1
|
Bovine Organospecific Microvascular Endothelial Cell Lines as New and Relevant In Vitro Models to Study Viral Infections. Int J Mol Sci 2020; 21:ijms21155249. [PMID: 32722052 PMCID: PMC7432920 DOI: 10.3390/ijms21155249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/28/2022] Open
Abstract
Microvascular endothelial cells constitute potential targets for exogenous microorganisms, in particular for vector-borne pathogens. Their phenotypic and functional variations according to the organs they are coming from provide an explanation of the organ selectivity expressed in vivo by pathogens. In order to make available relevant tools for in vitro studies of infection mechanisms, our aim was to immortalize bovine organospecific endothelial cells but also to assess their permissivity to viral infection. Using transfection with SV40 large T antigen, six bovine microvascular endothelial cell lines from various organs and one macrovascular cell line from an umbilical cord were established. They display their own panel of endothelial progenitor/mature markers, as assessed by flow cytometry and RT-qPCR, as well as the typical angiogenesis capacity. Using both Bluetongue and foot-and-mouth disease viruses, we demonstrate that some cell lines are preferentially infected. In addition, they can be transfected and are able to express viral proteins such as BTV8-NS3. Such microvascular endothelial cell lines bring innovative tools for in vitro studies of infection by viruses or bacteria, allowing for the study of host-pathogen interaction mechanisms with the actual in vivo target cells. They are also suitable for applications linked to microvascularization, such as anti-angiogenic and anti-tumor research, growing fields in veterinary medicine.
Collapse
|
2
|
Hurtado-Alvarado G, Velázquez-Moctezuma J, Gómez-González B. Chronic sleep restriction disrupts interendothelial junctions in the hippocampus and increases blood-brain barrier permeability. J Microsc 2017; 268:28-38. [PMID: 28543440 DOI: 10.1111/jmi.12583] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/12/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
Abstract
Chronic sleep loss in the rat increases blood-brain barrier permeability to Evans blue and FITC-dextrans in almost the whole brain and sleep recovery during short periods restores normal blood-brain barrier permeability. Sleep loss increases vesicle density in hippocampal endothelial cells and decreases tight junction protein expression. However, at the ultrastructural level the effect of chronic sleep loss on interendothelial junctions is unknown. In this study we characterised the ultrastructure of interendothelial junctions in the hippocampus, the expression of tight junction proteins, and quantified blood-brain barrier permeability to fluorescein-sodium after chronic sleep restriction. Male Wistar rats were sleep restricted using the modified multiple platform method during 10 days, with a daily schedule of 20-h sleep deprivation plus 4-h sleep recovery at their home-cages. At the 10th day hippocampal samples were obtained immediately at the end of the 20-h sleep deprivation period, and after 40 and 120 min of sleep recovery. Samples were processed for transmission electron microscopy and western blot. Chronic sleep restriction increased blood-brain barrier permeability to fluorescein-sodium, and decreased interendothelial junction complexity by increasing the frequency of less mature end-to-end and simply overlap junctions, even after sleep recovery, as compared to intact controls. Chronic sleep loss also induced the formation of clefts between narrow zones of adjacent endothelial cell membranes in the hippocampus. The expression of claudin-5 and actin decreased after chronic sleep loss as compared to intact animals. Therefore, it seems that chronic sleep loss disrupts interendothelial junctions that leads to blood-brain barrier hyperpermeability in the hippocampus.
