1
|
Mghezzi-Habellah M, Prochasson L, Jalinot P, Mocquet V. Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host. Viruses 2023; 15:2218. [PMID: 38005895 PMCID: PMC10674744 DOI: 10.3390/v15112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
In eukaryotic cells, the spatial distribution between cytoplasm and nucleus is essential for cell homeostasis. This dynamic distribution is selectively regulated by the nuclear pore complex (NPC), which allows the passive or energy-dependent transport of proteins between these two compartments. Viruses possess many strategies to hijack nucleocytoplasmic shuttling for the benefit of their viral replication. Here, we review how viruses interfere with the karyopherin CRM1 that controls the nuclear export of protein cargoes. We analyze the fact that the viral hijacking of CRM1 provokes are-localization of numerous cellular factors in a suitable place for specific steps of viral replication. While CRM1 emerges as a critical partner for viruses, it also takes part in antiviral and inflammatory response regulation. This review also addresses how CRM1 hijacking affects it and the benefits of CRM1 inhibitors as antiviral treatments.
Collapse
Affiliation(s)
| | | | | | - Vincent Mocquet
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure-Lyon, Université Claude Bernard Lyon, U1293, UMR5239, 69364 Lyon, France; (M.M.-H.); (L.P.); (P.J.)
| |
Collapse
|
2
|
Hitzeroth II, Chabeda A, Whitehead MP, Graf M, Rybicki EP. Optimizing a Human Papillomavirus Type 16 L1-Based Chimaeric Gene for Expression in Plants. Front Bioeng Biotechnol 2018; 6:101. [PMID: 30062095 PMCID: PMC6054922 DOI: 10.3389/fbioe.2018.00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/26/2018] [Indexed: 12/28/2022] Open
Abstract
Human papillomaviruses (HPVs) are the causative agents of cervical cancer, the fourth most prevalent cancer in women worldwide. The major capsid protein L1 self-assembles into virus-like particles (VLPs), even in the absence of the minor L2 protein: such VLPs have successfully been used as prophylactic vaccines. There remains a need, however, to develop cheaper vaccines that protect against a wider range of HPV types. The use of all or parts of the L2 minor capsid protein can potentially address this issue, as it has sequence regions conserved across several HPV types, which can elicit a wider spectrum of cross-neutralizing antibodies. Production of HPV VLPs in plants is a viable option to reduce costs; the use of a L1/L2 chimera which has previously elicited a cross-protective immune response is an option to broaden cross-protection. The objective of this study was to investigate the effect of codon optimization and of increasing the G+C content of synthetic L1/L2 genes on protein expression in plants. Additionally, we replaced varying portions of the 5' region of the L1 gene with the wild type (wt) viral sequence to determine the effect of several negative regulatory elements on expression. We showed that GC-rich genes resulted in a 10-fold increase of mRNA levels and 3-fold higher accumulation of proteins. However, the highest increase of expression was achieved with a high GC-content human codon-optimized gene, which resulted in a 100-fold increase in mRNA levels and 8- to 9-fold increase in protein levels. Changing the 5' end of the L1 gene back to its wt sequence decreased mRNA and protein expression. Our results suggest that the negative elements in the 5' end of L1 are inadvertently destroyed by changing the codon usage, which enhances protein expression.
Collapse
Affiliation(s)
- Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Aleyo Chabeda
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Mark P Whitehead
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Marcus Graf
- Thermo Fisher Scientific GENEART GmbH, Regensburg, Germany
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa.,Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| |
Collapse
|
3
|
Zhao X, Fay J, Lambkin H, Schwartz S. Identification of a 17-nucleotide splicing enhancer in HPV-16 L1 that counteracts the effect of multiple hnRNP A1-binding splicing silencers. Virology 2007; 369:351-63. [PMID: 17869320 DOI: 10.1016/j.virol.2007.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/13/2007] [Accepted: 08/01/2007] [Indexed: 11/26/2022]
Abstract
Human papillomavirus type 16 (HPV-16) infections can in rare cases persist and cause lesions that may progress to cervical cancer. Cells in the lesions are not permissive for virus production, nor are cervical cancer cells. The intracellular environment is such that it prevents production of the highly immunogenic, viral structural proteins L1 and L2. One may speculate that inhibition of L1 and L2 expression is a prerequisite for persistence and cancer progression. We have therefore investigated how expression of HPV-16 L1 is regulated. We found that the only splice site in the HPV-16 late region, which is used to produce L1 mRNAs, is under control of a splicing enhancer located in the 17 nucleotides immediately downstream of the splice site. However, the function of this enhancer in cervical cancer cells is largely overshadowed by multiple splicing silencers in the late region which bind to hnRNP A1. High levels of hnRNP A1 therefore inhibit HPV-16 L1 expression. Immunohistological analysis of cervical epithelia revealed that hnRNP A1 is expressed primarily in the lower layers of the epithelium. hnRNP A1 is undetectable in terminally differentiated cells that can express HPV-16 late genes, which supports the conclusion that high levels of hnRNP A1 inhibit HPV-16 L1 expression.
