1
|
De La Torre KM, Lee Y, Safar A, Laws MJ, Meling DD, Thompson LM, Streifer M, Weis KE, Raetzman LT, Gore AC, Flaws JA. Prenatal and postnatal exposure to polychlorinated biphenyls alter follicle numbers, gene expression, and a proliferation marker in the rat ovary. Reprod Toxicol 2023; 120:108427. [PMID: 37400041 PMCID: PMC10528725 DOI: 10.1016/j.reprotox.2023.108427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Polychlorinated biphenyls (PCBs) were used in industrial applications until they were banned in the 1970s, but they still persist in the environment. Little is known about the long-term effects of exposure to PCB mixtures on the rat ovary during critical developmental periods. Thus, this study tested whether prenatal and postnatal exposures to PCBs affect follicle numbers and gene expression in the ovaries of F1 offspring. Sprague-Dawley rats were treated with vehicle or Aroclor 1221 (A1221) at 1 mg/kg/day during embryonic days 8-18 and/or postnatal days (PND) 1-21. Ovaries from F1 rats were collected for assessment of follicle numbers and differential expression of estrogen receptor 1 (Esr1), estrogen receptor 2 (Esr2), androgen receptor (Ar), progesterone receptor (Pgr), and Ki-67 (Ki67) at PNDs 8, 32, and 60. Sera were collected for measurement of estradiol concentrations. Prenatal exposure to A1221 significantly decreased the number of primordial follicles and the total number of follicles at PND 32 compared to control. Postnatal PCB exposure borderline increased Ki67 gene expression and significantly increased Ki67 protein levels (PND 60) compared to control. Combined prenatal and postnatal PCB exposure borderline decreased Ar expression (PND 8) compared to control. However, PCB exposure did not significantly affect the expression of Pgr, Esr1, and Esr2 or serum estradiol concentrations compared to control at any time point. In conclusion, these data suggest that PCB exposure affects follicle numbers and levels of the proliferation marker Ki67, but it does not affect expression of some sex steroid hormone receptors in the rat ovary.
Collapse
Affiliation(s)
- Kathy M De La Torre
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, USA
| | - Yuna Lee
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, USA
| | - Adira Safar
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, USA
| | - Mary J Laws
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, USA
| | - Daryl D Meling
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, USA
| | - Lindsay M Thompson
- Division of Pharmacology and Toxicology, University of Texas, Austin, TX, USA
| | - Madeline Streifer
- Division of Pharmacology and Toxicology, University of Texas, Austin, TX, USA
| | - Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, University of Texas, Austin, TX, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
2
|
Meng H, Niu R, You H, Wang L, Feng R, Huang C, Li J. Interleukin-9 attenuates inflammatory response and hepatocyte apoptosis in alcoholic liver injury. Life Sci 2022; 288:120180. [PMID: 34843736 DOI: 10.1016/j.lfs.2021.120180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 12/19/2022]
Abstract
Alcoholic liver injury is a liver cell dysfunction disease caused by long-term or excessive alcohol consumption. Inhibiting the production of inflammatory factors is an important way to alleviate liver injury. Interleukin-9 (IL-9) is one of the members of IL-2Rγc family. It has multiple biological functions. Previous studies have shown that IL-9 is a cytokine that is closely related to inflammatory disease, allergic diseases, autoimmune diseases, and parasitic infections. However, no systematic studies have been performed to address the role of IL-9 in ALI. This project aims to investigate the effects of IL-9 on macrophage-related inflammatory response and hepatocyte apoptosis in alcohol-induced liver injury by injecting adeno-associated virus (AAV9) into tail vein. In the ALI model group, western blot and ELISA assays demonstrated that the expression of IL-9 was reduced. Overexpression of IL-9 relieved the injury and reduced the serum levels of IL-6, TNF-α in EtOH-induced ALI mouse model. Moreover, by using western blot, it was indicated that IL-9 can inhibit the expression of pro-apoptotic protein, such as cleaved caspase 3 and Bax. In vitro, mouse recombinant protein IL-9 inhibited the expression of IL-6, TNF-α in EtOH-induced RAW264.7 cells. Moreover, flow cytometry and western blot results displayed that macrophage-derived IL-9 inhibited hepatocyte apoptosis. After silencing STAT3 in AML-12 cells, the anti-apoptotic effect of macrophage-derived IL-9 was further enhanced. These results indicate that IL-9 reduces the production of pro-inflammatory factors in ALI. Furthermore, macrophage-derived IL-9 can reduce hepatocyte apoptosis by inhibiting the activation of the STAT3 pathway.
Collapse
Affiliation(s)
- Hongwu Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Ruowen Niu
- Department of pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hongmei You
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Ling Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Rui Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The Key laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
3
|
Gährs M, Schrenk D. Suppression of apoptotic signaling in rat hepatocytes by non-dioxin-like polychlorinated biphenyls depends on the receptors CAR and PXR. Toxicology 2021; 464:153023. [PMID: 34743025 DOI: 10.1016/j.tox.2021.153023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) represent a sub-group of persistent organic pollutants found in food, environmental samples and human and animal tissues. Promotion of pre-neoplastic lesions in rodent liver has been suggested as an indicator for a possible increased risk of liver cancer in humans exposed to NDL-PCBs. In rodent hepatocytes, suppression of DNA damage-triggered apoptosis is a typical mode of action of liver tumor promoters. Here, we report that NDL-PCBs suppress apoptosis in rat hepatocytes treated in culture with an apoptogenic dose of UV light. Suppression became less pronounced when the constitutive androstane receptor (CAR) and/or the pregnane-X-receptor (PXR) where knocked-out using siRNAs, while knocking-out both receptors led to a full reconstitution of apoptosis. In contrast, suppression of apoptosis by the CAR or PXR activators phenobarbital or dexamethasone were CAR- or PXR-specific. Induction and suppression of apoptosis were paralleled by changes in caspase 3/7, 8 and 9 activities. Our findings indicate that NDL-PCBs can suppress UV-induced apoptosis in rat hepatocytes by activating CAR and PXR. It needs further investigation if these mechanisms of action are also of relevance for human liver.
Collapse
Affiliation(s)
- Maike Gährs
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
4
|
Urbani C, Mattiello A, Ferri G, Raggi F, Russo D, Marconcini G, Cappellani D, Manetti L, Marcocci C, Cardarelli F, Bogazzi F. PCB153 reduces apoptosis in primary cultures of murine pituitary cells through the activation of NF-κB mediated by PI3K/Akt. Mol Cell Endocrinol 2021; 520:111090. [PMID: 33242503 DOI: 10.1016/j.mce.2020.111090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent pollutants involved in human tumorigenesis. PCB153 is a ubiquitous non-dioxin-like PCB with proliferative and anti-apoptotic effects. To explore the impact of PCB153 in the survival of pituitary cells, we exposed murine pituitary primary cells to PCB153 10 μM for 24 h. Apoptosis was assessed by RT-qPCR, Western-blot, immunoprecipitation, caspase activity, and immunofluorescence. We found that PCB153 decreased pituitary apoptosis through both the extrinsic and intrinsic pathways. PCB153 reduced the level of the pro-apoptotic protein p38-MAPK. Otherwise, PCB153 activated PI3K/Akt and Erk1/2 pathways and enhanced the expression and nuclear translocation of NF-κB. Cotreatments with specific inhibitors revealed that only PI3K/Akt changed the caspase-3 expression and NF-κB activation induced by PCB153. Also, PCB153 decreased the expression of the pro-apoptotic and pro-senescent cyclins p53 and p21. In summary, exposure to PCB153 leads to a downregulation of apoptosis in the pituitary driven by a PI3K/Akt-mediated activation of NF-κB.
Collapse
Affiliation(s)
- Claudio Urbani
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Alessandro Mattiello
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Gianmarco Ferri
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Francesco Raggi
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Dania Russo
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Giulia Marconcini
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Daniele Cappellani
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Luca Manetti
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Francesco Cardarelli
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Fausto Bogazzi
- Department of Clinical and Experimental Medicine, University of Pisa, via Savi, 10, 56126, Pisa, Italy.
| |
Collapse
|
5
|
Zehra A, Hashmi MZ, Khan AM, Malik T, Abbas Z. Biphasic Dose-Response Induced by PCB150 and PCB180 in HeLa Cells and Potential Molecular Mechanisms. Dose Response 2020; 18:1559325820910040. [PMID: 32206047 PMCID: PMC7076582 DOI: 10.1177/1559325820910040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/29/2022] Open
Abstract
The polychlorinated biphenyls (PCBs) are persistent and their dose-dependent toxicities studies are not well-established. In this study, cytotoxic and genotoxic effects of PCB150 and PCB180 in HeLa cells were studied. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that the cell proliferation was stimulated at low doses (10−3 and 10−2 µg/mL for 12, 24, 48, and 72 hours) and inhibited at high doses (10 and 15 µg/mL for 24, 48, and 72 hours) for both PCBs. Increase in reactive oxygen species formation was observed in the HeLa cells in a time- and dose-dependent manner. Malondialdehyde and superoxide dismutase showed increased levels at high concentrations of PCBs over the time. Glutathione peroxidase expression was downregulated after PCBs exposure, suggested that both PCB congeners may attributable to cytotoxicity. Comet assay elicited a significant increase in genotoxicity at high concentrations of PCBs as compared to low concentrations indicating genotoxic effects. PCB150 and PCB180 showed decrease in the activity of extracellular signal–regulated kinase 1/2 and c-Jun N-terminal kinase at high concentrations after 12 and 48 hours. These findings may contribute to understanding the mechanism of PCBs-induced toxicity, thereby improving the risk assessment of toxic compounds in humans.
Collapse
Affiliation(s)
- Ainy Zehra
- Department of Zoology, University of Punjab, Lahore, Pakistan
| | | | | | - Tariq Malik
- Department of Pharmacy, Islamia University Bahawalpur, Pakistan
| | | |
Collapse
|
6
|
Arshad S, Naveed M, Ullia M, Javed K, Butt A, Khawar M, Amjad F. Targeting STAT-3 signaling pathway in cancer for development of novel drugs: Advancements and challenges. Genet Mol Biol 2020; 43:e20180160. [PMID: 32167126 PMCID: PMC7198026 DOI: 10.1590/1678-4685-gmb-2018-0160] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/20/2018] [Indexed: 12/25/2022] Open
Abstract
Signal transducers and activators of transcription 3 (STAT-3) is a transcription
factor that regulates the gene expression of several target genes. These factors
are activated by the binding of cytokines and growth factors with STAT-3
specific receptors on cell membrane. Few years ago, STAT-3 was considered an
acute phase response element having several cellular functions such as
inflammation, cell survival, invasion, metastasis and proliferation, genetic
alteration, and angiogenesis. STAT-3 is activated by several types of
inflammatory cytokines, carcinogens, viruses, growth factors, and oncogenes.
