1
|
Kong D, Mao JH, Li H, Wang JY, Li YY, Wu XC, Re GF, Luo HY, Kuang YQ, Wang KH. Effects and associated transcriptomic landscape changes of methamphetamine on immune cells. BMC Med Genomics 2022; 15:144. [PMID: 35765053 PMCID: PMC9241331 DOI: 10.1186/s12920-022-01295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Methamphetamine (METH) abuse causes serious health problems, including injury to the immune system, leading to increased incidence of infections and even making withdrawal more difficult. Of course, immune cells, an important part of the immune system, are also injured in methamphetamine abuse. However, due to different research models and the lack of bioinformatics, the mechanism of METH injury to immune cells has not been clarified. Methods We examined the response of three common immune cell lines, namely Jurkat, NK-92 and THP-1 cell lines, to methamphetamine by cell viability and apoptosis assay in vitro, and examined their response patterns at the mRNA level by RNA-sequencing. Differential expression analysis of two conditions (control and METH treatment) in three types of immune cells was performed using the DESeq2 R package (1.20.0). And some of the differentially expressed genes were verified by qPCR. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of differentially expressed genes by the clusterProfiler R package (3.14.3). And gene enrichment analysis was also performed using MetaScape (www.metascape.org). Results The viability of the three immune cells was differentially affected by methamphetamine, and the rate of NK-cell apoptosis was significantly increased. At the mRNA level, we found disorders of cholesterol metabolism in Jurkat cells, activation of ERK1 and ERK2 cascade in NK-92 cells, and disruption of calcium transport channels in THP-1 cells. In addition, all three cells showed changes in the phospholipid metabolic process. Conclusions The results suggest that both innate and adaptive immune cells are affected by METH abuse, and there may be commonalities between different immune cells at the transcriptome level. These results provide new insights into the potential effects by which METH injures the immune cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01295-9.
Collapse
Affiliation(s)
- Deshenyue Kong
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Jun-Hong Mao
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Hong Li
- Narcotics Control Bureau of the Ministry of Public Security of Yunnan Province, Kunming, 650032, China
| | - Jian-Yu Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Yu-Yang Li
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Xiao-Cong Wu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Guo-Fen Re
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Hua-You Luo
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China. .,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China. .,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Kun-Hua Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China. .,Yunnan University, Kunming, 650032, China.
| |
Collapse
|
2
|
Kerr D, Gong Z, Suwatthee T, Luoma A, Roy S, Scarpaci R, Hwang HL, Henderson JM, Cao KD, Bu W, Lin B, Tietjen GT, Steck TL, Adams EJ, Lee KYC. How Tim proteins differentially exploit membrane features to attain robust target sensitivity. Biophys J 2021; 120:4891-4902. [PMID: 34529946 PMCID: PMC8595564 DOI: 10.1016/j.bpj.2021.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/24/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Immune surveillance cells such as T cells and phagocytes utilize integral plasma membrane receptors to recognize surface signatures on triggered and activated cells such as those in apoptosis. One such family of plasma membrane sensors, the transmembrane immunoglobulin and mucin domain (Tim) proteins, specifically recognize phosphatidylserine (PS) but elicit distinct immunological responses. The molecular basis for the recognition of lipid signals on target cell surfaces is not well understood. Previous results suggest that basic side chains present at the membrane interface on the Tim proteins might facilitate association with additional anionic lipids including but not necessarily limited to PS. We, therefore, performed a comparative quantitative analysis of the binding of the murine Tim1, Tim3, and Tim4, to synthetic anionic phospholipid membranes under physiologically relevant conditions. X-ray reflectivity and vesicle binding studies were used to compare the water-soluble domain of Tim3 with results previously obtained for Tim1 and Tim4. Although a calcium link was essential for all three proteins, the three homologs differed in how they balance the hydrophobic and electrostatic interactions driving membrane association. The proteins also varied in their sensing of phospholipid chain unsaturation and showed different degrees of cooperativity in their dependence on bilayer PS concentration. Surprisingly, trace amounts of anionic phosphatidic acid greatly strengthened the bilayer association of Tim3 and Tim4, but not Tim1. A novel mathematical model provided values for the binding parameters and illuminated the complex interplay among ligands. In conclusion, our results provide a quantitative description of the contrasting selectivity used by three Tim proteins in the recognition of phospholipids presented on target cell surfaces. This paradigm is generally applicable to the analysis of the binding of peripheral proteins to target membranes through the heterotropic cooperative interactions of multiple ligands.
Collapse
Affiliation(s)
- Daniel Kerr
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, Chicago, Illinois; Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois
| | - Zhiliang Gong
- Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois
| | | | | | - Sobhan Roy
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Renee Scarpaci
- City University of New York City College, New York, New York
| | - Hyeondo Luke Hwang
- Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois
| | - J Michael Henderson
- Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois
| | - Kathleen D Cao
- Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois
| | - Wei Bu
- NSF's ChemMatCARS, The University of Chicago, Chicago, Illinois
| | - Binhua Lin
- James Franck Institute, Chicago, Illinois; NSF's ChemMatCARS, The University of Chicago, Chicago, Illinois
| | - Gregory T Tietjen
- Department of Surgery, Section of Transplant and Immunology and Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Erin J Adams
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, Chicago, Illinois; Committee on Immunology, Chicago, Illinois; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Ka Yee C Lee
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, Chicago, Illinois; Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois.