Collapse
Affiliation(s)
- Xiaomin Zhao
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Husargatan 3, Box 582, 751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
4
|
Oberg D, Fay J, Lambkin H, Schwartz S. A downstream polyadenylation element in human papillomavirus type 16 L2 encodes multiple GGG motifs and interacts with hnRNP H. J Virol 2005; 79:9254-69. [PMID: 15994820 PMCID: PMC1168734 DOI: 10.1128/jvi.79.14.9254-9269.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Production of human papillomavirus type 16 (HPV-16) virus particles is totally dependent on the differentiation-dependent induction of viral L1 and L2 late gene expression. The early polyadenylation signal in HPV-16 plays a major role in the switch from the early to the late, productive stage of the viral life cycle. Here, we show that the L2 coding region of HPV-16 contains RNA elements that are necessary for polyadenylation at the early polyadenylation signal. Consecutive mutations in six GGG motifs located 174 nucleotides downstream of the polyadenylation signal resulted in a gradual decrease in polyadenylation at the early polyadenylation signal. This caused read-through into the late region, followed by production of the late mRNAs encoding L1 and L2. Binding of hnRNP H to the various triple-G mutants correlated with functional activity of the HPV-16 early polyadenylation signal. In addition, the polyadenylation factor CStF-64 was also found to interact specifically with the region in L2 located 174 nucleotides downstream of the early polyadenylation signal. Staining of cervix epithelium with anti-hnRNP H-specific antiserum revealed high expression levels of hnRNP H in the lower layers of cervical epithelium and a loss of hnRNP H production in the superficial layers, supporting a model in which a differentiation-dependent down regulation of hnRNP H causes a decrease in HPV-16 early polyadenylation and an induction of late gene expression.
Collapse
Affiliation(s)
- Daniel Oberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, Husargatan 3, 751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
5
|
Zhao X, Oberg D, Rush M, Fay J, Lambkin H, Schwartz S. A 57-nucleotide upstream early polyadenylation element in human papillomavirus type 16 interacts with hFip1, CstF-64, hnRNP C1/C2, and polypyrimidine tract binding protein. J Virol 2005; 79:4270-88. [PMID: 15767428 PMCID: PMC1061554 DOI: 10.1128/jvi.79.7.4270-4288.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have investigated the role of the human papillomavirus type 16 (HPV-16) early untranslated region (3' UTR) in HPV-16 gene expression. We found that deletion of the early 3' UTR reduced the utilization of the early polyadenylation signal and, as a consequence, resulted in read-through into the late region and production of late L1 and L2 mRNAs. Deletion of the U-rich 3' half of the early 3' UTR had a similar effect, demonstrating that the 57-nucleotide U-rich region acted as an enhancing upstream element on the early polyadenylation signal. In accordance with this, the newly identified hFip1 protein, which has been shown to enhance polyadenylation through U-rich upstream elements, interacted specifically with the HPV-16 upstream element. This upstream element also interacted specifically with CstF-64, hnRNP C1/C2, and polypyrimidine tract binding protein, suggesting that these factors were either enhancing or regulating polyadenylation at the HPV-16 early polyadenylation signal. Mutational inactivation of the early polyadenylation signal also resulted in increased late mRNA production. However, the effect was reduced by the activation of upstream cryptic polyadenylation signals, demonstrating the presence of additional strong RNA elements downstream of the early polyadenylation signal that direct cleavage and polyadenylation to this region of the HPV-16 genome. In addition, we identified a 3' splice site at genomic position 742 in the early region with the potential to produce E1 and E4 mRNAs on which the E1 and E4 open reading frames are preceded only by the suboptimal E6 AUG. These mRNAs would therefore be more efficiently translated into E1 and E4 than previously described HPV-16 E1 and E4 mRNAs on which E1 and E4 are preceded by both E6 and E7 AUGs.
