37232
| |
Collapse
|
26
|
Duncan JR. Use of CT to assess the efficacy of an oncolytic adenovirus. J Vasc Interv Radiol 2003; 14:275-8. [PMID: 12631631 DOI: 10.1097/01.rvi.0000058424.01661.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- James R Duncan
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA.
| |
Collapse
|
27
|
Sze DY, Freeman SM, Slonim SM, Samuels SL, Andrews JC, Hicks M, Ahrar K, Gupta S, Reid TR. Dr. Gary J. Becker Young Investigator Award: intraarterial adenovirus for metastatic gastrointestinal cancer: activity, radiographic response, and survival. J Vasc Interv Radiol 2003; 14:279-90. [PMID: 12631632 DOI: 10.1097/01.rvi.0000058422.01661.1e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE To determine the antitumoral activity and radiographic response pattern of intraarterial administration of a selective replication-competent adenovirus in patients with hepatic metastases from gastrointestinal carcinomas. MATERIALS AND METHODS Thirty-five patients were treated, seven in the dose-escalation phase and 28 at high doses. Inclusion criteria allowed mild laboratory value and performance status abnormalities and as much as 50% replacement of hepatic volume by tumor. An attenuated adenovirus that selectively replicates in p53-deficient cells (Onyx-015) was administered by hepatic arterial infusion at doses as high as 2 x 10(12) particles for two cycles. Subsequent cycles (maximum of eight total) were administered in combination with intravenous 5-fluorouracil (5-FU) and leucovorin. RESULTS Tumor responses were demonstrated in combination with chemotherapy, even in 5-FU-resistant patients. The 15 patients who responded radiographically showed a pattern of acute tumor enlargement despite normalization of laboratory and clinical parameters, followed by very slow regression of tumor size. Radiographic response did not correlate with p53 status. Median survival of radiographic responders (475 days) was significantly longer than that of nonresponders (143 days). CONCLUSIONS Hepatic arterial infusion of the replication-selective adenovirus Onyx-015 in combination with chemotherapy resulted in tumor regressions in select patients, including some in whom previous chemotherapy had failed. A biphasic radiographic response pattern was demonstrated. The mechanism of action appears to be more complex than that seen in vitro.
Collapse
Affiliation(s)
- Daniel Y Sze
- Division of Cardiovascular and Interventional Radiology, Stanford University Medical Center, Stanford, CA 94305-5642, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yan W, Kitzes G, Dormishian F, Hawkins L, Sampson-Johannes A, Watanabe J, Holt J, Lee V, Dubensky T, Fattaey A, Hermiston T, Balmain A, Shen Y. Developing novel oncolytic adenoviruses through bioselection. J Virol 2003; 77:2640-50. [PMID: 12552003 PMCID: PMC141112 DOI: 10.1128/jvi.77.4.2640-2650.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of human adenovirus 5 (Ad5) with enhanced oncolytic activity were isolated by using a procedure termed bioselection. Two mutants, ONYX-201 and ONYX-203, were plaque purified from a pool of randomly mutagenized Ad5 that was repeatedly passaged in the human colorectal cancer cell line HT29, and they were subsequently characterized. ONYX-201 and ONYX-203 replicated more rapidly in HT29 cells than wild-type Ad5, and they lysed HT29 cells up to 1,000-fold more efficiently. The difference was most profound when cells were infected at a relatively low multiplicity of infection, presumably due to the compounding effects of multiple rounds of infection. This enhanced cytolytic activity was observed not only in HT29 cells but also in many other human cancer cell lines tested. In contrast, the cytotoxicity of the bioselected mutants in a number of normal primary human cells was similar to that of wild-type Ad5, thus enhancing the therapeutic index (cytotoxicity in tumor cells versus that in normal cells) of these oncolytic agents. Both ONYX-201 and -203 contain seven single-base-pair mutations when compared with Ad5, four of which were common between ONYX-201 and -203. The mutation at nucleotide 8350, shared by both mutant viruses, was shown to be essential for the observed phenotypes. This mutation was mapped to the i-leader region of the major late transcription unit, resulting in the truncation of 21 amino acids from the C terminus of the i-leader protein. This work demonstrates that bioselection is a powerful tool for developing novel tumor-selective oncolytic viruses. Other potential applications of this technology are discussed.
Collapse
Affiliation(s)
- Wen Yan
- ONYX Pharmaceuticals, Inc., 3031 Research Drive, Richmond, CA 94806, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Vaccinology has experienced a dramatic resurgence recently, as traditional methodologies of using attenuated live pathogens or inactivated whole pathogens have been either ineffective or are not an acceptable risk for several disease targets, including HIV and Hepatitis C. Gene-based vaccines can stimulate potent humoral and cellular immune responses, and viral vectors might be an efficient strategy for both delivery of antigen-encoding genes, as well as facilitating and enhancing antigen presentation. Vectors derived from diverse viruses with distinct tropism and gene expression strategies have been developed, and are being evaluated in preclinical and clinical vaccine studies. Virus-based vaccines represent a promising approach for vaccines against infectious and malignant disease.
