1
|
Wei R, Zhang W, Pu C, Shao Q, Xu Q, Li P, Zhao X, Sun T, Weng D. Assessment of lipid metabolism-disrupting effects of non-phthalate plasticizer diisobutyl adipate through in silico and in vitro approaches. ENVIRONMENTAL TOXICOLOGY 2023; 38:1395-1404. [PMID: 36896678 DOI: 10.1002/tox.23773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
Diisobutyl adipate (DIBA), as a novel non-phthalate plasticizer, is widely used in various products. However, little effort has been made to investigate whether DIBA might have adverse effects on human health. In this study, we integrated an in silico and in vitro strategy to assess the impact of DIBA on cellular homeostasis. Since numerous plasticizers could activate peroxisome proliferator-activated receptor γ (PPARγ) pathway to interrupt metabolism systems, we first utilized molecular docking to analyze interaction between DIBA and PPARγ. Results indicated that DIBA had strong affinity with the ligand-binding domain of PPARγ (PPARγ-LBD) at Histidine 499. Afterwards, we used cellular models to investigate in vitro effects of DIBA. Results demonstrated that DIBA exposure increased intracellular lipid content in murine and human hepatocytes, and altered transcriptional expression of genes related to PPARγ signaling and lipid metabolism pathways. At last, target genes regulated by DIBA were predicted and enriched for Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Protein-protein interaction (PPI) network and transcriptional factors (TFs)-genes network were established accordingly. Target genes were enriched in Phospholipase D signaling pathway, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) and Epidermal growth factor receptor (EGFR) signaling pathway which were related to lipid metabolism. These findings suggested that DIBA exposure might disturb intracellular lipid metabolism homeostasis via targeting PPARγ. This study also demonstrated that this integrated in silico and in vitro methodology could be utilized as a high throughput, cost-saving and effective tool to assess the potential risk of various environmental chemicals on human health.
Collapse
Affiliation(s)
- Rong Wei
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Weigao Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Chunlin Pu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Qianchao Shao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Qian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Peiqi Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xunan Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Tingzhe Sun
- School of Life Sciences, Anqing Normal University, Anqing, Anhui, China
| | - Dan Weng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
2
|
Chemical and Hormonal Effects on STAT5b-Dependent Sexual Dimorphism of the Liver Transcriptome. PLoS One 2016; 11:e0150284. [PMID: 26959237 PMCID: PMC4784907 DOI: 10.1371/journal.pone.0150284] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
The growth hormone (GH)-activated transcription factor signal transducer and activator of transcription 5b (STAT5b) is a key regulator of sexually dimorphic gene expression in the liver. Suppression of hepatic STAT5b signaling is associated with lipid metabolic dysfunction leading to steatosis and liver cancer. In the companion publication, a STAT5b biomarker gene set was identified and used in a rank-based test to predict both increases and decreases in liver STAT5b activation status/function with high (≥ 97%) accuracy. Here, this computational approach was used to identify chemicals and hormones that activate (masculinize) or suppress (feminize) STAT5b function in a large, annotated mouse liver and primary hepatocyte gene expression compendium. Exposure to dihydrotestosterone and thyroid hormone caused liver masculinization, whereas glucocorticoids, fibroblast growth factor 15, and angiotensin II caused liver feminization. In mouse models of diabetes and obesity, liver feminization was consistently observed and was at least partially reversed by leptin or resveratrol exposure. Chemical-induced feminization of male mouse liver gene expression profiles was a relatively frequent phenomenon: of 156 gene expression biosets from chemically-treated male mice, 29% showed feminization of liver STAT5b function, while <1% showed masculinization. Most (93%) of the biosets that exhibited feminization of male liver were also associated with activation of one or more xenobiotic-responsive receptors, most commonly constitutive activated receptor (CAR) or peroxisome proliferator-activated receptor alpha (PPARα). Feminization was consistently associated with increased expression of peroxisome proliferator-activated receptor gamma (Pparg) but not other lipogenic transcription factors linked to steatosis. GH-activated STAT5b signaling in mouse liver is thus commonly altered by diverse chemicals, and provides a linkage between chemical exposure and dysregulated gene expression associated with adverse effects on the liver.
