1
|
Marada A, Walter C, Suhm T, Shankar S, Nandy A, Brummer T, Dhaouadi I, Vögtle FN, Meisinger C. DYRK1A signalling synchronizes the mitochondrial import pathways for metabolic rewiring. Nat Commun 2024; 15:5265. [PMID: 38902238 PMCID: PMC11189921 DOI: 10.1038/s41467-024-49611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Mitochondria require an extensive proteome to maintain a variety of metabolic reactions, and changes in cellular demand depend on rapid adaptation of the mitochondrial protein composition. The TOM complex, the organellar entry gate for mitochondrial precursors in the outer membrane, is a target for cytosolic kinases to modulate protein influx. DYRK1A phosphorylation of the carrier import receptor TOM70 at Ser91 enables its efficient docking and thus transfer of precursor proteins to the TOM complex. Here, we probe TOM70 phosphorylation in molecular detail and find that TOM70 is not a CK2 target nor import receptor for MIC19 as previously suggested. Instead, we identify TOM20 as a MIC19 import receptor and show off-target inhibition of the DYRK1A-TOM70 axis with the clinically used CK2 inhibitor CX4945 which activates TOM20-dependent import pathways. Taken together, modulation of DYRK1A signalling adapts the central mitochondrial protein entry gate via synchronization of TOM70- and TOM20-dependent import pathways for metabolic rewiring. Thus, DYRK1A emerges as a cytosolic surveillance kinase to regulate and fine-tune mitochondrial protein biogenesis.
Collapse
Affiliation(s)
- Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Corvin Walter
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Tamara Suhm
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Sahana Shankar
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Arpita Nandy
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- German Cancer Consortium DKTK Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ines Dhaouadi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - F-Nora Vögtle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- Network Aging Research, Heidelberg University, 69120, Heidelberg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
2
|
Lee IC, Chiang KL. Clinical Diagnosis and Treatment of Leigh Syndrome Based on SURF1: Genotype and Phenotype. Antioxidants (Basel) 2021; 10:antiox10121950. [PMID: 34943053 PMCID: PMC8750222 DOI: 10.3390/antiox10121950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
SURF1 encodes the assembly factor for maintaining the antioxidant of cytochrome c oxidase (COX) stability in the human electron respiratory chain. Mutations in SURF1 can cause Leigh syndrome (LS), a subacute neurodegenerative encephalopathy, characterized by early onset (infancy), grave prognosis, and predominant symptoms presenting in the basal ganglia, thalamus, brainstem, cerebellum, and peripheral nerves. To date, more than sixty different SURF1 mutations have been found to cause SURF1-associated LS; however, the relationship between genotype and phenotype is still unclear. Most SURF1-associated LS courses present as typical LS and cause early mortality (before the age of ten years). However, 10% of the cases present with atypical courses with milder symptoms and increased life expectancy. One reason for this inconsistency may be due to specific duplications or mutations close to the C-terminus of the SURF1 protein appearing to cause less protein decay. Furthermore, the treatment for SURF1-associated LS is unsatisfactory. A ketogenic diet is most often prescribed and has proven to be effective. Supplementing with coenzyme Q and other cofactors is also a common treatment option; however, the results are inconsistent. Importantly, anti-epileptic drugs such as valproate—which cause mitochondrial dysfunction—should be avoided in patients with SURF1-associated LS presenting with seizures.
Collapse
Affiliation(s)
- Inn-Chi Lee
- Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-2473-9535; Fax: +886-4-2471-0934
| | - Kuo-Liang Chiang
- Department of Pediatric Neurology, Kuang-Tien General Hospital, Taichung 43303, Taiwan;
| |
Collapse
|
3
|
Walter C, Marada A, Suhm T, Ernsberger R, Muders V, Kücükköse C, Sánchez-Martín P, Hu Z, Aich A, Loroch S, Solari FA, Poveda-Huertes D, Schwierzok A, Pommerening H, Matic S, Brix J, Sickmann A, Kraft C, Dengjel J, Dennerlein S, Brummer T, Vögtle FN, Meisinger C. Global kinome profiling reveals DYRK1A as critical activator of the human mitochondrial import machinery. Nat Commun 2021; 12:4284. [PMID: 34257281 PMCID: PMC8277783 DOI: 10.1038/s41467-021-24426-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 06/15/2021] [Indexed: 11/21/2022] Open
Abstract
The translocase of the outer mitochondrial membrane TOM constitutes the organellar entry gate for nearly all precursor proteins synthesized on cytosolic ribosomes. Thus, TOM presents the ideal target to adjust the mitochondrial proteome upon changing cellular demands. Here, we identify that the import receptor TOM70 is targeted by the kinase DYRK1A and that this modification plays a critical role in the activation of the carrier import pathway. Phosphorylation of TOM70Ser91 by DYRK1A stimulates interaction of TOM70 with the core TOM translocase. This enables transfer of receptor-bound precursors to the translocation pore and initiates their import. Consequently, loss of TOM70Ser91 phosphorylation results in a strong decrease in import capacity of metabolite carriers. Inhibition of DYRK1A impairs mitochondrial structure and function and elicits a protective transcriptional response to maintain a functional import machinery. The DYRK1A-TOM70 axis will enable insights into disease mechanisms caused by dysfunctional DYRK1A, including autism spectrum disorder, microcephaly and Down syndrome.
