1
|
Roddy K, Grzesik P, Smith BJ, Ko N, Vashee S, Desai PJ. The loss of both pUL16 and pUL21 in HSV-1-infected cells alters capsid-tegument composition, nuclear membrane architecture, cytoplasmic maturation and cell-to-cell spread. J Gen Virol 2025; 106. [PMID: 40080412 PMCID: PMC11912938 DOI: 10.1099/jgv.0.002083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Previously, we had developed synthetic genomics methods to assemble an infectious clone of herpes simplex virus type-1 (HSV-1) strain KOS. To do this, the genome was assembled from 11 separate cloned fragments in yeast using transformation-associated recombination. Using this method, we generated null mutations in five tegument protein-coding genes as well as different combinations of these mutants. The single-locus mutants were all able to plaque on Vero cells. However, one multi-locus combination, ∆UL16/UL21, proved lethal for virus replication in non-permissive cells. The proteins encoded by the genes UL16 and UL21 are of interest because they are known to physically interact and are constituents of the tegument structure. Furthermore, their roles in HSV-1-infected cells are unclear. Both are dispensable for HSV-1 replication; however, in HSV-2, their mutation results in nuclear retention of assembled capsids and has activities that impact nuclear membrane integrity as well as activities of proteins that function in nuclear egress. We thus characterized these HSV-1 viruses that carry the single and double mutants. What we found was that the single mutants could replicate within cells and spread from infected to uninfected cells, albeit at significantly reduced levels. However, the double mutant (∆16/21) could not produce infectious progeny in a 24 h growth cycle and could not spread from cell to cell. Confocal microscopy of VP16-Venus expressed by these viruses as well as immunofluorescence assays for glycoprotein B showed perturbation of the nuclear membrane, which was pronounced in ∆21 and ∆16/21 infected cells. All the mutants assembled DNA-filled capsids as judged by ultrastructural analyses and sedimentation studies. Electron microscopy revealed the presence of numerous mature viruses in WT-infected cells but fewer such particles in the ∆16- and ∆21-infected cells. What we discovered is that in cells where both pUL16 and pUL21 are absent, cytoplasmic capsids were evident, but mature enveloped particles were not detected. The capsid particles isolated from all the single- and multi-locus mutant-infected cells showed significantly lower levels of incorporation of both VP16 and pUL37 when compared to the WT capsids. This reduced incorporation may be related to the loss of the integrity of the architecture of the nuclear membrane. Interestingly, the incorporation of pUL16 was not affected by the absence of pUL21 and vice versa, as judged by immunoblots. These data now show that of the tegument proteins, like the essential pUL36, pUL37 and VP16, the complex of pUL16 and pUL21 should be considered as important mediators of maturation and cell-to-cell spread of the particle.
Collapse
Affiliation(s)
- Kellen Roddy
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Grzesik
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara J Smith
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan Ko
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanjay Vashee
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, USA
| | - Prashant J Desai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Roddy K, Grzesik P, Smith B, Ko N, Vashee S, Desai PJ. The loss of both pUL16 and pUL21 in HSV-1 infected cells abolishes cytoplasmic envelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.10.622843. [PMID: 39574695 PMCID: PMC11581036 DOI: 10.1101/2024.11.10.622843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Previously, we had developed synthetic genomics methods to assemble an infectious clone of herpes simplex virus type-1 (HSV-1). To do this, the genome was assembled from 11 separate cloned fragments in yeast using transformation associated recombination. The eleven fragments or "parts" spanned the 152 kb genome and recombination was achieved because of the overlapping homologous sequences between each fragment. To demonstrate the robustness of this genome assembly method for reverse genetics, we engineered different mutations that were located in distant loci on the genome and built a collection of HSV-1 genomes that contained single and different combination of mutations in 5 conserved HSV-1 genes. The five genes: UL7, UL11, UL16, UL21 and UL51 encode virion structural proteins and have varied functions in the infected cell. Each is dispensable for virus replication in cell culture, however, combinatorial analysis of deletions in the five genes revealed "synthetic-lethality" of some of the genetic mutations. Thus, it was discovered that any virus that carried a UL21 mutation in addition to the other gene was unable to replicate in Vero cells. Replication was restored in a complementing cell line that provided pUL21 in trans. One particular combination (UL16-UL21) was of interest because the proteins encoded by these genes are known to physically interact and are constituents of the tegument structure. Furthermore, their roles in HSV-1 infected cells are unclear. Both are dispensable for HSV-1 replication, however, in HSV-2 their mutation results in nuclear retention of assembled capsids. We thus characterized these viruses that carry the single and double mutant. What we discovered is that in cells where both pUL16 and pUL21 are absent, cytoplasmic capsids were evident but did not mature into enveloped particles. The capsid particles isolated from these cells showed significantly lower levels of incorporation of both VP16 and pUL37 when compared to the wild-type capsids. These data now show that of the tegument proteins, like the essential pUL36, pUL37 and VP16; the complex of pUL16 and pUL21 should be considered as important mediators of cytoplasmic maturation of the particle.
Collapse
Affiliation(s)
- Kellen Roddy
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore
| | - Peter Grzesik
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore
| | - Barbara Smith
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore
| | - Nathan Ko
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore
| | - Sanjay Vashee
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, USA
| | - Prashant J. Desai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
3
|
Li M, Smith BJ, Lee J, Petr J, Anders NM, Wiseman R, Rudek MA, Ambinder RF, Desai PJ. Nelfinavir inhibition of Kaposi's sarcoma-associated herpesvirus protein expression and capsid assembly. Infect Agent Cancer 2024; 19:7. [PMID: 38439055 PMCID: PMC10913605 DOI: 10.1186/s13027-024-00566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Antiviral therapies that target herpesviruses are clinically important. Nelfinavir is a protease inhibitor that targets the human immunodeficiency virus (HIV) aspartyl protease. Previous studies demonstrated that this drug could also inhibit Kaposi's sarcoma-associated herpesvirus (KSHV) production. Our laboratory demonstrated nelfinavir can effectively inhibit herpes simplex virus type 1 (HSV-1) replication. For HSV-1 we were able to determine that virus capsids were assembled and exited the nucleus but did not mature in the cytoplasm indicating the drug inhibited secondary envelopment of virions. METHODS For KSHV, we recently derived a tractable cell culture system that allowed us to analyze the virus replication cycle in greater detail. We used this system to further define the stage at which nelfinavir inhibits KSHV replication. RESULTS We discovered that nelfinavir inhibits KSHV extracellular virus production. This was seen when the drug was incubated with the cells for 3 days and when we pulsed the cells with the drug for 1-5 min. When KSHV infected cells exposed to the drug were examined using ultrastructural methods there was an absence of mature capsids in the nucleus indicating a defect in capsid assembly. Because nelfinavir influences the integrated stress response (ISR), we examined the expression of viral proteins in the presence of the drug. We observed that the expression of many were significantly changed in the presence of drug. The accumulation of the capsid triplex protein, ORF26, was markedly reduced. This is an essential protein required for herpesvirus capsid assembly. CONCLUSIONS Our studies confirm that nelfinavir inhibits KSHV virion production by disrupting virus assembly and maturation. This is likely because of the effect of nelfinavir on the ISR and thus protein synthesis and accumulation of the essential triplex capsid protein, ORF26. Of interest is that inhibition requires only a short exposure to drug. The source of infectious virus in saliva has not been defined in detail but may well be lymphocytes or other cells in the oral mucosa. Thus, it might be that a "swish and spit" exposure rather than systemic administration would prevent virion production.