Collapse
Affiliation(s)
- G Hurtado-Alvarado
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - J Velázquez-Moctezuma
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - B Gómez-González
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| |
Collapse
|
3
|
Bonvillain RW, Scarritt ME, Pashos NC, Mayeux JP, Meshberger CL, Betancourt AM, Sullivan DE, Bunnell BA. Nonhuman primate lung decellularization and recellularization using a specialized large-organ bioreactor. J Vis Exp 2013:e50825. [PMID: 24378384 DOI: 10.3791/50825] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
There are an insufficient number of lungs available to meet current and future organ transplantation needs. Bioartificial tissue regeneration is an attractive alternative to classic organ transplantation. This technology utilizes an organ's natural biological extracellular matrix (ECM) as a scaffold onto which autologous or stem/progenitor cells may be seeded and cultured in such a way that facilitates regeneration of the original tissue. The natural ECM is isolated by a process called decellularization. Decellularization is accomplished by treating tissues with a series of detergents, salts, and enzymes to achieve effective removal of cellular material while leaving the ECM intact. Studies conducted utilizing decellularization and subsequent recellularization of rodent lungs demonstrated marginal success in generating pulmonary-like tissue which is capable of gas exchange in vivo. While offering essential proof-of-concept, rodent models are not directly translatable to human use. Nonhuman primates (NHP) offer a more suitable model in which to investigate the use of bioartificial organ production for eventual clinical use. The protocols for achieving complete decellularization of lungs acquired from the NHP rhesus macaque are presented. The resulting acellular lungs can be seeded with a variety of cells including mesenchymal stem cells and endothelial cells. The manuscript also describes the development of a bioreactor system in which cell-seeded macaque lungs can be cultured under conditions of mechanical stretch and strain provided by negative pressure ventilation as well as pulsatile perfusion through the vasculature; these forces are known to direct differentiation along pulmonary and endothelial lineages, respectively. Representative results of decellularization and cell seeding are provided.
Collapse
Affiliation(s)
- Ryan W Bonvillain
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Cao J, Li B, Fang L, Chen H, Xiao S. Pathogenesis of nonsuppurative encephalitis caused by highly pathogenic Porcine reproductive and respiratory syndrome virus. J Vet Diagn Invest 2012; 24:767-71. [DOI: 10.1177/1040638712445764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jianbo Cao
- State Key Laboratory of Agricultural Microbiology, Wuhan, China (Cao, Li, Fang, Chen, Xiao)
- Public Laboratory of Electron Microscopy, Wuhan, China (Cao)
- Laboratory of Animal Virology, College of Veterinary Medicine, Wuhan, China (Li, Fang, Chen, Xiao)
- Huazhong Agricultural University, Wuhan, Hubei, PR China and Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China (Li)
| | - Bin Li
- State Key Laboratory of Agricultural Microbiology, Wuhan, China (Cao, Li, Fang, Chen, Xiao)
- Public Laboratory of Electron Microscopy, Wuhan, China (Cao)
- Laboratory of Animal Virology, College of Veterinary Medicine, Wuhan, China (Li, Fang, Chen, Xiao)
- Huazhong Agricultural University, Wuhan, Hubei, PR China and Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China (Li)
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, Wuhan, China (Cao, Li, Fang, Chen, Xiao)
- Public Laboratory of Electron Microscopy, Wuhan, China (Cao)
- Laboratory of Animal Virology, College of Veterinary Medicine, Wuhan, China (Li, Fang, Chen, Xiao)
- Huazhong Agricultural University, Wuhan, Hubei, PR China and Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China (Li)
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Wuhan, China (Cao, Li, Fang, Chen, Xiao)
- Public Laboratory of Electron Microscopy, Wuhan, China (Cao)
- Laboratory of Animal Virology, College of Veterinary Medicine, Wuhan, China (Li, Fang, Chen, Xiao)
- Huazhong Agricultural University, Wuhan, Hubei, PR China and Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China (Li)
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, Wuhan, China (Cao, Li, Fang, Chen, Xiao)
- Public Laboratory of Electron Microscopy, Wuhan, China (Cao)
- Laboratory of Animal Virology, College of Veterinary Medicine, Wuhan, China (Li, Fang, Chen, Xiao)
- Huazhong Agricultural University, Wuhan, Hubei, PR China and Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China (Li)
| |
Collapse
|
5
|
Angelopoulou K, Poutahidis T, Brellou GD, Greenland T, Vlemmas I. A deletion in the R region of long terminal repeats in small ruminant lentiviruses is associated with decreased pathology in the lung. Vet J 2007; 175:346-55. [PMID: 17498982 DOI: 10.1016/j.tvjl.2007.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 01/23/2007] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
A particular variant of the maedi visna virus (MVV) that although present in blood causes no clinical signs in infected sheep has been described. This variant carries a 13-14 nucleotide deletion in the R region of the proviral long terminal repeats. The hypothesis that this specific deletion may be associated with low pathogenicity has been investigated by comparing the distribution of proviral sequences, the histopathological lesions and the expression of viral proteins in the brain, lungs and udders of sheep naturally infected with viral strains carrying the deletion. Provirus could be demonstrated in most of the tissues examined from sheep infected with either type of virus, and the tissue-derived virus carried the typical deletion in the study flock animals. Histopathological analysis revealed that the lungs were significantly less affected in the animals infected with virus carrying the deletion. Concomitantly, viral expression was significantly reduced in the lungs of these animals. The findings suggest that the reduced pathogenicity of MVV with the specific deletion in the R region is not due to a restriction in the availability of specific tissues to infection, but is associated with a reduced capacity for viral expression in the lungs.