| |
Collapse
|
3
|
Scott SA, Mathews TP, Ivanova PT, Lindsley CW, Brown HA. Chemical modulation of glycerolipid signaling and metabolic pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1060-84. [PMID: 24440821 DOI: 10.1016/j.bbalip.2014.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 01/04/2023]
Abstract
Thirty years ago, glycerolipids captured the attention of biochemical researchers as novel cellular signaling entities. We now recognize that these biomolecules occupy signaling nodes critical to a number of physiological and pathological processes. Thus, glycerolipid-metabolizing enzymes present attractive targets for new therapies. A number of fields-ranging from neuroscience and cancer to diabetes and obesity-have elucidated the signaling properties of glycerolipids. The biochemical literature teems with newly emerging small molecule inhibitors capable of manipulating glycerolipid metabolism and signaling. This ever-expanding pool of chemical modulators appears daunting to those interested in exploiting glycerolipid-signaling pathways in their model system of choice. This review distills the current body of literature surrounding glycerolipid metabolism into a more approachable format, facilitating the application of small molecule inhibitors to novel systems. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Sarah A Scott
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thomas P Mathews
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Pavlina T Ivanova
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - H Alex Brown
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
4
|
Lone AM, Taskén K. Proinflammatory and immunoregulatory roles of eicosanoids in T cells. Front Immunol 2013; 4:130. [PMID: 23760108 PMCID: PMC3671288 DOI: 10.3389/fimmu.2013.00130] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/17/2013] [Indexed: 01/08/2023] Open
Abstract
Eicosanoids are inflammatory mediators primarily generated by hydrolysis of membrane phospholipids by phospholipase A2 to ω-3 and ω-6 C20 fatty acids that next are converted to leukotrienes (LTs), prostaglandins (PGs), prostacyclins (PCs), and thromboxanes (TXAs). The rate-limiting and tightly regulated lipoxygenases control synthesis of LTs while the equally well-controlled cyclooxygenases 1 and 2 generate prostanoids, including PGs, PCs, and TXAs. While many of the classical signs of inflammation such as redness, swelling, pain, and heat are caused by eicosanoid species with vasoactive, pyretic, and pain-inducing effects locally, some eicosanoids also regulate T cell functions. Here, we will review eicosanoid production in T cell subsets and the inflammatory and immunoregulatory functions of LTs, PGs, PCs, and TXAs in T cells.
Collapse
Affiliation(s)
- Anna Mari Lone
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital , Oslo , Norway ; Biotechnology Centre, University of Oslo , Oslo , Norway ; K.G. Jebsen Inflammation Research Centre, University of Oslo , Oslo , Norway
| | | |
Collapse
|
5
|
Greco E, Quintiliani G, Santucci MB, Serafino A, Ciccaglione AR, Marcantonio C, Papi M, Maulucci G, Delogu G, Martino A, Goletti D, Sarmati L, Andreoni M, Altieri A, Alma M, Caccamo N, Di Liberto D, De Spirito M, Savage ND, Nisini R, Dieli F, Ottenhoff TH, Fraziano M. Janus-faced liposomes enhance antimicrobial innate immune response in Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A 2012; 109:E1360-E1368. [PMID: 22538807 PMCID: PMC3361443 DOI: 10.1073/pnas.1200484109] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have generated unique asymmetric liposomes with phosphatidylserine (PS) distributed at the outer membrane surface to resemble apoptotic bodies and phosphatidic acid (PA) at the inner layer as a strategy to enhance innate antimycobacterial activity in phagocytes while limiting the inflammatory response. Results show that these apoptotic body-like liposomes carrying PA (ABL/PA) (i) are more efficiently internalized by human macrophages than by nonprofessional phagocytes, (ii) induce cytosolic Ca(2+) influx, (iii) promote Ca(2+)-dependent maturation of phagolysosomes containing Mycobacterium tuberculosis (MTB), (iv) induce Ca(2+)-dependent reactive oxygen species (ROS) production, (v) inhibit intracellular mycobacterial growth in differentiated THP-1 cells as well as in type-1 and -2 human macrophages, and (vi) down-regulate tumor necrosis factor (TNF)-α, interleukin (IL)-12, IL-1β, IL-18, and IL-23 and up-regulate transforming growth factor (TGF)-β without altering IL-10, IL-27, and IL-6 mRNA expression. Also, ABL/PA promoted intracellular killing of M. tuberculosis in bronchoalveolar lavage cells from patients with active pulmonary tuberculosis. Furthermore, the treatment of MTB-infected mice with ABL/PA, in combination or not with isoniazid (INH), dramatically reduced lung and, to a lesser extent, liver and spleen mycobacterial loads, with a concomitant 10-fold reduction of serum TNF-α, IL-1β, and IFN-γ compared with that in untreated mice. Altogether, these results suggest that apoptotic body-like liposomes may be used as a Janus-faced immunotherapeutic platform to deliver polar secondary lipid messengers, such as PA, into phagocytes to improve and recover phagolysosome biogenesis and pathogen killing while limiting the inflammatory response.