Collapse
Affiliation(s)
- Maggie Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara J Smith
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaeyeun Lee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Petr
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicole M Anders
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Present address: Takeda Pharmaceutical Company, San Diego, CA, USA
| | - Robyn Wiseman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle A Rudek
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard F Ambinder
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Prashant J Desai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Desai PJ. Expression and fusogenic activity of SARS CoV-2 Spike protein displayed in the HSV-1 Virion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568860. [PMID: 38076893 PMCID: PMC10705244 DOI: 10.1101/2023.11.28.568860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) is a zoonotic pathogen that can cause severe respiratory disease in humans. The new SARS-CoV-2 is the cause of the current global pandemic termed coronavirus disease 2019 (COVID-19) that has resulted in many millions of deaths world-wide. The virus is a member of the Betacoronavirus family, its genome is a positive strand RNA molecule that encodes for many genes which are required for virus genome replication as well as for structural proteins that are required for virion assembly and maturation. A key determinant of this virus is the Spike (S) protein embedded in the virion membrane and mediates attachment of the virus to the receptor (ACE2). This protein also is required for cell-cell fusion (syncytia) that is an important pathogenic determinant. We have developed a pseudotyped herpes simplex virus type 1 (HSV-1) recombinant virus expressing S protein in the virion envelop. This virus has also been modified to express a Venus fluorescent protein fusion to VP16, a virion protein of HSV-1. The virus expressing Spike can enter cells and generates large multi-nucleated syncytia which are evident by the Venus fluorescence. The HSV-1 recombinant virus is genetically stable and virus amplification can be easily done by infecting cells. This recombinant virus provides a reproducible platform for Spike function analysis and thus adds to the repertoire of pseudotyped viruses expressing Spike.
Collapse
Affiliation(s)
- Prashant J. Desai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Li M, Smith B, Jaeyeun L, Petr J, Wiseman R, Anders N, Rudek M, Ambinder R, Desai P. Nelfinavir Inhibition of Kaposi's sarcoma-associated herpesvirus protein expression and capsid assembly. RESEARCH SQUARE 2023:rs.3.rs-3552962. [PMID: 37986957 PMCID: PMC10659537 DOI: 10.21203/rs.3.rs-3552962/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Antiviral therapies that target herpesviruses are clinically important. Nelfinavir is a protease inhibitor that targets the human immunodeficiency virus (HIV) infections aspartyl protease. Previous studies demonstrated that this drug could also inhibit Kaposi's sarcoma-associated herpesvirus (KSHV) production. Our laboratory demonstrated nelfinavir can effectively inhibit herpes simplex virus type 1 (HSV-1) replication. For HSV-1 we were able to determine that virus capsids were assembled and exited the nucleus but did not mature in the cytoplasm indicating the drug inhibited secondary envelopment of virions. Methods For KSHV, we recently derived a tractable cell culture system that allowed us to analyze the virus replication cycle in detail. We used this system to further define the stage at which nelfinavir inhibits KSHV replication. Results We discovered that nelfinavir inhibits KSHV extracellular virus production. This was seen when the drug was incubated with the cells for 3 days and when we pulsed the cells with the drug for 1-5 minutes. When KSHV infected cells exposed to the drug were examined using ultrastructural methods there was an absence of mature capsids in the nucleus indicating a defect in capsid assembly. Because nelfinavir influences the integrated stress response (ISR), we examined the expression of viral proteins in the presence of the drug. We observed that the expression of many were significantly changed in the presence of drug. The accumulation of the capsid triplex protein ORF26 was markedly reduced. This is an essential protein required for herpesvirus capsid assembly. Conclusions Our studies confirm that nelfinavir inhibits KSHV virion production by disrupting virus assembly and maturation. Of interest is that inhibition requires only a short exposure to drug. The source of infectious virus in saliva has not been defined in detail but may well be lymphocytes or other cells in the oral mucosa. Thus, it might be that a "swish and spit" exposure rather than systemic administration would prevent virion production.
Collapse
|
6
|
Döhner K, Serrero MC, Sodeik B. The role of nuclear pores and importins for herpes simplex virus infection. Curr Opin Virol 2023; 62:101361. [PMID: 37672874 DOI: 10.1016/j.coviro.2023.101361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
Microtubule transport and nuclear import are functionally connected, and the nuclear pore complex (NPC) can interact with microtubule motors. For several alphaherpesvirus proteins, nuclear localization signals (NLSs) and their interactions with specific importin-α proteins have been characterized. Here, we review recent insights on the roles of microtubule motors, capsid-associated NLSs, and importin-α proteins for capsid transport, capsid docking to NPCs, and genome release into the nucleoplasm, as well as the role of importins for nuclear viral transcription, replication, capsid assembly, genome packaging, and nuclear capsid egress. Moreover, importin-α proteins exert antiviral effects by promoting the nuclear import of transcription factors inducing the expression of interferons (IFN), cytokines, and IFN-stimulated genes, and the IFN-inducible MxB restricts capsid docking to NPCs.
Collapse
Affiliation(s)
- Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany; Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany.
| | - Manutea C Serrero
- Institute of Virology, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany; DZIF - German Centre for Infection Research, Braunschweig, Hannover, Germany.
| |
Collapse
|
7
|
Borst EM, Harmening S, Sanders S, Caragliano E, Wagner K, Lenac Roviš T, Jonjić S, Bosse JB, Messerle M. A Unique Role of the Human Cytomegalovirus Small Capsid Protein in Capsid Assembly. mBio 2022; 13:e0100722. [PMID: 36066102 PMCID: PMC9600257 DOI: 10.1128/mbio.01007-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Morphogenesis of herpesvirus particles is highly conserved; however, the capsid assembly and genome packaging of human cytomegalovirus (HCMV) exhibit unique features. Examples of these include the essential role of the small capsid protein (SCP) and the existence of the β-herpesvirus-specific capsid-associated protein pp150. SCP and pp150, as well as the UL77 and UL93 proteins, are important capsid constituents, yet their precise mechanism of action is elusive. Here, we analyzed how deletion of the open reading frames (ORFs) encoding pUL77, pUL93, pp150, or SCP affects the protein composition of nuclear capsids. This was achieved by generating HCMV genomes lacking the respective genes, combined with a highly efficient transfection technique that allowed us to directly analyze these mutants in transfected cells. While no obvious effects were observed when pUL77, pUL93, or pp150 was missing, the absence of SCP impeded capsid assembly due to strongly reduced amounts of major capsid protein (MCP). Vice versa, when MCP was lacking, SCP became undetectable, indicating a mutual dependence of SCP and MCP for establishing appropriate protein levels. The SCP domain mediating stable MCP levels could be narrowed down to a C-terminal helix known to convey MCP binding. Interestingly, an SCP-EGFP (enhanced green fluorescent protein) fusion protein which also impaired the production of infectious progeny acted in a different manner, as capsid assembly was not abolished; however, SCP-EGFP-harboring capsids were devoid of DNA and trapped in paracrystalline nuclear structures. These results indicate that SCP is essential in HCMV because of its impact on MCP levels and reveal SCP as a potential target for antiviral inhibitors. IMPORTANCE Human cytomegalovirus (HCMV) is a ubiquitous pathogen causing life-threatening disease in immunocompromised individuals. Virus-specific processes such as capsid assembly and genome packaging can be exploited to design new antiviral strategies. Here, we report on a novel function of the HCMV small capsid protein (SCP), namely, ensuring stable levels of major capsid protein (MCP), thereby governing capsid assembly. Furthermore, we discovered a mutual dependence of the small and major capsid proteins to guarantee appropriate levels of the other respective protein and were able to pin down the SCP domain responsible for this effect to a region previously shown to mediate binding to the major capsid protein. In summary, our data contribute to the understanding of how SCP plays an essential part in the HCMV infection cycle. Moreover, disrupting the SCP-MCP interface may provide a starting point for the development of novel antiviral drugs.