Collapse
Affiliation(s)
- K Angelopoulou
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | |
Collapse
|
6
|
McNeilly TN, Tennant P, Luján L, Pérez M, Harkiss GD. Differential infection efficiencies of peripheral lung and tracheal tissues in sheep infected with Visna/maedi virus via the respiratory tract. J Gen Virol 2007; 88:670-679. [PMID: 17251586 DOI: 10.1099/vir.0.82434-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The main routes of transmission of Visna/maedi virus (VMV), an ovine lentivirus, are thought to be through ingestion of infected colostrum and/or milk or through inhalation of respiratory secretions. Whereas oral transmission appears to be mediated via epithelial cells within the small intestine, the mechanism of virus uptake in the respiratory tract is unknown. In addition, it is not known whether infection is mediated by cell-associated or cell-free VMV, previous studies having not addressed this question. Intratracheal (i.t.) injection of VMV is known to be a highly efficient method of experimental infection, requiring as little as 101 TCID50 VMV for successful infection. However, using a tracheal organ culture system, we show here that ovine tracheal mucosa is relatively resistant to VMV, with detectable infection only seen after incubation with high titres of virus (⩾105 TCID50 ml−1). We also demonstrate that i.t. injection results in exposure of both trachea and the lower lung and that the time taken for viraemia and seroconversion to occur after lower lung instillation of VMV was significantly shorter than that observed for tracheal instillation of an identical titre of virus (P=0.030). This indicates that lower lung and not the trachea is a highly efficient site for VMV entry in vivo. Furthermore, cell-free virus was identified within the lung-lining fluid of naturally infected sheep for the first time. Together, these results suggest that respiratory transmission of VMV is mediated by inhalation of aerosols containing free VMV, with subsequent virus uptake in the lower lung.
Collapse
Affiliation(s)
- Tom N McNeilly
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Easter Bush, Midlothian EH25 9RG, UK
| | - Peter Tennant
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Easter Bush, Midlothian EH25 9RG, UK
| | - Lluís Luján
- Dipartamento de Patología Animal, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Marta Pérez
- Dipartamento de Patología Animal, Universidad de Zaragoza, Facultad de Veterinaria, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Gordon D Harkiss
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
7
|
Brellou GD, Angelopoulou K, Poutahidis T, Vlemmas I. Detection of maedi-visna virus in the liver and heart of naturally infected sheep. J Comp Pathol 2007; 136:27-35. [PMID: 17258227 DOI: 10.1016/j.jcpa.2006.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 10/05/2006] [Indexed: 10/23/2022]
Abstract
Maedi-visna virus (MVV) in sheep, which infects mainly cells of the monocyte/macrophage lineage, produces changes in the lung, mammary gland, brain and joints. In this study, however, the liver and heart of six naturally infected sheep were examined for the presence of the virus. MVV proviral DNA was demonstrated by polymerase chain reaction (PCR) analysis, and immunohistochemical examination revealed viral antigens in the cytoplasm of hepatocytes and cardiac myocytes. Although histopathological examination showed mild to moderate, chronic lymphocytic cholangiohepatitis and myocarditis and the presence of small lymphoid aggregates, the typical maedi lymphoproliferative lesions (lymphoid follicle-like structures of considerable size with germinal centres) were not seen in the liver and heart. These novel findings suggest that, although the macrophage is the main cell for productive viral replication, the liver and heart represent additional MVV targets.