Collapse
Affiliation(s)
| | | | | | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | - Anna Rita Ciccaglione
- Department of Infectious, Parasitic, and Immunomediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Cinzia Marcantonio
- Department of Infectious, Parasitic, and Immunomediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | - Giovanni Delogu
- Microbiology, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Angelo Martino
- Department of Epidemiology and Preclinical Research, National Institute of Infectious Diseases “Lazzaro Spallanzani,” 00149 Rome, Italy
| | - Delia Goletti
- Department of Epidemiology and Preclinical Research, National Institute of Infectious Diseases “Lazzaro Spallanzani,” 00149 Rome, Italy
| | - Loredana Sarmati
- Clinical Infectious Diseases, University of Rome “Tor Vergata,” 00133 Rome, Italy
| | - Massimo Andreoni
- Clinical Infectious Diseases, University of Rome “Tor Vergata,” 00133 Rome, Italy
| | - Alfonso Altieri
- Unit of Tisiology and Bronchopneumology, S. Camillo-Forlanini Hospital, 00151 Rome, Italy
| | - Mario Alma
- Unit of Tisiology and Bronchopneumology, S. Camillo-Forlanini Hospital, 00151 Rome, Italy
| | - Nadia Caccamo
- Department of Biopathology and Medical and Forensics Biotechnologies, University of Palermo, 90135 Palermo, Italy; and
| | - Diana Di Liberto
- Department of Biopathology and Medical and Forensics Biotechnologies, University of Palermo, 90135 Palermo, Italy; and
| | | | - Nigel D. Savage
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Roberto Nisini
- Department of Infectious, Parasitic, and Immunomediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesco Dieli
- Department of Biopathology and Medical and Forensics Biotechnologies, University of Palermo, 90135 Palermo, Italy; and
| | - Tom H. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | | |
Collapse
|
6
|
Guo L, Mishra G, Taylor K, Wang X. Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. J Biol Chem 2011; 286:13336-45. [PMID: 21330371 DOI: 10.1074/jbc.m110.190892] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidic acid (PA) and phytosphingosine-1-phosphate (phyto-S1P) have both been identified as lipid messengers mediating plant response to abscisic acid (ABA). To determine the relationship of these messengers, we investigated the direct interaction of PA with Arabidopsis sphingosine kinases (SPHKs) that phosphorylate phytosphingosine to generate phyto-S1P. Two unique SPHK cDNAs were cloned from the annotated At4g21540 locus of Arabidopsis, and the two transcripts are differentially expressed in Arabidopsis tissues. Both SPHKs are catalytically active, phosphorylating various long-chain sphingoid bases (LCBs) and are associated with the tonoplast. They both interact with PA as demonstrated by lipid-filter binding, liposome binding, and surface plasmon resonance (SPR). SPHK1 and SPHK2 exhibited strong binding to 18:1/18:1, 16:0/18:1, and 16:0/18:2 PA, but poor binding to 16:0/16:0, 8:0/8:0, 18:0/18:0, and 18:2/18:2 PA. Surface dilution kinetics analysis indicates that PA stimulates SPHK activity by increasing the specificity constant through decreasing K(m)(B). The results show that the annotated At4g21540 locus is actually comprised of two separate SPHK genes. PA binds to both SPHKs, and the interaction promotes lipid substrate binding to the catalytic site of the enzyme. The PA-SPHK interaction depends on the PA molecular species. The data suggest that these two Arabidopsis SPHKs are molecular targets of PA, and the PA stimulation of SPHK is part of the signaling networks in Arabidopsis.
Collapse
Affiliation(s)
- Liang Guo
- Department of Biology, University of Missouri, St. Louis, Missouri 63121, USA
| | | | | | | |
Collapse
|
7
|
Abstract
TNFα (tumour necrosis factor α) is an extensively studied pleiotropic cytokine associated with the pathogenesis of a variety of inflammatory diseases. It elicits a wide spectrum of cellular responses which mediates and regulates inflammation, immune response, cell survival, proliferation and apoptosis. TNFα initiates its responses by binding to its receptors. TNFα-induced effector responses are mediated by the actions and interactions among the various intracellular signalling mediators in the cell. TNFα induces both survival and apoptotic signal in a TRADD (TNF receptor-associated DD)-dependent and -independent way. The signals are further transduced via a variety of signalling mediators, including caspases, MAPKs (mitogen-activated protein kinases), phospholipid mediators and miRNA/miR (microRNA), whose roles in specific functional responses is not fully understood. Elucidating the complexity and cross talks among signalling mediators involved in the TNFα-mediated responses will certainly aid in the identification of molecular targets, which can potentially lead to the development of novel therapeutics to treat TNFα-associated disorders and in dampening inflammation.
