1
|
Wang L, Li Q, Sun Y, Wang S, Fu X, Wang X, Zheng Y, Gao A, Sun Y, Li J. Tumor-derived immunoglobulin-like transcript 3 inhibition reshapes the immunosuppressive tumor microenvironment and potentiates programmed cell death ligand 1 blockade immunotherapy in lung adenocarcinoma. Transl Oncol 2025; 56:102381. [PMID: 40199156 PMCID: PMC12008602 DOI: 10.1016/j.tranon.2025.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/13/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025] Open
Abstract
The low response rate of current immune checkpoint inhibitors in cancer has necessitated the development of new immune targets. Survival and public databases analyses were performed to determine the clinical significance of immunoglobulin-like transcript 3 (ILT3). The impact of ILT3 and apolipoprotein E (APOE) on tumor-associated macrophage (TAM) recruitment and polarization were evaluated by transwell assay, flow cytometry (FCM), and real-time PCR, while their impact on T cell survival and cytotoxicity was detected by CFSE, apoptotic assay, FCM and ELISA. These pro-tumoural activity of (an ortholog of ILT3 in mouse) were verified in vivo models. Survival and public databases analyses revealed that high ILT3 expression was significantly associated with worse prognosis in lung adenocarcinoma (LUAD), but not in squamous cell carcinoma. The same association was observed with its ligand, APOE. In vitro assays demonstrated that tumor-derived ILT3/APOE promoted recruitment and M2-like polarization of TAMs in LUAD and directly inhibited T cell proliferation and cytotoxicity. In vivo knockdown of gp49b enhanced anti-tumor immunity and suppressed tumor progression by counteracting TAM- and dysfunctional T cell-induced tumor microenvironment immunosuppression. Furthermore, combined inhibition of gp49b and programmed cell death ligand 1 (PD-L1) showed the most drastic tumor regression in C57BL/6 mice models. Tumor-derived ILT3 overexpression suppresses anti-tumor immunity by recruiting M2-like TAMs and impairing T cell activities, while ILT3 inhibition counteracts this immunosuppression and enhances the efficacy of PD-L1 blockade in LUAD. Thus, ILT3 could be a promising novel immunotherapeutic target for combined immunotherapy.
Collapse
Affiliation(s)
- Leirong Wang
- Phase I Clinical Research Center, Shandong University Cancer Center, Jinan, Shandong, China; Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qing Li
- Department of Oncology, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, Shandong, China
| | - Yanxin Sun
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuyun Wang
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xuebing Fu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiufen Wang
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yan Zheng
- Jinan Center Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Aiqin Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuping Sun
- Phase I Clinical Research Center, Shandong University Cancer Center, Jinan, Shandong, China; Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Juan Li
- Phase I Clinical Research Center, Shandong University Cancer Center, Jinan, Shandong, China; Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
2
|
Luo S, Cai J, Yin F, Lu L, Liu Z, Wang Y, Fu X, Ding S, Kojima N, Ma M. M3-DPPE Liposomal Nanoparticles Encapsulating CLEC12A Enhance CD206-Mediated Endocytosis and Efficacy in the Collagen-Induced Arthritis Model. ACS APPLIED BIO MATERIALS 2025; 8:1002-1016. [PMID: 39794898 DOI: 10.1021/acsabm.4c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
OBJECTIVE This study aimed to investigate the efficacy of M3-DPPE liposomal nanoparticles encapsulated with mRNA encoding cytokines (M3-mRNAs) in targeting macrophages for the treatment of inflammation-induced joint injury. METHODS in vitro, M3-mRNAs were administered to peritoneal exudate macrophages (PEMs), and the uptake was assessed using flow cytometry. The mechanism of uptake was investigated by blocking the CLEC12A pathway with M3-SiCLEC12A and observing CD206-mediated endocytosis. In vivo, the distribution of Dir-labeled M3-drugs was monitored using IVIS imaging, and its accumulation in inflammatory and noninflammatory areas was evaluated. The therapeutic potential was evaluated in collagen-induced arthritis (CIA) model mice by assessing macrophage polarization, joint pathology, and cytokine expression. RESULTS in vitro studies demonstrated that M3-mRNAs were taken up significantly by PEMs via CD206-mediated endocytosis. In vivo imaging showed that Dir-labeled M3-drugs accumulated predominantly in inflammatory areas and subsequently in bone injury joints. Treatment with M3-drugs in collagen-induced arthritis model mice increased the population of F4/80+ and F4/80+/CD206+ M2 macrophages in inflamed joints, leading to reduced joint fibrosis and modulation of cytokine levels, including decreased pro-inflammatory cytokines (IL-6, IL-1β, TNF-α, and INF-γ) and increased anti-inflammatory cytokines (IL-10 and TGF-β). CONCLUSIONS M3-SiCLEC12A enhanced CD206-mediated endocytosis of M3-mRNAs and M3-drugs in macrophages, promoting the production of corresponding proteins and modulating the immune microenvironment. This treatment approach shows promise in repairing inflammation-induced bone and joint injury by balancing pro-inflammatory and anti-inflammatory cytokines. However, further research is required to address drug tolerance and safety concerns and minimize potential side effects before clinical application in autoimmune diseases caused by inflammation.
Collapse
Affiliation(s)
- Shulin Luo
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Junfeng Cai
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Laiya Lu
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Zheng Liu
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yunxia Wang
- Shanghai Novopathway Biotechnology Co. Ltd, Building No5, East Huaxia Road No.333, Pudong New Area, Shanghai 201203, China
| | - Xiaocong Fu
- Shanghai Novopathway Biotechnology Co. Ltd, Building No5, East Huaxia Road No.333, Pudong New Area, Shanghai 201203, China
| | - Shuangfeng Ding
- Shanghai Novopathway Biotechnology Co. Ltd, Building No5, East Huaxia Road No.333, Pudong New Area, Shanghai 201203, China
| | - Naoya Kojima
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Min Ma
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| |
Collapse
|
3
|
Wang L, Wu Q, Zhang ZW, Zhang H, Jin H, Zhou XL, Liu JY, Li D, Liu Y, Fan ZS. Colony-stimulating factor 3 and its receptor promote leukocyte immunoglobulin-like receptor B2 expression and ligands in gastric cancer. World J Gastrointest Oncol 2025; 17:97858. [PMID: 39958563 PMCID: PMC11756009 DOI: 10.4251/wjgo.v17.i2.97858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Colony-stimulating factor 3 (CSF3) and its receptor (CSF3R) are known to promote gastric cancer (GC) growth and metastasis. However, their effects on the immune microenvironment remain unclear. Our analysis indicated a potential link between CSF3R expression and the immunosuppressive receptor leukocyte immunoglobulin-like receptor B2 (LILRB2) in GC. We hypothesized that CSF3/CSF3R may regulate LILRB2 and its ligands, angiopoietin-like protein 2 (ANGPTL2) and human leukocyte antigen-G (HLA-G), contributing to immunosuppression. AIM To investigate the relationship between CSF3/CSF3R and LILRB2, as well as its ligands ANGPTL2 and HLA-G, in GC. METHODS Transcriptome sequencing data from The Cancer Genome Atlas were analyzed, stratifying patients by CSF3R expression. Differentially expressed genes and immune checkpoints were evaluated. Immunohistochemistry (IHC) was performed on GC tissues. Correlation analyses of CSF3R, LILRB2, ANGPTL2, and HLA-G were conducted using The Cancer Genome Atlas data and IHC results. GC cells were treated with CSF3, and expression levels of LILRB2, ANGPTL2, and HLA-G were measured by quantitative reverse transcriptase-polymerase chain reaction and western blotting. RESULTS Among 122 upregulated genes in high CSF3R expression groups, LILRB2 showed the most significant increase. IHC results indicated high expression of LILRB2 (63.0%), ANGPTL2 (56.5%), and HLA-G (73.9%) in GC tissues. Strong positive correlations existed between CSF3R and LILRB2, ANGPTL2, and HLA-G mRNA levels (P < 0.001). IHC confirmed positive correlations between CSF3R and LILRB2 (P < 0.001), and HLA-G (P = 0.010), but not ANGPTL2 (P > 0.05). CSF3 increased LILRB2, ANGPTL2, and HLA-G expression in GC cells. Heterogeneous nuclear ribonucleoprotein H1 modulation significantly altered their expression, impacting CSF3's regulatory effects. CONCLUSION The CSF3/CSF3R pathway may contribute to immunosuppression in GC by upregulating LILRB2 and its ligands, with heterogeneous nuclear ribonucleoprotein H1 playing a regulatory role.
Collapse
Affiliation(s)
- Long Wang
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Qi Wu
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Zong-Wen Zhang
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Hui Zhang
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Hui Jin
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Xin-Liang Zhou
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Jia-Yin Liu
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Dan Li
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Yan Liu
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Zhi-Song Fan
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| |
Collapse
|
4
|
Ma Y, Shi R, Li F, Chang H. Emerging strategies for treating autoimmune disease with genetically modified dendritic cells. Cell Commun Signal 2024; 22:262. [PMID: 38715122 PMCID: PMC11075321 DOI: 10.1186/s12964-024-01641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
Gene editing of living cells has become a crucial tool in medical research, enabling scientists to address fundamental biological questions and develop novel strategies for disease treatment. This technology has particularly revolutionized adoptive transfer cell therapy products, leading to significant advancements in tumor treatment and offering promising outcomes in managing transplant rejection, autoimmune disorders, and inflammatory diseases. While recent clinical trials have demonstrated the safety of tolerogenic dendritic cell (TolDC) immunotherapy, concerns remain regarding its effectiveness. This review aims to discuss the application of gene editing techniques to enhance the tolerance function of dendritic cells (DCs), with a particular focus on preclinical strategies that are currently being investigated to optimize the tolerogenic phenotype and function of DCs. We explore potential approaches for in vitro generation of TolDCs and provide an overview of emerging strategies for modifying DCs. Additionally, we highlight the primary challenges hindering the clinical adoption of TolDC therapeutics and propose future research directions in this field.
Collapse
Affiliation(s)
- Yunhan Ma
- School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Ruobing Shi
- School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Fujun Li
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
5
|
Xiong J, Wang L, Xiong X, Deng Y. Downregulation of LILRB4 Promotes Human Aortic Smooth Muscle Cell Contractile Phenotypic Switch and Apoptosis in Aortic Dissection. Cardiovasc Toxicol 2024; 24:225-239. [PMID: 38324114 DOI: 10.1007/s12012-023-09824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/26/2023] [Indexed: 02/08/2024]
Abstract
Aortic dissection (AD) is a severe vascular disease with high rates of mortality and morbidity. However, the underlying molecular mechanisms of AD remain unclear. Differentially expressed genes (DEGs) were screened by bioinformatics methods. Alterations of histopathology and inflammatory factor levels in β-aminopropionitrile (BAPN)-induced AD mouse model were evaluated through Hematoxylin-Eosin (HE) staining and Enzyme-linked immunosorbent assay (ELISA), respectively. Reverse transcription quantitative real-time polymerase chain reaction was performed to detect DEGs expression. Furthermore, the role of LILRB4 in AD was investigated through Cell Counting Kit-8 (CCK-8), wound healing, and flow cytometry. Western blotting was employed to assess the phenotypic switch and extracellular matrix (ECM)-associated protein expressions in platelet-derived growth factor-BB (PDGF-BB)-stimulated in vitro model of AD. In the AD mouse model, distinct dissection formation was observed. TNF-α, IL-1β, IL-8, and IL-6 levels were higher in the AD mouse model than in the controls. Six hub genes were identified, including LILRB4, TIMP1, CCR5, CCL7, MSR1, and CLEC4D, all of which were highly expressed. Further exploration revealed that LILRB4 knockdown inhibited the cell vitality and migration of PDGF-BB-induced HASMCs while promoting apoptosis and G0/G1 phase ratio. More importantly, LILRB4 knockdown promoted the protein expression of α-SMA and SM22α, while decreasing the expression of Co1, MMP2, and CTGF, which suggested that LILRB4 silencing promoted contractile phenotypic transition and ECM stability. LILRB4 knockdown inhibits the progression of AD. Our study provides a new potential target for the clinical treatment of AD.