Collapse
Affiliation(s)
- G D Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | | | | |
Collapse
|
8
|
Hasebe R, Kimura T, Nakamura K, Ochiai K, Okazaki K, Wada R, Umemura T. Differential susceptibility of equine and mouse brain microvascular endothelial cells to equine herpesvirus 1 infection. Arch Virol 2005; 151:775-86. [PMID: 16328147 DOI: 10.1007/s00705-005-0653-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
Equine herpesvirus 1 (EHV-1) shows endotheliotropism in the central nervous system (CNS) of infected horses. However, infection of endothelial cells has not been observed in the CNS of infected mice. To explore the basis for this difference in endotheliotropism, we compared the susceptibility of equine brain microvascular endothelial cells (EBMECs) and mouse brain microvascular endothelial cells (MBMECs) to EHV-1 infection. The kinetics of viral growth in EBMECs was typical of a fully productive infection whereas viral infection in MBMECs seemed to be nonproductive. Immunofluorescence microscopy using anti-EHV-1 polyclonal antibody demonstrated viral antigen in infected EBMECs, but not infected MBMECs. EHV-1 immediate early (IE), early (ICP0), and late (gB, gD and gK) transcripts were expressed in infected EBMECs. However, none of these genes was detected in infected MBMECs by reverse transcription-polymerase chain reaction. Electron microscopic examination at the stage of viral entry showed that viral particles were present within uncoated vesicles in the cytoplasm of EBMECs, but absent from those of MBMECs. These results suggest that viral entry is an important determinant of the susceptibility of EBMECs and MBMECs to EHV-1 infection.
Collapse
Affiliation(s)
- R Hasebe
- Laboratory of Comparative Pathology, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Carrozza ML, Mazzei M, Bandecchi P, Arispici M, Tolari F. In situ PCR-associated immunohistochemistry identifies cell types harbouring the Maedi-Visna virus genome in tissue sections of sheep infected naturally. J Virol Methods 2003; 107:121-7. [PMID: 12505625 DOI: 10.1016/s0166-0934(02)00208-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Maedi-Visna virus (MVV) is a non-oncogenic ovine lentivirus whose main targets are the lung, mammary gland, central nervous system and joints. Cells of the monocyte-macrophage lineage are the major viral target in vivo; other cell types are infected as well, as indicated by several studies, largely based on the examination of animals infected experimentally or on the in vitro infection of cultured cells. Aim of this study was to investigate the cell types harbouring the viral genome in lungs and mammary glands of animals infected naturally by using in situ PCR-associated immunohistochemistry. Several types of cells were infected: in the lung type I and II pneumocytes, interstitial and alveolar macrophages, endothelial cells and fibroblast-like cells. Epithelial cells, macrophages, endothelial cells and fibroblast-like cells were infected also in the mammary gland. These results indicate that the in situ PCR, a powerful technique which combines the high sensitivity of the conventional PCR with the ability to localise the cellular targets within a tissue, can be improved further by its association with the immunohistochemistry. This can be especially advantageous when the presence and localisation of the target sequence are investigated in the context of a tissue with its complex cellular organisation.