Thus, the STAT3 pathway is a potential target for cancer therapeutics. Abnormal
STAT-3 activity in tumor development and cellular transformation can be targeted
by several genomic and pharmacological methodologies. An extensive review of the
literature has been conducted to emphasize the role of STAT-3 as a unique cancer
drug target. This review article discusses in detail the wide range of STAT-3
inhibitors that show antitumor effects both in vitro and
in vivo. Thus, targeting constitutive STAT-3 signaling is a
remarkable therapeutic methodology for tumor progression. Finally, current
limitations, trials and future perspectives of STAT-3 inhibitors are also
critically discussed.
Collapse
Affiliation(s)
- Sundas Arshad
- University of Lahore, Department of Allied Health Sciences, Gujrat Campus, Pakistan
| | - Muhammad Naveed
- University of Central Punjab, Faculty of life sciences, Department of Biotechnology, Lahore, Pakistan
| | - Mahad Ullia
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Khadija Javed
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Ayesha Butt
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Masooma Khawar
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Fazeeha Amjad
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| |
Collapse
|
7
|
Kim JH, Hwang S, Park SI, Jo SH. Effects of 3,3’,4,4’,5-pentachlorobiphenyl on human Kv1.3 and Kv1.5 channels. ACTA ACUST UNITED AC 2019. [DOI: 10.11620/ijob.2019.44.3.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Identification of Sex-Specific Transcriptome Responses to Polychlorinated Biphenyls (PCBs). Sci Rep 2019; 9:746. [PMID: 30679748 PMCID: PMC6346099 DOI: 10.1038/s41598-018-37449-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/30/2018] [Indexed: 12/16/2022] Open
Abstract
PCBs are classified as xenoestrogens and carcinogens and their health risks may be sex-specific. To identify potential sex-specific responses to PCB-exposure we established gene expression profiles in a population study subdivided into females and males. Gene expression profiles were determined in a study population consisting of 512 subjects from the EnviroGenomarkers project, 217 subjects who developed lymphoma and 295 controls were selected in later life. We ran linear mixed models in order to find associations between gene expression and exposure to PCBs, while correcting for confounders, in particular distribution of white blood cells (WBC), as well as random effects. The analysis was subdivided according to sex and development of lymphoma in later life. The changes in gene expression as a result of exposure to the six studied PCB congeners were sex- and WBC type specific. The relatively large number of genes that are significantly associated with PCB-exposure in the female subpopulation already indicates different biological response mechanisms to PCBs between the two sexes. The interaction analysis between different PCBs and WBCs provides only a small overlap between sexes. In males, cancer-related pathways and in females immune system-related pathways are identified in association with PCBs and WBCs. Future lymphoma cases and controls for both sexes show different responses to the interaction of PCBs with WBCs, suggesting a role of the immune system in PCB-related cancer development.
Collapse
|
9
|
Chalouati H, Ben Sâad MM, Payrastre L. Hepatoprotective effects of vitamin E against hexachlorobenzene-induced hepatotoxicity and oxidative stress in rats: histological, biochimical and antioxidant status changes. Toxicol Mech Methods 2018; 29:18-25. [PMID: 30064338 DOI: 10.1080/15376516.2018.1506847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The protective effects of α-Tocopherol (vitamin E) on liver injury induced by hexachlorobenzene (HCB) were investigated in adult male rats of Wistar strain. Animals were randomly divided into six groups of eight rats each. Group 1 and 2 have received HCB, dissolved in olive oil, at a dose of 4 mg or 16 mg/kg b.w., respectively. Group 3 and 4 were treated by the same doses of HCB (4 mg and 16 mg/kg b.w.) after 1 h of pretreatment with α-tocopherol at a dose of 100 mg kg-1 b.w. The other two groups served as controls; which received either olive oil only, a solvent of HCB, or α-tocopherol. A significant increase in hepatic lipid peroxidation (LPO) and GSH activity were observed following HCB administration. The activities of antioxidant enzymes like superoxide dismutase and catalase were significantly decreased while glutathione peroxidase was significantly increased following HCB administration. Similarly, a significant increase in plasma levels of various marker enzymes [aminotransferase (aspartate aminotransférase (AST) and alanine aminotransferase (ALT)), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH)] and a decrease of total protein level were observed. Pretreatment with vitamin E of HCB treated rats ameliorated all biochemical parameters to near normal values. Liver histological study confirmed biochemical parameters and the beneficial role of vitamin E.
Collapse
Affiliation(s)
- Hela Chalouati
- a Laboratoire de Physiologie Animale, Département des Sciences Biologiques, Faculté des Sciences de Tunis , Université Tunis el Manar , Tunis , Tunisie.,b INRA UMR 1331Toxalim (Research center in food Toxicology) , Toulouse , France
| | - Mohamed Moncef Ben Sâad
- a Laboratoire de Physiologie Animale, Département des Sciences Biologiques, Faculté des Sciences de Tunis , Université Tunis el Manar , Tunis , Tunisie
| | - Laurence Payrastre
- b INRA UMR 1331Toxalim (Research center in food Toxicology) , Toulouse , France
| |
Collapse
|
10
|
Bohannon ME, Porter TE, Lavoie ET, Ottinger MA. Differential expression of hepatic genes with embryonic exposure to an environmentally relevant PCB mixture in Japanese quail (Coturnix japonica). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:691-704. [PMID: 29932843 DOI: 10.1080/15287394.2018.1484308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The upper Hudson River was contaminated with polychlorinated biphenyls (PCB) Aroclor mixtures from the 1940s until the late 1970s. Several well-established biomarkers, such as induction of hepatic cytochrome P450 monooxygenases, were used to measure exposure to PCBs and similar contaminants in birds. In the present study, Japanese quail eggs were injected with a PCB mixture based upon a congener profile found in spotted sandpiper eggs at the upper Hudson River and subsequently, RNA was extracted from hatchling liver tissue for hybridization to a customized chicken cDNA microarray. Nominal concentrations of the mixture used for microarray hybridization were 0, 6, 12, or 49 μg/g egg. Hepatic gene expression profiles were analyzed using cluster and pathway analyses. Results showed potentially useful biomarkers of both exposure and effect attributed to PCB mixture. Biorag and Ingenuity Pathway Analysis® analyses revealed differentially expressed genes including those involved in glycolysis, xenobiotic metabolism, replication, protein degradation, and tumor regulation. These genes included cytochrome P450 1A5 (CYP1A5), cytochrome b5 (CYB5), NADH-cytochrome b5 reductase, glutathione S-transferase (GSTA), fructose bisphosphate aldolase (ALDOB), glycogen phosphorylase, carbonic anhydrase, and DNA topoisomerase II. CYP1A5, CYB5, GSTA, and ALDOB were chosen for quantitative real-time polymerase chain reaction confirmation, as these genes exhibited a clear dose response on the array. Data demonstrated that an initial transcriptional profile associated with an environmentally relevant PCB mixture in Japanese quail occurred.
Collapse
Affiliation(s)
- Meredith E Bohannon
- a Department of Environmental Science and Technology , University of Maryland , College Park , MD , USA
| | - Tom E Porter
- b Department of Animal and Avian Sciences , University of Maryland , College Park , MD , USA
| | - Emma T Lavoie
- b Department of Animal and Avian Sciences , University of Maryland , College Park , MD , USA
| | - Mary Ann Ottinger
- c Department of Biology and Biochemistry , University of Houston , Houston , TX , USA
| |
Collapse
|
11
|
Stecca L, Tait S, Corrado F, Esposito M, Mantovani A, La Rocca C. Development of an in vitro test battery model based on liver and colon cancer cell lines to discriminate PCB mixtures by transcription factors gene expression analysis. Toxicol In Vitro 2016; 34:204-211. [DOI: 10.1016/j.tiv.2016.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/14/2016] [Accepted: 04/18/2016] [Indexed: 12/15/2022]
|
12
|
Sumathi T, Asha D, Nagarajan G, Sreenivas A, Nivedha R. L-Theanine alleviates the neuropathological changes induced by PCB (Aroclor 1254) via inhibiting upregulation of inflammatory cytokines and oxidative stress in rat brain. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 42:99-117. [PMID: 26826962 DOI: 10.1016/j.etap.2016.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Abstract
The present study is aimed at evaluating the protective role of L-theanine on aroclor 1254-induced oxidative stress in rat brain. Intraperitoneal administration of Aroclor 1254 (2 mg/kg b.wt. for 30 days) caused oxidative stress in rat brain and also caused neurobehavioral changes. Oxidative stress was assessed by determining the levels of lipid peroxide (LPO), protein carbonyl content, and changes in activities of creatine kinase (CK), acetylcholinesterase (AchE), and ATPases in the hippocampus, cerebellum and cerebral cortex of control and experimental rats. Histopathological results showed that PCB caused neuronal loss in all three regions. PCB upregulated the mRNA expressions of inflammatory cytokines. Oral administration of L-theanine (200 mg/kg b.wt.) increased the status of antioxidants, decreased the levels of LPO, nitric oxide (NO) and increased the activities of CK, AchE and ATPases. L-Theanine restored normal architecture of brain regions and downregulated the expression of inflammatory cytokines. In conclusion, L-theanine shows a protective role against PCBs-induced oxidative damage in rat brain.