Collapse
Affiliation(s)
- Xiaomin Zhao
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
6
|
Zhao X, Rush M, Schwartz S. Identification of an hnRNP A1-dependent splicing silencer in the human papillomavirus type 16 L1 coding region that prevents premature expression of the late L1 gene. J Virol 2004; 78:10888-905. [PMID: 15452209 PMCID: PMC521837 DOI: 10.1128/jvi.78.20.10888-10905.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have previously identified cis-acting RNA sequences in the human papillomavirus type 16 (HPV-16) L1 coding region which inhibit expression of L1 from eukaryotic expression plasmids. Here we have determined the function of one of these RNA elements, and we provide evidence that this RNA element is a splicing silencer which suppresses the use of the 3' splice site located immediately upstream of the L1 AUG. We also show that this splice site is inefficiently utilized as a result of a suboptimal polypyrimidine tract. Introduction of point mutations in the L1 coding region that altered the RNA sequence without affecting the L1 protein sequence resulted in the inactivation of the splicing silencer and induced splicing to the L1 3' splice site. These mutations also prevented the interaction of the RNA silencer with a 35-kDa cellular protein identified here as hnRNP A1. The splicing silencer in L1 inhibits splicing in vitro, and splicing can be restored by the addition of RNAs containing an hnRNP A1 binding site to the reaction, demonstrating that hnRNP A1 inhibits splicing of the late HPV-16 mRNAs through the splicing silencer sequence. While we show that one role of the splicing silencer is to determine the ratio between partially spliced L2/L1 mRNAs and spliced L1 mRNAs, we also demonstrate that it inhibits splicing from the major 5' splice site in the early region to the L1 3' splice site, thereby playing an essential role in preventing late gene expression at an early stage of the viral life cycle. We speculate that the activity of the splicing silencer and possibly the concentration of hnRNP A1 in the HPV-16-infected cell determines the ability of the virus to establish a persistent infection which remains undetected by the host immune surveillance.
Collapse
Affiliation(s)
- Xiaomin Zhao
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, Box 582, 751 23 Uppsala, Sweden
| | | | | |
Collapse
|
7
|
McPhillips MG, Veerapraditsin T, Cumming SA, Karali D, Milligan SG, Boner W, Morgan IM, Graham SV. SF2/ASF binds the human papillomavirus type 16 late RNA control element and is regulated during differentiation of virus-infected epithelial cells. J Virol 2004; 78:10598-605. [PMID: 15367627 PMCID: PMC516382 DOI: 10.1128/jvi.78.19.10598-10605.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pre-mRNA splicing occurs in the spliceosome, which is composed of small ribonucleoprotein particles (snRNPs) and many non-snRNP components. SR proteins, so called because of their C-terminal arginine- and serine-rich domains (RS domains), are essential members of this class. Recruitment of snRNPs to 5' and 3' splice sites is mediated and promoted by SR proteins. SR proteins also bridge splicing factors across exons to help to define these units and have a central role in alternative and enhancer-dependent splicing. Here, we show that the SR protein SF2/ASF is part of a complex that forms upon the 79-nucleotide negative regulatory element (NRE) that is thought to be pivotal in posttranscriptional regulation of late gene expression in human papillomavirus type 16 (HPV-16). However, the NRE does not contain any active splice sites, is located in the viral late 3' untranslated region, and regulates RNA-processing events other than splicing. The level of expression and extent of phosphorylation of SF2/ASF are upregulated with epithelial differentiation, as is subcellular distribution, specifically in HPV-16-infected epithelial cells, and expression levels are controlled, at least in part, by the virus transcription regulator E2.