Collapse
|
8
|
Grando F, Felício C, Twardowschy A, Paula F, Batista V, Fernandes L, Curi R, Nishiyama A. Modulation of peritoneal macrophage activity by the saturation state of the fatty acid moiety of phosphatidylcholine. Braz J Med Biol Res 2009; 42:599-605. [DOI: 10.1590/s0100-879x2009005000003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 03/27/2009] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | | | | | - R. Curi
- Universidade de São Paulo, Brasil
| | | |
Collapse
|
9
|
The role of dietary niacin intake and the adenosine-5'-diphosphate-ribosyl cyclase enzyme CD38 in spatial learning ability: is cyclic adenosine diphosphate ribose the link between diet and behaviour? Nutr Res Rev 2009; 21:42-55. [PMID: 19079853 DOI: 10.1017/s0954422408945182] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The pyridine nucleotide NAD+ is derived from dietary niacin and serves as the substrate for the synthesis of cyclic ADP-ribose (cADPR), an intracellular Ca signalling molecule that plays an important role in synaptic plasticity in the hippocampus, a region of the brain involved in spatial learning. cADPR is formed in part via the activity of the ADP-ribosyl cyclase enzyme CD38, which is widespread throughout the brain. In the present review, current evidence of the relationship between dietary niacin and behaviour is presented following investigations of the effect of niacin deficiency, pharmacological nicotinamide supplementation and CD38 gene deletion on brain nucleotides and spatial learning ability in mice and rats. In young male rats, both niacin deficiency and nicotinamide supplementation significantly altered brain NAD+ and cADPR, both of which were inversely correlated with spatial learning ability. These results were consistent across three different models of niacin deficiency (pair feeding, partially restricted feeding and niacin recovery). Similar changes in spatial learning ability were observed in Cd38- / - mice, which also showed decreases in brain cADPR. These findings suggest an inverse relationship between spatial learning ability, dietary niacin intake and cADPR, although a direct link between cADPR and spatial learning ability is still missing. Dietary niacin may therefore play a role in the molecular events regulating learning performance, and further investigations of niacin intake, CD38 and cADPR may help identify potential molecular targets for clinical intervention to enhance learning and prevent or reverse cognitive decline.
Collapse
|
10
|
Chaturvedi A, Dorward D, Pierce SK. The B cell receptor governs the subcellular location of Toll-like receptor 9 leading to hyperresponses to DNA-containing antigens. Immunity 2008; 28:799-809. [PMID: 18513998 PMCID: PMC2601674 DOI: 10.1016/j.immuni.2008.03.019] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/27/2008] [Accepted: 03/25/2008] [Indexed: 11/29/2022]
Abstract
Synergistic engagement of the B cell receptor (BCR) and Toll-like receptor 9 (TLR9) in response to DNA-containing antigens underlies the production of many autoantibodies in systemic autoimmune diseases. However, the molecular basis of this synergistic engagement is not known. Given that these receptors are spatially segregated, with the BCR on the cell surface and TLR9 in endocytic vesicles, achieving synergy must involve unique mechanisms. We show that upon antigen binding, the BCR initiates signaling at the plasma membrane and continues to signal to activate MAP kinases as it traffics to autophagosome-like compartments. The internalized BCR signals through a phospholipase-D-dependent pathway to recruit TLR9-containing endosomes to the autophagosome via the microtubular network. The recruitment of TLR9 to the autophagosomes was necessary for hyperactivation of MAP kinases. This unique mechanism for BCR-induced TLR9 recruitment resulting in B cells hyperresponses may provide new targets for therapeutics for autoimmune diseases.
Collapse
Affiliation(s)
- Akanksha Chaturvedi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - David Dorward
- Microscopy Unit, Rocky Mountain Laboratories, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, 59840
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| |
Collapse
|
11
|
Gene profiling of growth factor independence 1B gene (Gfi-1B) in leukemic cells. Int J Hematol 2007; 87:39-47. [DOI: 10.1007/s12185-007-0013-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 09/28/2007] [Accepted: 10/11/2007] [Indexed: 10/22/2022]
|
12
|
Abstract
The Src family kinases Fyn and Lyn are important modulators of the molecular events initiated by engagement of the high-affinity IgE receptor (Fc epsilon RI). These kinases control many of the early signaling events and initiate the production of several lipid metabolites that have an important role in regulating mast cell responses. The intracellular level of phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)), which is produced by phosphatidylinositol 3-OH kinase, plays an important role in determining the extent of a mast cells response to a stimulus. Enhanced levels lead to a hyperdegranulating phenotype (as seen in SHIP-1(-/-) and Lyn(-/-) mast cells), whereas decreased levels cause hypodegranulation (as seen in Fyn(-/-) mast cells). Downregulation of mast cell phosphatase and tensin homologue deleted on chromosone 10 expression, a phosphatase that reduces cellular levels of PIP(3), caused constitutive cytokine production, demonstrating that this response is particularly sensitive to PIP(3) levels. Lyn and Fyn are also intimately linked to other lipid kinases, like sphingosine kinases (SphK). By producing sphingosine-1-phosphate (S1P), SphKs contribute to mast cell chemotaxis and degranulation. In vivo studies now reveal that circulating S1P as well as that found within the mast cell is important in determining mast cell responsiveness. These studies demonstrate the connection between Src protein tyrosine kinases and lipid second messengers that control mast cell function and allergic responses.
Collapse
Affiliation(s)
- Juan Rivera
- Molecular Inflammation Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1820, USA.