Collapse
Affiliation(s)
- Thangarajan Sumathi
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu 600113, India.
| | - Deivasigamani Asha
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu 600113, India
| | - Ganesan Nagarajan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu 600113, India
| | - Arivazhagan Sreenivas
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu 600113, India
| | - Rajendran Nivedha
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu 600113, India
| |
Collapse
|
13
|
Divergent Effects of Dioxin- or Non-Dioxin-Like Polychlorinated Biphenyls on the Apoptosis of Primary Cell Culture from the Mouse Pituitary Gland. PLoS One 2016; 11:e0146729. [PMID: 26752525 PMCID: PMC4709048 DOI: 10.1371/journal.pone.0146729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/20/2015] [Indexed: 11/25/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) can disrupt the endocrine function, promote neoplasms and regulate apoptosis in some tissues; however, it is unknown whether PCBs can affect the apoptosis of pituitary cells. The study evaluated the effect of PCBs on the apoptosis of normal pituitary cells and the underlying mechanisms. Primary cell cultures obtained from mouse pituitary glands were exposed to Aroclor 1254 or selected dioxin-like (PCB 77, PCB 126) or non-dioxin-like (PCB 153, PCB 180) congeners. Apoptosis was evaluated by Annexin V staining, DNA fragmentation, and TUNEL assay. Both the expression and activity of caspases were analyzed. Selective thyroid hormone receptor (TR) or aryl-hydrocarbon receptor (AhR) or CYP1A1 antagonist were used to explore the mechanisms underlying PCBs action. Our results showed that Aroclor 1254 induced the apoptosis of pituitary cells as well as the final caspase-3 level and activity through the extrinsic pathway, as shown by the increased caspase-8 level and activity. On the other hand, the intrinsic pathway evaluated by measuring caspase-9 expression was silent. The selected non-dioxin-like congeners either increased (PCB 180) or reduced (PCB 153) pituitary cell apoptosis, affecting the extrinsic pathway (PCB 180), or both the extrinsic and intrinsic pathways (PCB 153), respectively. In contrast, the dioxin-like congeners (PCB 77 and PCB 126) did not affect apoptosis. The anti-apoptotic phenotype of PCB 153 was counteracted by a TR or a CYP1A1 antagonist, whereas the pro-apoptotic effect of PCB 180 was counteracted by an AhR antagonist. The induced apoptosis of Aroclor 1254 or PCB 180 was associated with a reduction of cell proliferation, whereas the decreased apoptosis due to PCB 153 increased cell proliferation by 30%. In conclusion, our data suggest that non-dioxin-like PCBs may modulate apoptosis and the proliferation rate of pituitary cells that have either pro- or anti-apoptotic effects depending on the specific congeners. However, the impact of PCBs on the process of pituitary tumorigenesis remains to be elucidated.
Collapse
|
14
|
Abstract
Liver cancer, primarily hepatocellular carcinoma (HCC), is a major cause of cancer-related death worldwide. HCC is a suitable model of inflammation-induced cancer because more than 90% of HCC cases are caused by liver damage and chronic inflammation. Several inflammatory response pathways, such as NF-κB and JAK/STAT3 signaling pathways, play roles in the crosstalk between inflammation and HCC. MicroRNAs (miRNAs) are evolutionarily conserved, short endogenous, non-coding single-stranded RNAs that are involved in various biological and pathological processes by regulating gene expression and protein translation. Evidence showed that miRNAs play a pivotal role in hepatitis virus infection and serve as promoters or inhibitors of inflammatory response. Aberrant miRNA was observed during liver inflammation and HCC. Many dysregulated miRNAs modulate the initiation and progression of inflammation-induced HCC. This review summarizes the role and functions of miRNAs in inflammation-associated HCC, as well as the designed therapeutics targeting miRNAs to treat liver inflammation and HCC.
Collapse
Affiliation(s)
- Lin Huan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lin-Hui Liang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiang-Huo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Randhawa N, Gulland F, Ylitalo GM, DeLong R, Mazet JA. Sentinel California sea lions provide insight into legacy organochlorine exposure trends and their association with cancer and infectious disease. One Health 2015; 1:37-43. [PMID: 28616463 PMCID: PMC5441319 DOI: 10.1016/j.onehlt.2015.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/26/2015] [Accepted: 08/30/2015] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Organochlorine contaminants (OCs), like polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethanes (DDTs), are widespread marine pollutants resulting from massive historical use and environmental persistence. Exposure to and health effects of these OCs in the marine environment may be examined by studying California sea lions (Zalophus californianus), which are long lived, apex predators capable of accumulating OCs. METHODS We evaluated PCB and DDT levels in 310 sea lions sampled between 1992 and 2007: 204 individuals stranded along the coast of central California, 60 healthy males from Washington State, and 46 healthy females from southern California. Lipid-normalized contaminant concentrations were analyzed using general linear models and logistic regression to ascertain temporal trends; differences between stranded and healthy sea lions; and association of organochlorines with sex, age, and presence of cancer or fatal infectious disease. RESULTS Concentrations of the contaminants in stranded adults decreased over time in the study period (adjusted for sex, as adult males had higher mean blubber concentrations than adult females and juveniles). Cancer was almost eight and six times more likely in animals with higher summed PCBs and DDTs, compared to those with lower levels (95% CI 5.55-10.51 and 4.54-7.99, respectively). Fatal infectious diseases were similarly seven and five times more likely in animals with higher contaminant burdens (95% CI 4.20-10.89 and 3.27-7.86, respectively). Mean contaminant loads were significantly higher in stranded sea lions than in healthy live captured animals (p < 0.001). CONCLUSION Organochlorine contamination has significant associations with health outcomes in California sea lions, raising concerns for humans and other animals eating tainted seafood. While environmental exposure to these organochlorines appears to be decreasing over time based on levels in sea lion tissues, their persistence in the environment and food web for all predators, including humans, and the associated serious health risks, warrant monitoring, possibly through sentinel species like marine mammals.
Collapse
Affiliation(s)
- Nistara Randhawa
- Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Frances Gulland
- Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- The Marine Mammal Center, Sausalito, CA 94965-2619, USA
| | - Gina M. Ylitalo
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, Environmental Fisheries and Sciences Division, 2725 Montlake Boulevard East, Seattle, WA 98112 USA
| | - Robert DeLong
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, National Marine Mammal Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115 USA
| | - Jonna A.K. Mazet
- Wildlife Health Center, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
16
|
Xu D, Li L, Liu L, Dong H, Deng Q, Yang X, Song E, Song Y. Polychlorinated biphenyl quinone induces mitochondrial-mediated and caspase-dependent apoptosis in HepG2 cells. ENVIRONMENTAL TOXICOLOGY 2015; 30:1063-1072. [PMID: 24604693 DOI: 10.1002/tox.21979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/12/2014] [Accepted: 02/23/2014] [Indexed: 06/03/2023]
Abstract
Polychlorinated biphenyl (PCB) quinones are known to cause toxic effects, but their mechanisms are quite unclear. In this study, we examined whether 2,3,5-trichloro-6-phenyl-[1,4]benzoquinone, PCB29-pQ, induces cell death via apoptosis pathway. Our result showed PCB29-pQ exposure decreased HepG2 cell viability in a time-dependent manner. Lactate dehydrogenase leakage assay also implied the cytotoxicity of PCB29-pQ. 4',6-Diamidino-2-phenylindole dihydrochloride staining and flow cytometry assays both confirmed PCB29-pQ caused dose-dependent apoptotic cell death in HepG2 cells. Furthermore, we found that PCB29-pQ exposure increased cellular reactive oxygen species (ROS) level, decreased mitochondrial membrane potential and induced the translocation of cytochrome c from mitochondria into cytosol in HepG2 cells. Moreover, PCB29-pQ exposure induced B-cell lymphoma 2 (Bcl-2) downregulation and Bcl-2-associated X (Bax) upregulation, poly(ADP-ribose) polymerase cleavage, accompanied with the increased caspase-3/9 and p53 expressions. Taking together, these results suggested PCB29-pQ induced HepG2 cells apoptosis through a ROS-driven, mitochondrial-mediated and caspase-dependent pathway.
Collapse
Affiliation(s)
- Demei Xu
- Key Laboratory of Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| | - Lingrui Li
- Key Laboratory of Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| | - Lichao Liu
- Key Laboratory of Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| | - Hui Dong
- Key Laboratory of Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qin Deng
- Key Laboratory of Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xiaojia Yang
- Key Laboratory of Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences, Ministry of Education, Southwest University, Chongqing, 400715, People's Republic of China
| |
Collapse
|
17
|
Xu D, Hu L, Su C, Xia X, Zhang P, Fu J, Wang W, Xu D, Du H, Hu Q, Song E, Song Y. Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin. Toxicol Appl Pharmacol 2014; 280:305-13. [DOI: 10.1016/j.taap.2014.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/05/2014] [Accepted: 08/01/2014] [Indexed: 01/01/2023]
|
18
|
Baderna D, Colombo A, Romeo M, Cambria F, Teoldi F, Lodi M, Diomede L, Benfenati E. Soil quality in the Lomellina area using in vitro models and ecotoxicological assays. ENVIRONMENTAL RESEARCH 2014; 133:220-231. [PMID: 24968084 DOI: 10.1016/j.envres.2014.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/30/2014] [Accepted: 05/31/2014] [Indexed: 06/03/2023]
Abstract
Soil quality is traditionally evaluated by chemical characterization to determine levels of pollutants. Biological tools are now employed for soil monitoring since they can take account of the global biological effects induced by all xenobiotics. A combined monitoring of soils based on chemical analyses, human-related in vitro models and ecotoxicological assay was applied in the Lomellina, a semirural area of northern Italy. Chemical characterization indicated overall good quality of the soils, with low levels of toxic and carcinogenic pollutants such as heavy metals, PAHs, PCDD/Fs and PCBs. HepG2 cells were used as a model for the human liver and BALB/c 3T3 cells to evaluate carcinogenic potential. Cells were treated with soil extractable organic matter (EOM) and the MTS assay, DNA release and morphological transformation were selected as endpoints for toxicity and carcinogenicity. Soil EOMs induced dose-dependent inhibition of cell growth at low doses and cytotoxicity only at doses of 500 and 1000 mg soil equivalents/ml. Potential issues for human health can be hypothesized after ingestion of soil samples from some sites. No statistically significant inductions of foci were recorded after exposure to EOMs, indicating that the levels of the soil-extracted organic pollutants were too low to induce carcinogenesis in our experimental conditions. An acute phytotoxicity test and studies on Caenorhabditis elegans were used as ecotoxicological assays for plants and small invertebrates. No significant alerts for ecotoxicity were found. In this proposed case study, HepG2 cells detected differences in the toxicity of soil EOMs, indicating that this cell line could be appropriate to assess the potential harm caused by the ingestion of contaminated soil. Additional information on the carcinogenic potential of mixtures was provided by the cell transformation assay, strengthening the combined approach.
Collapse
Affiliation(s)
- Diego Baderna
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy.
| | - Andrea Colombo
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Margherita Romeo
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Felice Cambria
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Federico Teoldi
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Marco Lodi
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| |
Collapse
|
19
|
Xu D, Hu L, Xia X, Song J, Li L, Song E, Song Y. Tetrachlorobenzoquinone induces acute liver injury, up-regulates HO-1 and NQO1 expression in mice model: the protective role of chlorogenic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1212-1220. [PMID: 24816176 DOI: 10.1016/j.etap.2014.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/15/2014] [Accepted: 04/19/2014] [Indexed: 06/03/2023]
Abstract
Tetrachlorobenzoquinone (TCBQ) is an active metabolite of pentachlorophenol (PCP). Although PCP has been investigated extensively, there are only a few reports describing the toxicity effect of TCBQ, and no report regarding TCBQ-induced liver injury in vivo. In the current study, we aimed to examine the acute hepatic toxicity of TCBQ in the mice model. Chlorogenic acid (CGA) exhibits promising antioxidant activity in the past studies, thus, the second aim of this study was to evaluate the protective effect of CGA on TCBQ-induced liver injury. Our results indicated TCBQ-intoxication caused marked liver cell necrosis and inflammation but not apoptosis, and this damage was alleviated by CGA treatment. Meantime, TCBQ-intoxication enhanced serum ALT, AST activities, TBIL content, hepatic oxidative stress and lipid peroxidation, decreased GSH content and inhibited the activities of antioxidant enzymes. Western blot and immunohistochemical analysis showed that TCBQ marked up-regulated HO-1 and NQO1 expression. On the other hand, pretreatment of CGA reduced TCBQ-induced liver damage remarkably. Taking together, these results revealed that TCBQ has strong hepatic toxic effect, and at least a part of this effect is initiated by free radical and relieved with CGA administration.