Collapse
Affiliation(s)
- Jianxian Xiong
- Department of Cardiovascular Surgery, The Affiliated Hospital of Shanxi Medical University, Shanxi Cardiovascular Hospital (Institute), Shanxi Clinical Medical Research Center for Cardiovascular Disease, No. 18, Yifen Street, Wanbalin District, Taiyuan City, 030024, Shanxi, China
- Department of Cardiovascular Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Linyuan Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Shanxi Medical University, Shanxi Cardiovascular Hospital (Institute), Shanxi Clinical Medical Research Center for Cardiovascular Disease, No. 18, Yifen Street, Wanbalin District, Taiyuan City, 030024, Shanxi, China
| | - Xin Xiong
- Department of Cardiovascular Surgery, The Affiliated Hospital of Shanxi Medical University, Shanxi Cardiovascular Hospital (Institute), Shanxi Clinical Medical Research Center for Cardiovascular Disease, No. 18, Yifen Street, Wanbalin District, Taiyuan City, 030024, Shanxi, China
| | - Yongzhi Deng
- Department of Cardiovascular Surgery, The Affiliated Hospital of Shanxi Medical University, Shanxi Cardiovascular Hospital (Institute), Shanxi Clinical Medical Research Center for Cardiovascular Disease, No. 18, Yifen Street, Wanbalin District, Taiyuan City, 030024, Shanxi, China.
| |
Collapse
|
6
|
Omori S, Muramatsu K, Kawata T, Miyawaki E, Miyawaki T, Mamesaya N, Kawamura T, Kobayashi H, Nakashima K, Wakuda K, Ono A, Kenmotsu H, Naito T, Murakami H, Sugino T, Takahashi T. Immunohistochemical analysis of B7-H3 expression in patients with lung cancer following various anti-cancer treatments. Invest New Drugs 2023; 41:356-364. [PMID: 37036580 DOI: 10.1007/s10637-023-01353-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/23/2023] [Indexed: 04/11/2023]
Abstract
B7 homolog 3 protein (B7-H3), an immune checkpoint molecule belonging to the B7 family, has been studied as a target for the development of anti-cancer treatment; however, changes in B7-H3 expression during the clinical course remain unknown. This retrospective study aimed to investigate changes in B7-H3 expression of lung cancer specimens in patients with advanced lung cancer following various anti-cancer treatments. The immunohistochemistry (IHC) score was evaluated on a 0-3 scale, and B7-H3 expression was considered positive for grade ≥ 2. The difference in IHC scores before and after anti-cancer treatment was defined as the change in B7-H3 expression. Among 160 patients with lung cancer who received anti-cancer treatment, 88 (55%) and 101 (63%) had B7-H3 expression before and after anti-cancer treatment, respectively. Before treatment, B7-H3 expression was significantly more common in squamous cell carcinoma specimens than in adenocarcinoma specimens (95% vs. 49%, P < 0.001). Of the 19 patients with squamous cell carcinoma, 18 (95%) continued to have high (IHC score: 3) B7-H3 expression following treatment. In contrast, of the 130 patients with adenocarcinoma, 46 (35%) and 17 (13%) showed an increased and a decreased expression, respectively. Patients who received targeted therapy had a significant increase in B7-H3 expression compared with those who received chemotherapy alone (P = 0.015). Overall, squamous cell carcinoma specimens maintained high B7-H3 expression during the clinical course, whereas adenocarcinoma specimens showed changes in expression following anti-cancer treatments. Our results provide the basis for further studies on the development of anti-cancer treatments targeting B7-H3.
Collapse
Affiliation(s)
- Shota Omori
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Suntou-gun, Shizuoka, 411-8777, Japan.
| | - Koji Muramatsu
- Division of Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takuya Kawata
- Division of Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Eriko Miyawaki
- Division of Early Clinical Development for Cancer, Advanced Medical Development Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Taichi Miyawaki
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Nobuaki Mamesaya
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Suntou-gun, Shizuoka, 411-8777, Japan
| | - Takahisa Kawamura
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Haruki Kobayashi
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Suntou-gun, Shizuoka, 411-8777, Japan
| | - Kazuhisa Nakashima
- Department of Internal Medicine, Division of Medical Oncology & Respiratory Medicine, Shimane University Faculty of Medicine, Shimane, Japan
| | - Kazushige Wakuda
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Suntou-gun, Shizuoka, 411-8777, Japan
| | - Akira Ono
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Suntou-gun, Shizuoka, 411-8777, Japan
| | - Hirotsugu Kenmotsu
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Suntou-gun, Shizuoka, 411-8777, Japan
| | - Tateaki Naito
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Suntou-gun, Shizuoka, 411-8777, Japan
| | - Haruyasu Murakami
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Suntou-gun, Shizuoka, 411-8777, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Toshiaki Takahashi
- Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Suntou-gun, Shizuoka, 411-8777, Japan
| |
Collapse
|
7
|
Li Q, Lan P. Activation of immune signals during organ transplantation. Signal Transduct Target Ther 2023; 8:110. [PMID: 36906586 PMCID: PMC10008588 DOI: 10.1038/s41392-023-01377-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The activation of host's innate and adaptive immune systems can lead to acute and chronic graft rejection, which seriously impacts graft survival. Thus, it is particularly significant to clarify the immune signals, which are critical to the initiation and maintenance of rejection generated after transplantation. The initiation of response to graft is dependent on sensing of danger and stranger molecules. The ischemia and reperfusion of grafts lead to cell stress or death, followed by releasing a variety of damage-associated molecular patterns (DAMPs), which are recognized by pattern recognition receptors (PRRs) of host immune cells to activate intracellular immune signals and induce sterile inflammation. In addition to DAMPs, the graft exposed to 'non-self' antigens (stranger molecules) are recognized by the host immune system, stimulating a more intense immune response and further aggravating the graft damage. The polymorphism of MHC genes between different individuals is the key for host or donor immune cells to identify heterologous 'non-self' components in allogeneic and xenogeneic organ transplantation. The recognition of 'non-self' antigen by immune cells mediates the activation of immune signals between donor and host, resulting in adaptive memory immunity and innate trained immunity to the graft, which poses a challenge to the long-term survival of the graft. This review focuses on innate and adaptive immune cells receptor recognition of damage-associated molecular patterns, alloantigens and xenoantigens, which is described as danger model and stranger model. In this review, we also discuss the innate trained immunity in organ transplantation.
Collapse
Affiliation(s)
- Qingwen Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
8
|
Sharma N, Atolagbe OT, Ge Z, Allison JP. LILRB4 suppresses immunity in solid tumors and is a potential target for immunotherapy. J Exp Med 2021; 218:212088. [PMID: 33974041 PMCID: PMC8117208 DOI: 10.1084/jem.20201811] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/25/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Immune receptors expressed on TAMs are intriguing targets for tumor immunotherapy. In this study, we found inhibitory receptor LILRB4 on a variety of intratumoral immune cell types in murine tumor models and human cancers, most prominently on TAMs. LILRB4, known as gp49B in mice, is a LILRB family receptor. Human and murine LILRB4 have two extracellular domains but differ in the number of intracellular ITIMs (three versus two). We observed a high correlation in LILRB4 expression with other immune inhibitory receptors. After tumor challenge, LILRB4−/− mice and mice treated with anti-LILRB4 antibody showed reduced tumor burden and increased survival. LILRB4−/− genotype or LILRB4 blockade increased tumor immune infiltrates and the effector (Teff) to regulatory (Treg) T cell ratio and modulated phenotypes of TAMs toward less suppressive, CD4+ T cells to Th1 effector, and CD8+ T cells to less exhausted. These findings reveal that LILRB4 strongly suppresses tumor immunity in TME and that alleviating that suppression provides antitumor efficacy.
Collapse
Affiliation(s)
- Naveen Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Zhongqi Ge
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - James P Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX.,Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX.,Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
9
|
Liu S, Liang J, Liu Z, Zhang C, Wang Y, Watson AH, Zhou C, Zhang F, Wu K, Zhang F, Lu Y, Wang X. The Role of CD276 in Cancers. Front Oncol 2021; 11:654684. [PMID: 33842369 PMCID: PMC8032984 DOI: 10.3389/fonc.2021.654684] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/02/2021] [Indexed: 02/05/2023] Open
Abstract
Objective Aberrant expression of the immune checkpoint molecule, CD276, also known as B7-H3, is associated with tumorigenesis. In this review, we aim to comprehensively describe the role of CD276 in malignancies and its potential therapeutic effect. Data Sources Database including PubMed, EMbase, Cochrane Library, CNKI, and Clinical Trails.gov were searched for eligible studies and reviews. Study selection: Original studies and review articles on the topic of CD276 in tumors were retrieved. Results CD276 is an immune checkpoint molecule in the epithelial mesenchymal transition (EMT) pathway. In this review, we evaluated the available evidence on the expression and regulation of CD276. We also assessed the role of CD276 within the immune micro-environment, effect on tumor progression, and the potential therapeutic effect of CD276 targeted therapy for malignancies. Conclusion CD276 plays an essential role in cell proliferation, invasion, and migration in malignancies. Results from most recent studies indicate CD276 could be a promising therapeutic target for malignant tumors.
Collapse
Affiliation(s)
- Shengzhuo Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.,William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Chi Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Alice Helen Watson
- Clinical Science and Services, Royal Veterinary College, University of London, London, United Kingdom
| | - Chuan Zhou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Kan Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fuxun Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiping Lu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xianding Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Carenza C, Franzese S, Calcaterra F, Mavilio D, Della Bella S. Comprehensive Phenotyping of Dendritic Cells in Cancer Patients by Flow Cytometry. Cytometry A 2020; 99:218-230. [PMID: 33098618 DOI: 10.1002/cyto.a.24245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) play a crucial role in the complex interplay between tumor cells and the immune system. During the elimination phase of cancer immunoediting, immunostimulatory DCs are critical for the control of tumor growth. During the escape phase, regulatory DCs sustain tumor tolerance and contribute to the development of the immunosuppressive tumor microenvironment that characterizes this phase. Moreover, increasing evidence indicates that DCs are also critical for the success of cancer immunotherapy. Hence, there is increasing need to fully characterize DC subsets and their activatory/inhibitory profile in cancer patients. In this review, we describe the role played by different DC subsets in the different phases of cancer immunoediting, the function exerted by different activatory and inhibitory molecules expressed on DC surface, and the cytokines produced by distinct DC subsets, in order to provide an overview on the DC features that may be useful to be assessed when dealing with the flow cytometric characterization of DCs in cancer patients. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Claudia Carenza
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Francesca Calcaterra
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| |
Collapse
|
11
|
Raggi F, Bosco MC. Targeting Mononuclear Phagocyte Receptors in Cancer Immunotherapy: New Perspectives of the Triggering Receptor Expressed on Myeloid Cells (TREM-1). Cancers (Basel) 2020; 12:cancers12051337. [PMID: 32456204 PMCID: PMC7281211 DOI: 10.3390/cancers12051337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory cells are major players in the onset of cancer. The degree of inflammation and type of inflammatory cells in the tumor microenvironment (TME) are responsible for tilting the balance between tumor progression and regression. Cancer-related inflammation has also been shown to influence the efficacy of conventional therapy. Mononuclear phagocytes (MPs) represent a major component of the inflammatory circuit that promotes tumor progression. Despite their potential to activate immunosurveillance and exert anti-tumor responses, MPs are subverted by the tumor to support its growth, immune evasion, and spread. MP responses in the TME are dictated by a network of stimuli integrated through the cross-talk between activatory and inhibitory receptors. Alterations in receptor expression/signaling can create excessive inflammation and, when chronic, promote tumorigenesis. Research advances have led to the development of new therapeutic strategies aimed at receptor targeting to induce a tumor-infiltrating MP switch from a cancer-supportive toward an anti-tumor phenotype, demonstrating efficacy in different human cancers. This review provides an overview of the role of MP receptors in inflammation-mediated carcinogenesis and discusses the most recent updates regarding their targeting for immunotherapeutic purposes. We focus in particular on the TREM-1 receptor, a major amplifier of MP inflammatory responses, highlighting its relevance in the development and progression of several types of inflammation-associated malignancies and the promises of its inhibition for cancer immunotherapy.