Collapse
|
3
|
Imajo K, Yoneda M, Kessoku T, Ogawa Y, Maeda S, Sumida Y, Hyogo H, Eguchi Y, Wada K, Nakajima A. Rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Int J Mol Sci 2013; 14:21833-57. [PMID: 24192824 PMCID: PMC3856038 DOI: 10.3390/ijms141121833] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/14/2013] [Accepted: 10/21/2013] [Indexed: 02/06/2023] Open
Abstract
Research in nonalcoholic fatty liver disease (NAFLD), including nonalcoholic steatohepatitis (NASH), has been limited by the availability of suitable models for this disease. A number of rodent models have been described in which the relevant liver pathology develops in an appropriate metabolic context. These models are promising tools for researchers investigating one of the key issues of NASH: not so much why steatosis occurs, but what causes the transition from simple steatosis to the inflammatory, progressive fibrosing condition of steatohepatitis. The different rodent models can be classified into two large groups. The first includes models in which the disease is acquired after dietary or pharmacological manipulation, and the second, genetically modified models in which liver disease develops spontaneously. To date, no single rodent model has encompassed the full spectrum of human disease progression, but individual models can imitate particular characteristics of human disease. Therefore, it is important that researchers choose the appropriate rodent models. The purpose of the present review is to discuss the metabolic abnormalities present in the currently available rodent models of NAFLD, summarizing the strengths and weaknesses of the established models and the key findings that have furthered our understanding of the disease's pathogenesis.
Collapse
Affiliation(s)
- Kento Imajo
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Yokohama 236-0004, Japan; E-Mails: (K.I.); (M.Y.); (T.K.); (Y.O.); (S.M.)
| | - Masato Yoneda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Yokohama 236-0004, Japan; E-Mails: (K.I.); (M.Y.); (T.K.); (Y.O.); (S.M.)
| | - Takaomi Kessoku
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Yokohama 236-0004, Japan; E-Mails: (K.I.); (M.Y.); (T.K.); (Y.O.); (S.M.)
| | - Yuji Ogawa
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Yokohama 236-0004, Japan; E-Mails: (K.I.); (M.Y.); (T.K.); (Y.O.); (S.M.)
| | - Shin Maeda
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Yokohama 236-0004, Japan; E-Mails: (K.I.); (M.Y.); (T.K.); (Y.O.); (S.M.)
| | - Yoshio Sumida
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; E-Mail:
| | - Hideyuki Hyogo
- Department of Medicine and Molecular Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan; E-Mail:
| | - Yuichiro Eguchi
- Department of Internal Medicine, Saga Medical School, Saga University, Saga 849-8501, Japan; E-Mail:
| | - Koichiro Wada
- Department of Pharmacology, Osaka University Graduate School of Dentistry, 1-8 Yamada-oka, Suita 565-0871, Japan; E-Mail:
| | - Atsushi Nakajima
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Yokohama 236-0004, Japan; E-Mails: (K.I.); (M.Y.); (T.K.); (Y.O.); (S.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-45-787-2640; Fax: +81-45-784-3546
| |
Collapse
|
4
|
Carriquiry M, Weber WJ, Fahrenkrug SC, Crooker BA. Hepatic gene expression in multiparous Holstein cows treated with bovine somatotropin and fed n-3 fatty acids in early lactation. J Dairy Sci 2009; 92:4889-900. [PMID: 19762804 DOI: 10.3168/jds.2008-1676] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiparous cows were fed supplemental dietary fat and treated with bST to assess effects of n-3 fatty acid supply, bovine somatotropin (bST), and stage of lactation on hepatic gene expression. Cows were blocked by expected calving date and previous milk yield and assigned randomly to treatment. Supplemental dietary fat was provided from calving as either whole high-oil sunflower seeds (SS; 10% of dietary dry matter; n-6/n-3 ratio of 4.6) as a source of linoleic acid or a mixture of Alifet-High Energy and Alifet-Repro (AF; 3.5 and 1.5% of dietary dry matter, respectively; n-6/n-3 ratio of 2.6) as a source of protected n-3 fatty acids. Cows were treated with 0 (SSN, AFN) or 