Collapse
Affiliation(s)
- Eva Maria Borst
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Sarah Harmening
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Saskia Sanders
- Department of Virology, Hannover Medical School, Hannover, Germany
- Leibniz-Institute for Experimental Virology, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Enrico Caragliano
- Department of Virology, Hannover Medical School, Hannover, Germany
- Leibniz-Institute for Experimental Virology, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Karen Wagner
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Tihana Lenac Roviš
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jens Bernhard Bosse
- Department of Virology, Hannover Medical School, Hannover, Germany
- Leibniz-Institute for Experimental Virology, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Department of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Partner Site Hannover Braunschweig, Hannover, Germany
| |
Collapse
|
8
|
Draganova EB, Valentin J, Heldwein EE. The Ins and Outs of Herpesviral Capsids: Divergent Structures and Assembly Mechanisms across the Three Subfamilies. Viruses 2021; 13:v13101913. [PMID: 34696343 PMCID: PMC8539031 DOI: 10.3390/v13101913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Human herpesviruses, classified into three subfamilies, are double-stranded DNA viruses that establish lifelong latent infections within most of the world’s population and can cause severe disease, especially in immunocompromised people. There is no cure, and current preventative and therapeutic options are limited. Therefore, understanding the biology of these viruses is essential for finding new ways to stop them. Capsids play a central role in herpesvirus biology. They are sophisticated vehicles that shelter the pressurized double-stranded-DNA genomes while ensuring their delivery to defined cellular destinations on the way in and out of the host cell. Moreover, the importance of capsids for multiple key steps in the replication cycle makes their assembly an attractive therapeutic target. Recent cryo-electron microscopy reconstructions of capsids from all three subfamilies of human herpesviruses revealed not only conserved features but also remarkable structural differences. Furthermore, capsid assembly studies have suggested subfamily-specific roles of viral capsid protein homologs. In this review, we compare capsid structures, assembly mechanisms, and capsid protein functions across human herpesvirus subfamilies, highlighting the differences.
Collapse
Affiliation(s)
- Elizabeth B. Draganova
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Jonathan Valentin
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32603, USA;
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA;
- Correspondence:
| |
Collapse
|
9
|
Muller C, Alain S, Baumert TF, Ligat G, Hantz S. Structures and Divergent Mechanisms in Capsid Maturation and Stabilization Following Genome Packaging of Human Cytomegalovirus and Herpesviruses. Life (Basel) 2021; 11:life11020150. [PMID: 33669389 PMCID: PMC7920273 DOI: 10.3390/life11020150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/13/2023] Open
Abstract
Herpesviruses are the causative agents of several diseases. Infections are generally mild or asymptomatic in immunocompetent individuals. In contrast, herpesvirus infections continue to contribute to significant morbidity and mortality in immunocompromised patients. Few drugs are available for the treatment of human herpesvirus infections, mainly targeting the viral DNA polymerase. Moreover, no successful therapeutic options are available for the Epstein–Barr virus or human herpesvirus 8. Most licensed drugs share the same mechanism of action of targeting the viral polymerase and thus blocking DNA polymerization. Resistances to antiviral drugs have been observed for human cytomegalovirus, herpes simplex virus and varicella-zoster virus. A new terminase inhibitor, letermovir, recently proved effective against human cytomegalovirus. However, the letermovir has no significant activity against other herpesviruses. New antivirals targeting other replication steps, such as capsid maturation or DNA packaging, and inducing fewer adverse effects are therefore needed. Targeting capsid assembly or DNA packaging provides additional options for the development of new drugs. In this review, we summarize recent findings on capsid assembly and DNA packaging. We also described what is known about the structure and function of capsid and terminase proteins to identify novels targets for the development of new therapeutic options.
Collapse
Affiliation(s)
- Clotilde Muller
- INSERM, CHU Limoges, University of Limoges, RESINFIT, U1092, 87000 Limoges, France; (C.M.); (S.A.)
| | - Sophie Alain
- INSERM, CHU Limoges, University of Limoges, RESINFIT, U1092, 87000 Limoges, France; (C.M.); (S.A.)
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses (NRCHV), 87000 Limoges, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France;
- Institut Hospitalo-Universitaire, Pôle Hépato-Digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France
| | - Gaëtan Ligat
- Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France;
- Correspondence: (G.L.); (S.H.)
| | - Sébastien Hantz
- INSERM, CHU Limoges, University of Limoges, RESINFIT, U1092, 87000 Limoges, France; (C.M.); (S.A.)
- CHU Limoges, Laboratoire de Bactériologie-Virologie-Hygiène, National Reference Center for Herpesviruses (NRCHV), 87000 Limoges, France
- Correspondence: (G.L.); (S.H.)
| |
Collapse
|
10
|
Lee JH, Shim J, Kim SJ. Stunning symmetries involved in the self-assembly of the HSV-1 capsid. THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY 2021; 78:357-364. [PMID: 33584000 PMCID: PMC7871024 DOI: 10.1007/s40042-020-00044-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Herpes simplex virus-1 (HSV-1) is an enveloped dsDNA virus, infecting ~ 67% of humans. Here, we present the essential components of the HSV-1, focusing on stunning symmetries on the capsid. However, little is known about how the symmetries are involved dynamically in the self-assembly process. We suggest small angle X-ray scattering as a suitable method to capture the dynamics of self-assembly. Furthermore, our understanding of the viruses can be expanded by using an integrative approach that combines heterogeneous types of data, thus promoting new diagnostic tools and a cure for viral infections.
Collapse
Affiliation(s)
- Joo-hyeon Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Jaehyu Shim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Seung Joong Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| |
Collapse
|
11
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
12
|
Cryo-EM structure of the varicella-zoster virus A-capsid. Nat Commun 2020; 11:4795. [PMID: 32963252 PMCID: PMC7508878 DOI: 10.1038/s41467-020-18537-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Varicella-zoster virus (VZV), a member of the Alphaherpesvirinae subfamily, causes severe diseases in humans of all ages. The viral capsids play critical roles in herpesvirus infection, making them potential antiviral targets. Here, we present the 3.7-Å-resolution structure of the VZV A-capsid and define the molecular determinants underpinning the assembly of this complicated viral machinery. Overall, the VZV capsid has a similar architecture to that of other known herpesviruses. The major capsid protein (MCP) assembles into pentons and hexons, forming extensive intra- and inter-capsomer interaction networks that are further secured by the small capsid protein (SCP) and the heterotriplex. The structure reveals a pocket beneath the floor of MCP that could potentially be targeted by antiviral inhibitors. In addition, we identified two alphaherpesvirus-specific structural features in SCP and Tri1 proteins. These observations highlight the divergence of different herpesviruses and provide an important basis for developing antiviral drugs. Varicella-zoster virus (VZV) is the causative agent of chickenpox and herpes zoster (shingles). Cryo-EM structure of VZV capsid provides insights into the capsid assembly and reveals a pocket that could potentially be targeted by antiviral drugs.
Collapse
|
13
|
Michael BD, Bricio-Moreno L, Sorensen EW, Miyabe Y, Lian J, Solomon T, Kurt-Jones EA, Luster AD. Astrocyte- and Neuron-Derived CXCL1 Drives Neutrophil Transmigration and Blood-Brain Barrier Permeability in Viral Encephalitis. Cell Rep 2020; 32:108150. [PMID: 32937134 PMCID: PMC7548103 DOI: 10.1016/j.celrep.2020.108150] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
Herpes simplex virus (HSV)-1 encephalitis has significant morbidity partly because of an over-exuberant immune response characterized by leukocyte infiltration into the brain and increased blood-brain barrier (BBB) permeability. Determining the role of specific leukocyte subsets and the factors that mediate their recruitment into the brain is critical to developing targeted immune therapies. In a murine model, we find that the chemokines CXCL1 and CCL2 are induced in the brain following HSV-1 infection. Ccr2 (CCL2 receptor)-deficient mice have reduced monocyte recruitment, uncontrolled viral replication, and increased morbidity. Contrastingly, Cxcr2 (CXCL1 receptor)-deficient mice exhibit markedly reduced neutrophil recruitment, BBB permeability, and morbidity, without influencing viral load. CXCL1 is produced by astrocytes in response to HSV-1 and by astrocytes and neurons in response to IL-1α, and it is the critical ligand required for neutrophil transendothelial migration, which correlates with BBB breakdown. Thus, the CXCL1-CXCR2 axis represents an attractive therapeutic target to limit neutrophil-mediated morbidity in HSV-1 encephalitis.