Collapse
Affiliation(s)
- Demei Xu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Lihua Hu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiaomin Xia
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Jianbo Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Lingrui Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
20
|
Majumdar A, Nirwane A, Kamble R. New evidences of neurotoxicity of aroclor 1254 in mice brain: potential of coenzyme q10 in abating the detrimental outcomes. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2014; 29:e2014001. [PMID: 24683537 PMCID: PMC3965848 DOI: 10.5620/eht.2014.29.e2014001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
OBJECTIVES The present subacute study was designed to evaluate the effect of coenzyme Q 10 (CoQ10) in the 28 days aroclor 1254 exposure induced oxidative stress in mice brain. METHODS Biochemical estimations of brain lipid peroxidation (LPO), reduced glutathione (GSH), and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and acetyl cholinesterase (AChE), and histopathological investigations of brain tissue were carried out. RESULTS Oral exposure of aroclor 1254 (5 mg/kg) led to significant decrease in levels of GSH, and activities of SOD, CAT, GPx, and AChE, and increase in LPO. These aberrations were restored by CoQ10 (10 mg/kg, intraperitoneal injection [IP]). This protection offered was comparable to that of L-deprenyl (1 mg/kg, IP) which served as a reference standard. CONCLUSIONS Aroclor 1254 exposure hampers the activities of various antioxidant enzymes and induces oxidative stress in the brains of Swiss albino mice. Supplementation of CoQ10 abrogates these deleterious effects of aroclor 1254. CoQ10 also apparently enhanced acetyl cholinesterase activity which reflects its influence on the cholinergic system.
Collapse
Affiliation(s)
- Anuradha Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Mumbai, India
| | - Abhijit Nirwane
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Mumbai, India
| | - Rahul Kamble
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Mumbai, India
| |
Collapse
|
21
|
Abstract
Multiple molecular mechanisms are involved in the promotion of skin carcinogenesis. Induction of sustained proliferation and epidermal hyperplasia by direct activation of mitotic signaling pathways or indirectly in response to chronic wounding and/or inflammation, or due to a block in terminal differentiation or resistance to apoptosis is necessary to allow clonal expansion of initiated cells with DNA mutations to form skin tumors. The mitotic pathways include activation of epidermal growth factor receptor and Ras/Raf/mitogen-activated protein kinase signaling. Chronic inflammation results in inflammatory cell secretion of growth factors and cytokines such as tumor necrosis factor-α and interleukins, as well as production of reactive oxygen species, all of which can stimulate proliferation. Persistent activation of these pathways leads to tumor promotion.
Collapse
|
22
|
Baderna D, Colombo A, Amodei G, Cantù S, Teoldi F, Cambria F, Rotella G, Natolino F, Lodi M, Benfenati E. Chemical-based risk assessment and in vitro models of human health effects induced by organic pollutants in soils from the Olona Valley. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:790-801. [PMID: 23859898 DOI: 10.1016/j.scitotenv.2013.06.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 06/02/2023]
Abstract
Risk assessment of soils is usually based on chemical measurements and assuming accidental soil ingestion and evaluating induced toxic and carcinogenic effects. Recently biological tools have been coupled to chemical-based risk assessment since they integrate the biological effects of all xenobiotics in soils. We employed integrated monitoring of soils based on chemical analyses, risk assessment and in vitro models in the highly urbanized semirural area of the Olona Valley in northern Italy. Chemical characterization of the soils indicated low levels of toxic and carcinogenic pollutants such as PAHs, PCDD/Fs, PCBs and HCB and human risk assessment did not give any significant alerts. HepG2 and BALB/c 3T3 cells were used as a model for the human liver and as a tool for the evaluation of carcinogenic potential. Cells were treated with soil extractable organic matters (EOMs) and the MTS assay, LDH release and morphological transformation were selected as endpoints for toxicity and carcinogenicity. Soil EOMs induced dose-dependent inhibition of cell growth at low doses and cytotoxicity after exposure to higher doses. This might be the result of block of cell cycle progression to repair DNA damage caused by oxidative stress; if this DNA damage cannot be repaired, cells die. No significant inductions of foci were recorded after exposure to EOMs. These results indicate that, although the extracts contain compounds with proven carcinogenic potential, the levels of these pollutants in the analyzed soils were too low to induce carcinogenesis in our experimental conditions. In this proposed case study, HepG2 cells were found an appropriate tool to assess the potential harm caused by the ingestion of contaminated soil as they were able to detect differences in the toxicity of soil EOMs. Moreover, the cell transformation assay strengthened the combined approach giving useful information on carcinogenic potential of mixtures.
Collapse
Affiliation(s)
- Diego Baderna
- Laboratory of Environmental Chemistry and Toxicology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
De Coster S, van Leeuwen DM, Jennen DGJ, Koppen G, Den Hond E, Nelen V, Schoeters G, Baeyens W, van Delft JHM, Kleinjans JCS, van Larebeke N. Gender-specific transcriptomic response to environmental exposure in Flemish adults. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:574-588. [PMID: 23653218 DOI: 10.1002/em.21774] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/01/2013] [Accepted: 02/21/2013] [Indexed: 06/02/2023]
Abstract
Flanders, Belgium, is one of the most densely populated areas in Europe. The Flemish Environment and Health Survey (2002-2006) aimed at determining exposure to pollutants of neonates, adolescents, and older adults and to assess associated biological and health effects. This study investigated genome wide gene expression changes associated with a range of environmental pollutants, including cadmium, lead, PCBs, dioxin, hexachlorobenzene, p,p'-DDE, benzene, and PAHs. Gene expression levels were measured in peripheral blood cells of 20 adults with relatively high and 20 adults with relatively low combined internal exposure levels, all non-smokers aged 50-65. Pearson correlation was used to analyze associations between pollutants and gene expression levels, separately for both genders. Pollutant- and gender-specific correlation analysis results were obtained. For organochlorine pollutants, analysis within genders revealed that genes were predominantly regulated in opposite directions in males and females. Significantly modulated pathways were found to be associated with each of the exposure biomarkers measured. Pathways and/or genes related to estrogen and STAT5 signaling were correlated to organochlorine exposures in both genders. Our work demonstrates that gene expression in peripheral blood is influenced by environmental pollutants. In particular, gender-specific changes are associated with organochlorine pollutants, including gender-specific modulation of endocrine related pathways and genes. These pathways and genes have previously been linked to endocrine disruption related disorders, which in turn have been associated with organochlorine exposure. Based on our results, we recommend that males and females be considered separately when analyzing gene expression changes associated with exposures that may include chemicals with endocrine disrupting properties.
Collapse
Affiliation(s)
- Sam De Coster
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent, 9000, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Song J, Liu L, Li L, Liu J, Song E, Song Y. Protective effects of lipoic acid and mesna on cyclophosphamide-induced haemorrhagic cystitis in mice. Cell Biochem Funct 2013; 32:125-32. [PMID: 23650119 DOI: 10.1002/cbf.2978] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/30/2013] [Accepted: 04/02/2013] [Indexed: 11/09/2022]
Abstract
The protective roles of lipoic acid (LA)/vitamin C (VC) and mesna on preventing cyclophosphamide (CYP)-induced haemorrhagic cystitis (HC) were investigated. Swiss mice were divided into five groups randomly. HC was induced by a single dose of CYP injection (150-mg kg(-1) bodyweight). Group I was injected with saline (four times in total) throughout as control group. Group II received CYP and three equal doses of saline. Group III received CYP and three doses of mesna, whereas Group IV (or Group V) received CYP, mesna + two doses of VC (or LA). All injections were performed intraperitoneally. After 24 h of cystitis induction, the bladders were collected for all the experiments. Histological characterization showed that CYP injection resulted in severe HC. Reactive oxygen species (ROS) and thiobarbituric acid reactive substances' levels were increased in CYP group. The activities of antioxidant enzymes, e.g. superoxide dismutase, catalase, glutathione S-transferase and glutathione peroxidase, were inhibited significantly in CYP groups, respectively. In addition, activation of c-jun N-terminal kinases (JNK) and p38 mitogen-activated protein kinase (MAPK) may be involved in the mechanism of CYP-induced HC but not extracellular signal regulated kinases (ERK). Significant suppression of p38 phosphorylation on Group V suggests that LA and mesna may have synergistic beneficial effect. In Groups III-V, all the parameters of HC and oxidative stress were inhibited significantly. Taking together, we found that these results illustrated that ROS play an important role on CYP-induced HC and the administration of LA/VC with mesna may have therapeutic potential against CYP-induced bladder HC.