Collapse
|
12
|
Zhang Y, Zheng J. Functions of Immune Checkpoint Molecules Beyond Immune Evasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:201-226. [PMID: 32185712 DOI: 10.1007/978-981-15-3266-5_9] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune checkpoint molecules, including inhibitory and stimulatory immune checkpoint molecules, are defined as ligand-receptor pairs that exert inhibitory or stimulatory effects on immune responses. Most of the immune checkpoint molecules that have been described so far are expressed on cells of the adaptive immune system, particularly on T cells, and of the innate immune system. They are crucial for maintaining the self-tolerance and modulating the length and magnitude of immune responses of effectors in different tissues to minimize the tissue damage. More and more evidences have shown that inhibitory or stimulatory immune checkpoint molecules are expressed on a sizeable fraction of tumor types. Although the main function of tumor cell-associated immune checkpoint molecules is considered to mediate the immune evasion, it has been reported that the immune checkpoint molecules expressed on tumor cells also play important roles in the maintenance of many malignant behaviors, including self-renewal, epithelial-mesenchymal transition, metastasis, drug resistance, anti-apoptosis, angiogenesis, or enhanced energy metabolisms. In this section, we mainly focus on delineating the roles of the tumor cell-associated immune checkpoint molecules beyond immune evasion, such as PD-L1, PD-1, B7-H3, B7-H4, LILRB1, LILRB2, TIM3, CD47, CD137, and CD70.
Collapse
Affiliation(s)
- Yaping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
13
|
Horiguchi H, Kadomatsu T, Kurahashi R, Hara C, Miyata K, Baba M, Osumi H, Terada K, Araki K, Takai T, Kamba T, Linehan WM, Moroishi T, Oike Y. Dual functions of angiopoietin-like protein 2 signaling in tumor progression and anti-tumor immunity. Genes Dev 2019; 33:1641-1656. [PMID: 31727773 PMCID: PMC6942048 DOI: 10.1101/gad.329417.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022]
Abstract
Angiopoietin-like protein 2 (ANGPTL2) is a secreted glycoprotein homologous to angiopoietins. Previous studies suggest that tumor cell-derived ANGPTL2 has tumor-promoting function. Here, we conducted mechanistic analysis comparing ANGPTL2 function in cancer progression in a murine syngeneic model of melanoma and a mouse model of translocation renal cell carcinoma (tRCC). ANGPTL2 deficiency in tumor cells slowed tRCC progression, supporting a tumor-promoting role. However, systemic ablation of ANGPTL2 accelerated tRCC progression, supporting a tumor-suppressing role. The syngeneic model also demonstrated a tumor-suppressing role of ANGPTL2 in host tumor microenvironmental cells. Furthermore, the syngeneic model showed that PDGFRα+ fibroblasts in the tumor microenvironment express abundant ANGPTL2 and contribute to tumor suppression. Moreover, host ANGPTL2 facilitates CD8+ T-cell cross-priming and enhances anti-tumor immune responses. Importantly, ANGPTL2 activates dendritic cells through PIR-B-NOTCH signaling and enhances tumor vaccine efficacy. Our study provides strong evidence that ANGPTL2 can function in either tumor promotion or suppression, depending on what cell type it is expressed in.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Ryoma Kurahashi
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Department of Urology, Graduate school of Medical science, Kumamoto University, Chuo-ku, Kumamoto 860-8556, Japan
| | - Chiaki Hara
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Department of Urology, Graduate school of Medical science, Kumamoto University, Chuo-ku, Kumamoto 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masaya Baba
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | - Hironobu Osumi
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Department of Thoracic Surgery, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kimi Araki
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate school of Medical science, Kumamoto University, Chuo-ku, Kumamoto 860-8556, Japan
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Department of Molecular Enzymology, Faculty of Life sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate school of Medical science, Kumamoto University, Kumamoto 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| |
Collapse
|
14
|
Wang L, Fan J, Ye W, Han J, Zhang Y, Zhao L, Duan J, Yin D, Yi Y. The Expression of ILT4 in Myeloid Dendritic Cells in Patients with Hepatocellular Carcinoma. Immunol Invest 2019; 48:704-718. [PMID: 31044626 DOI: 10.1080/08820139.2019.1571507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Immunoglobulin-like transcript (ILT) 4 is an inhibitory immune receptor of the immunoglobulin superfamily, which could deliver inhibitory signals and induce immunosuppression. The significance of the expression of ILT4 in mDCs subsets in patients with hepatocellular carcinoma (HCC) remains unclear. In this study, the frequency of mDCs subsets in the peripheral blood of 121 patients with HCC and 103 normal controls, and in the tumor and tumor free liver tissues (TFL) of 43 HCC patients was analyzed by flow cytometry. Then, the expressions of ILT4 in mDCs subsets in the microenvironment of liver cancer were also analyzed. Results showed that the percentage of CD1c+ subset was dramatically decreased in peripheral blood mononuclear cells (PBMCs) of HCC patients compared with normal controls, and also significantly decreased in tumor tissue compared with the TFL. The decreased of CD1c+ subset in blood could be a diagnostic factor for HCC with the area under the receiver operating characteristic curve 0.975 (P < 0.01). The percentage of ILT4+CD1c+ subset was dramatically increased in tumor than that of TFL and blood. There were significant correlations between the percentage of ILT4+ in CD1c+ subset in tumor and that of in blood. The percentage of ILT4+CD1c+ subset in tumor tissue was strongly associated with the Edmondson-Steiner stage in HCC (P = 0.03). Furthermore, the capacity of ILT4+CD1c+ subset producing IFN-γ was lower than ILT4- CD1c subset in PBMC of HCC patients following Poly I:C stimulation. Taken together, the increased ILT4+CD1c+ subset in tumor tissue might play an important role in immune suppression for patients with HCC.
Collapse
Affiliation(s)
- Lili Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Jing Fan
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Wei Ye
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Jianbo Han
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Yufeng Zhang
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Liang Zhao
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Jie Duan
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Yongxiang Yi
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| |
Collapse
|
15
|
Cai Z, Wang L, Han Y, Gao W, Wei X, Gong R, Zhu M, Sun Y, Yu S. Immunoglobulin‑like transcript 4 and human leukocyte antigen‑G interaction promotes the progression of human colorectal cancer. Int J Oncol 2019; 54:1943-1954. [PMID: 30942436 PMCID: PMC6521940 DOI: 10.3892/ijo.2019.4761] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
Immunoglobulin‑like transcript (ILT) 4, a negative regulator of immune response in allograft rejection, autoimmunity and infectious diseases, has recently been determined to serve important roles in tumor development. In the present study, the co‑expression of ILT4 and human leukocyte antigen‑G (HLA‑G) in tissues of human primary colorectal cancer (CRC) was revealed, and its association with older age, advanced stage, regional lymph node involvement and poor overall survival time was identified. In CRC cell lines, ILT4 and HLA‑G co‑expression and their autocrine regulation was demonstrated. ILT4 interference affected HLA‑G expression and regulated the cell proliferation, invasion and migration of CRC. HLA‑G fusion protein treatment also increased ILT4 expression in a dose‑dependent manner, thereby activating protein kinase B (AKT) and extracellular signal‑regulated kinase (ERK) signaling, and facilitating the proliferation, migration and invasion of CRC cells. Additionally, the AKT and ERK activation, and CRC cell malignant characteristics induced by HLA‑G may be suppressed by blocking ILT4. The present results indicated that the interaction of ILT4 and its ligand HLA‑G promotes CRC progression through AKT and ERK signal activation, providing a novel strategy of blocking ILT4/HLA‑G for the treatment of CRC.
Collapse
Affiliation(s)
- Zhaoyang Cai
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yali Han
- Department of Radiation Oncology, Qilu Hospital of Shan‑dong University, Jinan, Shandong 250012, P.R. China
| | - Wenwen Gao
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xiaojuan Wei
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Rumei Gong
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Mingliang Zhu
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Shuwen Yu
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
16
|
Gao S, Yi Y, Xia G, Yu C, Ye C, Tu F, Shen L, Wang W, Hua C. The characteristics and pivotal roles of triggering receptor expressed on myeloid cells-1 in autoimmune diseases. Autoimmun Rev 2018; 18:25-35. [PMID: 30408584 DOI: 10.1016/j.autrev.2018.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 01/13/2023]
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) engagement can directly trigger inflammation or amplify an inflammatory response by synergizing with TLRs or NLRs. Autoimmune diseases are a family of chronic systemic inflammatory disorders. The pivotal role of TREM-1 in inflammation makes it important to explore its immunological effects in autoimmune diseases. In this review, we summarize the structural and functional characteristics of TREM-1. Particularly, we discuss recent findings on TREM-1 pathway regulation in various autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), type 1 diabetes (T1D), and psoriasis. This receptor may potentially be manipulated to alter the inflammatory response to chronic inflammation and possible therapies are explored in this review.
Collapse
Affiliation(s)
- Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yongdong Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Guojun Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Chengyang Yu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Chenmin Ye
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Fuyang Tu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Leibin Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Wenqian Wang
- Department of Breast Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
17
|
Extended HLA-G genetic diversity and ancestry composition in a Brazilian admixed population sample: Implications for HLA-G transcriptional control and for case-control association studies. Hum Immunol 2018; 79:790-799. [DOI: 10.1016/j.humimm.2018.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/04/2018] [Accepted: 08/09/2018] [Indexed: 12/30/2022]
|
18
|
Expression of ILT3 predicts poor prognosis and is inversely associated with infiltration of CD45RO+ T cells in patients with colorectal cancer. Pathol Res Pract 2018; 214:1621-1625. [PMID: 30126665 DOI: 10.1016/j.prp.2018.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 01/20/2023]
Abstract
Immunoglobulin like transcript 3 (ILT3) was previously identified as an inhibitory receptor to induce T cell anergy in tranplantation, autoimmunity and allergy. Here we aimed to investigate the expression of ILT3 in colorectal cancer, analyze the association between ILT3 expression and clinicopathological variables and prognosis, and evaluate the correlation between the expression of ILT3 and CD45RO+ T cells density. Expression of ILT3 was identified on the cell membrane and/or in the cytoplasm. High expression ILT3 was identified in 55 of 85 (64.7%) tumor specimens, which was significantly higher than that in the adjacent normal tissues(5/30) (P < 0.001). High ILT3 expression was significantly associated with positive lymph node metastasis (N1-2; P = 0.03), advanced disease (stage III-IV; P = 0.03), and reduced OS in patients. The ILT3 expression level was an independent prognostic factor (P = 0.004) and inversely correlated with the number of CD45RO+ T cells (P = 0.019). In the present study, high ILT3 expression was observed in colorectal cancer and inversely associated with CD45RO+ T cells density and prognosis, suggesting that ILT3 played an important role in tumor progression by possible influence on CD45RO+ T cells in the tumor microenvironment.