500 (SSY, AFY) mg of bST every 10 d from 12 to 70 d in milk (DIM) and at 14-d intervals thereafter. Liver biopsies were collected on -12, 10, 24, and 136 DIM for gene expression analysis. Growth hormone receptor (GHR), insulin-like growth factor-I (IGF-I), IGF-binding protein-3 (IGFBP3), hepatic nuclear factor 4alpha (HNF4alpha), fibroblast growth factor-21 (FGF-21), and peroxisome proliferator-activated receptor alpha (PPARalpha) were the target genes and hypoxanthine phosphoribosyltransferase (HPRT) was used as an endogenous control gene. Expression was measured by quantitative real-time reverse transcription-PCR analyses of 4 samples from each of 32 cows (8 complete blocks). Amounts of hepatic HPRT mRNA were not affected by bST or diet but were increased by approximately 3.8% in early lactation (3.42, 3.52, 3.54, and 3.41 x 10(4) message copies for -12, 10, 24, and 136 DIM, respectively). This small change had little detectable impact on the ability of HPRT to serve as an internal control gene. Amounts of hepatic GHR, IGF-I, and IGFBP3 mRNA were reduced by 1.5 to 2-fold after calving. Expression of GHR and IGF-I increased and IGFBP3 tended to increase within 12 d (by 24 DIM) of bST administration. These effects of bST persisted through 136 DIM. Hepatic HNF4alpha mRNA was not altered by DIM or any of the treatments. Abundance of PPARalpha mRNA was unchanged through 24 DIM but increased by 136 DIM. There was a trend for an interaction of bST, diet, and DIM on PPARalpha mRNA abundance from 24 to 136 DIM because the amount of PPARalpha mRNA increased in SSN, SSY, and AFN cows but was not altered in AFY cows. The amount of FGF-21 mRNA increased markedly in early lactation but, like HNF4alpha mRNA, was not affected by bST, diet, or their interactions. These results indicate 1) that bST induced increases in hepatic expression of GHR, IGF-I, and IGFBP3 when cows were in negative energy balance in early lactation, 2) there was no effect of reduced dietary n-6/n-3 content on hepatic gene expression, and 3) there was support for a potential homeorhetic role of hepatic FGF-21 via uncoupling the somatotropin-IGF-axis in early lactation.
Collapse
Affiliation(s)
- M Carriquiry
- Department of Animal Science, University of Minnesota, St Paul 55108-6118, USA
| | | | | | | |
Collapse
|
5
|
Kim DS, Itoh E, Iida K, Thorner MO. Growth hormone increases mRNA levels of PPARdelta and Foxo1 in skeletal muscle of growth hormone deficient lit/lit mice. Endocr J 2009; 56:141-7. [PMID: 18997443 DOI: 10.1507/endocrj.k08e-219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
GH plays an important role in lipid metabolism as a partitioning hormone. PPARdelta regulates lipid oxidation in skeletal muscle and is activated by several physiological ligands including fatty acids. To investigate whether GH has an effect on the regulation of transcription of PPARdelta and other genes involved in energy metabolism in skeletal muscle, mRNA levels were studied by real-time RT-PCR in lit/lit mice (isolated GH deficiency) and lit/+ mice controls (normal GH levels). Mice received either a single bolus (120 ng/g) of rat GH or vehicle, and skeletal muscle was collected 4h later. PPARdelta mRNA was increased in vehicle-treated lit/lit mice compared to vehicle-treated lit/+ mice (1.67 fold, P<0.05). lit/lit mice treated with GH showed a further increase in PPARdelta mRNA levels (2.83 fold vs. vehicle-treated lit/+ mice, P<0.001). mRNA levels of Foxo1 were increased in vehicle-treated lit/lit mice compared to vehicle-treated lit/+ mice (1.74 fold, P<0.05). lit/lit mice treated with GH showed a further increase in Foxo1 mRNA levels (6.30 fold vs. vehicle-treated lit/+ mice, P<0.001). mRNA levels of acyl CoA-oxidase showed a trend to be higher in vehicle-treated lit/lit mice compared to vehicle-treated lit/+ mice. This reached statistical significance in GH-treated lit/lit mice compared to vehicle-treated lit/+ mice (2.11 fold, P<0.05). In summary, mRNA levels of PPARdelta and Foxo1 were increased in skeletal muscle of GH-deficient mice, and further acutely increased by GH administration. These results suggest that GH plays a relevant role in the lipid catabolism in skeletal muscle.