Collapse
|
10
|
Bruett L, Clements JE. Functional murine leukemia virus vectors pseudotyped with the visna virus envelope show expanded visna virus cell tropism. J Virol 2001; 75:11464-73. [PMID: 11689628 PMCID: PMC114733 DOI: 10.1128/jvi.75.23.11464-11473.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudotype virus vectors serve as a powerful tool for the study of virus receptor usage and entry. We describe the development of murine leukemia virus (MuLV) particles pseudotyped with the visna virus envelope glycoprotein and encoding a green fluorescent protein reporter as a tool to study the expression of the visna virus receptor. Functional MuLV/visna virus pseudotypes were obtained when the cytoplasmic tail of the visna virus envelope TM protein was truncated to 3, 7, or 11 amino acids in length. MuLV/visna virus particles were used to transduce a panel of cell types from various organisms, including sheep, goat, human, hamster, mouse, monkey, and quail. The majority of the cells examined were susceptible to MuLV/visna pseudotype viruses, supporting the notion that the visna virus cellular receptor is a widely expressed protein found in many species. Of 16 different cell types tested, only mouse embryo fibroblast NIH 3T3 cells, hamster ovary CHO cells, and the human promonocyte cell line U937 cells were not susceptible to transduction by the pseudotyped virus. The production of functional MuLV/visna virus pseudotypes has provided a sensitive, biologically relevant system to study visna virus cell entry and envelope-receptor interactions.
Collapse
Affiliation(s)
- L Bruett
- Division of Comparative Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | |
Collapse
|
11
|
DeMaula CD, Jutila MA, Wilson DW, MacLachlan NJ. Infection kinetics, prostacyclin release and cytokine-mediated modulation of the mechanism of cell death during bluetongue virus infection of cultured ovine and bovine pulmonary artery and lung microvascular endothelial cells. J Gen Virol 2001; 82:787-794. [PMID: 11257183 DOI: 10.1099/0022-1317-82-4-787] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bluetongue virus (BTV) infection causes a haemorrhagic disease in sheep, whereas BTV infection typically is asymptomatic in cattle. Injury to the endothelium of small blood vessels is responsible for the manifestations of disease in BTV-infected sheep. The lungs are central to the pathogenesis of BTV infection of ruminants; thus endothelial cells (ECs) cultured from the pulmonary artery and lung microvasculature of sheep and cattle were used to investigate the basis for the disparate expression of bluetongue disease in the two species. Ovine and bovine microvascular ECs infected at low multiplicity with partially purified BTV were equally susceptible to BTV-induced cell death, yet ovine microvascular ECs had a lower incidence of infection and produced significantly less virus than did bovine microvascular ECs. Importantly, the relative proportions of apoptotic and necrotic cells were significantly different in BTV-infected EC cultures depending on the species of EC origin and the presence of inflammatory mediators in the virus inoculum. Furthermore, BTV-infected ovine lung microvascular ECs released markedly less prostacyclin than the other types of ECs. Results of these in vitro studies are consistent with the marked pulmonary oedema and microvascular thrombosis that characterize bluetongue disease of sheep but which rarely, if ever, occur in BTV-infected cattle.
Collapse
Affiliation(s)
- Christopher D DeMaula
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California 95616, USA1
| | - Mark A Jutila
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA2
| | - Dennis W Wilson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California 95616, USA1
| | - N James MacLachlan
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California 95616, USA1
| |
Collapse
|
12
|
Jan CL, Greenland T, Gounel F, Balleydier S, Mornex JF. Activation of small ruminant aortic endothelial cells after in vitro infection by caprine arthritis encephalitis virus. Res Vet Sci 2000; 69:225-31. [PMID: 11124093 DOI: 10.1053/rvsc.2000.0413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Small ruminants infected by the lentiviruses caprine arthritis-encephalitis virus (CAEV), originally isolated from a goat, or maedi-visna virus, originally from sheep, typically develop an organising lymphoid infiltration of affected tissues. This could reflect modulation of the migration pattern of lymphocytes in infected animals. Possible active contribution by vascular endothelial cells was investigated using an in vitro model. Low-passage cultured ovine aortic endothelium proved susceptible to productive infection by CAEV without significant cytotoxicity. Infected endothelial cells maintained expression of endothelial markers, increased MHC class I antigen expression and initiated expression of the adhesion molecule VCAM -1 and, at a late stage, MHC class II antigens. Infected endothelial cells showed a two-fold increase in binding capacity for sheep peripheral blood leucocytes over uninfected controls. Such events could contribute to the tissue distribution of lymphoid cells and local immune responses in lentiviral infections of small ruminants.