Collapse
Affiliation(s)
- Jianbo Song
- Key Laboratory of Luminescence and Real-Time Analysis, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
25
|
Liu J, Song E, Liu L, Ma X, Tian X, Dong H, Song Y. Polychlorinated biphenyl quinone metabolites lead to oxidative stress in HepG2 cells and the protective role of dihydrolipoic acid. Toxicol In Vitro 2012; 26:841-8. [DOI: 10.1016/j.tiv.2012.04.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 04/18/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
|
26
|
Dutta SK, Mitra PS, Ghosh S, Zang S, Sonneborn D, Hertz-Picciotto I, Trnovec T, Palkovicova L, Sovcikova E, Ghimbovschi S, Hoffman EP. Differential gene expression and a functional analysis of PCB-exposed children: understanding disease and disorder development. ENVIRONMENT INTERNATIONAL 2012; 40:143-154. [PMID: 21855147 PMCID: PMC3247643 DOI: 10.1016/j.envint.2011.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/04/2011] [Accepted: 07/10/2011] [Indexed: 05/29/2023]
Abstract
The goal of the present study is to understand the probable molecular mechanism of toxicities and the associated pathways related to observed pathophysiology in high PCB-exposed populations. We have performed a microarray-based differential gene expression analysis of children (mean age 46.1 months) of Central European descent from Slovak Republic in a well-defined study cohort. The subset of children having high blood PCB concentrations (>75 percentile) were compared against their low PCB counterparts (<25 percentile), with mean lipid-adjusted PCB values of 3.02±1.3 and 0.06±0.03 ng/mg of serum lipid, for the two groups, respectively (18.1±4.4 and 0.3±0.1 ng/ml of serum). The microarray was conducted with the total RNA from the peripheral blood mononuclear cells of the children using an Affymetrix platform (GeneChip Human genome U133 Plus 2.0 Array) and was analyzed by Gene Spring (GX 10.0). A highly significant set of 162 differentially expressed genes between high and low PCB groups (p value <0.00001) were identified and subsequently analyzed using the Ingenuity Pathway Analysis tool. The results indicate that Cell-To-Cell Signaling and Interaction, Cellular Movement, Cell Signaling, Molecular Transport, and Vitamin and Mineral Metabolism were the major molecular and cellular functions associated with the differentially altered gene set in high PCB-exposed children. The differential gene expressions appeared to play a pivotal role in the development of probable diseases and disorders, including cardiovascular disease and cancer, in the PCB-exposed population. The analyses also pointed out possible organ-specific effects, e.g., cardiotoxicity, hepatotoxicity and nephrotoxicity, in high PCB-exposed subjects. A few notable genes, such as BCL2, PON1, and ITGB1, were significantly altered in our study, and the related pathway analysis explained their plausible involvement in the respective disease processes, as mentioned. Our results provided insight into understanding the associated molecular mechanisms of complex gene-environment interactions in a PCB-exposed population. Future endeavors of supervised genotyping of pathway-specific molecular epidemiological studies and population biomarker validations are already underway to reveal individual risk factors in these PCB-exposed populations.
Collapse
Affiliation(s)
- Sisir K Dutta
- Molecular Genetics Laboratory, Howard University, Washington, DC, USA.
| | - Partha S Mitra
- Molecular Genetics Laboratory, Howard University, Washington, DC, USA
| | - Somiranjan Ghosh
- Molecular Genetics Laboratory, Howard University, Washington, DC, USA
| | - Shizhu Zang
- Molecular Genetics Laboratory, Howard University, Washington, DC, USA
| | - Dean Sonneborn
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Tomas Trnovec
- Slovak Medical University, Bratislava, Slovak Republic
| | | | - Eva Sovcikova
- Slovak Medical University, Bratislava, Slovak Republic
| | - Svetlana Ghimbovschi
- Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | - Eric P Hoffman
- Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
27
|
Senthilkumar PK, Robertson LW, Ludewig G. PCB153 reduces telomerase activity and telomere length in immortalized human skin keratinocytes (HaCaT) but not in human foreskin keratinocytes (NFK). Toxicol Appl Pharmacol 2011; 259:115-23. [PMID: 22210444 DOI: 10.1016/j.taap.2011.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/09/2011] [Accepted: 12/14/2011] [Indexed: 02/07/2023]
Abstract
Polychlorinated biphenyls (PCBs), ubiquitous environmental pollutants, are characterized by long term-persistence in the environment, bioaccumulation, and biomagnification in the food chain. Exposure to PCBs may cause various diseases, affecting many cellular processes. Deregulation of the telomerase and the telomere complex leads to several biological disorders. We investigated the hypothesis that PCB153 modulates telomerase activity, telomeres and reactive oxygen species resulting in the deregulation of cell growth. Exponentially growing immortal human skin keratinocytes (HaCaT) and normal human foreskin keratinocytes (NFK) were incubated with PCB153 for 48 and 24days, respectively, and telomerase activity, telomere length, superoxide level, cell growth, and cell cycle distribution were determined. In HaCaT cells exposure to PCB153 significantly reduced telomerase activity, telomere length, cell growth and increased intracellular superoxide levels from day 6 to day 48, suggesting that superoxide may be one of the factors regulating telomerase activity, telomere length and cell growth compared to untreated control cells. Results with NFK cells showed no shortening of telomere length but reduced cell growth and increased superoxide levels in PCB153-treated cells compared to untreated controls. As expected, basal levels of telomerase activity were almost undetectable, which made a quantitative comparison of treated and control groups impossible. The significant down regulation of telomerase activity and reduction of telomere length by PCB153 in HaCaT cells suggest that any cell type with significant telomerase activity, like stem cells, may be at risk of premature telomere shortening with potential adverse health effects for the affected organism.
Collapse
Affiliation(s)
- P K Senthilkumar
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242-5000, USA
| | | | | |
Collapse
|
28
|
Song MO, Lee CH, Yang HO, Freedman JH. Endosulfan upregulates AP-1 binding and ARE-mediated transcription via ERK1/2 and p38 activation in HepG2 cells. Toxicology 2011; 292:23-32. [PMID: 22146149 DOI: 10.1016/j.tox.2011.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/28/2011] [Accepted: 11/21/2011] [Indexed: 12/12/2022]
Abstract
Endosulfan is an organochlorine insecticide and has been implicated in neurotoxicity, hepatotoxicity, immunosuppression and teratogenicity. However, the molecular mechanism of endosulfan toxicity is not yet clear. Recent studies demonstrated that oxidative stress induced by endosulfan is involved in its toxicity and accumulating evidence suggests that endosulfan can modulate the activities of stress-responsive signal transduction pathways including extracellular signal regulated kinases (ERK) 1/2. However, none of the previous studies investigated the ability of endosulfan to modulate activating protein-1 (AP-1) binding and antioxidant response element (ARE)-mediated transcription as an underlying mechanism of endosulfan toxicity. In this report, we show that treatment of HepG2 cells with endosulfan significantly increased oxidative stress-responsive transcription via AP-1 activation. In addition, endosulfan-induced transcription was enhanced in cells depleted of glutathione by buthionine sulfoximine (BSO) treatment. Exposure to endosulfan resulted in a significant increase in the activities of MAPKs, ERK1/2 and p38. Endosulfan-induced increases in enzymatic activities of these MAPKs were consistent with MAPK phosphorylation. Endosulfan exposure also caused an increase in c-Jun phosphorylation. These results suggest a model for endosulfan toxicity in which endosulfan increases ERK1/2 and p38 activities and these activated MAPKs then increase c-Jun phosphorylation. Phosphorylated c-Jun, in turn, increases AP-1 activity, which results in activation of ARE-mediated transcription.
Collapse
Affiliation(s)
- Min Ok Song
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
29
|
Kopec AK, D'Souza ML, Mets BD, Burgoon LD, Reese SE, Archer KJ, Potter D, Tashiro C, Sharratt B, Harkema JR, Zacharewski TR. Non-additive hepatic gene expression elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) co-treatment in C57BL/6 mice. Toxicol Appl Pharmacol 2011; 256:154-67. [PMID: 21851831 DOI: 10.1016/j.taap.2011.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/22/2011] [Accepted: 08/01/2011] [Indexed: 11/18/2022]
Abstract
Interactions between environmental contaminants can lead to non-additive effects that may affect the toxicity and risk assessment of a mixture. Comprehensive time course and dose-response studies with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), non-dioxin-like 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) and their mixture were performed in immature, ovariectomized C57BL/6 mice. Mice were gavaged once with 30 μg/kg TCDD, 300 mg/kg PCB153, a mixture of 30 μg/kg TCDD with 300 mg/kg PCB153 (MIX) or sesame oil vehicle for 4,12, 24,72 or 168 h. In the 24h dose-response study, animals were gavaged with TCDD (0.3,1, 3, 6, 10, 15, 30, 45 μg/kg), PCB153 (3,10, 30, 60, 100, 150, 300, 450 mg/kg), MIX (0.3+3, 1+10, 3+30, 6+60, 10+100, 15+150, 30+300, 45 μg/kg TCDD+450 mg/kg PCB153, respectively) or vehicle. All three treatments significantly increased relative liver weights (RLW), with MIX eliciting significantly greater increases compared to TCDD and PCB153 alone. Histologically, MIX induced hepatocellular hypertrophy, vacuolization, inflammation, hyperplasia and necrosis, a combination of TCDD and PCB153 responses. Complementary lipid analyses identified significant increases in hepatic triglycerides in MIX and TCDD samples, while PCB153 had no effect on lipids. Hepatic PCB153 levels were also significantly increased with TCDD co-treatment. Microarray analysis identified 167 TCDD, 185 PCB153 and 388 MIX unique differentially expressed genes. Statistical modeling of quantitative real-time PCR analysis of Pla2g12a, Serpinb6a, Nqo1, Srxn1, and Dysf verified non-additive expression following MIX treatment compared to TCDD and PCB153 alone. In summary, TCDD and PCB153 co-treatment elicited specific non-additive gene expression effects that are consistent with RLW increases, histopathology, and hepatic lipid accumulation.