Collapse
Affiliation(s)
- Dong-Sun Kim
- Division of Endocrinology and Metabolism, University of Virginia, VA 22903, USA
| | | | | | | |
Collapse
|
6
|
Osabe M, Sugatani J, Fukuyama T, Ikushiro SI, Ikari A, Miwa M. Expression of hepatic UDP-glucuronosyltransferase 1A1 and 1A6 correlated with increased expression of the nuclear constitutive androstane receptor and peroxisome proliferator-activated receptor alpha in male rats fed a high-fat and high-sucrose diet. Drug Metab Dispos 2008; 36:294-302. [PMID: 17967931 DOI: 10.1124/dmd.107.017731] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Rats that consumed a high-fat and high-sucrose (HF1) diet or a high-fat (HF2) diet developed hepatic steatosis. The alteration in nutritional status affected hepatic cytochrome P450 and UDP-glucuronosyltransferase (UGT) levels. Messenger RNA and protein levels of UGT1A1 and UGT1A6 in the liver but not the jejunum were increased in male rats fed the HF1 diet. These protein levels did not increase in HF2-fed male rats or HF1-fed female rats. In contrast, the CYP1A2 protein level was decreased in the HF1 but not HF2 diet group, whereas CYP2E1 and CYP4A protein levels were elevated in the HF2 but not HF1 diet group. No significant difference in the organic anion transporter polypeptide (Oatp) 1, Oatp2, multidrug resistance-associated protein (Mrp) 2, or Mrp3 protein levels was found between the standard and HF1 diet groups of male rats. Consumption of the HF1 diet affected the in vivo metabolism of acetaminophen (APAP) such that the area under the APAP-glucuronide plasma concentration-time curve was elevated 2.1-fold in male rats but not female rats. In liver cell nuclei of male rats but not female rats, constitutive androstane receptor (CAR) and proliferator-activated receptor alpha (PPARalpha) protein levels were significantly enhanced by intake of the HF1 diet. Additionally, administration of the PPARalpha agonist clofibrate to male rats up-regulated UGT1A1 and UGT1A6 and down-regulated CYP1A2 in the liver. Taken together, these results indicate that nutritional status may gender-specifically influence the expression and activation of CAR and PPARalpha in liver cell nuclei, and this effect appears to be associated with alterations in UGT1A1 and UGT1A6 expression.
Collapse
Affiliation(s)
- Makoto Osabe
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Upham J, Acott PD, O'regan P, Sinal CJ, Crocker JFS, Geldenhuys L, Murphy MG. The pesticide adjuvant, Toximul™, alters hepatic metabolism through effects on downstream targets of PPARα. Biochim Biophys Acta Mol Basis Dis 2007; 1772:1057-64. [PMID: 17643967 DOI: 10.1016/j.bbadis.2007.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 06/01/2007] [Accepted: 06/08/2007] [Indexed: 11/23/2022]
Abstract
Previous studies demonstrated that chronic dermal exposure to the pesticide adjuvant (surfactant), Toximul (Tox), has significant detrimental effects on hepatic lipid metabolism. This study demonstrated that young mice dermally exposed to Tox for 12 days have significant increases in expression of peroxisomal acyl-CoA oxidase (mRNA and protein), bifunctional enzyme (mRNA) and thiolase (mRNA), as well as the P450 oxidizing enzymes Cyp4A10 and Cyp4A14 (mRNA and protein). Tox produced a similar pattern of increases in wild type adult female mice but did not induce these responses in PPARalpha-null mice. These data support the hypothesis that Tox, a heterogeneous blend of nonionic and anionic surfactants, modulates hepatic metabolism at least in part through activation of PPARalpha. Notably, all three groups of Tox-treated mice had increased relative liver weights due to significant accumulation of lipid. This could be endogenous in nature and/or a component(s) of Tox or a metabolite thereof. The ability of Tox and other hydrocarbon pollutants to induce fatty liver despite being PPARalpha agonists indicates a novel consequence of exposure to this class of chemicals, and may provide a new understanding of fatty liver in populations with industrial exposure.
Collapse
Affiliation(s)
- Jacqueline Upham
- Departments of Physiology and Biophysics, 5850 College Street, Sir Charles Tupper Medical Building, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | | | | | | | | | |
Collapse
|
8
|
Keshava N, Caldwell JC. Key issues in the role of peroxisome proliferator-activated receptor agonism and cell signaling in trichloroethylene toxicity. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1464-70. [PMID: 16966106 PMCID: PMC1570084 DOI: 10.1289/ehp.8693] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARalpha) is thought to be involved in several different diseases, toxic responses, and receptor pathways. The U.S. Environmental Protection Agency 2001 draft trichloroethylene (TCE) risk assessment concluded that although PPAR may play a role in liver tumor induction, the role of its activation and the sequence of subsequent events important to tumorigenesis are not well defined, particularly because of uncertainties concerning the extraperoxisomal effects. In this article, which is part of a mini-monograph on key issues in the health risk assessment of TCE, we summarize some of the scientific literature published since that time on the effects and actions of PPARalpha that help inform and illustrate the key scientific questions relevant to TCE risk assessment. Recent analyses of the role of PPARalpha in gene expression changes caused by TCE and its metabolites provide only limited data for comparison with other PPARalpha agonists, particularly given the difficulties in interpreting results involving PPARalpha knockout mice. Moreover, the increase in data over the last 5 years from the broader literature on PPARalpha agonists presents a more complex array of extraperoxisomal effects and actions, suggesting the possibility that PPARalpha may be involved in modes of action (MOAs) not only for liver tumors but also for other effects of TCE and its metabolites. In summary, recent studies support the conclusion that determinations of the human relevance and susceptibility to PPARalpha-related MOA(s) of TCE-induced effects cannot rely on inferences regarding peroxisome proliferation per se and require a better understanding of the interplay of extraperoxisomal events after PPARalpha agonism.