Collapse
Affiliation(s)
- Maria G McPhillips
- Institute of Biomedical and Life Sciences, Division of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Rollman E, Arnheim L, Collier B, Oberg D, Hall H, Klingström J, Dillner J, Pastrana DV, Buck CB, Hinkula J, Wahren B, Schwartz S. HPV-16 L1 genes with inactivated negative RNA elements induce potent immune responses. Virology 2004; 322:182-9. [PMID: 15063127 DOI: 10.1016/j.virol.2004.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 01/26/2004] [Accepted: 02/03/2004] [Indexed: 10/26/2022]
Abstract
Introduction of point mutations in the 5' end of the human papillomavirus type 16 (HPV-16) L1 gene specifically inactivates negative regulatory RNA processing elements. DNA vaccination of C57Bl/6 mice with the mutated L1 gene resulted in improved immunogenicity for both neutralizing antibodies as well as for broad cellular immune responses. Previous reports on the activation of L1 by codon optimization may be explained by inactivation of the regulatory RNA elements. The modified HPV-16 L1 DNA that induced anti-HPV-16 immunity may be seen as a complementary approach to protein subunit immunization against papillomavirus.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Capsid Proteins
- Cells, Cultured
- Disease Models, Animal
- Genes, Regulator
- Genes, Viral
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Neutralization Tests
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Papillomaviridae/genetics
- Papillomaviridae/immunology
- Papillomavirus Infections/blood
- Papillomavirus Infections/immunology
- Papillomavirus Infections/prevention & control
- Point Mutation
- Spleen/immunology
- Vaccination
- Vaccines, DNA/administration & dosage
Collapse
Affiliation(s)
- Erik Rollman
- Department of Virology, Swedish Institute for Infectious Disease Control, Solna, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Oberg D, Collier B, Zhao X, Schwartz S. Mutational inactivation of two distinct negative RNA elements in the human papillomavirus type 16 L2 coding region induces production of high levels of L2 in human cells. J Virol 2003; 77:11674-84. [PMID: 14557653 PMCID: PMC229356 DOI: 10.1128/jvi.77.21.11674-11684.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we show that the 5' end and the middle region of the L2 coding sequence of human papillomavirus type 16 contain strong inhibitory RNA sequences termed inhibitory regions I and II. This is in contrast to L1, which contains one inhibitory region in the 5' end of the coding region. Inhibitory regions I and II acted in cis to reduce L2 mRNA levels and to inhibit the use of the mRNA. In tandem, the two regions reduced L2 mRNA production to undetectable levels. Specific mutational inactivation of the two inhibitory elements in the 5' end and in the middle region of L2 by the introduction of nucleotide substitutions that changed the nucleotide sequence but not the protein sequence resulted in production of high levels of L2 mRNA and protein. In contrast to L2, a partial L1 mutant in which only the first one third of L1 was mutated produced levels of L1 mRNA and protein similar to those in a full L1 mutant. In addition, the constitutive transport element of simian retrovirus type 1 overcomes the effect of the inhibitory sequences of L1 but not L2.
Collapse
Affiliation(s)
- Daniel Oberg
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
10
|
Wiklund L, Sokolowski M, Carlsson A, Rush M, Schwartz S. Inhibition of translation by UAUUUAU and UAUUUUUAU motifs of the AU-rich RNA instability element in the HPV-1 late 3' untranslated region. J Biol Chem 2002; 277:40462-71. [PMID: 12147699 DOI: 10.1074/jbc.m205929200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human papillomavirus type 1 (HPV-1) late mRNAs contain a 57-nucleotide adenosine- and uridine-rich RNA instability element termed h1ARE in their late 3' untranslated regions. Here we show that five sequence motifs in the h1ARE (named I-V) affect the mRNA half-life in an additive manner. The minimal inhibitory sequence in motifs I and II was mapped to UAUUUAU, and the minimal inhibitory sequence in motifs III-V was mapped to UAUUUUUAU. We also provide evidence that the same motifs in the AU-RNA instability element inhibit mRNA translation, an effect that was entirely dependent on the presence of a poly(A) tail on the mRNA. Additional experiments demonstrated that the h1ARE interacted directly with the poly(A)-binding protein, suggesting that the h1ARE inhibits translation by interfering with the function of the poly(A)-binding protein.