| | | |
Collapse
|
13
|
Le Stunff H, Raymond MN. P2X7 receptor-mediated phosphatidic acid production delays ATP-induced pore opening and cytolysis of RAW 264.7 macrophages. Cell Signal 2007; 19:1909-18. [PMID: 17540539 DOI: 10.1016/j.cellsig.2007.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 04/30/2007] [Indexed: 12/19/2022]
Abstract
In macrophages, extracellular ATP (ATPe) stimulation of P2X7 receptors (P2X7R) results in cation channel opening, non-specific pore formation, secretion of cytokines, killing of intracellular bacteria and cytolysis. Signaling pathways controlling these diverse responses are currently under investigation. Among these pathways, phospholipase D (PLD) has been implicated in P2X7R-activated macrophages killing of intracellular pathogenic bacteria. Here we present evidence that early P2X7R-mediated PLD activation reduces pore opening and delays cytolysis of RAW 267.4 macrophages induced by ATPe. Use of inhibitors of PA metabolic enzymes suggests that PA, and not one of its metabolites, is the bioactive lipid. This is strengthened by the observation that addition of exogenous PA also reduces pore formation and cytolysis of RAW 264.7 macrophages. However, the beneficial effects of PA are only transient, due to its conversion into diacylglycerol through PA phosphatase-1 activity during prolonged P2X7R stimulation. Revealing that the PLD/PA pathway mediates survival of macrophages provides a potent strategy to inhibit P2X7R-mediated cytolysis by controlling PA metabolism. This will be important in the case of P2X7R-induced killing of intracellular bacteria which is lately associated with macrophage death, limiting the potency of ATPe to eliminate pathogenic bacteria.
Collapse
Affiliation(s)
- Hervé Le Stunff
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, CNRS UMR 8619, Université Paris Sud, 91405 Orsay cedex, France.
| | | |
Collapse
|
14
|
Gomez-Cambronero J, Di Fulvio M, Knapek K. Understanding phospholipase D (PLD) using leukocytes: PLD involvement in cell adhesion and chemotaxis. J Leukoc Biol 2007; 82:272-81. [PMID: 17431093 DOI: 10.1189/jlb.0107033] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phospholipase D (PLD) is an enzyme that catalyzes the conversion of membrane phosphatidylcholine to choline and phosphatidic acid (PA; a second messenger). PLD is expressed in nearly all types of leukocytes and has been associated with phagocytosis, degranulation, microbial killing, and leukocyte maturation. With the application of recently developed molecular tools (i.e., expression vectors, silencing RNA, and specific antibodies), the demonstration of a key role for PLD in those and related cellular actions has contributed to a better awareness of its importance. A case in point is the recent findings that RNA interference-mediated depletion of PLD results in impaired leukocyte adhesion and chemotaxis toward a gradient of chemokines, implying that PLD is necessary for leukocyte movement. We forecast that based on results such as those, leukocytes may prove to be useful tools to unravel still-unresolved mechanistic issues in the complex biology of PLD. Three such issues are considered here: first, whether the cellular actions of PLD are mediated entirely by PA (the product of its enzymatic reaction) or whether PLD by itself interacts with other protein signaling molecules; second, the current difficulty of defining a "PA consensus site" in the various intracellular protein targets of PA; and third, the resolution of specific PLD location (upstream or downstream) in a particular effector signaling cascade. There are reasons to expect that leukocytes and their leukemic cell line counterparts will continue yielding invaluable information to cell biologists to resolve standing molecular and functional issues concerning PLD.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| | | | | |
Collapse
|
15
|
Snyder MD, Pierce SK. A mutation in Epstein-Barr virus LMP2A reveals a role for phospholipase D in B-Cell antigen receptor trafficking. Traffic 2006; 7:993-1006. [PMID: 16882041 DOI: 10.1111/j.1600-0854.2006.00450.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Epstein-Barr virus (EBV) latent infection of B cells blocks the interrelated signaling and antigen-trafficking functions of the BCR through the activity of its latent membrane protein 2A (LMP2A). At present, the molecular mechanisms by which LMP2A exerts its control of BCR functions are only poorly understood. Earlier studies showed that in B cells expressing LMP2A containing a tyrosine mutation at position 112 in its cytoplasmic domain (Y112-LMP2A), the BCR could initiate signaling but could not properly traffic antigen for processing. Here, we show that BCR signaling in Y112-LMP2A-expressing cells is attenuated with a reduction in both the degree and duration of phosphorylation of key components of the BCR signaling cascade including Syk, BLNK, PI3K, and Btk. Notably, Y112-LMP2A expression completely blocked the BCR-induced activation of phospholipase D (PLD), a lipase implicated in the intracellular trafficking of a variety of surface receptors. We show that blocking PLD activity, by expressing Y112-LMP2A, treating cells with the PLD inhibitor 1-butanol or reducing PLD expression by siRNA, blocked BCR trafficking to class II-containing compartments. Moreover, Y112-LMP2A expression blocked the recruitment of phosphorylated forms of the downstream BCR signaling components, Erk and JNK, through both PLD-dependent and PLD-independent mechanisms. Thus, the investigation of the mechanism by which Y112-LMP2A blocks BCR function revealed an essential role for PLD in BCR trafficking for antigen processing.
Collapse
Affiliation(s)
- Michelle D Snyder
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | |
Collapse
|
16
|
Singh N, Seki Y, Takami M, Baban B, Chandler PR, Khosravi D, Zheng X, Takezaki M, Lee JR, Mellor AL, Bollag WB, Iwashima M. Enrichment of regulatory CD4(+)CD25(+) T cells by inhibition of phospholipase D signaling. Nat Methods 2006; 3:629-36. [PMID: 16862138 DOI: 10.1038/nmeth903] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 06/19/2006] [Indexed: 11/09/2022]
Abstract
Antigen stimulation of lymphocytes induces upregulation of phospholipase D (PLD) activity, but the biological significance of PLD-mediated signaling in T cells has not been well established. Here we demonstrate that PLD signaling is essential for proliferation of mouse CD8(+) T cells and CD4(+)CD25(-) T cells, but is not required for proliferation of CD4(+)CD25(+) regulatory T cells. We exploited this observation to develop an efficient method to enrich for regulatory T cells starting from preparations of total CD4(+) T lymphocytes. Inhibition of PLD signaling blocked effector T-cell proliferation after T cell-antigen receptor (TCR) engagement, but had no significant effect on the proliferation of CD4(+)CD25(+) T cells with regulatory functions. Consequently, cells expanded in vitro for one week by antigen receptor stimulation with PLD signal inhibition were markedly enriched for regulatory T cells.