Collapse
Affiliation(s)
- Corvin Walter
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tamara Suhm
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralf Ernsberger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vera Muders
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cansu Kücükköse
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Pablo Sánchez-Martín
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Zehan Hu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Loroch
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | | | - Daniel Poveda-Huertes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexandra Schwierzok
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Henrike Pommerening
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stanka Matic
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Brix
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Albert Sickmann
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- German Cancer Consortium DKTK Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Marmolino D, Manto M. Past, present and future therapeutics for cerebellar ataxias. Curr Neuropharmacol 2010; 8:41-61. [PMID: 20808545 PMCID: PMC2866461 DOI: 10.2174/157015910790909476] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/18/2009] [Accepted: 11/30/2009] [Indexed: 01/14/2023] Open
Abstract
Cerebellar ataxias are a group of disabling neurological disorders. Patients exhibit a cerebellar syndrome and can also present with extra-cerebellar deficits, namely pigmentary retinopathy, extrapyramidal movement disorders, pyramidal signs, cortical symptoms (seizures, cognitive impairment/behavioural symptoms), and peripheral neuropathy. Recently, deficits in cognitive operations have been unraveled. Cerebellar ataxias are heterogeneous both at the phenotypic and genotypic point of view. Therapeutical trials performed during these last 4 decades have failed in most cases, in particular because drugs were not targeting a deleterious pathway, but were given to counteract putative defects in neurotransmission. The identification of the causative mutations of many hereditary ataxias, the development of relevant animal models and the recent identifications of the molecular mechanisms underlying ataxias are impacting on the development of new drugs. We provide an overview of the pharmacological treatments currently used in the clinical practice and we discuss the drugs under development.
Collapse
Affiliation(s)
- D Marmolino
- Laboratoire de Neurologie Expèrimentale ULB-Erasme, Brussels, Belgium.
| | | |
Collapse
|
5
|
|
6
|
Ghezzi D, Saada A, D'Adamo P, Fernandez-Vizarra E, Gasparini P, Tiranti V, Elpeleg O, Zeviani M. FASTKD2 nonsense mutation in an infantile mitochondrial encephalomyopathy associated with cytochrome c oxidase deficiency. Am J Hum Genet 2008; 83:415-23. [PMID: 18771761 PMCID: PMC2556431 DOI: 10.1016/j.ajhg.2008.08.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 12/28/2022] Open
Abstract
In two siblings we found a mitochondrial encephalomyopathy, characterized by developmental delay, hemiplegia, convulsions, asymmetrical brain atrophy, and low cytochrome c oxidase (COX) activity in skeletal muscle. The disease locus was identified on chromosome 2 by homozygosity mapping; candidate genes were prioritized for their known or predicted mitochondrial localization and then sequenced in probands and controls. A homozygous nonsense mutation in the KIAA0971 gene segregated with the disease in the proband family. The corresponding protein is known as fas activated serine-threonine kinase domain 2, FASTKD2. Confocal immunofluorescence colocalized a tagged recombinant FASTKD2 protein with mitochondrial markers, and membrane-potential-dependent in vitro mitochondrial import was demonstrated in isolated mitochondria. In staurosporine-induced-apoptosis experiments, decreased nuclear fragmentation was detected in treated mutant versus control fibroblasts. In conclusion, we found a loss-of-function mutation in a gene segregating with a peculiar mitochondrial encephalomyopathy associated with COX deficiency in skeletal muscle. The corresponding protein is localized in the mitochondrial inner compartment. Preliminary data indicate that FASTKD2 plays a role in mitochondrial apoptosis.