Collapse
Affiliation(s)
- Benedict D Michael
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK; The Walton Centre NHS Foundation Trust, Department of Neurology, Liverpool L9 7LJ, UK
| | - Laura Bricio-Moreno
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Elizabeth W Sorensen
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yoshishige Miyabe
- Department of Cell Biology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo 113-8602, Japan
| | - Jeffrey Lian
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tom Solomon
- National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK; The Walton Centre NHS Foundation Trust, Department of Neurology, Liverpool L9 7LJ, UK
| | - Evelyn A Kurt-Jones
- University of Massachusetts Medical School, Department of Medicine, Division of Infectious Disease and Immunology, Worcester, MA 01655, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Near-atomic cryo-electron microscopy structures of varicella-zoster virus capsids. Nat Microbiol 2020; 5:1542-1552. [PMID: 32895526 DOI: 10.1038/s41564-020-0785-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
Varicella-zoster virus (VZV) is a medically important human herpesvirus that causes chickenpox and shingles, but its cell-associated nature has hindered structure studies. Here we report the cryo-electron microscopy structures of purified VZV A-capsid and C-capsid, as well as of the DNA-containing capsid inside the virion. Atomic models derived from these structures show that, despite enclosing a genome that is substantially smaller than those of other human herpesviruses, VZV has a similarly sized capsid, consisting of 955 major capsid protein (MCP), 900 small capsid protein (SCP), 640 triplex dimer (Tri2) and 320 triplex monomer (Tri1) subunits. The VZV capsid has high thermal stability, although with relatively fewer intra- and inter-capsid protein interactions and less stably associated tegument proteins compared with other human herpesviruses. Analysis with antibodies targeting the N and C termini of the VZV SCP indicates that the hexon-capping SCP-the largest among human herpesviruses-uses its N-terminal half to bridge hexon MCP subunits and possesses a C-terminal flexible half emanating from the inner rim of the upper hexon channel into the tegument layer. Correlation of these structural features and functional observations provide insights into VZV assembly and pathogenesis and should help efforts to engineer gene delivery and anticancer vectors based on the currently available VZV vaccine.
Collapse
|
15
|
Castro BS, Guedes F, Fernandes ER, Koike G, Katz ISS, Chaves LB, Silva SR. Development of biotinylated polyclonal anti-ribonucleoprotein IgG for detection of rabies virus antigen by direct rapid immunohistochemical test. Biologicals 2020; 68:74-78. [PMID: 32859463 DOI: 10.1016/j.biologicals.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/22/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022] Open
Abstract
The direct rapid immunohistochemical test (dRIT) has been recommended for laboratorial diagnosis of rabies, especially in developing countries. The absence of commercial primary antibodies, however, still represents a major limitation to its wider use in testing. We describe here the development of a biotinylated polyclonal antibody against Rabies lyssavirus (RABV) ribonucleoprotein (RNP) and its use as a primary reagent in dRIT. Anti-RNP polyclonal horse IgG was purified by ionic exchange chromatography followed by immunoaffinity column chromatography, and its affinity, diagnostic sensitivity, and specificity were evaluated. CNS samples (120) of suspected rabies cases in different animal species were tested by dRIT, with the positive (n = 14) and negative (n = 106) results confirmed by direct fluorescence antibody testing (dFAT). Comparing the results of dRIT and dFAT, we found that the biotinylated anti-RNP IgG delivered 100% diagnostic specificity and sensibility for rabies diagnosis. Our findings show that the biotinylated anti-RNP polyclonal IgG can be produced with the quality required for application in dRIT. This work represents an important step in efforts to diagnose rabies in developing countries.
Collapse
|
16
|
Grzesik P, Pryce EN, Bhalala A, Vij M, Ahmed R, Etienne L, Perez P, McCaffery JM, Desai APJ. Functional Domains of the Herpes Simplex Virus Type 1 Tegument Protein pUL37: The Amino Terminus is Dispensable for Virus Replication in Tissue Culture. Viruses 2019; 11:E853. [PMID: 31540043 PMCID: PMC6783895 DOI: 10.3390/v11090853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/01/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) UL37 gene encodes for a multifunctional component of the virion tegument, which is necessary for secondary envelopment in the cytoplasm of infected cells, for motility of the viral particle, and for the first steps in the initiation of virus infection. This 120 kDa protein has several known viral interacting partners, including pUL36, gK/pUL20, pUS10, and VP26, and cellular interacting proteins which include TRAF6, RIG-I, and dystonin. These interactions are likely important for the functions of pUL37 at both early and late stages of infection. We employed a genetic approach to determine essential domains and amino acid residues of pUL37 and their associated functions in cellular localization and virion morphogenesis. Using marker-rescue/marker-transfer methods, we generated a library of GFP-tagged pUL37 mutations in the HSV-1 strain KOS genome. Through viral growth and ultra-structural analysis, we discovered that the C-terminus is essential for replication. The N-terminal 480 amino acids are dispensable for replication in cell culture, although serve some non-essential function as viral titers are reduced in the presence of this truncation. Furthermore, the C-terminal 133 amino acids are important in so much that their absence leads to a lethal phenotype. We further probed the carboxy terminal half of pUL37 by alanine scanning mutagenesis of conserved residues among alphaherpesviruses. Mutant viruses were screened for the inability to form plaques-or greatly reduced plaque size-on Vero cells, of which 22 mutations were chosen for additional analysis. Viruses discovered to have the greatest reduction in viral titers on Vero cells were examined by electron microscopy (EM) and by confocal light microscopy for pUL37-EGFP cellular localization. This genetic approach identified both essential and non-essential domains and residues of the HSV-1 UL37 gene product. The mutations identified in this study are recognized as significant candidates for further analysis of the pUL37 function and may unveil previously undiscovered roles and interactions of this essential tegument gene.
Collapse
Affiliation(s)
- Peter Grzesik
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Erin N Pryce
- Integrated Imaging Center, Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Akshay Bhalala
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Mannika Vij
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Ray Ahmed
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Lyns Etienne
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Patric Perez
- Integrated Imaging Center, Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - J Michael McCaffery
- Integrated Imaging Center, Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - And Prashant J Desai
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, MD 21231, USA.
| |
Collapse
|
17
|
Syu GD, Wang SC, Ma G, Liu S, Pearce D, Prakash A, Henson B, Weng LC, Ghosh D, Ramos P, Eichinger D, Pino I, Dong X, Xiao J, Wang S, Tao N, Kim KS, Desai PJ, Zhu H. Development and application of a high-content virion display human GPCR array. Nat Commun 2019; 10:1997. [PMID: 31040288 PMCID: PMC6491619 DOI: 10.1038/s41467-019-09938-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/05/2019] [Indexed: 12/21/2022] Open
Abstract
Human G protein-coupled receptors (GPCRs) respond to various ligands and stimuli. However, GPCRs rely on membrane for proper folding, making their biochemical properties difficult to study. By displaying GPCRs in viral envelopes, we fabricated a Virion Display (VirD) array containing 315 non-olfactory human GPCRs for functional characterization. Using this array, we found that 10 of 20 anti-GPCR mAbs were ultra-specific. We further demonstrated that those failed in the mAb assays could recognize their canonical ligands, suggesting proper folding. Next, using two peptide ligands on the VirD-GPCR array, we identified expected interactions and novel interactions. Finally, we screened the array with group B Streptococcus, a major cause of neonatal meningitis, and demonstrated that inhibition of a newly identified target, CysLTR1, reduced bacterial penetration both in vitro and in vivo. We believe that the VirD-GPCR array holds great potential for high-throughput screening for small molecule drugs, affinity reagents, and ligand deorphanization.