Collapse
Affiliation(s)
- Nagalakshmi Keshava
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA.
| | | |
Collapse
|
9
|
Brown-Borg HM. Longevity in mice: is stress resistance a common factor? AGE (DORDRECHT, NETHERLANDS) 2006; 28:145-162. [PMID: 19943136 PMCID: PMC2464727 DOI: 10.1007/s11357-006-9003-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 12/01/2005] [Indexed: 05/27/2023]
Abstract
A positive relationship between stress resistance and longevity has been reported in a multitude of studies in organisms ranging from yeast to mice. Several mouse lines have been discovered or developed that exhibit extended longevities when compared with normal, wild-type mice of the same genetic background. These long-living lines include the Ames dwarf, Snell dwarf, growth hormone receptor knockout (Laron dwarf), IGF-1 receptor heterozygote, Little, alpha-MUPA knockout, p66(shc) knockout, FIRKO, mClk-1 heterozygote, thioredoxin transgenic, and most recently the Klotho transgenic mouse. These mice are described in terms of the reported extended lifespans and studies involving resistance to stress. In addition, caloric restriction (CR) and stress resistance are briefly addressed for comparison with genetically altered mice. Although many of the long-living mice have GH/IGF-1/insulin signaling-related alterations and enhanced stress resistance, there are some that exhibit life extension without an obvious link to this hormone pathway. Resistance to oxidative stress is by far the most common system studied in long-living mice, but there is evidence of enhancement of resistance in other systems as well. The differences in stress resistance between long-living mutant and normal mice result from complex interrelationships among pathways that appear to coordinate signals of growth and metabolism, and subsequently result in differences in lifespan.
Collapse
Affiliation(s)
- H M Brown-Borg
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58203, USA.
| |
Collapse
|
10
|
Corton JC, Brown-Borg HM. Peroxisome Proliferator-Activated Receptor Coactivator 1 in Caloric Restriction and Other Models of Longevity. J Gerontol A Biol Sci Med Sci 2005; 60:1494-509. [PMID: 16424281 DOI: 10.1093/gerona/60.12.1494] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dietary restriction of calories (caloric restriction [CR]) increases longevity in phylogenetically diverse species. CR retards or prevents age-dependent deterioration of tissues and an array of spontaneous and chemically induced diseases associated with obesity including cardiovascular disease, diabetes, and cancer. An understanding of the molecular mechanisms that underlie the beneficial effects of CR will help identify novel dietary, pharmacological, and lifestyle strategies for slowing the rate of aging and preventing these diseases as well as identify factors which modulate chemical toxicity. Here, we review the involvement of transcriptional coactivator proteins, peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1 (PGC-1) alpha and beta, and regulated nuclear receptors (NR) in mediating the phenotypic changes found in models of longevity which include rodent CR models and mouse mutants in which insulin and/or insulin-like growth factor-I signaling is attenuated. PGC-1alpha is transcriptionally or posttranslationally regulated in mammals by: 1) forkhead box "other" (FoxO) transcription factors through an insulin/insulin-like growth factor-I -dependent pathway, 2) glucagon-stimulated cellular AMP (cAMP) response element binding protein, 3) stress-activated kinase signaling through p38 mitogen-activated protein kinase, and 4) the deacetylase and longevity factor sirtuin 1 (SIRT1). PGC-1alpha and PGC-1beta regulate the ligand-dependent and -independent activation of a large number of NR including PPARalpha and constitutive activated receptor (CAR). These NR regulate genes involved in nutrient and xenobiotic transport and metabolism as well as resistance to stress. CR reverses age-dependent decreases in PGC-1alpha, PPARalpha, and regulated genes. Strategies that target one or multiple PGC-1-regulated NR could be used to mimic the beneficial health effects found in models of longevity.