Collapse
Affiliation(s)
- Daniele Ghezzi
- Division of Molecular Neurogenetics, Foundation IRCCS Neurological Institute “C. Besta,” 20126 Milan, Italy
| | - Ann Saada
- Metabolic Disease Unit, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Pio D'Adamo
- Division of Medical Genetics, IRCCS Burlo Garofolo - University of Trieste, 34137 Trieste, Italy
| | - Erika Fernandez-Vizarra
- Division of Molecular Neurogenetics, Foundation IRCCS Neurological Institute “C. Besta,” 20126 Milan, Italy
| | - Paolo Gasparini
- Division of Medical Genetics, IRCCS Burlo Garofolo - University of Trieste, 34137 Trieste, Italy
| | - Valeria Tiranti
- Division of Molecular Neurogenetics, Foundation IRCCS Neurological Institute “C. Besta,” 20126 Milan, Italy
| | - Orly Elpeleg
- Metabolic Disease Unit, Hadassah-Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Massimo Zeviani
- Division of Molecular Neurogenetics, Foundation IRCCS Neurological Institute “C. Besta,” 20126 Milan, Italy
| |
Collapse
|
7
|
Kohler JJ, Lewis W. A brief overview of mechanisms of mitochondrial toxicity from NRTIs. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:166-72. [PMID: 16758472 DOI: 10.1002/em.20223] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) in combinations with other antiretrovirals (highly active antiretroviral therapy, HAART) are the cornerstones of AIDS therapy, turning HIV infection into a manageable clinical entity. Despite the initial positive impact of NRTIs, therapeutic experience revealed serious side effects that appeared to originate in the mitochondria and which ultimately manifested as dysfunction of that organelle. It may be reasonable to consider that as the AIDS epidemic continues and as survival with HIV infection is prolonged by treatment with HAART, long-term side effects of NRTIs may become increasingly common. This consideration may be underscored in children who are born to HIV-infected mothers who received NRTI therapy in utero during gestation. The long-term effect of that NRTI exposure in utero is not clear yet. This review examines some proposed mechanisms of NRTI mitochondrial toxicity, including genetic predisposition, defects in mitochondria DNA replication, the encompassing "DNA pol-gamma hypothesis," the relationship between mitochondrial nucleotide and NRTI pools, mitochondrial DNA mutation and dysfunction, and oxidative stresses related to HIV infection and NRTIs. Mechanisms of mitochondrial toxicity are reviewed with respect to key cell biological, pathological, and pharmacological events.
Collapse
Affiliation(s)
- James J Kohler
- Department of Pathology, Emory University, Atlanta, Georgia
| | | |
Collapse
|
8
|
Jacobs LJAM, de Wert G, Geraedts JPM, de Coo IFM, Smeets HJM. The transmission of OXPHOS disease and methods to prevent this. Hum Reprod Update 2005; 12:119-36. [PMID: 16199488 DOI: 10.1093/humupd/dmi042] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Diseases owing to defects of oxidative phosphorylation (OXPHOS) affect approximately 1 in 8,000 individuals. Clinical manifestations can be extremely variable and range from single-affected tissues to multisystemic syndromes. In general, tissues with a high energy demand, like brain, heart and muscle, are affected. The OXPHOS system is under dual genetic control, and mutations in both nuclear and mitochondrial genes can cause OXPHOS diseases. The expression and segregation of mitochondrial DNA (mtDNA) mutations is different from nuclear gene defects. The mtDNA mutations can be either homoplasmic or heteroplasmic and in the latter case disease becomes manifest when the mutation exceeds a tissue-specific threshold. This mutation load can vary between tissues and often an exact correlation between mutation load and phenotypic expression is lacking. The transmission of mtDNA mutations is exclusively maternal, but the mutation load between embryos can vary tremendously because of a segregational bottleneck. Diseases by nuclear gene mutations show a normal Mendelian inheritance pattern and often have a more constant clinical manifestation. Given the prevalence and severity of OXPHOS disorders and the lack of adequate therapy, existing and new methods for the prevention of transmission of OXPHOS disorders, like prenatal diagnosis (PND), preimplantation genetic diagnosis (PGD), cytoplasmic transfer (CT) and nuclear transfer (NT), are technically and ethically evaluated.
Collapse
Affiliation(s)
- L J A M Jacobs
- Department of Genetics and Cell Biology, University of Maastricht, 6200 MD Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Abstract
Mitochondrial diseases have extremely heterogeneous clinical presentations due to the ubiquitous nature of mitochondria and the dual genetic control of the respiratory chain. Thus, mitochondrial disorders can be multisystemic (mitochondrial encephalomyopathies) or confined to a single tissue, and they can be sporadic or transmitted by mendelian or maternal inheritance. Mendelian disorders are usually inherited as autosomal recessive traits, tend to present earlier in life, and usually "breed true" in each family. By contrast, mitochondrial DNA-related diseases usually start later and vary in their presentation within members of the same family. Precise diagnosis is often a challenge; we go through the traditional steps of the diagnostic process, trying to highlight clues to mitochondrial dysfunction in the family history, physical and neurological examinations, routine and special laboratory tests, and histo-chemical and biochemical results of the muscle biopsy. The ultimate goal is to reach, whenever possible, a definitive molecular diagnosis, which permits rational genetic counseling and a prenatal diagnosis.