Collapse
Affiliation(s)
- Guan-Da Syu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Shih-Chin Wang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Guangzhong Ma
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, 85287, USA
| | - Shuang Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Donna Pearce
- Division of Paediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Atish Prakash
- Division of Paediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Brandon Henson
- Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Lien-Chun Weng
- Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Devlina Ghosh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pedro Ramos
- CDI Laboratories, Inc., Mayaguez, Puerto Rico, 00682, USA
| | | | - Ignacio Pino
- CDI Laboratories, Inc., Mayaguez, Puerto Rico, 00682, USA
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, 85287, USA
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Kwang Sik Kim
- Division of Paediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Prashant J Desai
- Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| |
Collapse
|
18
|
Turan A, Grosche L, Krawczyk A, Mühl-Zürbes P, Drassner C, Düthorn A, Kummer M, Hasenberg M, Voortmann S, Jastrow H, Dörrie J, Schaft N, Kraner M, Döhner K, Sodeik B, Steinkasserer A, Heilingloh CS. Autophagic degradation of lamins facilitates the nuclear egress of herpes simplex virus type 1. J Cell Biol 2018; 218:508-523. [PMID: 30587512 PMCID: PMC6363456 DOI: 10.1083/jcb.201801151] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/02/2018] [Accepted: 11/08/2018] [Indexed: 01/11/2023] Open
Abstract
Turan and Grosche et al. show that herpes simplex virus type 1 (HSV-1) infection leads to autophagic degradation of nuclear lamins in immature dendritic cells, facilitating HSV-1 nuclear egress and the formation of infectious progeny virus. In mature dendritic cells, autophagy is inhibited due to elevated KIF1B and KIF2A protein levels. Dendritic cells (DCs) are crucial for the induction of potent antiviral immune responses. In contrast to immature DCs (iDCs), mature DCs (mDCs) are not permissive for infection with herpes simplex virus type 1 (HSV-1). Here, we demonstrate that HSV-1 infection of iDCs and mDCs induces autophagy, which promotes the degradation of lamin A/C, B1, and B2 in iDCs only. This in turn facilitates the nuclear egress of progeny viral capsids and thus the formation of new infectious particles. In contrast, lamin protein levels remain stable in HSV-1–infected mDCs due to an inefficient autophagic flux. Elevated protein levels of KIF1B and KIF2A in mDCs inhibited lamin degradation, likely by hampering autophagosome–lysosome fusion. Therefore, in mDCs, fewer progeny capsids were released from the nuclei into the cytosol, and fewer infectious virions were assembled. We hypothesize that inhibition of autophagic lamin degradation in mDCs represents a very powerful cellular counterstrike to inhibit the production of progeny virus and thus viral spread.
Collapse
Affiliation(s)
- Aykut Turan
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Linda Grosche
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Drassner
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexandra Düthorn
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mirko Kummer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mike Hasenberg
- Imaging Center Essen, Electron Microscopy Unit, University Hospital of Essen, Essen, Germany
| | - Sylvia Voortmann
- Imaging Center Essen, Electron Microscopy Unit, University Hospital of Essen, Essen, Germany
| | - Holger Jastrow
- Imaging Center Essen, Electron Microscopy Unit, University Hospital of Essen, Essen, Germany.,Institute of Anatomy, University of Duisburg-Essen, Essen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Max Kraner
- Division of Biochemistry, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
19
|
Carmichael JC, Starkey J, Zhang D, Sarfo A, Chadha P, Wills JW, Han J. Glycoprotein D of HSV-1 is dependent on tegument protein UL16 for packaging and contains a motif that is differentially required for syncytia formation. Virology 2018; 527:64-76. [PMID: 30465930 DOI: 10.1016/j.virol.2018.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 10/27/2022]
Abstract
Glycoprotein D (gD) of herpes simplex virus type 1 (HSV-1) plays a key role in multiple events during infection including virus entry, cell-to-cell spread, and virus-induced syncytia formation. Here, we provide evidence that an arginine/lysine cluster located at the transmembrane-cytoplasm interface of gD critically contributes to viral spread and cell-cell fusion. Our studies began with the discovery that packaging of gD into virions is almost completely blocked in the absence of tegument protein UL16. We subsequently identified a novel, direct, and regulated interaction between UL16 and gD, but this was not important for syncytia formation. However, a mutational analysis of the membrane-proximal basic residues of gD revealed that they are needed for the gBsyn phenotype, salubrinal-induced fusion of HSV-infected cells, and cell-to-cell spread. Finally, we found that these same gD tail basic residues are not required for cell fusion induced by a gKsyn variant.
Collapse
Affiliation(s)
- Jillian C Carmichael
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jason Starkey
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Dan Zhang
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Akua Sarfo
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Pooja Chadha
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - John W Wills
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jun Han
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Preventive Veterinary Medicine, China Agricultural University College of Veterinary Medicine, Beijing 100193, China.
| |
Collapse
|
20
|
Structure of the herpes simplex virus type 2 C-capsid with capsid-vertex-specific component. Nat Commun 2018; 9:3668. [PMID: 30201968 PMCID: PMC6131487 DOI: 10.1038/s41467-018-06078-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/11/2018] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex viruses (HSVs) cause human oral and genital ulcer diseases. Patients with HSV-2 have a higher risk of acquiring a human immunodeficiency virus infection. HSV-2 is a member of the α-herpesvirinae subfamily that together with the β- and γ-herpesvirinae subfamilies forms the Herpesviridae family. Here, we report the cryo-electron microscopy structure of the HSV-2 C-capsid with capsid-vertex-specific component (CVSC) that was determined at 3.75 Å using a block-based reconstruction strategy. We present atomic models of multiple conformers for the capsid proteins (VP5, VP23, VP19C, and VP26) and CVSC. Comparison of the HSV-2 homologs yields information about structural similarities and differences between the three herpesviruses sub-families and we identify α-herpesvirus-specific structural features. The hetero-pentameric CVSC, consisting of a UL17 monomer, a UL25 dimer and a UL36 dimer, is bound tightly by a five-helix bundle that forms extensive networks of subunit contacts with surrounding capsid proteins, which reinforce capsid stability. Herpes simplex virus type-2 (HSV-2) belongs to the α-herpesvirinae subfamily and is a sexually transmitted virus that causes genital ulcer disease. Here the authors present the 3.75 Å cryo-EM structure of the HSV-2 C-capsid with capsid-vertex-specific component and describe α-herpesvirus-specific structural features.
Collapse
|
21
|
Grzesik P, Ko N, Oldfield LM, Vashee S, Desai PJ. Rapid and efficient in vitro excision of BAC sequences from herpesvirus genomes using Cre-mediated recombination. J Virol Methods 2018; 261:67-70. [PMID: 30092252 DOI: 10.1016/j.jviromet.2018.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 01/09/2023]
Abstract
Cre-mediated recombination is a widely used technique for the re-arrangement of DNA sequences that are bracketed by loxP recognition sites. This bacteriophage P1 enzyme is commonly used to excise the bacterial artificial chromosome (BAC) sequence, a vector sequence used for large herpesvirus genomes for the purposes of propagation and manipulation in Escherichia coli. Most methods utilize cell lines that can be induced for the expression of Cre enzyme to facilitate this excision. In addition, methods have been developed that express Cre from the virus genome and enable auto-excision of the BAC plasmid. We report a versatile and rapid in vitro method based on purified Cre enzyme to carry out the same process in a test tube and does not require cell line generation or cloning into the virus genome. This method greatly increases the repertoire of methods available to modify the genome prior to reconstitution of virus infectivity in a mammalian host.