Collapse
|
19
|
ILT4 functions as a potential checkpoint molecule for tumor immunotherapy. Biochim Biophys Acta Rev Cancer 2018; 1869:278-285. [DOI: 10.1016/j.bbcan.2018.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023]
|
20
|
Li G, Quan Y, Che F, Wang L. B7-H3 in tumors: friend or foe for tumor immunity? Cancer Chemother Pharmacol 2018; 81:245-253. [PMID: 29299639 DOI: 10.1007/s00280-017-3508-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
B7-H3 is a type I transmembrane co-stimulatory molecule of the B7 family. B7-H3 mRNA is widely distributed in most tissues; however, B7-H3 protein is not constitutively expressed. Few molecules have been shown to mediate the regulation of B7-H3 expression, and their regulatory mechanisms remain unexplored. Recently, TREM-like transcript 2 (TLT-2) has been identified as a potential receptor of B7-H3. However, TLT-2 may not be the only receptor of B7-H3, as B7-H3 has many contradictory roles. As a co-stimulatory molecule, B7-H3 increases the proliferation of both CD4+ and CD8+ T-cells and enhances cytotoxic T-cell activity. However, greatly increased T-cell proliferation and IL-2 levels have been observed in the absence of B7-H3. Thus far, it has been shown that various tumors test positive for B7-H3 expression and that B7-H3 levels correlate with tumor growth, invasion, metastasis, malignant stage, and recurrence rate. Furthermore, transfection of cells with a B7-H3 plasmid and treatment with monoclonal antibodies to block B7-H3 are the main immunotherapeutic strategies for cancer treatment. Several groups have generated anti-B7-H3 antibodies and observed tumor growth suppression in vitro and in vivo. Therefore, it is likely that B7-H3 plays an important role in cancer diagnosis and treatment, aside from its role as a co-stimulatory molecule.
Collapse
Affiliation(s)
- Gen Li
- Department of Neurology, Clinical Medicine College, Weifang Medical University, No. 7166, Baotong West Street, Weifang city, Shandong Province, 261053, China.,Central Laboratory, Linyi People's Hospital, Shandong University, NB27, Eastern Part of Jiefang Road, Lanshan District, Linyi city, Shandong Province, 276000, China
| | - Yanchun Quan
- Central Laboratory, Linyi People's Hospital, Shandong University, NB27, Eastern Part of Jiefang Road, Lanshan District, Linyi city, Shandong Province, 276000, China
| | - Fengyuan Che
- Central Laboratory, Linyi People's Hospital, Shandong University, NB27, Eastern Part of Jiefang Road, Lanshan District, Linyi city, Shandong Province, 276000, China. .,Department of Neurology, Linyi People's Hospital, Shandong University, NB27, Eastern Part of Jiefang Road, Lanshan District, Linyi city, Shandong Province, 276000, China.
| | - Lijuan Wang
- Central Laboratory, Linyi People's Hospital, Shandong University, NB27, Eastern Part of Jiefang Road, Lanshan District, Linyi city, Shandong Province, 276000, China. .,Department of Hematology, Linyi People's Hospital, Shandong University, NB27, Eastern Part of Jiefang Road, Lanshan District, Linyi city, Shandong Province, 276000, China.
| |
Collapse
|
21
|
Raggi F, Pelassa S, Pierobon D, Penco F, Gattorno M, Novelli F, Eva A, Varesio L, Giovarelli M, Bosco MC. Regulation of Human Macrophage M1-M2 Polarization Balance by Hypoxia and the Triggering Receptor Expressed on Myeloid Cells-1. Front Immunol 2017; 8:1097. [PMID: 28936211 PMCID: PMC5594076 DOI: 10.3389/fimmu.2017.01097] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
Abstract
Macrophages (Mf) are a heterogeneous population of tissue-resident professional phagocytes and a major component of the leukocyte infiltrate at sites of inflammation, infection, and tumor growth. They can undergo diverse forms of activation in response to environmental factors, polarizing into specialized functional subsets. A common hallmark of the pathologic environment is represented by hypoxia. The impact of hypoxia on human Mf polarization has not been fully established. The objective of this study was to elucidate the effects of a hypoxic environment reflecting that occurring in vivo in diseased tissues on the ability of human Mf to polarize into classically activated (proinflammatory M1) and alternatively activated (anti-inflammatory M2) subsets. We present data showing that hypoxia hinders Mf polarization toward the M1 phenotype by decreasing the expression of T cell costimulatory molecules and chemokine homing receptors and the production of proinflammatory, Th1-priming cytokines typical of classical activation, while promoting their acquisition of phenotypic and secretory features of alternative activation. Furthermore, we identify the triggering receptor expressed on myeloid cells (TREM)-1, a member of the Ig-like immunoregulatory receptor family, as a hypoxia-inducible gene in Mf and demonstrate that its engagement by an agonist Ab reverses the M2-polarizing effect of hypoxia imparting a M1-skewed phenotype to Mf. Finally, we provide evidence that Mf infiltrating the inflamed hypoxic joints of children affected by oligoarticular juvenile idiopatic arthritis express high surface levels of TREM-1 associated with predominant M1 polarization and suggest the potential of this molecule in driving M1 proinflammatory reprogramming in the hypoxic synovial environment.
Collapse
Affiliation(s)
- Federica Raggi
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genoa, Italy
| | - Simone Pelassa
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genoa, Italy
| | - Daniele Pierobon
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Center for Experimental Research and Medical Studies (CERMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Federica Penco
- Pediatria II, Department of Pediatrics, Giannina Gaslini Institute, University of Genoa, Genoa, Italy
| | - Marco Gattorno
- Pediatria II, Department of Pediatrics, Giannina Gaslini Institute, University of Genoa, Genoa, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Center for Experimental Research and Medical Studies (CERMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genoa, Italy
| | - Luigi Varesio
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genoa, Italy
| | - Mirella Giovarelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Center for Experimental Research and Medical Studies (CERMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genoa, Italy
| |
Collapse
|
22
|
Wang J, Suárez-Fariñas M, Estrada Y, Parker ML, Greenlees L, Stephens G, Krueger J, Guttman-Yassky E, Howell MD. Identification of unique proteomic signatures in allergic and non-allergic skin disease. Clin Exp Allergy 2017; 47:1456-1467. [DOI: 10.1111/cea.12979] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/19/2017] [Indexed: 12/21/2022]
Affiliation(s)
- J. Wang
- MedImmune, LLC; Gaithersburg MD USA
| | - M. Suárez-Fariñas
- Department of Dermatology and the Laboratory for Inflammatory Skin Diseases; Icahn School of Medicine at Mount Sinai Medical Center; New York NY USA
- Department of Population Health Science and Policy; Icahn School of Medicine at Mount Sinai Medical Center; New York NY USA
- Icahn Institute for Genomics and Multiscale Biology at Mount Sinai; Icahn School of Medicine at Mount Sinai; New York NY USA
- Laboratory for Investigative Dermatology; Rockefeller University; New York NY USA
| | - Y. Estrada
- Department of Dermatology and the Laboratory for Inflammatory Skin Diseases; Icahn School of Medicine at Mount Sinai Medical Center; New York NY USA
| | | | | | | | - J. Krueger
- Laboratory for Investigative Dermatology; Rockefeller University; New York NY USA
| | - E. Guttman-Yassky
- Department of Dermatology and the Laboratory for Inflammatory Skin Diseases; Icahn School of Medicine at Mount Sinai Medical Center; New York NY USA
| | | |
Collapse
|
23
|
Park M, Liu RW, An H, Geczy CL, Thomas PS, Tedla N. A dual positive and negative regulation of monocyte activation by leukocyte Ig-like receptor B4 depends on the position of the tyrosine residues in its ITIMs. Innate Immun 2017; 23:381-391. [PMID: 28409541 DOI: 10.1177/1753425917699465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory cell surface receptor, primarily expressed on mono-myeloid cells. It contains 2 C-type Ig-like extracellular domains and a long cytoplasmic domain that contains three intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Data suggest that LILRB4 suppresses Fc receptor-dependent monocyte functions via its ITIMs, but relative contributions of the three ITIMs are not characterised. To address this, tyrosine (Tyr) residues at positions 337, 389 and 419 were single, double or triple mutated to phenylalanine and stably transfected into a human monocytic cell line, THP-1. Intact Tyr389 was sufficient to maximally inhibit FcγRI-mediated TNF-α production in THP-1 cells, but, paradoxically, Tyr337 significantly enhanced TNF-α production. In contrast, bactericidal activity was significantly enhanced in mutants containing Tyr419, while Tyr337 markedly inhibited bacteria killing. Taken together, these results indicate that LILRB4 might have dual inhibitory and activating functions, depending on the position of the functional tyrosine residues in its ITIMs and/or the nature of the stimuli.
Collapse
Affiliation(s)
- Mijeong Park
- 1 Mechanisms of Diseases Translational Research, University of New South Wales, School of Medical Sciences, Department of Pathology, Sydney, Australia
| | - Robert W Liu
- 2 Stanford University School of Medicine, Department of Medicine, Stanford, CA, USA
| | - Hongyan An
- 1 Mechanisms of Diseases Translational Research, University of New South Wales, School of Medical Sciences, Department of Pathology, Sydney, Australia
| | - Carolyn L Geczy
- 1 Mechanisms of Diseases Translational Research, University of New South Wales, School of Medical Sciences, Department of Pathology, Sydney, Australia
| | - Paul S Thomas
- 1 Mechanisms of Diseases Translational Research, University of New South Wales, School of Medical Sciences, Department of Pathology, Sydney, Australia.,3 Department of Respiratory Medicine, Prince of Wales Hospital, Sydney, Australia
| | - Nicodemus Tedla
- 1 Mechanisms of Diseases Translational Research, University of New South Wales, School of Medical Sciences, Department of Pathology, Sydney, Australia
| |
Collapse
|
24
|
Xu Z, Ho S, Chang CC, Zhang QY, Vasilescu ER, Vlad G, Suciu-Foca N. Molecular and Cellular Characterization of Human CD8 T Suppressor Cells. Front Immunol 2016; 7:549. [PMID: 27965674 PMCID: PMC5127796 DOI: 10.3389/fimmu.2016.00549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/16/2016] [Indexed: 12/29/2022] Open
Abstract
Bidirectional interactions between dendritic cells and Ag-experienced T cells initiate either a tolerogenic or immunogenic pathway. The outcome of these interactions is of crucial importance in malignancy, transplantation, and autoimmune diseases. Blockade of costimulation results in the induction of T helper cell anergy and subsequent differentiation of antigen-specific CD8+ T suppressor/regulatory cells (Ts). Ts, primed in the presence of inhibitory signals, exert their inhibitory function in an antigen-specific manner, a feature with tremendous clinical potential. In transplantation or autoimmunity, antigen-specific Ts can enforce tolerance to auto- or allo-antigens, while otherwise leaving the immune response to pathogens uninhibited. Alternatively, blockade of inhibitory receptors results in the generation of cytolytic CD8+ T cells, which is vital toward defense against tumors and viral diseases. Because CD8+ T cells are MHC Class I restricted, they are able to recognize HLA-bound antigenic peptides presented not only by APC but also on parenchymal cells, thus eliciting or suppressing auto- or allo-immune reactions.