Collapse
Affiliation(s)
- J Christopher Corton
- United States Environmental Protection Agency, Division of Environmental Carcinogenesis, Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|
11
|
Xu C, Li CYT, Kong ANT. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res 2005; 28:249-68. [PMID: 15832810 DOI: 10.1007/bf02977789] [Citation(s) in RCA: 865] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt), in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the retinoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fibrate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these CYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sulforaphane) generally appear to be electrophiles. They generally possess electrophilic-mediated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and CAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular "stress" response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other "cellular stresses" including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the "stress" expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against "environmental" insults such as those elicited by exposure to xenobiotics.
Collapse
Affiliation(s)
- Changjiang Xu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
12
|
Jacobs JM, Diamond DL, Chan EY, Gritsenko MA, Qian W, Stastna M, Baas T, Camp DG, Carithers RL, Smith RD, Katze MG. Proteome analysis of liver cells expressing a full-length hepatitis C virus (HCV) replicon and biopsy specimens of posttransplantation liver from HCV-infected patients. J Virol 2005; 79:7558-69. [PMID: 15919910 PMCID: PMC1143647 DOI: 10.1128/jvi.79.12.7558-7569.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The development of a reproducible model system for the study of hepatitis C virus (HCV) infection has the potential to significantly enhance the study of virus-host interactions and provide future direction for modeling the pathogenesis of HCV. While there are studies describing global gene expression changes associated with HCV infection, changes in the proteome have not been characterized. We report the first large-scale proteome analysis of the highly permissive Huh-7.5 cell line containing a full-length HCV replicon. We detected >4,200 proteins in this cell line, including HCV replicon proteins, using multidimensional liquid chromatographic (LC) separations coupled to mass spectrometry. Consistent with the literature, a comparison of HCV replicon-positive and -negative Huh-7.5 cells identified expression changes of proteins involved in lipid metabolism. We extended these analyses to liver biopsy material from HCV-infected patients where a total of >1,500 proteins were detected from only 2 mug of liver biopsy protein digest using the Huh-7.5 protein database and the accurate mass and time tag strategy. These findings demonstrate the utility of multidimensional proteome analysis of the HCV replicon model system for assisting in the determination of proteins/pathways affected by HCV infection. Our ability to extend these analyses to the highly complex proteome of small liver biopsies with limiting protein yields offers the unique opportunity to begin evaluating the clinical significance of protein expression changes associated with HCV infection.
Collapse
Affiliation(s)
- Jon M Jacobs
- Department of Microbiology, University of Washington, Box 358070, Seattle, WA 98195-8070, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Stauber AJ, Brown-Borg H, Liu J, Waalkes MP, Laughter A, Staben RA, Coley JC, Swanson C, Voss KA, Kopchick JJ, Corton JC. Constitutive expression of peroxisome proliferator-activated receptor alpha-regulated genes in dwarf mice. Mol Pharmacol 2005; 67:681-94. [PMID: 15576629 DOI: 10.1124/mol.104.007278] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Defects in growth hormone secretion or signaling in mice are associated with decreased body weights (dwarfism), increased longevity, increased resistance to stress, and decreases in factors that contribute to cardiovascular disease and cancer. Peroxisome proliferators (PP) alter a subset of these changes in wild-type mice through activation of the nuclear receptor family member PP-activated receptor alpha (PPARalpha). We tested the hypothesis that an overlap in the transcriptional programs between untreated dwarf mice and PP-treated wild-type mice underlies these similarities. Using transcript profiling, we observed a statistically significant overlap in the expression of genes differentially regulated in control Snell dwarf mice (Pit-1dw) compared with phenotypically normal heterozygote (+/dw) control mice and those altered by the PP 4-chloro-6-(2,3-xylidino)-2-pyrimidinyl)thioacetic acid (WY-14,643) in +/dw mice. The genes included those involved in beta- and omega-oxidation of fatty acids (Acox1, Cyp4a10, Cyp4a14) and those involved in stress responses (the chaperonin, T-complex protein1epsilon) and cardiovascular disease (fibrinogen). The levels of some of these gene products were also altered in other dwarf mouse models, including Ames, Little, and growth hormone receptor-null mice. The constitutive increases in PPARalpha-regulated genes may be partly caused by increased expression of PPARalpha mRNA and protein as observed in the livers of control Snell dwarf mice. These results indicate that some of the beneficial effects associated with the dwarf phenotype may be caused by constitutive activation of PPARalpha and regulated genes.