Collapse
Affiliation(s)
- Salvatore Dimauro
- Department of Neurology, Columbia University College of Physicians Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
10
|
Lewis W, Day BJ, Copeland WC. Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat Rev Drug Discov 2003; 2:812-22. [PMID: 14526384 DOI: 10.1038/nrd1201] [Citation(s) in RCA: 353] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Highly active antiretroviral therapy (HAART) regimes based on nucleoside reverse transcriptase inhibitors (NRTIs) have revolutionized the treatment of AIDS in recent years. Although HAART can successfully suppress viral replication in the long term, it is not without significant toxicity, which can seriously compromise treatment effectiveness. A major toxicity that has been recognized for more than a decade is NRTI-related mitochondrial toxicity, which manifests as serious side effects such as hepatic failure and lactic acidosis. However, a lack of understanding of the mechanisms underlying mitochondrial toxicity has hampered efforts to develop novel drugs with better side-effect profiles. This review characterizes the pharmacological mechanisms and pathways that are involved in mitochondrial dysfunction caused by NRTIs, and suggests opportunities for future pharmacological research.
Collapse
Affiliation(s)
- William Lewis
- Emory University, Department of Pathology, 1639 Pierce Drive, Room 7117, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
11
|
Abstract
Mitochondrial disorders cause a wide spectrum of diseases in children. Their presentation is nonspecific with encephalomyopathy, failure to thrive, seizures, ophthalmoplegia, and sensorineural hearing loss. These disorders are progressive and are aggravated by fever and infections. They can be caused by mutations in nDNA or mtDNA. Diagnosis requires a complex battery of clinical studies coupled with diagnostic findings on muscle biopsy (abnormal structure, histochemistry, or enzyme studies) or DNA testing. Therapy for mitochondrial disorders remains largely ineffective.
Collapse
Affiliation(s)
- Nicola Longo
- Division of Medical Genetics, Department of Pediatrics, University of Utah, 2C412 SOM, 50 North Medical Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
12
|
Affiliation(s)
- Salvatore DiMauro
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, USA.
| | | |
Collapse
|
13
|
Abstract
Nuclear genes encode hundreds of proteins involved in mitochondrial biogenesis and oxidative phosphorylation (OXPHOS). Nevertheless, the identification of nuclear genes responsible for OXPHOS-related disorders has proceeded at a much slower pace, compared with the discovery and characterization of mtDNA mutations. Reasons for such a gap include rarity of syndromes, genetic heterogeneity, and ignorance on this nuclear gene repertoire in humans. This scenario is changing rapidly, thanks to the discovery of several OXPHOS-related human genes, and to the identification in some of them of disease-associated mutations. In addition, new strategies - based on transcriptome and proteome analysis, and functional complementation assays - have been applied successfully to mitochondrial medicine.
Collapse
Affiliation(s)
- Massimo Zeviani
- Division of Molecular Neurogenetics, National Neurological Institute 'Carlo Besta', via Temolo 4, 20126 Milan, Italy.
| | | | | |
Collapse
|
14
|
Lewis W. Mitochondrial dysfunction and nucleoside reverse transcriptase inhibitor therapy: experimental clarifications and persistent clinical questions. Antiviral Res 2003; 58:189-97. [PMID: 12767466 DOI: 10.1016/s0166-3542(03)00069-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) in combination with other antiretrovirals (HAART) are critical in current AIDS therapy, but mitochondrial side effects have come to light with the increased use of these compounds. Clinical experience, pharmacological, cell and molecular biological evidence links altered mitochondrial (mt-) DNA replication to the toxicity of NRTIs in many tissues, and conversely, mtDNA replication defects and mtDNA depletion in specific target tissues are observed. The shared features of mtDNA depletion and energy depletion became key observations and related the clinical and in vivo experimental findings to inhibition of mtDNA replication by NRTI triphosphates in vitro. Subsequent to those findings, other observations suggested that mitochondrial energy deprivation is concomitant with or the result of mitochondrial oxidative stress in AIDS (from HIV, for example) or from NRTI therapy itself. With increased use of NRTIs, mtDNA mutations may become increasingly important pathophysiologically. One important future goal is to prevent or attenuate the side effects so that improved efficacy is achieved.
Collapse
Affiliation(s)
- William Lewis
- Department of Pathology, Emory University, Room 7117, 1639 Pierce Drive, Atlanta, GA 30030, USA.
| |
Collapse
|
15
|
|