Collapse
Affiliation(s)
- Zheng Xu
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Sophey Ho
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Chih-Chao Chang
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Qing-Yin Zhang
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Elena-Rodica Vasilescu
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - George Vlad
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| | - Nicole Suciu-Foca
- Immunogenetics and Cellular Immunology, Department of Pathology and Cell Biology, Columbia University , New York, NY , USA
| |
Collapse
|
25
|
Stallone G, Infante B, Di Lorenzo A, Rascio F, Zaza G, Grandaliano G. mTOR inhibitors effects on regulatory T cells and on dendritic cells. J Transl Med 2016; 14:152. [PMID: 27245075 PMCID: PMC4886438 DOI: 10.1186/s12967-016-0916-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/18/2016] [Indexed: 01/03/2023] Open
Abstract
The mammalian target of rapamycin (mTOR), a cytoplasmic serine/threonine kinase, represents a key biologic "switch" modulating cell metabolisms in response to environmental signals and is now recognized as a central regulator of the immune system. There is an increasing body of evidence supporting the hypothesis that mTOR inhibitors exhibit several biological properties in addition to immunosuppression, including anti-neoplastic effects, cardio-protective activities, and an array of immunomodulatory actions facilitating the development of an operational graft tolerance. The biological mechanisms explaining how mTOR inhibition can enable a tolerogenic state are still largely unclear. The induction of transplant tolerance might at the same time decrease rejection rate and minimize immunosuppression-related side effects, leading to an improvement in long-term graft outcome. In this scenario, T cell immunoregulation has been defined as the hallmark of peripheral tolerance. Two main immunologic cell populations have been reported to play a central role in this setting: regulatory T cells (Tregs) and dendritic cells (DCs). In this review we focus on mTOR inhibitors effects on Treg and DCs differentiation, activation, and function in the transplantation setting.
Collapse
Affiliation(s)
- Giovanni Stallone
- Nephrology, Dialysis and Tranplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, 71100, Foggia, Italy
| | - Barbara Infante
- Nephrology, Dialysis and Tranplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, 71100, Foggia, Italy
| | - Adelaide Di Lorenzo
- Nephrology, Dialysis and Tranplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, 71100, Foggia, Italy
| | - Federica Rascio
- Nephrology, Dialysis and Tranplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, 71100, Foggia, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, University of Verona, Piazzale A. Stefani 1, 37126, Verona, VR, Italy.
| | - Giuseppe Grandaliano
- Nephrology, Dialysis and Tranplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 1, 71100, Foggia, Italy.
| |
Collapse
|
26
|
Zhang P, Guo X, Li J, Yu S, Wang L, Jiang G, Yang D, Wei Z, Zhang N, Liu J, Sun Y. Immunoglobulin-like transcript 4 promotes tumor progression and metastasis and up-regulates VEGF-C expression via ERK signaling pathway in non-small cell lung cancer. Oncotarget 2016; 6:13550-63. [PMID: 25948790 PMCID: PMC4537033 DOI: 10.18632/oncotarget.3624] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/16/2015] [Indexed: 12/19/2022] Open
Abstract
Immunoglobulin-like transcript (ILT) 4 has long been thought to be cell-surface molecule in certain immune cells and negatively regulates immune response. Recently, overexpression of ILT4 has been observed in a few cancers with unknown function. Here, we showed manipulation of ILT4 affected non-small cell lung cancer (NSCLC) cell proliferation, migration and invasion in vitro analyses. In vivo, ILT4 promoted the tumor growth and metastasis. Furthermore, the phosphorylation of extracellular regulated protein kinases (ERK1/2) was enhanced in ILT4 overexpressing NSCLC cells. ERK1/2 specific inhibitor U0126 suppressed the proliferation, migration and invasion of those cells. Stepwise investigations demonstrated that vascular endothelial growth factor C (VEGF-C) was the downstream effector of ILT4 and ERK1/2. Silence of VEGF-C attenuated the migration and invasion activity of ILT4 overexpressing cells. Moreover, Kaplan-Meier survival analysis indicated that NSCLC patients with ILT4 positive expression had a poor patient survival. ILT4 and VEGF-C expression had notable positive correlation in cancer cells, and their co-expression was significantly associated with adverse prognostic factors. Our findings suggest that ILT4 drives NSCLC development in part on activation of ERK signaling which in turn upregulates VEGF-C. ILT4 could be a novel cancer therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Oncology, School of Medicine, Shandong University, Jinan, Shandong, P. R. China.,Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Xiaosun Guo
- Department of Pathophysiology, School of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Juan Li
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Shuwen Yu
- Department of Pharmacy, Jinan Central Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Linlin Wang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Guosheng Jiang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P. R. China
| | - Dong Yang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Zhaolong Wei
- Department of Medical Imaging, Jinan Central Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Nan Zhang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Jie Liu
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
27
|
Pierobon D, Raggi F, Cambieri I, Pelassa S, Occhipinti S, Cappello P, Novelli F, Musso T, Eva A, Castagnoli C, Varesio L, Giovarelli M, Bosco MC. Regulation of Langerhans cell functions in a hypoxic environment. J Mol Med (Berl) 2016; 94:943-55. [PMID: 26960761 DOI: 10.1007/s00109-016-1400-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/31/2016] [Accepted: 02/16/2016] [Indexed: 12/23/2022]
Abstract
UNLABELLED Langerhans cells (LCs) are a specialized dendritic cell subset that resides in the epidermis and mucosal epithelia and is critical for the orchestration of skin immunity. Recent evidence suggest that LCs are involved in aberrant wound healing and in the development of hypertrophic scars and chronic wounds, which are characterized by a hypoxic environment. Understanding LCs biology under hypoxia may, thus, lead to the identification of novel pathogenetic mechanisms of wound repair disorders and open new therapeutic opportunities to improve wound healing. In this study, we characterize a previously unrecognized role for hypoxia in significantly affecting the phenotype and functional properties of human monocyte-derived LCs, impairing their ability to stimulate naive T cell responses, and identify the triggering receptor expressed on myeloid (TREM)-1, a member of the Ig immunoregulatory receptor family, as a new hypoxia-inducible gene in LCs and an activator of their proinflammatory and Th1-polarizing functions in a hypoxic environment. Furthermore, we provide the first evidence of TREM-1 expression in vivo in LCs infiltrating hypoxic areas of active hypertrophic scars and decubitous ulcers, pointing to a potential pathogenic role of this molecule in wound repair disorders. KEY MESSAGES Hypoxia modulates surface molecule expression and cytokine profile in Langerhans cells. Hypoxia impairs human Langerhans cell stimulatory activity on naive T cells. Hypoxia selectively induces TREM-1 expression in human Langerhans cells. TREM-1 engagement stimulates Langerhans cell inflammatory and Th1-polarizing activity. TREM-1 is expressed in vivo in Langerhans cells infiltrating hypoxic skin lesions.
Collapse
Affiliation(s)
- Daniele Pierobon
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- CERMS, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Federica Raggi
- Laboratory of Molecular Biology, G.Gaslini Institute, Genova, Italy
| | - Irene Cambieri
- Department of Reconstructive Plastic Surgery, Burns Centre and Skin Bank, Trauma Center, Torino, Italy
| | - Simone Pelassa
- Laboratory of Molecular Biology, G.Gaslini Institute, Genova, Italy
| | - Sergio Occhipinti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- CERMS, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- CERMS, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- CERMS, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Tiziana Musso
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, G.Gaslini Institute, Genova, Italy
| | - Carlotta Castagnoli
- Department of Reconstructive Plastic Surgery, Burns Centre and Skin Bank, Trauma Center, Torino, Italy
| | - Luigi Varesio
- Laboratory of Molecular Biology, G.Gaslini Institute, Genova, Italy.
- Laboratorio di Biologia Molecolare, Istituto Giannina Gaslini, Padiglione 2, L.go G.Gaslini 5, 16147, Genova Quarto, Italy.
| | - Mirella Giovarelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- CERMS, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, G.Gaslini Institute, Genova, Italy.
- Laboratorio di Biologia Molecolare, Istituto Giannina Gaslini, Padiglione 2, L.go G.Gaslini 5, 16147, Genova Quarto, Italy.
| |
Collapse
|
28
|
Co-expression of ILT4/HLA-G in human non-small cell lung cancer correlates with poor prognosis and ILT4-HLA-G interaction activates ERK signaling. Tumour Biol 2016; 37:11187-98. [PMID: 26939901 DOI: 10.1007/s13277-016-5002-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/25/2016] [Indexed: 01/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common malignant tumor in the world, of which prognosis is generally poor due to insufficient mechanistic understanding. To explore the molecular pathogenesis of NSCLC, the co-expression of immunoglobulin-like transcript 4 (ILT4) and its ligand human leukocyte antigen G (HLA-G) in NSCLC tissues and cells were investigated. Here, we detected the expression of ILT4 and HLA-G in 81 tumor specimens from primary NSCLC patients, and we found that co-expression of ILT4/HLA-G was significantly associated with regional lymph node involvement, advanced stages, and the overall survival of patients. In NSCLC cell lines, HLA-G expression increased/decreased accordingly when ILT4 was up-/down-regulated, and ILT4 expression increased in a concentration-dependent manner via the stimulation of HLA-G fusion protein. Interestingly, HLA-G fusion protein could also up-regulate the phospho-ERK1/2 expression, which means the activation of extracellular signal-regulated kinase (ERK) signaling. All in all, our results indicate that the ILT4-HLA-G interaction might play an important role in NSCLC progression. Identification of ILT4 and HLA-G expression may provide an indicator to predict prognosis and guide prevention and treatment of NSCLC.
Collapse
|
29
|
Zhang P, Yu S, Li H, Liu C, Li J, Lin W, Gao A, Wang L, Gao W, Sun Y. ILT4 drives B7-H3 expression via PI3K/AKT/mTOR signalling and ILT4/B7-H3 co-expression correlates with poor prognosis in non-small cell lung cancer. FEBS Lett 2015; 589:2248-56. [PMID: 26149216 DOI: 10.1016/j.febslet.2015.06.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 02/08/2023]
Abstract
Immunoglobulin-like transcript (ILT) 4 is critical for the inhibitory function of certain immune cells. We previously demonstrated that ILT4 is over-expressed in human non-small cell lung cancer (NSCLC) cells and is involved in tumour evasion via an unknown mechanism. In this report, we demonstrate that ILT4 increases the expression of the co-inhibitory molecule B7-H3 through PI3K/AKT/mTOR signalling. In primary human NSCLC tissues, a significant positive relationship is observed between ILT4 and B7-H3 expression. ILT4/B7-H3 co-expression is significantly associated with a reduction in T infiltrating lymphoid cells and lower overall survival. In summary, ILT4 increases B7-H3 expression and ILT4/B7-H3 co-expression may be involved in NSCLC progression.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Oncology, Jinan Central Hospital, Shandong University, 105 Jie Fang Road, Jinan, Shandong 250013, PR China
| | - Shuwen Yu
- Department of Pharmacy, Jinan Central Hospital, Shandong University, 105 Jie Fang Road, Jinan, Shandong 250013, PR China
| | - Hongyu Li
- Department of Geratology, Jinan Central Hospital, Shandong University, 105 Jie Fang Road, Jinan, Shandong 250013, PR China
| | - Chuanyong Liu
- Department of Oncology, Jinan Central Hospital, Shandong University, 105 Jie Fang Road, Jinan, Shandong 250013, PR China
| | - Juan Li
- Department of Oncology, Jinan Central Hospital, Shandong University, 105 Jie Fang Road, Jinan, Shandong 250013, PR China
| | - Wenli Lin
- Department of Oncology, Jinan Central Hospital, Shandong University, 105 Jie Fang Road, Jinan, Shandong 250013, PR China
| | - Aiqin Gao
- Department of Oncology, Jinan Central Hospital, Shandong University, 105 Jie Fang Road, Jinan, Shandong 250013, PR China
| | - Linlin Wang
- Department of Oncology, Jinan Central Hospital, Shandong University, 105 Jie Fang Road, Jinan, Shandong 250013, PR China
| | - Wei Gao
- Department of Pathology, Jinan Central Hospital, Shandong University, 105 Jie Fang Road, Jinan, Shandong 250013, PR China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital, Shandong University, 105 Jie Fang Road, Jinan, Shandong 250013, PR China.