Collapse
Affiliation(s)
- Lisa Wiklund
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, Box 582, 751 23 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
11
|
Collier B, Oberg D, Zhao X, Schwartz S. Specific inactivation of inhibitory sequences in the 5' end of the human papillomavirus type 16 L1 open reading frame results in production of high levels of L1 protein in human epithelial cells. J Virol 2002; 76:2739-52. [PMID: 11861841 PMCID: PMC135970 DOI: 10.1128/jvi.76.6.2739-2752.2002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The expression of human papillomavirus type 16 late genes encoding virus capsid proteins L1 and L2 is restricted to terminally differentiated epithelial cells in the superficial layers of the squamous epithelium. We wish to understand the molecular mechanisms that determine the levels of expression of the human papillomavirus type 16 late genes. We have previously shown that the L1 coding region contains inhibitory sequences. Here we extend previous findings to show that the 5' end of the L1 gene contains strong inhibitory sequences but that the 3' end does not. We show that the first 514 nucleotides of the L1 coding region contain multiple inhibitory elements that act independently of one another and that the major inhibitory element is located within the first 129 nucleotides of the L1 gene. Introduction of point mutations in the inhibitory elements in the 5' end of the L1 gene which altered the RNA sequence without affecting the protein sequence specifically inactivated the inhibitory elements and resulted in production of high levels of human papillomavirus type 16 L1 mRNA and protein in human epithelial cells. Furthermore, we show that inhibitory sequences are present in the L1 coding regions of multiple human papillomavirus types, demonstrating that these elements are conserved among the human papillomaviruses, and suggest that they have an important function in the viral life cycle.
Collapse
Affiliation(s)
- Brian Collier
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
12
|
Liu WJ, Zhao KN, Gao FG, Leggatt GR, Fernando GJ, Frazer IH. Polynucleotide viral vaccines: codon optimisation and ubiquitin conjugation enhances prophylactic and therapeutic efficacy. Vaccine 2001; 20:862-9. [PMID: 11738751 DOI: 10.1016/s0264-410x(01)00406-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Papillomavirus infection is a major antecedent of anogenital malignancy. We have previously established that the L1 and L2 capsid genes of papillomavirus have suboptimal codon usage for expression in mammalian cells. We now show that the lack of immunogenicity of polynucleotide vaccines based on the L1 gene can be overcome with codon modified L1, which induces strong immune responses, including conformational virus neutralising antibody and delayed type hypersensitivity. Conjugation of a ubiquitin gene to a hybrid gene incorporating L1 and the E7 non-structural papillomavirus protein improved E7 specific CTL responses, and induced protection against an E7 expressing tumour, but induced little neutralising antibody. However, a mixture of ubiquitin conjugated and non-ubiquitin conjugated polynucleotides induced virus neutralising antibody and E7 specific CD8 T cells. An optimal combined prophylactic/therapeutic viral vaccine might therefore comprise ubiquitin conjugated and non-ubiquitinated genes, to induce prophylactic neutralising antibody and therapeutic cell mediated immune responses.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Codon/genetics
- Female
- Genes, Viral
- Humans
- Hypersensitivity, Delayed
- Immunity, Cellular
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neutralization Tests
- Papillomaviridae/genetics
- Papillomaviridae/immunology
- Papillomaviridae/pathogenicity
- Papillomavirus Infections/immunology
- Papillomavirus Infections/prevention & control
- Papillomavirus Infections/therapy
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Virus Infections/immunology
- Tumor Virus Infections/prevention & control
- Tumor Virus Infections/therapy
- Ubiquitin/immunology
- Vaccines, Conjugate/genetics
- Vaccines, Conjugate/pharmacology
- Vaccines, Conjugate/therapeutic use
- Vaccines, DNA/genetics
- Vaccines, DNA/pharmacology
- Vaccines, DNA/therapeutic use
- Viral Vaccines/genetics
- Viral Vaccines/pharmacology
- Viral Vaccines/therapeutic use
Collapse
Affiliation(s)
- W J Liu
- Centre for Immunology and Cancer Research, Princess Alexandra Hospital, University of Queensland, Woolloongabba 4102, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Leder C, Kleinschmidt JA, Wiethe C, Müller M. Enhancement of capsid gene expression: preparing the human papillomavirus type 16 major structural gene L1 for DNA vaccination purposes. J Virol 2001; 75:9201-9. [PMID: 11533183 PMCID: PMC114488 DOI: 10.1128/jvi.75.19.9201-9209.2001] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Expression of the structural proteins L1 and L2 of the human papillomaviruses (HPV) is tightly regulated. As a consequence, attempts to express these prime-candidate genes for prophylactic vaccination against papillomavirus-associated diseases in mammalian cells by means of simple DNA transfections result in insufficient production of the viral antigens. Similarly, in vivo DNA vaccination using HPV L1 or L2 expression constructs produces only weak immune responses. In this study we demonstrate that transient expression of the HPV type 16 L1 and L2 proteins can be highly improved by changing the RNA coding sequence, resulting in the accumulation of significant amounts of virus-like particles in the nuclei of transfected cells. Data presented indicate that, in the case of L1, adaptation for codon usage accounts for the vast majority of the improvement in protein expression, whereas translation-independent posttranscriptional events contribute only to a minor degree. Finally, the adapted L1 genes demonstrate strongly increased immunogenicity in vivo compared to that of unmodified L1 genes.