Collapse
Affiliation(s)
- Peter Grzesik
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan Ko
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren M Oldfield
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, USA
| | - Sanjay Vashee
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, USA
| | - Prashant J Desai
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
22
|
Yuan S, Wang J, Zhu D, Wang N, Gao Q, Chen W, Tang H, Wang J, Zhang X, Liu H, Rao Z, Wang X. Cryo-EM structure of a herpesvirus capsid at 3.1 Å. Science 2018; 360:360/6384/eaao7283. [DOI: 10.1126/science.aao7283] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/23/2018] [Indexed: 12/21/2022]
Abstract
Structurally and genetically, human herpesviruses are among the largest and most complex of viruses. Using cryo–electron microscopy (cryo-EM) with an optimized image reconstruction strategy, we report the herpes simplex virus type 2 (HSV-2) capsid structure at 3.1 angstroms, which is built up of about 3000 proteins organized into three types of hexons (central, peripentonal, and edge), pentons, and triplexes. Both hexons and pentons contain the major capsid protein, VP5; hexons also contain a small capsid protein, VP26; and triplexes comprise VP23 and VP19C. Acting as core organizers, VP5 proteins form extensive intermolecular networks, involving multiple disulfide bonds (about 1500 in total) and noncovalent interactions, with VP26 proteins and triplexes that underpin capsid stability and assembly. Conformational adaptations of these proteins induced by their microenvironments lead to 46 different conformers that assemble into a massive quasisymmetric shell, exemplifying the structural and functional complexity of HSV.
Collapse
|
23
|
Dai X, Zhou ZH. Structure of the herpes simplex virus 1 capsid with associated tegument protein complexes. Science 2018; 360:360/6384/eaao7298. [PMID: 29622628 DOI: 10.1126/science.aao7298] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/23/2018] [Indexed: 12/25/2022]
Abstract
Herpes simplex viruses (HSVs) rely on capsid-associated tegument complex (CATC) for long-range axonal transport of their genome-containing capsids between sites of infection and neuronal cell bodies. Here we report cryo-electron microscopy structures of the HSV-1 capsid with CATC up to 3.5-angstrom resolution and atomic models of multiple conformers of capsid proteins VP5, VP19c, VP23, and VP26 and tegument proteins pUL17, pUL25, and pUL36. Crowning every capsid vertex are five copies of heteropentameric CATC, each containing a pUL17 monomer supporting the coiled-coil helix bundle of a pUL25 dimer and a pUL36 dimer, thus positioning their flexible domains for potential involvement in nuclear capsid egress and axonal capsid transport. Notwithstanding newly discovered fold conservation between triplex proteins and bacteriophage λ protein gpD and the previously recognized bacteriophage HK97 gp5-like fold in VP5, HSV-1 capsid proteins exhibit extraordinary diversity in forms of domain insertion and conformational polymorphism, not only for interactions with tegument proteins but also for encapsulation of large genomes.
Collapse
Affiliation(s)
- Xinghong Dai
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Buch A, Müller O, Ivanova L, Döhner K, Bialy D, Bosse JB, Pohlmann A, Binz A, Hegemann M, Nagel CH, Koltzenburg M, Viejo-Borbolla A, Rosenhahn B, Bauerfeind R, Sodeik B. Inner tegument proteins of Herpes Simplex Virus are sufficient for intracellular capsid motility in neurons but not for axonal targeting. PLoS Pathog 2017; 13:e1006813. [PMID: 29284065 PMCID: PMC5761964 DOI: 10.1371/journal.ppat.1006813] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/10/2018] [Accepted: 12/14/2017] [Indexed: 02/07/2023] Open
Abstract
Upon reactivation from latency and during lytic infections in neurons, alphaherpesviruses assemble cytosolic capsids, capsids associated with enveloping membranes, and transport vesicles harboring fully enveloped capsids. It is debated whether capsid envelopment of herpes simplex virus (HSV) is completed in the soma prior to axonal targeting or later, and whether the mechanisms are the same in neurons derived from embryos or from adult hosts. We used HSV mutants impaired in capsid envelopment to test whether the inner tegument proteins pUL36 or pUL37 necessary for microtubule-mediated capsid transport were sufficient for axonal capsid targeting in neurons derived from the dorsal root ganglia of adult mice. Such neurons were infected with HSV1-ΔUL20 whose capsids recruited pUL36 and pUL37, with HSV1-ΔUL37 whose capsids associate only with pUL36, or with HSV1-ΔUL36 that assembles capsids lacking both proteins. While capsids of HSV1-ΔUL20 were actively transported along microtubules in epithelial cells and in the somata of neurons, those of HSV1-ΔUL36 and -ΔUL37 could only diffuse in the cytoplasm. Employing a novel image analysis algorithm to quantify capsid targeting to axons, we show that only a few capsids of HSV1-ΔUL20 entered axons, while vesicles transporting gD utilized axonal transport efficiently and independently of pUL36, pUL37, or pUL20. Our data indicate that capsid motility in the somata of neurons mediated by pUL36 and pUL37 does not suffice for targeting capsids to axons, and suggest that capsid envelopment needs to be completed in the soma prior to targeting of herpes simplex virus to the axons, and to spreading from neurons to neighboring cells.
Collapse
Affiliation(s)
- Anna Buch
- Institute of Virology, Hannover Medical School, Hannover, Germany
- NRENNT–Niedersachsen Research Network on Neuroinfectiology, Hannover, Germany
- DZIF—German Center for Infection Research, Hannover, Germany
| | - Oliver Müller
- Institute for Information Processing, Leibniz University, Hannover, Germany
- REBIRTH—From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Lyudmila Ivanova
- Institute of Virology, Hannover Medical School, Hannover, Germany
- NRENNT–Niedersachsen Research Network on Neuroinfectiology, Hannover, Germany
- REBIRTH—From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Dagmara Bialy
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jens B. Bosse
- Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | - Anja Pohlmann
- Institute of Virology, Hannover Medical School, Hannover, Germany
- REBIRTH—From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Anne Binz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- REBIRTH—From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Maike Hegemann
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | | | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover, Germany
- NRENNT–Niedersachsen Research Network on Neuroinfectiology, Hannover, Germany
| | - Bodo Rosenhahn
- Institute for Information Processing, Leibniz University, Hannover, Germany
- REBIRTH—From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Rudolf Bauerfeind
- Research Core Unit Laser Microscopy, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- NRENNT–Niedersachsen Research Network on Neuroinfectiology, Hannover, Germany
- DZIF—German Center for Infection Research, Hannover, Germany
- REBIRTH—From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| |
Collapse
|
25
|
Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods. Proc Natl Acad Sci U S A 2017; 114:E8885-E8894. [PMID: 28928148 DOI: 10.1073/pnas.1700534114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOSYA, replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.