Collapse
Affiliation(s)
- Anja J Stauber
- CIIT Centers for Health Research, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Améen C, Lindén D, Larsson BM, Mode A, Holmäng A, Oscarsson J. Effects of gender and GH secretory pattern on sterol regulatory element-binding protein-1c and its target genes in rat liver. Am J Physiol Endocrinol Metab 2004; 287:E1039-48. [PMID: 15280151 DOI: 10.1152/ajpendo.00059.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether the sexually dimorphic secretory pattern of growth hormone (GH) in the rat regulates hepatic gene expression of sterol regulatory element-binding protein-1c (SREBP-1c) and its target genes. SREBP-1c, fatty acid synthase (FAS), and glycerol-3-phosphate acyltransferase (GPAT) mRNA were more abundant in female than in male livers, whereas acetyl-CoA carboxylase-1 (ACC1) and stearoyl-CoA desaturase-1 (SCD-1) were similarly expressed in both sexes. Hypophysectomized female rats were given GH as a continuous infusion or as two daily injections for 7 days to mimic the female- and male-specific GH secretory patterns, respectively. The female pattern of GH administration increased the expression of SREBP-1c, ACC1, FAS, SCD-1, and GPAT mRNA, whereas the male pattern of GH administration increased only SCD-1 mRNA. FAS and SCD-1 protein levels were regulated in a similar manner by GH. Incubation of primary rat hepatocytes with GH increased SCD-1 mRNA levels and decreased FAS and GPAT mRNA levels but had no effect on SREBP-1c mRNA. GH decreased hepatic liver X receptor-alpha (LXRalpha) mRNA levels both in vivo and in vitro. Feminization of the GH plasma pattern in male rats by administration of GH as a continuous infusion decreased insulin sensitivity and increased expression of FAS and GPAT mRNA but had no effect on SREBP-1c, ACC1, SCD-1, or LXRalpha mRNA. In conclusion, FAS and GPAT are specifically upregulated by the female secretory pattern of GH. This regulation is not a direct effect of GH on hepatocytes and does not involve changed expression of SREBP-1c or LXRalpha mRNA but is associated with decreased insulin sensitivity.
Collapse
Affiliation(s)
- Caroline Améen
- Wallenberg Laboratory for Cardiovascular Research, Sahlgrenska University Hospital, SE-413 45 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
15
|
Latruffe N, Vamecq J, Cherkaoui Malki M. Genetic-dependency of peroxisomal cell functions - emerging aspects. J Cell Mol Med 2004; 7:238-48. [PMID: 14594548 PMCID: PMC6741413 DOI: 10.1111/j.1582-4934.2003.tb00224.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This paper reviews aspects concerning the genetic regulation of the expression of the well studied peroxisomal genes including those of fatty acid beta-oxidation enzymes; acyl-CoA oxidase, multifunctional enzyme and thiolase from different tissues and species. An important statement is PPARalpha, which is now long known to be in rodents the key nuclear receptor orchestrating liver peroxisome proliferation and enhanced peroxisomal beta-oxidation, does not appear to control so strongly in man the expression of genes involved in peroxisomal fatty acid beta-oxidation related enzymes. In this respect, the present review strengthens among others the emerging concept that, in the humans, the main genes whose expression is up-regulated by PPARalpha are mitochondrial and less peroxisomal genes. A special emphasis is also made on the animal cold adaptation and on need for sustained study of peroxisomal enzymes and genes; challenging that some essential roles of peroxisomes in cell function and regulation still remain to be discovered.
Collapse
Affiliation(s)
- N Latruffe
- Laboratory of Cell Molecular Biology, Faculty of Life Sciences, University of Burgundy, Dijon, France.