Collapse
Affiliation(s)
- C Leder
- Forschungsschwerpunkt für Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum Heidelberg, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
14
|
Sokolowski M, Schwartz S. Heterogeneous nuclear ribonucleoprotein C binds exclusively to the functionally important UUUUU-motifs in the human papillomavirus type-1 AU-rich inhibitory element. Virus Res 2001; 73:163-75. [PMID: 11172920 DOI: 10.1016/s0168-1702(00)00238-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have previously identified an inhibitory, 57 nt AU-rich sequence in the HPV-1 late 3' UTR, termed as the HPV-1 AU-rich element (h1ARE). It contains two types of functionally important motifs: two AUUUA sequences and three UUUUU sequences. We have shown that the h1ARE interacts with heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2 and the ELAV-like HuR protein. While we have shown that HuR binds to both the AUUUA- and the UUUUU-motifs, the interaction between hnRNP C and the h1ARE has not been investigated in detail. Here, we have used recombinant (r)hnRNP C1 to study the interaction between hnRNP C1 and the h1ARE by using the UV cross-linking assay. We demonstrate that (r)hnRNP C1 cross-links specifically to the three functionally important UUUUU-motifs in the h1ARE. In contrast, (r)hnRNP does not UV cross-link to the functionally important AUUUA-motifs in the h1ARE. Conclusively, the binding ability of hnRNP C to the h1ARE correlates with its partially inhibitory function. Additionally, the recombinant AU-rich RNA binding factor 1 (AUF1) was analyzed for binding to the h1ARE by using the UV cross-linking assay, but the results revealed no specificity for the functionally important AUUUA- and UUUUU-motifs.
Collapse
Affiliation(s)
- M Sokolowski
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, Box 582, 75123, Uppsala, Sweden
| | | |
Collapse
|
15
|
Doorbar J, Elston RC, Napthine S, Raj K, Medcalf E, Jackson D, Coleman N, Griffin HM, Masterson P, Stacey S, Mengistu Y, Dunlop J. The E1E4 protein of human papillomavirus type 16 associates with a putative RNA helicase through sequences in its C terminus. J Virol 2000; 74:10081-95. [PMID: 11024137 PMCID: PMC102047 DOI: 10.1128/jvi.74.21.10081-10095.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2000] [Accepted: 07/20/2000] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) infects cervical epithelium and is associated with the majority of cervical cancers. The E1E4 protein of HPV16 but not those of HPV1 or HPV6 was found to associate with a novel member of the DEAD box protein family of RNA helicases through sequences in its C terminus. This protein, termed E4-DBP (E4-DEAD box protein), has a molecular weight of 66,000 (66K) and can shuttle between the nucleus and the cytoplasm. It binds to RNA in vitro, including the major HPV16 late transcript (E1E4. L1), and has an RNA-independent ATPase activity which can be partially inhibited by E1E4. E4-DBP was detectable in the cytoplasm of cells expressing HPV16 E1E4 (in vivo and in vitro) and could be immunoprecipitated as an E1E4 complex from cervical epithelial cell lines. In cell lines lacking cytoplasmic intermediate filaments, loss of the leucine cluster-cytoplasmic anchor region of HPV16 E1wedgeE4 resulted in both proteins colocalizing exclusively to the nucleoli. Two additional HPV16 E1E4-binding proteins, of 80K and 50K, were identified in pull-down experiments but were not recognized by antibodies to E4-DBP or the conserved DEAD box motif. Sequence analysis of E4-DBP revealed homology in its E4-binding region with three Escherichia coli DEAD box proteins involved in the regulation of mRNA stability and degradation (RhlB, SrmB, and DeaD) and with the Rrp3 protein of Saccharomyces cerevisiae, which is involved in ribosome biogenesis. The synthesis of HPV16 coat proteins occurs after E1E4 expression and genome amplification and is regulated at the level of mRNA stability and translation. Identification of E4-DBP as an HPV16 E1E4-associated protein indicates a possible role for E1E4 in virus synthesis.