| |
Collapse
|
30
|
Liu J, Wang L, Gao W, Li L, Cui X, Yang H, Lin W, Dang Q, Zhang N, Sun Y. Inhibitory receptor immunoglobulin-like transcript 4 was highly expressed in primary ductal and lobular breast cancer and significantly correlated with IL-10. Diagn Pathol 2014; 9:85. [PMID: 24762057 PMCID: PMC4045966 DOI: 10.1186/1746-1596-9-85] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 03/29/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Immunoglobulin-like transcript 4 (ILT4) is an inhibitory molecule involved in immune response and has recently been identified to be strongly inducible by IL-10. The aim of the present study was to examine the associations of ILT4 expression with clinicopathological characteristics and IL-10 expression in primary ductal and lobular breast cancer. METHODS We studied the expression of ILT4 in 4 cancer cell lines, 117 primary tumor tissues and 97 metastatic lymph nodes from patients with primary ductal and lobular breast cancer by reverse transcription-polymerase chain reaction, western blot or immunohistochemistry analysis. Additionally, IL-10 expression was also investigated using immunohistochemistry in primary tumor tissues. Then the relationship between ILT4 expression and clinicopathological characteristics/IL-10 expression was evaluated. RESULTS ILT4 was highly expressed in all 4 human breast cancer cell lines on both mRNA and protein levels. In primary tumor tissues, ILT4 or IL-10 was expressed in the cell membrane, cytoplasm, or both; the positive rate of ILT4 and IL-10 expression was 60.7% (71/117) and 80.34% (94/117), respectively. ILT4 level was significantly correlated with IL-10 (r =0.577; p<0.01). Furthermore, the expression of ILT4 or IL-10 was associated with less number of Tumor Infiltrating Lymphocytes (TILs) (p=0.004 and 0.018, respectively) and more lymph node metastasis (p=0.046 and 0.035, respectively). CONCLUSION Our data demonstrated the association of ILT4 and IL-10 expression in human breast cancer, suggesting their important roles in immune dysfunction and lymph node metastases. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1692652692107916.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuping Sun
- Department of Oncology, Jinan Central Hospital, Shandong University, No,105, Jie Fang Road, Jinan, Shandong 250013, PR, China.
| |
Collapse
|
31
|
Tavano B, Boasso A. Effect of immunoglobin-like transcript 7 cross-linking on plasmacytoid dendritic cells differentiation into antigen-presenting cells. PLoS One 2014; 9:e89414. [PMID: 24586760 PMCID: PMC3929723 DOI: 10.1371/journal.pone.0089414] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/21/2014] [Indexed: 12/20/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) are innate immunity effector cells which play a critical role in the transition from innate to adaptive immune response. Circulating blood pDC present an immature phenotype and can differentiate into either antigen-presenting cells (APC) or type I interferon (IFN-I)-producing cells (IPC). The immunoglobulin-like transcript (ILT)7 is a surface receptor expressed by immature pDC, and ILT7 cross-linking (XL-ILT7) inhibits IFN-I production by pDC in response to toll-like receptor (TLR)7 and 9 stimulation. We used peripheral blood mononuclear cells (PBMC) from healthy donors to test the effect of XL-ILT7 on 1) TLR7/9-mediated regulation of gut mucosal (α4β7 integrin) and lymph node (CCR7) migration markers; and 2) the maturation of pDC into APC. We found that XL-ILT7 mitigated the upregulation of CCR7 and enhanced that of β7 on TLR7/9-stimulated pDC. TLR7/9 stimulation induced upregulation of CD40, CD80 and CD86. CD40 expression was partially reduced by XL-ILT7, whereas CD86 was further enhanced. Plasmacytoid DC stimulated with TLR9 ligand in presence of XL-ILT7 retained the ability to induce T cell proliferation and activation in response to staphylococcal enterotoxin B (SEB) in pDC-T cell co-cultures. Our results suggest that XL-ILT7 favours the differentiation of immature pDC into APC rather than IPC.
Collapse
Affiliation(s)
- Barbara Tavano
- Immunology Section, Chelsea and Westminster Hospital, Imperial College, London, United Kingdom
| | - Adriano Boasso
- Immunology Section, Chelsea and Westminster Hospital, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Raggi F, Blengio F, Eva A, Pende D, Varesio L, Bosco MC. Identification of CD300a as a new hypoxia-inducible gene and a regulator of CCL20 and VEGF production by human monocytes and macrophages. Innate Immun 2013; 20:721-34. [PMID: 24131792 DOI: 10.1177/1753425913507095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Peripheral blood monocytes are recruited to inflammatory and tumor lesions where they undergo terminal differentiation into macrophages. Monocytes/macrophages integrate stimulatory and inhibitory signals present in the pathologic microenvironment through a defined repertoire of cell surface receptors, and deregulated expression of these molecules may result in amplification of inflammation or establishment of immune escape mechanisms. Characterization of the expression and function of these receptors is required for a better understanding of the regulation of monocyte/macrophage activity at pathologic sites. Hypoxia is a common feature of many pathological situations and an important regulator of monocyte/macrophage pro-inflammatory responses. In this study, we identify the leukocyte membrane antigen, CD300a, a member of the CD300 superfamily of immunoregulatory receptors, as a new hypoxia-inducible gene in primary human monocytes and monocyte-derived macrophages. CD300a mRNA up-regulation by hypoxia was rapid and reversible, paralleled by increased surface protein expression, and mediated by hypoxia-inducible factor-1α. CD300a induction was also triggered by the hypoxia-mimetic agent, desferrioxamine. CD300a exhibited both activating and inhibitory potential, differentially regulating CCL20 and vascular endothelial growth factor pro-inflammatory cytokine production by monocytes/macrophages upon triggering by an agonist Ab. These results suggest that CD300a induction by the hypoxic environment represents a mechanism of regulation of monocyte/macrophage pro-inflammatory responses at pathologic sites.
Collapse
Affiliation(s)
- Federica Raggi
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, Genova, Italy
| | - Fabiola Blengio
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, Genova, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, Genova, Italy
| | | | - Luigi Varesio
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, Genova, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
33
|
Stallone G, Pontrelli P, Infante B, Gigante M, Netti GS, Ranieri E, Grandaliano G, Gesualdo L. Rapamycin induces ILT3(high)ILT4(high) dendritic cells promoting a new immunoregulatory pathway. Kidney Int 2013; 85:888-97. [PMID: 24107844 DOI: 10.1038/ki.2013.337] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 06/05/2013] [Accepted: 06/20/2013] [Indexed: 12/23/2022]
Abstract
ILT3(high)ILT4(high) dendritic cells (DCs) may cause anergy in CD4(+)CD45RO(+)CD25(+) T cells transforming them into regulatory T cells (Tregs). Here, we tested whether chronic exposure to rapamycin may modulate this immunoregulatory pathway in renal transplant recipients. Forty renal transplant patients with biopsy-proven chronic allograft nephropathy and receiving calcineurin inhibitors were randomly assigned to either calcineurin inhibitor dose reduction or withdrawal with rapamycin introduction. At conversion and 2 years thereafter, we measured the rapamycin effects on circulating DCs (BDCA1/BDCA2 and ILT3/ILT4 expression), CD4(+)/CD25(high)/Foxp3(+) Tregs, CD8(+)/CD28(-) T cells, and the Th1/Th2 balance in graft biopsies. In rapamycin-treated patients, peripheral BDCA2(+) cells were significantly increased along with ILT3/ILT4(+) DCs. The number of circulating CD4(+)/CD25(high)/Foxp3(+)/CTLA4(+) Tregs, CD8(+)CD28(-) T cells, and HLA-G serum levels were higher in the rapamycin-treated group. The number of ILT3/ILT4(+)BDCA2(+) DC was directly and significantly correlated with circulating Tregs and CD8(+)CD28(-) T cells. ILT3/ILT4 expression was increased in kidney biopsies at the end of the study period along with a significant bias toward a Th2 response within the graft only in the rapamycin-treated patients. Thus, rapamycin induces the upregulation of ILT3 and ILT4 on the DC surface, and this effect is associated with an increase in the number of Tregs and expansion of the CD8(+)CD28(-) T cell population. This suggests that mTOR inhibition may promote a novel immunoregulatory pathway.
Collapse
Affiliation(s)
- Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Margherita Gigante
- Department of Medical and Surgical Sciences, Clinical Pathology, University of Foggia, Foggia, Italy
| | - Giuseppe S Netti
- Department of Medical and Surgical Sciences, Clinical Pathology, University of Foggia, Foggia, Italy
| | - Elena Ranieri
- Department of Medical and Surgical Sciences, Clinical Pathology, University of Foggia, Foggia, Italy
| | - Giuseppe Grandaliano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| |
Collapse
|
34
|
Nam G, Shi Y, Ryu M, Wang Q, Song H, Liu J, Yan J, Qi J, Gao GF. Crystal structures of the two membrane-proximal Ig-like domains (D3D4) of LILRB1/B2: alternative models for their involvement in peptide-HLA binding. Protein Cell 2013; 4:761-70. [PMID: 23955630 DOI: 10.1007/s13238-013-3908-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022] Open
Abstract
Leukocyte immunoglobulin-like receptors (LILRs), also called CD85s, ILTs, or LIRs, are important mediators of immune activation and tolerance that contain tandem immunoglobulin (Ig)-like folds. There are 11 (in addition to two pseudogenes) LILRs in total, two with two Ig-like domains (D1D2) and the remaining nine with four Ig-like domains (D1D2D3D4). Thus far, the structural features of the D1D2 domains of LILR proteins are well defined, but no structures for the D3D4 domains have been reported. This is a very important field to be studied as it relates to the unknown functions of the D3D4 domains, as well as their relative orientation to the D1D2 domains on the cell surface. Here, we report the crystal structures of the D3D4 domains of both LILRB1 and LILRB2. The two Ig-like domains of both LILRB1-D3D4 and LILRB2-D3D4 are arranged at an acute angle (∼60°) to form a bent structure, resembling the structures of natural killer inhibitory receptors. Based on these two D3D4 domain structures and previously reported D1D2/HLA I complex structures, two alternative models of full-length (four Ig-like domains) LILR molecules bound to HLA I are proposed.