Collapse
Affiliation(s)
- Anna K Kopec
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Prasad S, Pandey MK, Yadav VR, Aggarwal BB. Gambogic acid inhibits STAT3 phosphorylation through activation of protein tyrosine phosphatase SHP-1: potential role in proliferation and apoptosis. Cancer Prev Res (Phila) 2011; 4:1084-94. [PMID: 21490133 DOI: 10.1158/1940-6207.capr-10-0340] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The transcription factor, STAT3, is associated with proliferation, survival, and metastasis of cancer cells. We investigated whether gambogic acid (GA), a xanthone derived from the resin of traditional Chinese medicine, Garcinia hanburyi (mangosteen), can regulate the STAT3 pathway, leading to suppression of growth and sensitization of cancer cells. We found that GA induced apoptosis in human multiple myeloma cells that correlated with the inhibition of both constitutive and inducible STAT3 activation. STAT3 phosphorylation at both tyrosine residue 705 and serine residue 727 was inhibited by GA. STAT3 suppression was mediated through the inhibition of activation of the protein tyrosine kinases Janus-activated kinase 1 (JAK1) and JAK2. Treatment with the protein tyrosine phosphatase (PTP) inhibitor pervanadate reversed the GA-induced downregulation of STAT3, suggesting the involvement of a PTP. We also found that GA induced the expression of the PTP SHP-1. Deletion of the SHP-1 gene by siRNA suppressed the ability of GA to inhibit STAT3 activation and to induce apoptosis, suggesting the critical role of SHP-1 in its action. Moreover, GA downregulated the expression of STAT3-regulated antiapoptotic (Bcl-2, Bcl-xL, and Mcl-1), proliferative (cyclin D1), and angiogenic (VEGF) proteins, and this correlated with suppression of proliferation and induction of apoptosis. Overall, these results suggest that GA blocks STAT3 activation, leading to suppression of tumor cell proliferation and induction of apoptosis.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
31
|
Selvakumar K, Sheerin Banu L, Krishnamoorthy G, Venkataraman P, Elumalai P, Arunakaran J. Differential expression of androgen and estrogen receptors in PCB (Aroclor 1254)-exposed rat ventral prostate: Impact of alpha-tocopherol. ACTA ACUST UNITED AC 2011; 63:105-12. [DOI: 10.1016/j.etp.2009.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 09/17/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
|
32
|
De S, Ghosh S, Chatterjee R, Chen YQ, Moses L, Kesari A, Hoffman E, Dutta SK. PCB congener specific oxidative stress response by microarray analysis using human liver cell line. ENVIRONMENT INTERNATIONAL 2010; 36:907-917. [PMID: 20638727 PMCID: PMC3018769 DOI: 10.1016/j.envint.2010.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 05/13/2010] [Accepted: 05/23/2010] [Indexed: 05/29/2023]
Abstract
In this study we have examined the effect of exposure to different congeners of PCBs and their role in oxidative stress response. A metabolically competent human liver cell line (HepG2) was exposed with two prototype congeners of PCBs: coplanar PCB-77 and non-coplanar PCB-153. After the predetermined times of exposure (0-24h) at 70 μM concentration, the HepG2 cells showed significant apoptotic changes by fluorescent microscopy after 12h of exposure. Gene set enrichment analysis (GSEA) identified oxidative stress as the predominant enrichment. Further, paraquat assay showed that PCB congeners lead to oxidative stress to different extents, PCB-77 being more toxic. This study, with emphasis on all recommended microarray quality control steps, showed that apoptosis was one of the most significant cellular processes as a result of oxidative stress, but each of these congeners had a unique signature gene expression, which was further validated by Taqman real time PCR and immunoblotting. The pathways involved leading to the common apoptotic effect were completely different. Further in-silico analysis showed that PCB-153 most likely acted through the TNF receptor, leading to oxidative stress involving metallothionein gene families, and causing apoptosis mainly by the Fas receptor signaling pathway. In contrast, PCB-77 acted through the aryl hydrocarbon receptor. It induced oxidative stress through the involvement of cytochrome P450 (CYP1A1) leading to apoptosis through AHR/ARNT pathway.
Collapse
Affiliation(s)
- Supriyo De
- Department of Biology, Howard University, Washington DC
| | | | | | - Y-Q Chen
- Department of Biology, Howard University, Washington DC
| | - Linda Moses
- Children’s National Medical Center, Washington DC
| | | | - Eric Hoffman
- Children’s National Medical Center, Washington DC
| | | |
Collapse
|
33
|
Ptak A, Ludewig G, Rak A, Nadolna W, Bochenek M, Gregoraszczuk EL. Induction of cytochrome P450 1A1 in MCF-7 human breast cancer cells by 4-chlorobiphenyl (PCB3) and the effects of its hydroxylated metabolites on cellular apoptosis. ENVIRONMENT INTERNATIONAL 2010; 36:935-41. [PMID: 19604582 PMCID: PMC2904404 DOI: 10.1016/j.envint.2009.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 06/05/2009] [Accepted: 06/09/2009] [Indexed: 05/13/2023]
Abstract
Several studies suggest an involvement of PCBs in breast cancer formation, but the results are ambiguous and the mechanisms not clear. We propose that local activation of cytochrome P450 enzymes, CYP1A1 and CYP1B1 by PCB3, may generate active metabolites which affect apoptosis and thereby promote mammary carcinogenesis. To test this hypothesis MCF-7 human breast cancer cells were exposed to 300 nM PCB3 and its hydroxylated metabolites, 4OH-PCB and 3,4diOH-PCB3. The enzyme activity for CYP1A1 was assayed using the EROD assay, and CYP1A1 and CYP1B1 protein expression by western blotting. PCB3 increased CYP1A1 activity (~1.5fold) and protein levels within 6h after exposure. No effect on CYP1B1 protein expression was observed. The effects of PCB3 and both its metabolites on staurosporine-induced apoptosis were determined by measuring DNA fragmentation using ELISA and TUNEL assays, and by measuring caspase-8 and caspase-9 activity. We found that PCB3 and both of its hydroxylated metabolites had no effect on caspase-8 and caspase-9 activity when cells were grown in medium deprived of estrogen, but reduced caspase-9 activity when cells were grown in medium supplemented with serum containing estradiol. Interestingly, a decrease of DNA fragmentation was observed upon treatment with 3,4diOH-PCB3 in both culture conditions, suggesting that 3,4diOH-PCB3 affects a caspase-independent pathway of cell death. In summary, interactions of PCB3 and its metabolites with estradiol by yet unknown mechanisms inhibit caspase 9-related apoptosis and additional, other death pathways are affected by the catechol metabolite 3,4diOH-PCB3. These anti-apoptotic effects and the change in metabolic activity may contribute to the carcinogenic effect of PCBs.
Collapse
Affiliation(s)
- Anna Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University, Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
34
|
Ptak A, Mazur K, Gregoraszczuk EL. Comparison of combinatory effects of PCBs (118, 138, 153 and 180) with 17 beta-estradiol on proliferation and apoptosis in MCF-7 breast cancer cells. Toxicol Ind Health 2010; 27:315-21. [PMID: 20947654 DOI: 10.1177/0748233710387003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We analyzed whether polychlorinated biphenyls (PCBs) interfere with the activity of 17 β-estradiol in the proliferation and apoptosis of the MCF-7 cell line. MCF-7 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) without phenol red supplemented with 5% charcoal-treated fetal bovine serum (CD-FBS) for 3 days with 10 nM 17 β-estradiol or 0.1 µM, 0.5 µM and 1 µM of the tested PCB congeners (118, 138, 153 and 180), or both. Cell proliferation was determined by measuring 5-bromo-2'-deoxyuridine (BrdU) incorporation, and cell apoptosis was measured by caspase-9 activity. From the PCB congeners tested, PCB138 and 153 had the highest stimulatory effects on basal cell proliferation as well as the highest inhibitory actions on basal caspase-9 activity. The proliferative and anti-apoptotic actions of PCB138 and 153 were still observed in the presence of 17 β-estradiol, while the actions of PCB118 and 180 were reversed. In conclusion, the results of this study suggest the possibility that PCB138 and 153 contribute to the action of endogenous 17 β-estradiol on cell proliferation and apoptosis in the breast cancer cell line MCF-7.
Collapse
Affiliation(s)
- Anna Ptak
- Department of Physiology and Toxicology of Reproduction, Chair of Animal Physiology, Institute of Zoology, Jagiellonian University, Kraków, Poland.
| | | | | |
Collapse
|
35
|
Duffy-Whritenour JE, Kurtzman RZ, Kennedy S, Zelikoff JT. Non-coplanar polychlorinated biphenyl (PCB)-induced immunotoxicity is coincident with alterations in the serotonergic system. J Immunotoxicol 2010; 7:318-26. [PMID: 20843273 DOI: 10.3109/1547691x.2010.512277] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Attention to non-coplanar polychlorinated biphenyl (PCB) congeners in immunotoxicological research is increasing. However, the exact mechanism by which these congeners may induce immune dysfunction is still undefined. Because the serotonergic nervous system has been shown to be involved in the regulation of some immune responses, and also serves as a sensitive target for PCBs, the relationship (if any) between non-coplanar PCB exposure, immune responsiveness and the neurotransmitter serotonin (5-HT) was examined. Using bluegill sunfish (Lepomis macrochirus) as a model, changes in brain 5-HT levels, 5-HT synthesis and metabolism, and innate and cell-mediated immune parameters were evaluated following a single intraperitoneal injection of PCB 153 (5.0 or 50 μg/g body weight). Results revealed that 3 d following administration, PCB exposure decreased brain 5-HT levels (in the absence of effects on some enzymes involved in 5-HT synthesis and metabolism), increased oxyradical production by kidney phagocytes, and reduced splenic T- and B-lymphocyte proliferation. In vivo treatment of PCB-exposed fish with 5-hydroxy-L-tryptophan (the immediate precursor to 5-HT) ameliorated the observed PCB-induced immunotoxicity; in vitro treatment of immune cells from PCB-exposed fish with 5-HT failed to reverse the effects. Taken together, results from this study could suggest a link between PCB-induced alterations of brain 5-HT levels and subsequent immune dysfunction. These studies highlight the importance of indirect mechanisms of immunotoxicity, and, specifically, suggest a role for the neuroimmune axis in non-coplanar PCB-induced immune alterations.
Collapse
|
36
|
Effect of melatonin on PCB (Aroclor 1254) induced neuronal damage and changes in Cu/Zn superoxide dismutase and glutathione peroxidase-4 mRNA expression in cerebral cortex, cerebellum and hippocampus of adult rats. Neurosci Res 2010; 66:189-97. [DOI: 10.1016/j.neures.2009.10.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 10/14/2009] [Accepted: 10/31/2009] [Indexed: 11/22/2022]
|
37
|
Tharappel JC, Cholewa J, Espandiari P, Spear BT, Gairola CG, Glauert HP. Effects of cigarette smoke on the activation of oxidative stress-related transcription factors in female A/J mouse lung. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:1288-1297. [PMID: 20711931 PMCID: PMC2924761 DOI: 10.1080/15287394.2010.484708] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cigarette smoke contains a high concentration of free radicals and induces oxidative stress in the lung and other tissues. Several transcription factors are known to be activated by oxidative stress, including nuclear factor-kappaB (NF-kappaB), activator protein-1 (AP-1), and hypoxia-inducible factor (HIF). Studies were therefore undertaken to examine whether cigarette smoke could activate these transcription factors, as well as other transcription factors that may be important in lung carcinogenesis. Female A/J mice were exposed to cigarette smoke for 2, 5, 10, 15, 20, 42, or 56 d (6 hr/d, 5 d/wk). Cigarette smoke did not increase NF-kappaB activation at any of these times, but NF-kappaB DNA binding activity was lower after 15 d and 56 d of smoke exposure. The DNA binding activity of AP-1 was lower after 10 d and 56 d but was not changed after 42 d of smoke exposure. The DNA binding activity of HIF was quantitatively increased after 42 d of smoke exposure but decreased after 56 d. Whether the activation of other transcription factors in the lung could be altered after exposure to cigarette smoke was subsequently examined. The DNA binding activities of FoxF2, myc-CF1, RORE, and p53 were examined after 10 d of smoke exposure. The DNA binding activities of FoxF2 and p53 were quantitatively increased, but those of myc-CF1 and RORE were unaffected. These studies show that cigarette smoke exposure leads to quantitative increases in DNA binding activities of FoxF2 and p53, while the activations of NF-kappaB, AP-1, and HIF are largely unaffected or reduced.