Collapse
Affiliation(s)
- John M Polo
- Chiron Corporation, Immunology and Infectious Diseases, 4560 Horton St, Emeryville, CA 94608, USA.
| | | |
Collapse
|
30
|
Kim J, Lee B, Kim JS, Yun CO, Kim JH, Lee YJ, Joo CH, Lee H. Antitumoral effects of recombinant adenovirus YKL-1001, conditionally replicating in alpha-fetoprotein-producing human liver cancer cells. Cancer Lett 2002; 180:23-32. [PMID: 11911966 DOI: 10.1016/s0304-3835(02)00017-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Selectively replicating recombinant adenovirus has emerged as a novel strategy for the treatment of incurable human cancers. One of the major characteristics of hepatocellular carcinoma is the transcriptional reactivation of alpha-fetoprotein (AFP). In this study, we evaluated the liver cancer-specific oncolytic potential of E1B 55kDa-deleted recombinant adenovirus (YKL-1001), which retained other E1 genes driven by the AFP promoter. Transient transfection study using luciferase indicated the selective activation of the AFP promoter only in human liver cancer cells secreting AFP (HepG2, Hep3B). YKL-1001 induced both cytopathic effects exclusively in AFP-positive liver cancer cells and the growth inhibition of pre-established Hep3B xenografts. Finally, hematoxylin-eosin staining and the immunohistochemistry to the adenoviral hexon showed a large distributed necrotic area and this implied a wide spread of YKL-1001. Therefore, the present study demonstrated that YKL-1001 holds significant promise as an oncolytic agent for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jaesung Kim
- Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Dubensky TW. (Re-)Engineering tumor cell-selective replicating adenoviruses: a step in the right direction toward systemic therapy for metastatic disease. Cancer Cell 2002; 1:307-9. [PMID: 12086842 DOI: 10.1016/s1535-6108(02)00062-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An approach combining redundant controls to restrict the productive infection of adenoviruses to cells that are disrupted in the pRb pathway-a hallmark of human cancer-has resulted in a novel oncolytic virus that may be well suited for systemic administration to treat metastatic disease.
Collapse
Affiliation(s)
- Thomas W Dubensky
- Cancer Research, Cerus Corporation, 2411 Stanwell Dr., Concord, CA 94520, USA.
| |
Collapse
|
32
|
Abstract
Oncology has entered an era of molecular therapy. Given the multitude of molecular defects involved with pancreatic carcinogenesis, invasion, and metastasis, it is unlikely that single-agent targeted therapy will alter the course of this disease. Given the emergence of molecular targets and a growing number of agents available for clinical development, however, meaningful improvements in patient outcomes are expected, particularly if treatments are designed and delivered rationally.
Collapse
Affiliation(s)
- Robert A Wolff
- Department of Gastrointestinal Medical Oncology, University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 426, Houston, TX 77030-4095, USA.
| |
Collapse
|
33
|
Abstract
The p53 tumour suppressor protein inhibits malignant progression by mediating cell cycle arrest, apoptosis or repair following cellular stress. One of the major regulators of p53 function is the MDM2 protein, and multiple forms of cellular stress activate p53 by inhibiting the MDM2-mediated degradation of p53. Mutations in p53, or disruption of the pathways that allow activation of p53, seem to be a general feature of all cancers. Here we review recent advances in our understanding of the pathways that regulate p53 and the pathways that are induced by p53, as well as their implications for cancer therapy.
Collapse
Affiliation(s)
- E Bálint E
- NCI at Frederick, National Institutes of Health, Building 560, Room 22-96, 1050 Boyles Street, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
34
|
Abstract
The genome is a stable repository of vastly intricate genetic information developed over eons of evolution; this information is replicated at the highest fidelity and expressed within each cell at the highest selectivity. Non-leukemia cancers break this standard; the intricate genetic information qualitatively and progressively deteriorates, resulting in a somatic Darwinian free-for-all. In a process lasting several years, a genomically heterogeneous population replicates from a single cell that originally lost the ability to preserve its genomic integrity. Cells selected for their abilities to proliferate and spread, while evading host defenses, inexorably expand their numbers. The clinical consequences of this become severe, as the genomically diverse cell population that evolves contains members that can evade most therapeutic approaches aimed at "the tumor cell".
Collapse
Affiliation(s)
- G R Anderson
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | | | |
Collapse
|
35
|
Ramachandra M, Rahman A, Zou A, Vaillancourt M, Howe JA, Antelman D, Sugarman B, Demers GW, Engler H, Johnson D, Shabram P. Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat Biotechnol 2001; 19:1035-41. [PMID: 11689848 DOI: 10.1038/nbt1101-1035] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Replicating adenoviruses may prove to be effective anticancer agents if they can be engineered to selectively destroy tumor cells. We have constructed a virus (01/PEME) containing a novel regulatory circuit in which p53-dependent expression of an antagonist of the E2F transcription factor inhibits viral replication in normal cells. In tumor cells, however, the combination of p53 pathway defects and deregulated E2F allows replication of 01/PEME at near wild-type levels. The re-engineered virus also showed significantly enhanced efficacy compared with extensively studied E1b-deleted viruses such as dl1520 in human xenograft tumor models.
Collapse
Affiliation(s)
- M Ramachandra
- Canji, Inc. 3525 John Hopkins Court, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
One protein--p53--plays nemesis to most cancers by condemning damaged cells to death or quarantining them for repair. But the activity of p53 relies on its intact native conformation, which can be lost following mutation of a single nucleotide. With thousands of such mutations identified in patients, how can a future cancer drug buttress this fragile protein structure and restore the cell's natural defence?
Collapse
Affiliation(s)
- A N Bullock
- Department of Biochemistry, University of Washington, Seattle, USA
| | | |
Collapse
|