Collapse
|
26
|
Herpes Simplex Virus 1 Small Capsomere-Interacting Protein VP26 Regulates Nucleocapsid Maturation. J Virol 2017; 91:JVI.01068-17. [PMID: 28679756 DOI: 10.1128/jvi.01068-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 01/22/2023] Open
Abstract
VP26 is a herpes simplex virus 1 (HSV-1) small capsomere-interacting protein. In this study, we investigated the function of VP26 in HSV-1-infected cells with the following results. (i) The VP26 null mutation significantly impaired incorporation of minor capsid protein UL25 into nucleocapsids (type C capsids) in the nucleus. (ii) The VP26 mutation caused improper localization of UL25 in discrete punctate domains containing multiple capsid proteins (e.g., the VP5 major capsid protein) in the nucleus; these domains corresponded to capsid aggregates. (iii) The VP26 mutation significantly impaired packaging of replicated viral DNA genomes into capsids but had no effect on viral DNA concatemer cleavage. (iv) The VP26 mutation reduced the frequency of type C capsids, which contain viral DNA but not scaffolding proteins, and produced an accumulation of type A capsids, which lack both viral DNA and scaffold proteins, and had no effect on accumulation of type B capsids, which lack viral DNA but retain cleaved scaffold proteins. Collectively, these results indicated that VP26 was required for efficient viral DNA packaging and proper localization of nuclear capsids. The phenotype of the VP26 null mutation was similar to that reported previously of the UL25 null mutation and of UL25 mutations that preclude UL25 binding to capsids. Thus, VP26 appeared to regulate nucleocapsid maturation by promoting incorporation of UL25 into capsids, which is likely to be required for proper capsid nuclear localization.IMPORTANCE HSV-1 VP26 has been reported to be important for viral replication and virulence in cell cultures and/or mouse models. However, little is known about the function of VP26 during HSV-1 replication, in particular, in viral nucleocapsid maturation although HSV-1 nucleocapsids are estimated to contain 900 copies of VP26. In this study, we present data suggesting that VP26 promoted packaging of HSV-1 DNA genomes into capsids by regulating incorporation of capsid protein UL25 into capsids, which was reported to increase stability of the capsid structure. We also showed that VP26 was required for proper localization of capsids in the infected cell nucleus. This is the first report showing that HSV-1 VP26 is a regulator for nucleocapsid maturation.
Collapse
|
27
|
Etienne L, Joshi P, Dingle L, Huang E, Grzesik P, Desai PJ. Visualization of herpes simplex virus type 1 virions using fluorescent colors. J Virol Methods 2017; 241:46-51. [PMID: 28012897 PMCID: PMC5661875 DOI: 10.1016/j.jviromet.2016.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 01/14/2023]
Abstract
Our laboratory was one of the first to engineer a live fluorescent tag, enhanced green fluorescent protein (eGFP), that marked the capsid of herpes simplex virus type 1 (HSV-1) and subsequently maturing virus as the particle made its way to the cell surface. In the present study we sought to increase the repertoire of colors available as fusion to the small capsid protein, VP26, so that they can be used alone or in conjunction with other fluorescent tags (fused to other HSV proteins) to follow the virus as it enters and replicates within the cell. We have now generated viruses expressing VP26 fusions with Cerulean, Venus, mOrange, tdTomato, mCherry, and Dronpa3 fluorescent proteins. These fusions were made in a repaired UL35 gene (VP26) background. These fusions do not affect the replication properties of the virus expressing the fusion polypeptide and the fusion tag was stably associated with intranuclear capsids and mature virions. Of note we could not isolate viruses expressing fusions with fluorescent proteins that have a tendency to dimerize.
Collapse
Affiliation(s)
- Lyns Etienne
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Poorval Joshi
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura Dingle
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eugene Huang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Grzesik
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Prashant J Desai
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Conserved Tryptophan Motifs in the Large Tegument Protein pUL36 Are Required for Efficient Secondary Envelopment of Herpes Simplex Virus Capsids. J Virol 2016; 90:5368-5383. [PMID: 27009950 DOI: 10.1128/jvi.03167-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/15/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Herpes simplex virus (HSV) replicates in the skin and mucous membranes, and initiates lytic or latent infections in sensory neurons. Assembly of progeny virions depends on the essential large tegument protein pUL36 of 3,164 amino acid residues that links the capsids to the tegument proteins pUL37 and VP16. Of the 32 tryptophans of HSV-1-pUL36, the tryptophan-acidic motifs (1766)WD(1767) and (1862)WE(1863) are conserved in all HSV-1 and HSV-2 isolates. Here, we characterized the role of these motifs in the HSV life cycle since the rare tryptophans often have unique roles in protein function due to their large hydrophobic surface. The infectivity of the mutants HSV-1(17(+))Lox-pUL36-WD/AA-WE/AA and HSV-1(17(+))Lox-CheVP26-pUL36-WD/AA-WE/AA, in which the capsid has been tagged with the fluorescent protein Cherry, was significantly reduced. Quantitative electron microscopy shows that there were a larger number of cytosolic capsids and fewer enveloped virions compared to their respective parental strains, indicating a severe impairment in secondary capsid envelopment. The capsids of the mutant viruses accumulated in the perinuclear region around the microtubule-organizing center and were not dispersed to the cell periphery but still acquired the inner tegument proteins pUL36 and pUL37. Furthermore, cytoplasmic capsids colocalized with tegument protein VP16 and, to some extent, with tegument protein VP22 but not with the envelope glycoprotein gD. These results indicate that the unique conserved tryptophan-acidic motifs in the central region of pUL36 are required for efficient targeting of progeny capsids to the membranes of secondary capsid envelopment and for efficient virion assembly. IMPORTANCE Herpesvirus infections give rise to severe animal and human diseases, especially in young, immunocompromised, and elderly individuals. The structural hallmark of herpesvirus virions is the tegument, which contains evolutionarily conserved proteins that are essential for several stages of the herpesvirus life cycle. Here we characterized two conserved tryptophan-acidic motifs in the central region of the large tegument protein pUL36 of herpes simplex virus. When we mutated these motifs, secondary envelopment of cytosolic capsids and the production of infectious particles were severely impaired. Our data suggest that pUL36 and its homologs in other herpesviruses, and in particular such tryptophan-acidic motifs, could provide attractive targets for the development of novel drugs to prevent herpesvirus assembly and spread.
Collapse
|
29
|
Inhibition of O-Linked N-Acetylglucosamine Transferase Reduces Replication of Herpes Simplex Virus and Human Cytomegalovirus. J Virol 2015; 89:8474-83. [PMID: 26041297 DOI: 10.1128/jvi.01002-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential cellular enzyme that posttranslationally modifies nuclear and cytoplasmic proteins via O-linked addition of a single N-acetylglucosamine (GlcNAc) moiety. Among the many targets of OGT is host cell factor 1 (HCF-1), a transcriptional regulator that is required for transactivation of the immediate-early genes of herpes simplex virus (HSV). HCF-1 is synthesized as a large precursor that is proteolytically cleaved by OGT, which may regulate its biological function. In this study, we tested whether inhibition of the enzymatic activity of OGT with a small molecule inhibitor, OSMI-1, affects initiation of HSV immediate-early gene expression and viral replication. We found that inhibiting OGT's enzymatic activity significantly decreased HSV replication. The major effect of the inhibitor occurred late in the viral replication cycle, when it reduced the levels of late proteins and inhibited capsid formation. However, depleting OGT levels with small interfering RNA (siRNA) reduced the expression of HSV immediate-early genes, in addition to reducing viral yields. In this study, we identified OGT as a novel cellular factor involved in HSV replication. Our results obtained using a small molecule inhibitor and siRNA depletion suggest that OGT's glycosylation and scaffolding functions play distinct roles in the replication cycle of HSV. IMPORTANCE Antiviral agents can target viral or host gene products essential for viral replication. O-GlcNAc transferase (OGT) is an important cellular enzyme that catalyzes the posttranslational addition of GlcNAc sugar residues to hundreds of nuclear and cytoplasmic proteins, and this modification regulates their activity and function. Some of the known OGT targets are cellular proteins that are critical for the expression of herpes simplex virus (HSV) genes, suggesting a role for OGT in the replication cycle of HSV. In this study, we found that OGT is required for efficient expression of viral genes and for assembly of new virions. Thus, we identify OGT as a novel host factor involved in the replication of HSV and a potential target for antiviral therapy.