Collapse
Affiliation(s)
- Nagendra Singh
- Immunotherapy Center, Institute of Molecular Medicine and Genetics, Department of Medicine, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Coimbra RS, Voisin V, de Saizieu AB, Lindberg RLP, Wittwer M, Leppert D, Leib SL. Gene expression in cortex and hippocampus during acute pneumococcal meningitis. BMC Biol 2006; 4:15. [PMID: 16749930 PMCID: PMC1523193 DOI: 10.1186/1741-7007-4-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 06/02/2006] [Indexed: 11/29/2022] Open
Abstract
Background Pneumococcal meningitis is associated with high mortality (~30%) and morbidity. Up to 50% of survivors are affected by neurological sequelae due to a wide spectrum of brain injury mainly affecting the cortex and hippocampus. Despite this significant disease burden, the genetic program that regulates the host response leading to brain damage as a consequence of bacterial meningitis is largely unknown. We used an infant rat model of pneumococcal meningitis to assess gene expression profiles in cortex and hippocampus at 22 and 44 hours after infection and in controls at 22 h after mock-infection with saline. To analyze the biological significance of the data generated by Affymetrix DNA microarrays, a bioinformatics pipeline was used combining (i) a literature-profiling algorithm to cluster genes based on the vocabulary of abstracts indexed in MEDLINE (NCBI) and (ii) the self-organizing map (SOM), a clustering technique based on covariance in gene expression kinetics. Results Among 598 genes differentially regulated (change factor ≥ 1.5; p ≤ 0.05), 77% were automatically assigned to one of 11 functional groups with 94% accuracy. SOM disclosed six patterns of expression kinetics. Genes associated with growth control/neuroplasticity, signal transduction, cell death/survival, cytoskeleton, and immunity were generally upregulated. In contrast, genes related to neurotransmission and lipid metabolism were transiently downregulated on the whole. The majority of the genes associated with ionic homeostasis, neurotransmission, signal transduction and lipid metabolism were differentially regulated specifically in the hippocampus. Of the cell death/survival genes found to be continuously upregulated only in hippocampus, the majority are pro-apoptotic, while those continuously upregulated only in cortex are anti-apoptotic. Conclusion Temporal and spatial analysis of gene expression in experimental pneumococcal meningitis identified potential targets for therapy.
Collapse
Affiliation(s)
- Roney S Coimbra
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, CH-3010, Bern, Switzerland
| | - Veronique Voisin
- F. Hoffman-La Roche Ltd., Pharmaceutics, Basel, Grenzachertrasse 124, CH-4070, Basel, Switzerland
| | - Antoine B de Saizieu
- F. Hoffman-La Roche Ltd., Pharmaceutics, Basel, Grenzachertrasse 124, CH-4070, Basel, Switzerland
| | - Raija LP Lindberg
- Department of Research, University Hospitals Basel, Klingelbergstrasse 50, CH-4050, Basel, Switzerland
| | - Matthias Wittwer
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, CH-3010, Bern, Switzerland
| | - David Leppert
- Department of Research, University Hospitals Basel, Klingelbergstrasse 50, CH-4050, Basel, Switzerland
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, CH-3010, Bern, Switzerland
| |
Collapse
|
18
|
Ivakine EA, Gulban OM, Mortin-Toth SM, Wankiewicz E, Scott C, Spurrell D, Canty A, Danska JS. Molecular Genetic Analysis of the Idd4 Locus Implicates the IFN Response in Type 1 Diabetes Susceptibility in Nonobese Diabetic Mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:2976-90. [PMID: 16493056 DOI: 10.4049/jimmunol.176.5.2976] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
High-resolution mapping and identification of the genes responsible for type 1 diabetes (T1D) has proved difficult because of the multigenic etiology and low penetrance of the disease phenotype in linkage studies. Mouse congenic strains have been useful in refining Idd susceptibility loci in the NOD mouse model and providing a framework for identification of genes underlying complex autoimmune syndromes. Previously, we used NOD and a nonobese diabetes-resistant strain to map the susceptibility to T1D to the Idd4 locus on chromosome 11. Here, we report high-resolution mapping of this locus to 1.4 megabases. The NOD Idd4 locus was fully sequenced, permitting a detailed comparison with C57BL/6 and DBA/2J strains, the progenitors of T1D resistance alleles found in the nonobese diabetes-resistant strain. Gene expression arrays and quantitative real-time PCR were used to prioritize Idd4 candidate genes by comparing macrophages/dendritic cells from congenic strains where allelic variation was confined to the Idd4 interval. The differentially expressed genes either were mapped to Idd4 or were components of the IFN response pathway regulated in trans by Idd4. Reflecting central roles of Idd4 genes in Ag presentation, arachidonic acid metabolism and inflammation, phagocytosis, and lymphocyte trafficking, our combined analyses identified Alox15, Alox12e, Psmb6, Pld2, and Cxcl16 as excellent candidate genes for the effects of the Idd4 locus.