Collapse
Affiliation(s)
- Job C. Tharappel
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Jill Cholewa
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Parvaneh Espandiari
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY
| | - Brett T. Spear
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY
- Markey Cancer Center, University of Kentucky, Lexington, KY
| | - C. Gary Gairola
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY
| | - Howard P. Glauert
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY
- Markey Cancer Center, University of Kentucky, Lexington, KY
| |
Collapse
|
38
|
Kopec AK, Burgoon LD, Ibrahim-Aibo D, Mets BD, Tashiro C, Potter D, Sharratt B, Harkema JR, Zacharewski TR. PCB153-elicited hepatic responses in the immature, ovariectomized C57BL/6 mice: comparative toxicogenomic effects of dioxin and non-dioxin-like ligands. Toxicol Appl Pharmacol 2009; 243:359-71. [PMID: 20005886 DOI: 10.1016/j.taap.2009.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/01/2009] [Accepted: 12/04/2009] [Indexed: 12/26/2022]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous contaminants found as complex mixtures of coplanar and non-coplanar congeners. The hepatic temporal and dose-dependent effects of the most abundant non-dioxin-like congener, 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153), were examined in immature, ovariectomized C57BL/6 mice, and compared to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the prototypical aryl hydrocarbon receptor (AhR) ligand. Animals were gavaged once with 300 mg/kg PCB153 or sesame oil vehicle and sacrificed 4, 12, 24, 72 or 168 h post dose. In the dose-response study, mice were gavaged with 1, 3, 10, 30, 100 or 300 mg/kg PCB153 or sesame oil for 24 h. Significant increases in relative liver weights were induced with 300 mg/kg PCB153 between 24 and 168 h, accompanied by slight vacuolization and hepatocellular hypertrophy. The hepatic differential expression of 186 and 177 genes was detected using Agilent 4 x 44 K microarrays in the time course (|fold change|> or =1.5, P1(t)> or =0.999) and dose-response (|fold change|> or =1.5, P1(t)> or =0.985) studies, respectively. Comparative analysis with TCDD suggests that the differential gene expression elicited by PCB153 was not mediated by the AhR. Furthermore, constitutive androstane and pregnane X receptor (CAR/PXR) regulated genes including Cyp2b10, Cyp3a11, Ces2, Insig2 and Abcc3 were dose-dependently induced by PCB153. Collectively, these results suggest that the hepatocellular effects elicited by PCB153 are qualitatively and quantitatively different from TCDD and suggestive of CAR/PXR regulation.
Collapse
Affiliation(s)
- Anna K Kopec
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Non-dioxin-like-PCBs phosphorylate Mdm2 at Ser166 and attenuate the p53 response in HepG2 cells. Chem Biol Interact 2009; 182:191-8. [DOI: 10.1016/j.cbi.2009.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/20/2009] [Accepted: 09/06/2009] [Indexed: 11/17/2022]
|
40
|
Mantovani A, Frazzoli C, La Rocca C. Risk assessment of endocrine-active compounds in feeds. Vet J 2009; 182:392-401. [DOI: 10.1016/j.tvjl.2008.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/22/2008] [Accepted: 08/07/2008] [Indexed: 11/29/2022]
|
41
|
Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, Sung B. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci 2009. [PMID: 19723038 DOI: 10.1111/j.1749-6632.2009.04911.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Signal transducer and activator of transcription-3 (STAT-3) is one of six members of a family of transcription factors. It was discovered almost 15 years ago as an acute-phase response factor. This factor has now been associated with inflammation, cellular transformation, survival, proliferation, invasion, angiogenesis, and metastasis of cancer. Various types of carcinogens, radiation, viruses, growth factors, oncogenes, and inflammatory cytokines have been found to activate STAT-3. STAT-3 is constitutively active in most tumor cells but not in normal cells. Phosphorylation of STAT-3 at tyrosine 705 leads to its dimerization, nuclear translocation, DNA binding, and gene transcription. The phosphorylation of STAT-3 at serine 727 may regulate its activity negatively or positively. STAT-3 regulates the expression of genes that mediate survival (survivin, bcl-xl, mcl-1, cellular FLICE-like inhibitory protein), proliferation (c-fos, c-myc, cyclin D1), invasion (matrix metalloproteinase-2), and angiogenesis (vascular endothelial growth factor). STAT-3 activation has also been associated with both chemoresistance and radioresistance. STAT-3 mediates these effects through its collaboration with various other transcription factors, including nuclear factor-kappaB, hypoxia-inducible factor-1, and peroxisome proliferator activated receptor-gamma. Because of its critical role in tumorigenesis, inhibitors of this factor's activation are being sought for both prevention and therapy of cancer. This has led to identification of small peptides, oligonucleotides, and small molecules as potential STAT-3 inhibitors. Several of these small molecules are chemopreventive agents derived from plants. This review discusses the intimate relationship between STAT-3, inflammation, and cancer in more detail.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, Cytokine Research Laboratory, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, Sung B. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci 2009; 1171:59-76. [PMID: 19723038 DOI: 10.1111/j.1749-6632.2009.04911.x] [Citation(s) in RCA: 551] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Signal transducer and activator of transcription-3 (STAT-3) is one of six members of a family of transcription factors. It was discovered almost 15 years ago as an acute-phase response factor. This factor has now been associated with inflammation, cellular transformation, survival, proliferation, invasion, angiogenesis, and metastasis of cancer. Various types of carcinogens, radiation, viruses, growth factors, oncogenes, and inflammatory cytokines have been found to activate STAT-3. STAT-3 is constitutively active in most tumor cells but not in normal cells. Phosphorylation of STAT-3 at tyrosine 705 leads to its dimerization, nuclear translocation, DNA binding, and gene transcription. The phosphorylation of STAT-3 at serine 727 may regulate its activity negatively or positively. STAT-3 regulates the expression of genes that mediate survival (survivin, bcl-xl, mcl-1, cellular FLICE-like inhibitory protein), proliferation (c-fos, c-myc, cyclin D1), invasion (matrix metalloproteinase-2), and angiogenesis (vascular endothelial growth factor). STAT-3 activation has also been associated with both chemoresistance and radioresistance. STAT-3 mediates these effects through its collaboration with various other transcription factors, including nuclear factor-kappaB, hypoxia-inducible factor-1, and peroxisome proliferator activated receptor-gamma. Because of its critical role in tumorigenesis, inhibitors of this factor's activation are being sought for both prevention and therapy of cancer. This has led to identification of small peptides, oligonucleotides, and small molecules as potential STAT-3 inhibitors. Several of these small molecules are chemopreventive agents derived from plants. This review discusses the intimate relationship between STAT-3, inflammation, and cancer in more detail.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, Cytokine Research Laboratory, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Aroclor 1254 induced cytotoxicity and mitochondrial dysfunction in isolated rat hepatocytes. Toxicology 2009; 262:175-83. [PMID: 19486918 DOI: 10.1016/j.tox.2009.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 01/24/2023]
Abstract
Polychlorinated biphenyls (PCBs) are widespread persistent environmental contaminants that display a complex spectrum of toxicological properties, including hepatotoxicity. Although Aroclor 1254 is ubiquitous in the environment, its potential cytotoxic effect on rat hepatocytes and the mechanism underlines its cytotoxicity are not fully investigated. Therefore, the present study was conducted to investigate: (1) the potential cytotoxicity of Aroclor 1254 in rat hepatocytes, and (2) characterization of the molecular mechanisms involved in the Aroclor 1254-induced hepatotoxicity, particularly the role of mitochondria, possibly a primary target in such event, could greatly explain the cytotoxic effect of Aroclor 1254 in rat hepatocytes. Hepatocytes were isolated from adult male albino rats and incubated for 24h in a fresh media containing 0, 20, 30, 40, 50 or 60muM of Aroclor 1254. At the end of incubation, hepatocytes and hepatocyte mitochondria were used for the assay. Our results showed cytotoxicity of Aroclor 1254 in rat hepatocytes starting at a concentration of 30muM as manifested by increased lactate dehydrogenase (LDH) leakage, decreased cell viability (MTT assay) and increased lipid peroxidation. As mitochondria are known to be one possible site of the cell damage, the effects of Aroclor 1254 on hepatocyte mitochondria was investigated. Aroclor 1254 induced reactive oxygen species (ROS) generation in hepatocyte mitochondria, inhibited mitochondrial respiratory chain complexes I and III and beta-oxidation of free fatty acids, depletion of mitochondrial antioxidant enzymes GPx and GR and the non-enzymatic antioxidant reduced glutathione, inhibited mitochondrial membrane potential (Deltapsi(m)), decreased mitochondrial aconitase and cardiolipin content, and elevated levels of cytochrome P450 subfamily, CYP1A and CYP2B activities as indicated by ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-deethylase (PROD). Therefore, we can conclude that Aroclor 1254 induced rat hepatocyte toxicity and our findings provide evidence to propose that mitochondria are one of the most important and earliest cell targets in Aroclor 1254-mediated toxicity and delineate several mitochondrial processes at least, in part, by induction of oxidative stress. These findings can be useful in future cytoprotective therapy approaches. Since mitochondrial events appear to be targeted in hepatocellular damage induced by Aroclor 1254, an antioxidant therapy targeted to mitochondria may constitute an interesting strategy to ameliorate its toxicity.
Collapse
|
44
|
Venkataraman P, Krishnamoorthy G, Selvakumar K, Arunakaran J. Oxidative stress alters creatine kinase system in serum and brain regions of polychlorinated biphenyl (Aroclor 1254)-exposed rats: protective role of melatonin. Basic Clin Pharmacol Toxicol 2009; 105:92-7. [PMID: 19389042 DOI: 10.1111/j.1742-7843.2009.00406.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Polychlorinated biphenyls are one of the environmental toxicants and neurotoxic compounds which induce the production of free radicals. Creatine kinase plays a key role in energy metabolism of nervous tissue and might be one of the targets for reactive oxygen species. Melatonin, an indoleamine, plays an important role in neurodegenerative diseases as an antioxidant and neuroprotector. The objective of the present study was to investigate the protective role of melatonin on polychlorinated biphenyl (Aroclor 1254)-induced oxidative stress and the changes in creatine kinase activity in brain regions of adult rats. Group I: rats were intraperitoneally (i.p.) administered with corn oil (vehicle) for 30 days. Group II: rats injected i.p. with Aroclor 1254 at 2 mg/kg body weight (bw)/day for 30 days. Groups III and IV: rats i.p. received melatonin (5 or 10 mg/kg bw/day) simultaneously with Aroclor 1254 for 30 days. After 30 days, rats were killed and the brain regions were dissected to cerebral cortex, cerebellum and hippocampus. Lipid peroxidation, hydroxyl radical and hydrogen peroxide (H2O2) levels were determined. The activity of creatine kinase was assayed in serum and brain regions, and its isoenzymes in serum were separated electrophoretically. Activity of creatine kinase was decreased while an increase in H2O2, hydroxyl radical and lipid peroxidation was observed in brain regions of polychlorinated biphenyl-treated rats. Also polychlorinated biphenyl exposure showed a significant increase in serum creatine kinase level and its isoforms such as BB-creatine kinase, MB-creatine kinase, and MM-creatine kinase. Administration of melatonin prevented these alterations induced by polychlorinated biphenyl by its free radical scavenging mechanism. Thus, polychlorinated biphenyl alters creatine kinase activity by inducing oxidative stress in brain regions, which can be protected by melatonin.