Collapse
Affiliation(s)
- J Doorbar
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Stacey SN, Jordan D, Williamson AJ, Brown M, Coote JH, Arrand JR. Leaky scanning is the predominant mechanism for translation of human papillomavirus type 16 E7 oncoprotein from E6/E7 bicistronic mRNA. J Virol 2000; 74:7284-97. [PMID: 10906182 PMCID: PMC112249 DOI: 10.1128/jvi.74.16.7284-7297.2000] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2000] [Accepted: 05/19/2000] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses (HPV) are unique in that they generate mRNAs that apparently can express multiple proteins from tandemly arranged open reading frames. The mechanisms by which this is achieved are uncertain and are at odds with the basic predictions of the scanning model for translation initiation. We investigated the unorthodox mechanism by which the E6 and E7 oncoproteins from human papillomavirus type 16 (HPV-16) can be translated from a single, bicistronic mRNA. The short E6 5' untranslated region (UTR) was shown to promote translation as efficiently as a UTR from Xenopus beta-globin. Insertion of a secondary structural element into the UTR inhibited both E6 and E7 expression, suggesting that E7 expression depends on ribosomal scanning from the 5' end of the mRNA. E7 translation was found to be cap dependent, but E6 was more dependent on capping and eIF4F activity than E7. Insertion of secondary structural elements at various points in the region upstream of E7 profoundly inhibited translation, indicating that scanning was probably continuous. Insertion of the E6 region between Renilla and firefly luciferase genes revealed little or no internal ribosomal entry site activity. However when E6 was located at the 5' end of the mRNA, it permitted over 100-fold-higher levels of downstream cistron translation than did the Renilla open reading frame. Internal AUGs in the E6 region with strong or intermediate Kozak sequence contexts were unable to inhibit E7 translation, but initiation at the E7 AUG was efficient and accurate. These data support a model in which E7 translation is facilitated by an extreme degree of leaky scanning, requiring the negotiation of 13 upstream AUGs. Ribosomal initiation complexes which fail to initiate at the E6 start codon can scan through to the E7 AUG without initiating translation, but competence to initiate is achieved once the E7 AUG is reached. These findings suggest that the E6 region of HPV-16 comprises features that sponsor both translation of the E6 protein and enhancement of translation at a downstream site.
Collapse
MESH Headings
- 5' Untranslated Regions
- Base Sequence
- Codon, Initiator
- Hot Temperature
- Humans
- Models, Molecular
- Molecular Sequence Data
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/metabolism
- Open Reading Frames/genetics
- Papillomaviridae/genetics
- Papillomaviridae/metabolism
- Papillomavirus E7 Proteins
- Potassium Chloride/metabolism
- Protein Biosynthesis
- Protein Structure, Secondary
- RNA Caps/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Repressor Proteins
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- S N Stacey
- Cancer Research Campaign, Department of Molecular Biology, Paterson Institute for Cancer Research, Christie Hospital, Manchester M20 4BX, United Kingdom.