| | | | | |
Collapse
|
16
|
Hurst CH, Waxman DJ. Activation of PPARalpha and PPARgamma by environmental phthalate monoesters. Toxicol Sci 2003; 74:297-308. [PMID: 12805656 DOI: 10.1093/toxsci/kfg145] [Citation(s) in RCA: 379] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phthalate esters are widely used as plasticizers in the manufacture of products made of polyvinyl chloride. Mono-(2-ethylhexyl)-phthalate (MEHP) induces rodent hepatocarcinogenesis by a mechanism that involves activation of the nuclear transcription factor peroxisome proliferator-activated receptor-alpha (PPARalpha). MEHP also activates PPAR-gamma (PPARgamma), which contributes to adipocyte differentiation and insulin sensitization. Human exposure to other phthalate monoesters, including metabolites of di-n-butyl phthalate and butyl benzyl phthalate, is substantially higher than that of MEHP, prompting this investigation of their potential for PPAR activation, assayed in COS cells and in PPAR-responsive liver (PPARalpha) and adipocyte (PPARgamma) cell lines. Monobenzyl phthalate (MBzP) and mono-sec-butyl phthalate (MBuP) both increased the COS cell transcriptional activity of mouse PPARalpha, with effective concentration for half-maximal response (EC50) values of 21 and 63 microM, respectively. MBzP also activated human PPARalpha (EC50=30 microM) and mouse and human PPARgamma (EC50=75-100 microM). MEHP was a more potent PPAR activator than MBzP or MBuP, with mouse PPARalpha more sensitive to MEHP (EC50=0.6 microM) than human PPARalpha (EC50=3.2 microM). MEHP activation of PPARgamma required somewhat higher concentrations, EC50=10.1 microM (mouse PPARgamma) and 6.2 microM (human PPARgamma). No significant PPAR activation was observed with the monomethyl, mono-n-butyl, dimethyl, or diethyl esters of phthalic acid. PPARalpha activation was verified in FAO rat liver cells stably transfected with PPARalpha, where expression of several endogenous PPARalpha target genes was induced by MBzP, MBuP, and MEHP. Similarly, activation of endogenous PPARgamma target genes was evidenced for all three phthalates by the stimulation of PPARgamma-dependent adipogenesis in the 3T3-L1 cell differentiation model. These findings demonstrate the potential of environmental phthalate monoesters for activation of rodent and human PPARs and may help to elucidate the molecular basis for the adverse health effects proposed to be associated with human phthalate exposure.
Collapse
Affiliation(s)
- Christopher H Hurst
- Department of Biology, Division of Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
17
|
Shipley JM, Waxman DJ. Down-regulation of STAT5b transcriptional activity by ligand-activated peroxisome proliferator-activated receptor (PPAR) alpha and PPARgamma. Mol Pharmacol 2003; 64:355-64. [PMID: 12869640 DOI: 10.1124/mol.64.2.355] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor (PPAR) is activated by a diverse group of acidic ligands, including many peroxisome proliferator chemicals present in the environment. Janus tyrosine kinase-signal transducer and activator of transcription (JAK-STAT) signaling is activated by multiple cytokines and hormones and leads to the translocation of dimerized STAT proteins to the nucleus where they activate transcription of target genes. Previous studies have shown that growth hormone (GH)-activated STAT5b can inhibit PPAR-regulated transcription. Here, we show that this inhibitory cross-talk is mutual, and that GH-induced, STAT5b-dependent beta-casein promoter-luciferase reporter gene transcription can be inhibited up to approximately 80% by ligand-activated PPARalpha or PPARgamma. Dose-response experiments showed a direct relationship between the extent of PPAR activation and the degree of inhibition of STAT5-regulated transcription. PPAR did not block STAT5b tyrosine phosphorylation or inhibit DNA-binding activity. Both PPARs inhibited the transcriptional activity of a constitutively active STAT5b mutant, indicating that inhibition occurs downstream of the GH-stimulated STAT5 activation step. Transcriptionally inactive, dominant-negative PPAR mutants did not block STAT5b inhibition by wild-type PPAR, indicating that PPAR target gene transcription is not required. PPARalpha retained its STAT5b inhibitory activity in the presence of the histone deacetylase inhibitor trichostatin, indicating that enhanced histone deacetylase recruitment does not contribute to STAT5b inhibition. PPARalpha lacking the ligand-independent AF-1 trans-activation domain failed to inhibit STAT5b, highlighting the importance of the AF-1 region in STAT5-PPAR inhibitory cross-talk. These findings demonstrate the bidirectionality of cross-talk between the PPAR and STAT pathways and provide a mechanism whereby exposure to environmental chemical activators of PPAR can suppress expression of GH target genes.
Collapse
Affiliation(s)
- Jonathan M Shipley
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA
| | | |
Collapse
|
18
|
Latruffe N, Nicolas-Francès V, Clemencet MC, Hansmannel F, Chevillard G, Etienne P, Le Jossic-Corcos C, Cherkaoui Malki M. Gene Regulation of Peroxisomal Enzymes by Nutrients, Hormones and Nuclear Signalling Factors in Animal and Human Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 544:225-36. [PMID: 14713234 DOI: 10.1007/978-1-4419-9072-3_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Norbert Latruffe
- Laboratory of Cell Molecular Biology, GDR-CNRS no 2583, University of Burgundy, Faculty of Life Sciences, 6. Bd Gabriel-21000 Dijon, France.
| | | | | | | | | | | | | | | |
Collapse
|