Collapse
Affiliation(s)
- Evgueni A Ivakine
- Program in Developmental Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Galandrini R, Micucci F, Tassi I, Cifone MG, Cinque B, Piccoli M, Frati L, Santoni A. Arf6: a new player in FcγRIIIA lymphocyte-mediated cytotoxicity. Blood 2005; 106:577-83. [PMID: 15817676 DOI: 10.1182/blood-2004-10-4100] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The activation of phosphoinositide metabolism represents a critical step in the signaling pathways leading to the activation of cytolytic machinery, but its regulation is partially understood. We report here that the stimulation of the low-affinity receptor for immunoglobulin G (IgG) (FcγRIIIA, CD16) on primary human natural killer (NK) cells induces a phosphatidylinositol 3-kinase (PI3K)–dependent activation of the small G protein Arf6. We first demonstrate a functional role for Arf6-dependent signals in the activation of the antibody-dependent cellular cytotoxicity (ADCC) attributable to the control of secretion of lytic granule content. We also show that Arf6 couples CD16 to the lipid-modifying enzymes phosphatidylinositol4phosphate 5-kinase type I alpha (PI5KIα) and phospholipase D (PLD) that are involved in the control of granule secretion; Arf6, but not Rho family small G proteins RhoA and Rac1, is required for receptor-induced PI5KIα membrane targeting as well as for PI5KIα and PLD activation. Our findings suggest that Arf6 plays a crucial role in the generation of a phosphatidylinositol4,5-bisphosphate (PIP2) plasma membrane pool required for cytolytic granule-mediated target cell killing.
Collapse
Affiliation(s)
- Ricciarda Galandrini
- Department of Experimental Medicine and Pathology, Istituto Pasteur-Fondazione Cenci-Bolognetti, University La Sapienza, viale Regina Elena, 324, 00161 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hitomi T, Zhang J, Nicoletti LM, Grodzki ACG, Jamur MC, Oliver C, Siraganian RP. Phospholipase D1 regulates high-affinity IgE receptor-induced mast cell degranulation. Blood 2004; 104:4122-8. [PMID: 15339843 DOI: 10.1182/blood-2004-06-2091] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the role of phospholipase D (PLD) in FcepsilonRI signaling, the wild-type or the catalytically inactive forms of PLD1 or PLD2 were stably overexpressed in RBL-2H3 mast cells. FcepsilonRI stimulation resulted in the activation of both PLD1 and PLD2. However, PLD1 was the source of most of the receptor-induced PLD activity. There was enhanced FcepsilonRI-induced degranulation only in cells that overexpressed the catalytically inactive PLD1. This dominant-negative PLD1 enhanced FcepsilonRI-induced tyrosine phosphorylations of early signaling molecules such as the receptor subunits, Syk and phospholipase C-gamma which resulted in faster release of Ca(2+) from intracellular sources. Therefore, PLD1 negatively regulates signals upstream of the Ca(2+) response. However, FcepsilonRI-induced PLD activation required Syk and was downstream of the Ca(2+)response, suggesting that basal PLD1 activity rather than that activated by cell stimulation controlled these early signaling events. Dominant-negative PLD1 reduced the basal phosphatidic acid formation in unstimulated cells, which was accompanied by an increase in FcepsilonRI within the lipid rafts. These results indicate that constitutive basal PLD1 activity by regulating phosphatidic acid formation controls the early signals initiated by FcepsilonRI aggregation that lead to mast cell degranulation.
Collapse
Affiliation(s)
- Tomohiro Hitomi
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Ulrich Blank
- INSERM E 0225, Bichat Medical School, 16 rue Henri Huchard, BP 416, 75870 Cedex 18, France
| | | |
Collapse
|
22
|
Delon C, Manifava M, Wood E, Thompson D, Krugmann S, Pyne S, Ktistakis NT. Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. J Biol Chem 2004; 279:44763-74. [PMID: 15310762 DOI: 10.1074/jbc.m405771200] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine kinase 1 (SK1) phosphorylates sphingosine to generate sphingosine 1-phosphate (S1P). Because both substrate and product of the enzyme are potentially important signaling molecules, the regulation of SK1 is of considerable interest. We report that SK1, which is ordinarily a cytosolic enzyme, translocates in vivo and in vitro to membrane compartments enriched in phosphatidic acid (PA), the lipid product of phospholipase D. This translocation depends on direct interaction of SK1 with PA, because recombinant purified enzyme shows strong affinity for pure PA coupled to Affi-Gel. The SK1-PA interaction maps to the C terminus of SK1 and is independent of catalytic activity or of the diacylglycerol kinase-like domain of the enzyme. Thus SK1 constitutes a novel, physiologically relevant PA effector.