| | | | | | | | | | | |
Collapse
|
17
|
Zhou J, Liu WJ, Peng SW, Sun XY, Frazer I. Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability. J Virol 1999; 73:4972-82. [PMID: 10233959 PMCID: PMC112541 DOI: 10.1128/jvi.73.6.4972-4982.1999] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation of mRNA encoding the L1 and L2 capsid proteins of papillomavirus (PV) is restricted in vivo to differentiated epithelial cells, although transcription of the L1 and L2 late genes occurs more widely. The codon composition of PV late genes is quite different from that of most mammalian genes. To test the possibility that PV late gene codon composition determines the efficiency of PV late gene expression in some cell types, synthetic bovine papillomavirus type 1 (BPV1) late genes were constructed with codon composition modified to resemble the typical mammalian gene. Expression of these genes from a strong promoter in Cos-1 cells was compared with expression of wild-type BPV1 late genes from the same promoter. Both unmodified and modified PV late genes were transcribed in Cos-1 cells, but only the codon-modified genes were translated. In vitro translation of wild-type but not synthetic BPV1 L1 mRNA was markedly enhanced by addition of aminoacyl-tRNAs. Codon composition thus limits BPV1 late gene translation in Cos-1 cells, and this limitation can be overcome by modification of the codon composition of the genes or by provision of excess tRNA. Replacement of codons in the green fluorescent protein (gfp) gene with those frequently used in PV late genes did not alter gfp transcription in Cos-1 cells but almost abolished translation, supporting the hypothesis that the observed differences in efficiency of translation of modified and unmodified PV capsid genes were related to codon usage rather than mRNA structure. As tRNA populations vary within and between tissues in the same eukaryotic organism, we speculate that matching of tRNA availability to codon usage may be one determinant of the restriction of expression of PV late genes to differentiated epithelium.
Collapse
Affiliation(s)
- J Zhou
- Centre for Immunology & Cancer Research, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia
| | | | | | | | | |
Collapse
|
18
|
Frazer IH, Thomas R, Zhou J, Leggatt GR, Dunn L, McMillan N, Tindle RW, Filgueira L, Manders P, Barnard P, Sharkey M. Potential strategies utilised by papillomavirus to evade host immunity. Immunol Rev 1999; 168:131-42. [PMID: 10399070 DOI: 10.1111/j.1600-065x.1999.tb01288.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The co-evolution of papillomaviruses (PV) and their mammalian hosts has produced mechanisms by which PV might avoid specific and non-specific host immune responses. Low level expression of PV proteins in infected basal epithelial cells, together with an absence of inflammation and of virus-induced cell lysis, restricts the opportunity for effective PV protein presentation to immunocytes by dendritic cells. Additionally, PV early proteins, by a range of mechanisms, may restrict the efficacy of antigen presentation by these cells. Should an immune response be induced to PV antigens, resting keratinocytes (KC) appear resistant to interferon-gamma-enhanced mechanisms of cytotoxic T-lymphocyte (CTL)-mediated lysis, and expression of PV antigens by resting KC can tolerise PV-specific CTL. Thus, KC, in the absence of inflammation, may represent an immunologically privileged site for PV infection. Together, these mechanisms play a part in allowing persistence of PV-induced proliferative skin lesions for months to years, even in immunocompetent hosts.
Collapse
Affiliation(s)
- I H Frazer
- Centre for Immunology and Cancer Research, University of Queensland Department of Medicine, Princess Alexandra Hospital, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sokolowski M, Furneaux H, Schwartz S. The inhibitory activity of the AU-rich RNA element in the human papillomavirus type 1 late 3' untranslated region correlates with its affinity for the elav-like HuR protein. J Virol 1999; 73:1080-91. [PMID: 9882309 PMCID: PMC103928 DOI: 10.1128/jvi.73.2.1080-1091.1999] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/1998] [Accepted: 11/02/1998] [Indexed: 02/04/2023] Open
Abstract
A 57-nucleotide adenosine- and uridine-rich RNA instability element in the human papillomavirus type 1 late 3' untranslated region termed h1ARE has previously been shown to interact specifically with three nuclear proteins that failed to bind to an inactive mutant RNA. Two of those were identified as the heterogeneous ribonucleoproteins C1 and C2, whereas the third, a 38-kDa, poly(U) binding protein (p38), remained unidentified. Here we show that partially purified p38 reacts with a monoclonal antibody raised against the recently identified elav-like HuR protein, indicating that p38 is the HuR protein. Indeed, recombinant glutathione S-transferase (GST)-HuR protein binds specifically to sites within the h1ARE. Determination of the apparent Kd value of GST-HuR for the h1ARE and the inactive mutant thereof revealed that GST-HuR bound with a more than 50-fold-higher affinity to the wild-type sequence. Therefore, the binding affinity of GST-HuR for the wild-type and mutant h1AREs correlates with their inhibitory activities in transfected cells, strongly suggesting that the HuR protein is involved in the posttranscriptional regulation of human papillomavirus type 1 late-gene expression.
Collapse
Affiliation(s)
- M Sokolowski
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | | | | |
Collapse
|