Collapse
Affiliation(s)
- Gol Nam
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Clinical significance of soluble-triggering receptor expressed on myeloid cells-1 (sTREM-1) in patients with rheumatoid arthritis. EGYPTIAN RHEUMATOLOGIST 2013. [DOI: 10.1016/j.ejr.2012.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Pierobon D, Bosco MC, Blengio F, Raggi F, Eva A, Filippi M, Musso T, Novelli F, Cappello P, Varesio L, Giovarelli M. Chronic hypoxia reprograms human immature dendritic cells by inducing a proinflammatory phenotype and TREM-1 expression. Eur J Immunol 2013; 43:949-66. [PMID: 23436478 DOI: 10.1002/eji.201242709] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 12/21/2012] [Accepted: 01/25/2013] [Indexed: 12/30/2022]
Abstract
DCs are powerful antigen-presenting cells central in the orchestration of innate and acquired immunity. DC development, migration, and activities are intrinsically linked to the microenvironment. DCs migrate through pathologic tissues before reaching their final destination in the lymph nodes. Hypoxia, a condition of low partial oxygen pressure, is a common feature of many pathologic situations, capable of modifying DC phenotype and functional behavior. We studied human monocyte-derived immature DCs generated under chronic hypoxic conditions (H-iDCs). We demonstrate by gene expression profiling the upregulation of a cluster of genes coding for antigen-presentation, immunoregulatory, and pattern recognition receptors, suggesting a stimulatory role for hypoxia on iDC immunoregulatory functions. In particular, we show that H-iDCs express triggering receptor expressed on myeloid cells(TREM-1), a member of the Ig superfamily of immunoreceptors and an amplifier of inflammation. This effect is reversible because H-iDC reoxygenation results in TREM-1 down-modulation. TREM-1 engagement promotes upregulation of T-cell costimulatory molecules and homing chemokine receptors, typical of mature DCs, and increases the production of proinflammatory, Th1/Th17-priming cytokines/chemokines, resulting in increased T-cell responses. These results suggest that TREM-1 induction by the hypoxic microenvironment represents a mechanism of regulation of Th1-cell trafficking and activation by iDCs differentiated at pathologic sites.
Collapse
Affiliation(s)
- Daniele Pierobon
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li D, Hong A, Lu Q, Gao GF, Jin B, Screaton GR, Xu XN. A novel role of CD1c in regulating CD1d-mediated NKT cell recognition by competitive binding to Ig-like transcript 4. Int Immunol 2012; 24:729-37. [PMID: 22888216 DOI: 10.1093/intimm/dxs082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Humans express four MHC-like CD1 molecules CD1a, b, c and d that are capable of presenting a wide variety of self or foreign lipid antigens to T cells. Much progress has been made in elucidating the function of CD1d-restricted NKT cells in both innate and adaptive immune responses. However, knowledge of the other CD1 molecules is less well defined in terms of lipid presentation and immune regulation. We have previously shown that immunoglobulin-like transcript 4 (ILT4) binds to CD1d and inhibits its recognition by NKT cells. In this study, we show that CD1c can also interact specifically with ILT4 with a higher affinity than that of CD1d. Furthermore, changes in CD1c expression seem to modulate CD1d function; up-regulation of CD1c enhances NKT recognition of CD1d and down-regulation reduces CD1d recognition. We propose that CD1c can act as a sink for the inhibitory receptor ILT4: when CD1c is up-regulated, ILT4 is recruited to CD1c, thus reducing the inhibitory effect of ILT4 on CD1d recognition. Consequently, CD1c could be a potential target for modulating NKT activity. KEYWORDS NKT, CD1d, CD1c, ILT4, antigen presentation.
Collapse
Affiliation(s)
- Demin Li
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
Induction of antigen-specific human T suppressor cells by membrane and soluble ILT3. Exp Mol Pathol 2012; 93:294-301. [PMID: 23018130 DOI: 10.1016/j.yexmp.2012.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 09/14/2012] [Indexed: 11/24/2022]
Abstract
Antigen-specific CD8 suppressor T cells (CD8(+) Ts) are adaptive regulatory T cells that are induced in vivo and in vitro by chronic antigenic stimulation of human T cells. CD8(+) Ts induce the upregulation of the inhibitory receptors ILT3 and ILT4 on monocytes and dendritic cells rendering these antigen presenting cells (APCs) tolerogenic. Tolerogenic APCs induce CD4(+) T helper anergy and elicit the differentiation of CD4(+) and CD8(+) T regulatory/suppressor cells. Overexpression of membrane ILT3 in APC results in inhibition of NF-κB activation, transcription of inflammatory cytokines and costimulatory molecules. Soluble ILT3-Fc which contains only the extracellular, Ig-like domain linked to mutated IgG1 Fc, is strongly immunosuppressive. ILT3-Fc, induces the differentiation of human CD8(+) Ts which inhibit CD4(+) Th and CD8(+) CTL effector function both in vitro and in vivo. The acquisition of Ts' function by primed CD8(+) T cells treated with ILT3-Fc was demonstrated to be the effect of the significant upregulation of BCL6, a transcriptional repressor of IL-2, IFN-gamma, IL-5 and granzyme B. The upregulated expression of BCL6, SOCS1 and DUSP10 is integral to the signature of ILT3-Fc-induced CD8(+) Ts. These genes are known inhibitors of cytokine production and TCR signaling and are targeted by miRNAs which are suppressed by ILT3-Fc. ILT3-Fc induces tolerance to allogeneic human islets and reverses rejection after its onset in a humanized NOD/SCID mouse model. Based on these findings we postulate that ILT3-Fc may become an important new agent for treatment of autoimmunity and transplant rejection.
Collapse
|
39
|
Si YQ, Bian XK, Lu N, Jia YF, Hou ZH, Zhang Y. Cyclosporine induces up-regulation of immunoglobulin-like transcripts 3 and 4 expression on and activity of NKL cells. Transplant Proc 2012; 44:1407-11. [PMID: 22664025 DOI: 10.1016/j.transproceed.2011.10.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/27/2011] [Indexed: 01/22/2023]
Abstract
BACKGROUND Immunoglobulin-like transcripts (ILTs), which belong to a kind of receptor family discovered recently, are differentially expressed on myeloid and lymphoid cells. Most of them play important roles to regulate human immune responses by interacting with ligands. Cyclosporine (CsA) is frequently used to prevent graft-versus-host disease and treat autoimmune diseases. There are some studies about the effects of CsA on various human immunologic reactions, but its impact on ILT3 and ILT4 expression on natural killer (NK) cells is less well understood. METHODS An NKL cell line was exposed to CsA (5, 10, 15, or 20 mg/L) for 12, 24, or 36 hours before real-time quantitative polymerase chain reaction and flow cytometry were used to detect alterations in ILT3 and ILT4 mRNA and protein expressions. NKL cells treated for 36 hours with or without CsA (15 mg/L) and then coincubated with BGC-823 or JEG-3 cells, in cytolytic and proliferative systems measured by Thiazoyl blue tetrazolium bromide assays. RESULTS After CsA treatment both RNA and protein levels of ILT3 and ILT4 on NKL cells were increased for 12, 24, or 36 hours. CsA at various concentrations inhibited the proliferation of NKL cells to varying degrees; at 36 hours CsA (15 mg/L) showed greater effects on ILT3 and ILT4 expression and less influence on NKL growth. The ability of NKL cells primed with CsA (15 mg/L) for 36 hours to kill tumor cells was decreased markedly. CONCLUSIONS CsA up-regulated the expression of ILT3 and ILT4 on NKL cells, which influenced their cytotoxicity against tumor cells with different expression of HLA-G and proliferation of NKL cells.
Collapse
MESH Headings
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Coculture Techniques
- Cyclosporine/pharmacology
- Cytotoxicity, Immunologic/drug effects
- Dose-Response Relationship, Drug
- Flow Cytometry
- HLA-G Antigens/metabolism
- Humans
- Immunosuppressive Agents/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Neoplasms/immunology
- Neoplasms/pathology
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transcription, Genetic/drug effects
- Up-Regulation
Collapse
Affiliation(s)
- Y-Q Si
- Department of Clinical Laboratory Medicine, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
40
|
Bosco MC, Varesio L. Dendritic cell reprogramming by the hypoxic environment. Immunobiology 2012; 217:1241-9. [PMID: 22901977 DOI: 10.1016/j.imbio.2012.07.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/06/2012] [Accepted: 07/19/2012] [Indexed: 12/17/2022]
Abstract
Myeloid dendritic cells (DCs) are professional antigen-presenting cells central to the orchestration of innate and acquired immunity and the maintenance of self-tolerance. The local microenvironment contributes to the regulation of DC development and functions, and deregulated DC responses may result in amplification of inflammation, loss of tolerance, or establishment of immune escape mechanisms. DC generation from monocytic precursors recruited at sites of inflammation, tissue damage, or neoplasia occurs under condition of low partial oxygen pressure (pO(2), hypoxia). We reviewed the literature addressing the phenotypic and functional changes triggered by hypoxia in monocyte-derived immature (i) and mature (m) DCs. The discussion will revolve around in vitro studies of gene expression profile, which give a comprehensive representation of the complexity of response of these cells to low pO(2). The gene expression pattern of hypoxic DC will be discussed to address the question of the relationship with a specific maturation stage. We will summarize data relative to the regulation of the chemotactic network, which points to a role for hypoxia in promoting a migratory phenotype in iDCs and a highly proinflammatory state in mDCs. Current knowledge of the strict regulatory control exerted by hypoxia on the expression of immune-related cell surface receptors will also be addressed, with a particular focus on a newly identified marker of hypoxic DCs endowed with proinflammatory properties. Furthermore, we discuss the literature on the transcription mechanisms underlying hypoxia-regulated gene expression in DCs, which support a major role for the HIF/HRE pathway. Finally, recent advances shedding light on the in vivo influence of the local hypoxic microenvironment on DCs infiltrating the inflamed joints of juvenile idiopathic arthritis patients are outlined.
Collapse
Affiliation(s)
- Maria Carla Bosco
- Laboratory of Molecular Biology, G. Gaslini Institute, Genova, Italy.
| | | |
Collapse
|
41
|
Zhang Y, Lu N, Xue Y, Zhang M, Li Y, Si Y, Bian X, Jia Y, Wang Y. Expression of immunoglobulin-like transcript (ILT)2 and ILT3 in human gastric cancer and its clinical significance. Mol Med Rep 2012; 5:910-6. [PMID: 22246571 PMCID: PMC3493079 DOI: 10.3892/mmr.2012.744] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/05/2011] [Indexed: 12/21/2022] Open
Abstract
Immune inhibitory receptors play an important role in organ transplantation, autoimmune diseases and cancers. Immunoglobulin-like transcript (ILT)2 and ILT3 belong to the inhibitory receptors of the ILT family, which have been reported to regulate a broad range of cellular functions involved in the immune response. They contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs), which are related to immune regulation. Although ILT receptors have been studied in dendritic cells (DCs), T cells, NK cells and other cell types, the expression and clinical significance of ILT2 and ILT3 in gastric cancer have yet to be elucidated. Here, the expression of ILT2 and ILT3 in gastric cancer cell lines and pathologic tissues, as well as their effects on the cytotoxicity of NK92MI against the gastric cancer cell lines MKNI with ILT2lowILT3low and HGC-27 with ILT2highILT3high were detected. The results suggest that ILT2 and ILT3 are expressed with diverse degrees in gastric cancer cells and tissues, and the expression of ILT2 is related with differentiation and size of tumors. Furthermore, the cytotoxic activity of NK92MI against the MKNI cell line was stronger than that against HGC-27. This study indicates that ILT2 and ILT3 play a key role in gastric cancer immune escape, and ILT2 may be a new target in the clinical diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Clinical Laboratory Medicine, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhao C, Sardella A, Chun J, Poubelle PE, Fernandes MJ, Bourgoin SG. TNF-alpha promotes LPA1- and LPA3-mediated recruitment of leukocytes in vivo through CXCR2 ligand chemokines. J Lipid Res 2011; 52:1307-18. [PMID: 21521824 DOI: 10.1194/jlr.m008045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid present in low concentrations in serum and biological fluids but in high concentrations at sites of inflammation. LPA evokes a variety of cellular responses via binding to and activation of its specific G protein-coupled receptors (GPCR), namely LPA(1-6). Even though LPA is a chemoattractant for inflammatory cells in vitro, such a role for LPA in vivo remains largely unexplored. In the present study, we used the murine air pouch model to study LPA-mediated leukocyte recruitment in vivo using selective LPA receptor agonist/antagonist and LPA(3)-deficient mice. We report that 1) LPA injection into the air pouch induced leukocyte recruitment and that both LPA(1) and LPA(3) were involved in this process; 2) LPA stimulated the release of the pro-inflammatory chemokines keratinocyte-derived chemokine (KC) and interferon-inducible protein-10 (IP-10) in the air pouch; 3) tumor necrosis factor-α (TNF-α) injected into the air pouch prior to LPA strongly potentiated LPA-mediated secretion of cytokines/chemokines, including KC, IL-6, and IP-10, which preceded the enhanced leukocyte influx; and 4) blocking CXCR2 significantly reduced leukocyte infiltration. We suggest that LPA, via LPA(1) and LPA(3) receptors, may play a significant role in inducing and/or sustaining the massive infiltration of leukocytes during inflammation.