Collapse
Affiliation(s)
- C L Jan
- Laboratoire Associé I.N.R.A. de Recherches sur les Lentivirus chez les Petits Ruminants, INRA U754, Ecole Nationale Vétérinaire de Lyon, 1 Avenue Bourgelat, Marcy l'Etoile 69280, France
| | | | | | | | | |
Collapse
|
13
|
Bruett L, Barber SA, Clements JE. Characterization of a membrane-associated protein implicated in visna virus binding and infection. Virology 2000; 271:132-41. [PMID: 10814578 DOI: 10.1006/viro.2000.0309] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The identity of the cellular receptor(s) for visna virus, an ovine lentivirus, is currently unknown; however, previous studies from our laboratory have identified membrane-associated proteins expressed selectively in susceptible cells which bind visna virus. Moreover, a polyclonal antibody (2-23), raised against a 45-kDa visna virus binding protein, bound specifically to the surface of susceptible cells in immunofluorescence assays and significantly reduced binding of visna virus to cells (S. E. Crane et al., 1991, J. Virol., 65, 6137-6143). In this report we extend our studies of this antibody (2-23), showing both that 2-23 significantly reduces visna virus infection of susceptible cells and that 2-23 immunoprecipitates a putative protein complex consisting of a prominent 30-kDa protein, as well as the 45-kDa immunogen, specifically from radiolabeled virus-susceptible sheep cells. Further, we demonstrate that the 30-kDa protein is a membrane-associated proteoglycan substituted with a chondroitin sulfate glycosaminoglycan (GAG) chain(s) and that treatment of susceptible cells with an inhibitor of GAG synthesis significantly reduces visna virus production. Collectively, these data support a role for a proteoglycan in visna virus cell binding and infection.
Collapse
Affiliation(s)
- L Bruett
- Division of Comparative Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
14
|
Maury W, Oaks JL, Bradley S. Equine endothelial cells support productive infection of equine infectious anemia virus. J Virol 1998; 72:9291-7. [PMID: 9765477 PMCID: PMC110349 DOI: 10.1128/jvi.72.11.9291-9297.1998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous cell infectivity studies have demonstrated that the lentivirus equine infectious anemia virus (EIAV) infects tissue macrophages in vivo and in vitro. In addition, some strains of EIAV replicate to high titer in vitro in equine fibroblasts and fibroblast cell lines. Here we report a new cell type, macrovascular endothelial cells, that is infectible with EIAV. We tested the ability of EIAV to infect purified endothelial cells isolated from equine umbilical cords and renal arteries. Infectivity was detected by cell supernatant reverse transcriptase positivity, EIAV antigen positivity within individual cells, and the detection of viral RNA by in situ hybridization. Virus could rapidly spread through the endothelial cultures, and the supernatants of infected cultures contained high titers of infectious virus. There was no demonstrable cell killing in infected cultures. Three of four strains of EIAV that were tested replicated in these cultures, including MA-1, a fibroblast-tropic strain, Th.1, a macrophage-tropic strain, and WSU5, a strain that is fibroblast tropic and can cause disease. Finally, upon necropsy of a WSU5-infected horse 4 years postinfection, EIAV-positive endothelial cells were detected in outgrowths of renal artery cultures. These findings identify a new cell type that is infectible with EIAV. The role of endothelial cell infection in the course of equine infectious anemia is currently unknown, but endothelial cell infection may be involved in the edema that can be associated with infection. Furthermore, the ability of EIAV to persistently infect endothelial cultures and the presence of virus in endothelial cells from a long-term carrier suggest that this cell type can serve as a reservoir for the virus during subclinical phases of infection.
Collapse
Affiliation(s)
- W Maury
- Department of Microbiology, University of South Dakota, Vermillion, South Dakota 57069, USA.
| | | | | |
Collapse
|