Collapse
Affiliation(s)
- Christine Delon
- Department of Signalling, Babraham Institute, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
23
|
Postle AD, Madden J, Clark GT, Wright SM. Electrospray ionisation mass spectrometry analysis of differential turnover of phosphatidylcholine by human blood leukocytes. Phys Chem Chem Phys 2004. [DOI: 10.1039/b312196h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Birner R, Daum G. Biogenesis and cellular dynamics of aminoglycerophospholipids. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:273-323. [PMID: 12696595 DOI: 10.1016/s0074-7696(05)25007-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aminoglycerophospholipids phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho) comprise about 80% of total cellular phospholipids in most cell types. While the major function of PtdCho in eukaryotes and PtdEtn in prokaryotes is that of bulk membrane lipids, PtdSer is a minor component and appears to play a more specialized role in the plasma membrane of eukaryotes, e.g., in cell recognition processes. All three aminoglycerophospholipid classes are essential in mammals, whereas prokaryotes and lower eukaryotes such as yeast appear to be more flexible regarding their aminoglycerophospholipid requirement. Since different subcellular compartments of eukaryotes, namely the endoplasmic reticulum and mitochondria, contribute to the biosynthetic sequence of aminoglycerophospholipid formation, intracellular transport, sorting, and specific function of these lipids in different organelles are of special interest.
Collapse
Affiliation(s)
- Ruth Birner
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | | |
Collapse
|
25
|
Mansfield PJ, Carey SS, Hinkovska-Galcheva V, Shayman JA, Boxer LA. Ceramide inhibition of phospholipase D and its relationship to RhoA and ARF1 translocation in GTP gamma S-stimulated polymorphonuclear leukocytes. Blood 2003; 103:2363-8. [PMID: 14615385 DOI: 10.1182/blood-2002-11-3341] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase D (PLD) regulates the polymorphonuclear leukocyte (PMN) functions of phagocytosis, degranulation, and oxidant production. Ceramide inhibition of PLD suppresses PMN function. In streptolysin O-permeabilized PMNs, PLD was directly activated by guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) stimulation of adenosine diphosphate (ADP)-ribosylation factor (ARF) and Rho, stimulating release of lactoferrin from specific granules of permeabilized PMNs; PLD activation and degranulation were inhibited by C2-ceramide but not dihydro-C2-ceramide. To investigate the mechanism of ceramide's inhibitory effect on PLD, we used a cell-free system to examine PLD activity and translocation from cytosol to plasma membrane of ARF, protein kinase C (PKC)alpha and beta, and RhoA, all of which can activate PLD. GTP gamma S-activated cytosol stimulated PLD activity and translocation of ARF, PKC alpha and beta, and RhoA when recombined with cell membranes. Prior incubation of PMNs with 10 microM C2-ceramide inhibited PLD activity and RhoA translocation, but not ARF1, ARF6, PKC alpha, or PKC beta translocation. However, in intact PMNs stimulated with N-formyl-1-methionyl-1-leucyl-1-phenylalamine (FMLP) or permeabilized PMNs stimulated with GTP gamma S, C2-ceramide did not inhibit RhoA translocation. Exogenous RhoA did not restore ceramide-inhibited PLD activity but bound to membranes despite ceramide treatment. These observations suggest that, although ceramide may affect RhoA in some systems, ceramide inhibits PLD through another mechanism, perhaps related to the ability of ceramide to inhibit phosphatidylinositol-bisphosphate (PIP2) interaction with PLD.
Collapse
Affiliation(s)
- Pamela J Mansfield
- Department of Pediatrics, Division of Hematology/Oncology, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | |
Collapse
|
26
|
Activation of Phospholipase D in Rat Thymocytes by Sphingosine. B KOREAN CHEM SOC 2002. [DOI: 10.5012/bkcs.2002.23.10.1451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Ren J, Dong L, Xu CB, Pan BR. Expression of sphingosine kinase gene in the interactions between human gastric carcinoma cell and vascular endothelial cell. World J Gastroenterol 2002; 8:602-7. [PMID: 12174364 PMCID: PMC4656306 DOI: 10.3748/wjg.v8.i4.602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the interactions between human gastric carcinoma cell (HGCC) and human vascular endothelial cell (HVEC), and if the expression of sphingosine kinase (SPK) gene was involved in these interactions.
METHODS: The specific inhibitor to SPK, dimethyl sphingosine (DMS), was added acting on HGCC and HVEC, then the cell proliferation was measured by MTT. The conditioned mediums (CMs) of HGCC and HVEC were prepared. The CM of one kind of cell was added to the other kind of cell, and the cell proliferation was measured by MTT. After the action of CM, the cellular expression of SPK gene in mRNA level was detected with in situ hybridization (ISH).
RESULTS: DMS could almost completely inhibit the proliferation of HGCC and HVEC. The growth inhibitory rates could amount to 97.21%, 83.42%, respectively (P < 0.01). The CM of HGCC could stimulate the growth of HVEC (2.70 ± 0.01, P < 0.01) while the CM of HVEC could inhibit the growth of HGCC (52.97% ± 0.01%, P < 0.01). There was no significant change in the mRNA level of SPK gene in one kind of cell after the action of the CM of the other kind of cell.
CONCLUSION: SPK plays a key role in regulating the proliferation of HGCC and HVEC. There exist complicated interactions between HGCC and HVEC. HGCC can significantly stimulate the growth of HVEC while HVEC can significantly inhibit the growth of HGCC. The expression of SPK gene is not involved in the interactions.
Collapse
Affiliation(s)
- Juan Ren
- Department of Oncological Radiotherapy, First Hospital,Xi'an Jiaotong University Xi'an 710061, Shaanxi Province, China.
| | | | | | | |
Collapse
|