Collapse
Affiliation(s)
- Chenqi Zhao
- Rheumatology and Immunology Research Center, CHUQ-CHUL Research Center and Faculty of Medicine, Laval University, Québec City, Québec, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Cheng H, Mohammed F, Nam G, Chen Y, Qi J, Garner LI, Allen RL, Yan J, Willcox BE, Gao GF. Crystal structure of leukocyte Ig-like receptor LILRB4 (ILT3/LIR-5/CD85k): a myeloid inhibitory receptor involved in immune tolerance. J Biol Chem 2011; 286:18013-25. [PMID: 21454581 DOI: 10.1074/jbc.m111.221028] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The myeloid inhibitory receptor LILRB4 (also called ILT3, LIR-5, CD85k), a member of the leukocyte immunoglobulin-like receptors (LILRs/LIRs), is an important mediator of immune tolerance. Up-regulated on tolerogenic dendritic cells, it has been shown to modulate immune responses via induction of T cell anergy and differentiation of CD8(+) T suppressor cells and may play a role in establishing immune tolerance in cancer. Consequently, characterizing the molecular mechanisms involved in LILRB4 function and in particular its structure and ligands is a key aim but has remained elusive to date. Here we describe the production, crystallization, and structure of the LILRB4 ectodomain to 1.7 Å using an expression strategy involving engineering of an additional disulfide bond in the D2 domain to enhance protein stability. LILRB4 comprises two immunoglobulin domains similar in structure to other LILRs; however, the D2 domain, which is most closely related to the D4 domains of other family members, contains 3(10) helices not previously observed. At the D1-D2 interface, reduced interdomain contacts resulted in an obtuse interdomain angle of ∼107°. Comparison with MHC class I binding Group 1 LILRs suggests LILRB4 is both conformationally and electrostatically unsuited to MHC ligation, consistent with LILRB4 status as a Group 2 LILR likely to bind novel non-MHC class I ligands. Finally, examination of the LILRB4 surface highlighted distinctive surface patches on the D1 domain and D1D2 hinge region, which may be involved in ligand binding. These findings will facilitate our attempts to precisely define the role of LILRB4 in the regulation of immune tolerance.
Collapse
Affiliation(s)
- Hao Cheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dendritic Cells Modified by Vitamin D: Future Immunotherapy for Autoimmune Diseases. VITAMINS AND THE IMMUNE SYSTEM 2011; 86:63-82. [DOI: 10.1016/b978-0-12-386960-9.00003-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood 2010; 117:2625-39. [PMID: 21148811 DOI: 10.1182/blood-2010-06-292136] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are a heterogeneous group of professional antigen-presenting cells functioning as sentinels of the immune system and playing a key role in the initiation and amplification of innate and adaptive immune responses. DC development and functions are acquired during a complex differentiation and maturation process influenced by several factors present in the local milieu. A common feature at pathologic sites is represented by hypoxia, a condition of low pO(2), which creates a unique microenvironment affecting cell phenotype and behavior. Little is known about the impact of hypoxia on the generation of mature DCs (mDCs). In this study, we identified by gene expression profiling a significant cluster of genes coding for immune-related cell surface receptors strongly up-regulated by hypoxia in monocyte-derived mDCs and characterized one of such receptors, TREM-1, as a new hypoxia-inducible gene in mDCs. TREM-1 associated with DAP12 in hypoxic mDCs, and its engagement elicited DAP12-linked signaling, resulting in ERK-1, Akt, and IκBα phosphorylation and proinflammatory cytokine and chemokine secretion. Finally, we provided the first evidence that TREM-1 is expressed on mDCs infiltrating the inflamed hypoxic joints of children affected by juvenile idiopathic arthritis, representing a new in vivo marker of hypoxic mDCs endowed with proinflammatory properties.
Collapse
|
46
|
Role of PIR-B in autoimmune glomerulonephritis. J Biomed Biotechnol 2010; 2011:275302. [PMID: 20976309 PMCID: PMC2952822 DOI: 10.1155/2011/275302] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/07/2010] [Indexed: 02/07/2023] Open
Abstract
PIR-B, an inhibitory receptor expressed on murine B cells and myeloid cells, regulates humoral and cellular immune responses via its constitutive binding to the ligand, MHC class I molecules, on the same cells (cis) or on different cells (trans). Although it has been speculated that PIR-B is important for maintaining peripheral tolerance, PIR-B single deficiency does not cause overt autoimmune diseases. Recently, however, the combination of its deficiency with the Fas lpr mutation was found to result in augmented production of autoantibodies such as IgG rheumatoid factor and anti-DNA IgG, leading to glomerulonephritis in mice. Although the precise molecular mechanism for the overall scenario is unclear, PIR-B was found to suppress TLR9-mediated production of naturally autoreactive antibodies by innate B cells or B-1 cells by inhibiting the activation of Bruton's tyrosine kinase. Thus, PIR-B is an important regulator of innate immunity mediated by TLR9 in B-1 cells, which can otherwise provoke autoimmunity when overactivated.
Collapse
|
47
|
Laurent S, Carrega P, Saverino D, Piccioli P, Camoriano M, Morabito A, Dozin B, Fontana V, Simone R, Mortara L, Mingari MC, Ferlazzo G, Pistillo MP. CTLA-4 is expressed by human monocyte-derived dendritic cells and regulates their functions. Hum Immunol 2010; 71:934-41. [PMID: 20650297 DOI: 10.1016/j.humimm.2010.07.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/22/2010] [Accepted: 07/12/2010] [Indexed: 12/26/2022]
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is the major negative regulator of T-cell responses, although growing evidence supports its wider role as an immune attenuator that may also act in other cell lineages. Here, we have analyzed the expression of CTLA-4 in human monocytes and monocyte-derived dendritic cells (DCs), and the effect of its engagement on cytokine production and T-cell stimulatory activity by mature DCs. CTLA-4 was highly expressed on freshly isolated monocytes, then down-modulated upon differentiation toward immature DCs (iDCs) and it was markedly upregulated on mature DCs obtained with different stimulations (lipopolysaccharides [LPS], Poly:IC, cytokines). In line with the functional role of CTLA-4 in T cells, treatment of mDCs with an agonistic anti-CTLA-4 mAb significantly enhanced secretion of regulatory interleukin (IL)-10 but reduced secretion of IL-8/IL-12 pro-inflammatory cytokines, as well as autologous CD4+ T-cell proliferation in response to stimulation with recall antigen purified protein derivative (PPD) loaded-DCs. Neutralization of IL-10 with an anti-IL-10 antibody during the mDCs-CD4+ T-cell co-culture partially restored the ability of anti-CTLA-4-treated mDCs to stimulate T-cell proliferation in response to PPD. Taken together, our data provide the first evidence that CTLA-4 receptor is expressed by human monocyte-derived mDCs upon their full activation and that it exerts immune modulatory effects.
Collapse
Affiliation(s)
- Stefania Laurent
- Department of Hematology and Oncology, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Monsiváis-Urenda A, Noyola-Cherpitel D, Hernández-Salinas A, García-Sepúlveda C, Romo N, Baranda L, López-Botet M, González-Amaro R. Influence of human cytomegalovirus infection on the NK cell receptor repertoire in children. Eur J Immunol 2010; 40:1418-27. [PMID: 20201038 DOI: 10.1002/eji.200939898] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human cytomegalovirus (hCMV) infection is usually asymptomatic but may cause disease in immunocompromised hosts. It has been reported that hCMV infection may shape the NK cell receptor (NKR) repertoire in adult individuals, promoting a variable expansion of the CD94/NKG2C+ NK cell subset. We explored the possible relationship between this viral infection and the expression pattern of different NKR including CD94/NKG2C, CD94/NKG2A, immunoglobulin-like transcript 2 (ILT2, CD85j), KIR2DL1/2DS1, KIR3DL1, and CD161 in peripheral blood lymphocytes from healthy children, seropositive (n=21) and seronegative (n=20) for hCMV. Consistent with previous observations in adults, a positive serology for hCMV was associated with increased numbers of NKG2C+ NK and T cells as well as with ILT2+ T lymphocytes. Moreover, the proportions of CD161+ and NKG2C+CD56-CD3- NK cells also tended to be increased in hCMV+ individuals. Excretion of the virus was associated with higher proportions of NKG2C+ NK cells. Altogether, these data reveal that hCMV may have a profound influence on the NKR repertoire in early childhood.
Collapse
Affiliation(s)
- Adriana Monsiváis-Urenda
- Department of Immunology, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Davila S, Froeling FEM, Tan A, Bonnard C, Boland GJ, Snippe H, Hibberd ML, Seielstad M. New genetic associations detected in a host response study to hepatitis B vaccine. Genes Immun 2010; 11:232-8. [PMID: 20237496 DOI: 10.1038/gene.2010.1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The immune response to hepatitis B vaccination differs greatly among individuals, with 5-10% of healthy people failing to produce protective levels of antibodies. Several factors have been implicated in determining this response, chiefly individual genetic variation and age. Aiming to identify genes involved in the response to hepatitis B vaccination, a two-stage investigation of 6091 single-nucleotide polymorphisms (SNPs) in 914 immune genes was performed in an Indonesian cohort of 981 individuals showing normal levels of anti-HBs versus 665 individuals displaying undetectable levels of anti-HBs 18 months after initial dose of the vaccine. Of 275 SNPs identified in the first stage (476 normal/372 nonresponders) with P<0.05, significant associations were replicated for 25 polymorphisms in 15 genes (503 normal/295 nonresponders). We validated previous findings (HLA-DRA, rs5000563, P-value combined=5.57 x 10(-10); OR (95%CI)=0.61 (0.52-0.71)). In addition, we detected a new association outside of the human leukocyte antigen loci region that passed correction for multiple testing. This SNP is in the 3' downstream region of FOXP1, a transcription factor involved in B-cell development (P-value combined=9.2 x 10(-6); OR (95%CI)=1.38 (1.2-1.6)).These findings might help to understand the biological reasons behind vaccine failure and other aspects of variation in the immune responses of healthy individuals.
Collapse
Affiliation(s)
- S Davila
- Genome Institute of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Chui CS, Li D. Role of immunolglobulin-like transcript family receptors and their ligands in suppressor T-cell–induced dendritic cell tolerization. Hum Immunol 2009; 70:686-91. [DOI: 10.1016/j.humimm.2009.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 02/07/2023]
|