Collapse
Affiliation(s)
- Prabhu Venkataraman
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | | | | | | |
Collapse
|
45
|
Wei W, Zhang C, Liu AL, Xie SH, Chen XM, Lu WQ. Effect of PCB153 on BaP-induced genotoxicity in HepG2 cells via modulation of metabolic enzymes. Mutat Res 2009; 675:71-6. [PMID: 19386251 DOI: 10.1016/j.mrgentox.2009.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 02/01/2009] [Accepted: 02/28/2009] [Indexed: 10/21/2022]
Abstract
Benzo(a)pyrene (BaP) is a representative environmental carcinogen and is metabolically activated by several cytochrome P450 (CYP) enzymes to become the ultimate carcinogen. Numerous studies have indicated that 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) could effectively alter the activity of xenobiotic metabolizing enzymes (XMEs). Therefore, we propose that PCB153 may affect BaP-induced genotoxicity mediated by XMEs. In the present study, we treated HepG2 cells with BaP (50 microM) or PCB153 (0.1, 1, 10 and 100 microM), or pretreated the cells with PCB153 for 48 h followed by treatment with a combination of both BaP and PCB153. CYP1A1 activity was dramatically increased in cells treated with either BaP or PCB153. Glutathione-S-transferase (GST) activity was increased in BaP-treated cells, but decreased in PCB153-treated cells. In parallel to studies on enzyme activity, the micronuclei (MN) assay was used to assess the genotoxic damage caused by BaP and PCB153. BaP and PCB153 at 100 microM enhanced MN formation. In contrast to BaP treatment alone, treatment with both BaP and PCB153 significantly enhanced the activity of CYP1A1 and the formation of MN, but reduced the activity of GST. alpha-Naphthoflavone (ANF), an inhibitor of CYP1A1, inhibited MN formation in the presence of both BaP and PCB153. In addition, there was a positive correlation between CYP1A activity and MN formation (r(2)=0.794, P<0.001). Our observations suggest that co-exposure to BaP and PCB153 may increase BaP-induced genotoxicity, possibly through the induction of CYP1A1 and inhibition of GST.
Collapse
Affiliation(s)
- Wei Wei
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Hattis D, Chu M, Rahmioglu N, Goble R, Verma P, Hartman K, Kozlak M. A preliminary operational classification system for nonmutagenic modes of action for carcinogenesis. Crit Rev Toxicol 2009; 39:97-138. [PMID: 19009457 DOI: 10.1080/10408440802307467] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article proposes a system of categories for nonmutagenic modes of action for carcinogenesis. The classification is of modes of action rather than individual carcinogens, because the same compound can affect carcinogenesis in more than one way. Basically, we categorize modes of action as: (1) co-initiation (facilitating the original mutagenic changes in stem and progenitor cells that start the cancer process) (e.g. induction of activating enzymes for other carcinogens); (2) promotion (enhancing the relative growth vs differentiation/death of initiated clones (e.g. inhibition of growth-suppressing cell-cell communication); (3) progression (enhancing the growth, malignancy, or spread of already developed tumors) (e.g. suppression of immune surveillance, hormonally mediated growth stimulation for tumors with appropriate receptors by estrogens); and (4) multiphase (e.g., "epigenetic" silencing of tumor suppressor genes). A priori, agents that act at relatively early stages in the process are expected to manifest greater relative susceptibility in early life, whereas agents that act via later stage modes will tend to show greater susceptibility for exposures later in life.
Collapse
Affiliation(s)
- D Hattis
- George Perkins Marsh Institute, Clark University, Worcester, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Effect of antioxidant phytochemicals on the hepatic tumor promoting activity of 3,3',4,4'-tetrachlorobiphenyl (PCB-77). Food Chem Toxicol 2008; 46:3467-74. [PMID: 18796325 DOI: 10.1016/j.fct.2008.08.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 08/08/2008] [Accepted: 08/22/2008] [Indexed: 12/12/2022]
Abstract
Polychlorinated biphenyls (PCBs) have promoting activity in the liver, which may be brought about in part by the induction of oxidative stress. In this study we examined the effects of several antioxidant phytochemicals on the tumor promoting activity of 3,3',4'4-tetrachlorobiphenyl (PCB-77). Female Sprague Dawley rats were first injected with diethylnitrosamine (DEN, 150 mg/kg) and one week later the rats were fed an AIN-93 based purified diet or the same diet containing ellagic acid (0.4%), beta-carotene (0.5%), curcumin (0.5%), N-acetyl cysteine (NAC, 1.0%), coenzyme CoQ10 (CoQ10, 0.4%), resveratrol (0.005%), lycopene (10% as Lycovit, which contains 10% lycopene), or a tea extract (1%, containing 16.5% epigallocatechin-3-gallate [EGCG] and 33.4% total catechins). Rats were fed the diets for the remainder of the study. After three weeks, 2/3 of the control rats and all of the antioxidant diet-fed rats were injected i.p. with PCB-77 (300 micromol/kg) every other week for four injections. All rats were euthanized ten days after the last PCB injection. The rats that received PCB-77 alone showed an increase in the number and size of placental glutathione S-transferase (PGST)-positive foci in the liver. Lycopene significantly decreased the number of foci, while curcumin and CoQ10 decreased the size of the foci. In contrast, ellagic acid increased the number but decreased the size of the foci. All of the other phytochemicals showed only slight or no effects. Compared with the PCB-77 group, CoQ10 increased cell proliferation in normal hepatocytes, whereas the other antioxidants had no effect in either normal or PGST-positive hepatocytes. These findings show that none of the antioxidant phytochemicals produced a clear decrease in the promoting activity of PCB-77.
Collapse
|
48
|
Multiplex Genotyping as a Biomarker for Susceptibility to Carcinogenic Exposure in the FLEHS Biomonitoring Study. Cancer Epidemiol Biomarkers Prev 2008; 17:1902-12. [DOI: 10.1158/1055-9965.epi-08-0045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
49
|
Inhibition of the promotion of hepatocarcinogenesis by 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153) by the deletion of the p50 subunit of NF-kappa B in mice. Toxicol Appl Pharmacol 2008; 232:302-8. [PMID: 18644402 DOI: 10.1016/j.taap.2008.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/12/2008] [Accepted: 06/24/2008] [Indexed: 02/07/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent and ubiquitous environmental chemicals that bioaccumulate and have hepatic tumor promoting activity in rodents. The present study examined the effect of deleting the p50 subunit of NF-kappaB on the hepatic tumor promoting activity of 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153) in mice. Both wild-type and p50-/- male mice were injected i.p. with diethylnitrosamine (DEN, 90 mg/kg) and then subsequently injected biweekly with 20 i.p. injections of PCB-153 (300 micromol/kg/injection). p50 deletion decreased the tumor incidence in both PCB- and vehicle-treated mice, whereas PCB-153 slightly (P=0.09) increased the tumor incidence in wild-type and p50-/- mice. PCB-153 increased the total tumor volume in both wild-type and p50-/- mice, but the total tumor volume was not affected by p50 deletion in either PCB- or vehicle-treated mice. The volume of tumors that were positive for glutamine synthetase (GS), which is indicative of mutations in the beta-catenin gene, was increased in both wild-type and p50-/- mice administered PCB-153 compared to vehicle controls, and inhibited in p50-/- mice compared to wild-type mice (in both PCB- and vehicle-treated mice). The volume of tumors that were negative for GS was increased in p50-/- mice compared to wild-type mice but was not affected by PCB-153. PCB-153 increased cell proliferation in normal hepatocytes in wild-type but not p50-/- mice; this increase was inhibited in p50-/- mice. In hepatic tumors, the rate of cell proliferation was much higher than in normal hepatocytes, but was not affected by PCB treatment or p50 deletion. The rate of apoptosis, as measured by the TUNEL assay, was not affected by PCB-153 or p50 deletion in normal hepatocytes. In hepatic tumors, the rate of apoptosis was lower than in normal hepatocytes; PCB-153 slightly (P=0.10) increased apoptosis in p50-/- but not wild-type mice; p50 deletion had no effect. Taken together, these data indicate that the absence of the NF-kappaB p50 subunit inhibits the promoting activity of PCB-153 and alters the proliferative and apoptotic changes in mouse liver in the response to PCBs.
Collapse
|
50
|
Besselink H, Nixon E, McHugh B, Rimkus G, Klungsøyr J, Leonards P, De Boer J, Brouwer A. Evaluation of tumour promoting potency of fish borne toxaphene residues, as compared to technical toxaphene and UV-irradiated toxaphene. Food Chem Toxicol 2008; 46:2629-38. [PMID: 18558458 DOI: 10.1016/j.fct.2008.04.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 03/27/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
In this study the potential impact of food chain-based biotransformation and physico-chemical weathering of toxaphene on its tumour promoting potential was investigated in vitro and in vivo. Human exposure to toxaphene is mainly through consumption of contaminated fish, therefore fish-borne residues of toxaphene (cod liver extract, CLE) were prepared by exposing cod to technical toxaphene (TT) for 63 days. UV-irradiated toxaphene (uvT) was included to represent a physico-chemical weathered toxaphene mixture. In vitro, TT, uvT and CLE all showed a dose- and time-dependent inhibition of gap junctional intercellular communication (GJIC) with a relative potency of CLE>TT=uvT. Tumour promoting potency was further studied in vivo in a medium term two-stage initiation/promotion bioassay in female Sprague-Dawley rats, using an increase in altered hepatic foci positive for glutathione-S-transferase-P (AHF-GST-P) as read out. No increase in AHF-GST-P occurred following exposure to either TT, uvT, or CLE, except for the positive control group (2,3,7,8-TCDD). Based on this study the no observed adverse effect level (NOAEL) for tumour promoting potency is at least 12.5mg/kg/week, or higher for CLE. Considering current human exposure levels in Europe it is doubtful that consumption of fish at current levels of toxaphene contamination give rise to human health risk.
Collapse
Affiliation(s)
- H Besselink
- BioDetection Systems BV, Kruislaan 406, 1098 SM, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|