Collapse
|
30
|
Rowles DL, Tsai YC, Greco TM, Lin AE, Li M, Yeh J, Cristea IM. DNA methyltransferase DNMT3A associates with viral proteins and impacts HSV-1 infection. Proteomics 2015; 15:1968-82. [PMID: 25758154 DOI: 10.1002/pmic.201500035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/17/2015] [Accepted: 03/07/2015] [Indexed: 01/21/2023]
Abstract
Viral infections can alter the cellular epigenetic landscape, through modulation of either DNA methylation profiles or chromatin remodeling enzymes and histone modifications. These changes can act to promote viral replication or host defense. Herpes simplex virus type 1 (HSV-1) is a prominent human pathogen, which relies on interactions with host factors for efficient replication and spread. Nevertheless, the knowledge regarding its modulation of epigenetic factors remains limited. Here, we used fluorescently-labeled viruses in conjunction with immunoaffinity purification and MS to study virus-virus and virus-host protein interactions during HSV-1 infection in primary human fibroblasts. We identified interactions among viral capsid and tegument proteins, detecting phosphorylation of the capsid protein VP26 at sites within its UL37-binding domain, and an acetylation within the major capsid protein VP5. Interestingly, we found a nuclear association between viral capsid proteins and the de novo DNA methyltransferase DNA (cytosine-5)-methyltransferase 3A (DNMT3A), which we confirmed by reciprocal isolations and microscopy. We show that drug-induced inhibition of DNA methyltransferase activity, as well as siRNA- and shRNA-mediated DNMT3A knockdowns trigger reductions in virus titers. Altogether, our results highlight a functional association of viral proteins with the mammalian DNA methyltransferase machinery, pointing to DNMT3A as a host factor required for effective HSV-1 infection.
Collapse
Affiliation(s)
- Daniell L Rowles
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yuan-Chin Tsai
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Todd M Greco
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Aaron E Lin
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Minghao Li
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Justin Yeh
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
31
|
Function of the Herpes Simplex Virus 1 Small Capsid Protein VP26 Is Regulated by Phosphorylation at a Specific Site. J Virol 2015; 89:6141-7. [PMID: 25810545 DOI: 10.1128/jvi.00547-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/18/2015] [Indexed: 12/27/2022] Open
Abstract
Replacement of the herpes simplex virus 1 small capsid protein VP26 phosphorylation site Thr-111 with alanine reduced viral replication and neurovirulence to levels observed with the VP26 null mutation. This mutation reduced VP26 expression and mislocalized VP26 and its binding partner, the major capsid protein VP5, in the nucleus. VP5 mislocalization was also observed with the VP26 null mutation. Thus, we postulate that phosphorylation of VP26 at Thr-111 regulates VP26 function in vitro and in vivo.
Collapse
|
32
|
Abstract
Virus genomes are condensed and packaged inside stable proteinaceous capsids that serve to protect them during transit from one cell or host organism, to the next. During virus entry, capsid shells are primed and disassembled in a complex, tightly-regulated, multi-step process termed uncoating. Here we compare the uncoating-programs of DNA viruses of the pox-, herpes-, adeno-, polyoma-, and papillomavirus families. Highlighting the chemical and mechanical cues virus capsids respond to, we review the conformational changes that occur during stepwise disassembly of virus capsids and how these culminate in the release of viral genomes at the right time and cellular location to assure successful replication.
Collapse
|
33
|
CryoEM and mutagenesis reveal that the smallest capsid protein cements and stabilizes Kaposi's sarcoma-associated herpesvirus capsid. Proc Natl Acad Sci U S A 2015; 112:E649-56. [PMID: 25646489 DOI: 10.1073/pnas.1420317112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With just one eighth the size of the major capsid protein (MCP), the smallest capsid protein (SCP) of human tumor herpesviruses--Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV)--is vital to capsid assembly, yet its mechanism of action is unknown. Here, by cryoEM of KSHV at 6-Å resolution, we show that SCP forms a crown on each hexon and uses a kinked helix to cross-link neighboring MCP subunits. SCP-null mutation decreased viral titer by 1,000 times and impaired but did not fully abolish capsid assembly, indicating an important but nonessential role of SCP. By truncating the C-terminal half of SCP and performing cryoEM reconstruction, we demonstrate that SCP's N-terminal half is responsible for the observed structure and function whereas the C-terminal half is flexible and dispensable. Serial truncations further highlight the critical importance of the N-terminal 10 aa, and cryoEM reconstruction of the one with six residues truncated localizes the N terminus of SCP in the cryoEM density map and enables us to construct a pseudoatomic model of SCP. Fitting of this SCP model and a homology model for the MCP upper domain into the cryoEM map reveals that SCP binds MCP largely via hydrophobic interactions and the kinked helix of SCP bridges over neighboring MCPs to form noncovalent cross-links. These data support a mechanistic model that tumor herpesvirus SCP reinforces the capsid for genome packaging, thus acting as a cementing protein similar to those found in many bacteriophages.
Collapse
|
34
|
Herpes simplex virus internalization into epithelial cells requires Na+/H+ exchangers and p21-activated kinases but neither clathrin- nor caveolin-mediated endocytosis. J Virol 2014; 88:13378-95. [PMID: 25210183 DOI: 10.1128/jvi.03631-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) is an alphaherpesvirus that has been reported to infect some epithelial cell types by fusion at the plasma membrane but others by endocytosis. To determine the molecular mechanisms of productive HSV-1 cell entry, we perturbed key endocytosis host factors using specific inhibitors, RNA interference (RNAi), or overexpression of dominant negative proteins and investigated their effects on HSV-1 infection in the permissive epithelial cell lines Vero, HeLa, HEp-2, and PtK2. HSV-1 internalization required neither endosomal acidification nor clathrin- or caveolin-mediated endocytosis. In contrast, HSV-1 gene expression and internalization were significantly reduced after treatment with 5-(N-ethyl-N-isopropyl)amiloride (EIPA). EIPA blocks the activity of Na(+)/H(+) exchangers, which are plasma membrane proteins implicated in all forms of macropinocytosis. HSV-1 internalization furthermore required the function of p21-activated kinases that contribute to macropinosome formation. However, in contrast to some forms of macropinocytosis, HSV-1 did not enlist the activities of protein kinase C (PKC), tyrosine kinases, C-terminal binding protein 1, or dynamin to activate its internalization. These data suggest that HSV-1 depends on Na(+)/H(+) exchangers and p21-activated kinases either for macropinocytosis or for local actin rearrangements required for fusion at the plasma membrane or subsequent passage through the actin cortex underneath the plasma membrane. IMPORTANCE After initial replication in epithelial cells, herpes simplex viruses (HSVs) establish latent infections in neurons innervating these regions. Upon primary infection and reactivation from latency, HSVs cause many human skin and neurological diseases, particularly in immunocompromised hosts, despite the availability of effective antiviral drugs. Many viruses use macropinocytosis for virus internalization, and many host factors mediating this entry route have been identified, although the specific perturbation profiles vary for different host and viral cargo. In addition to an established entry pathway via acidic endosomes, we show here that HSV-1 internalization depended on sodium-proton exchangers at the plasma membrane and p21-activated kinases. These results suggest that HSV-1 requires a reorganization of the cortical actin cytoskeleton, either for productive cell entry via pH-independent fusion from macropinosomes or for fusion at the plasma membrane, and subsequent cytosolic passage to microtubules that mediate capsid transport to the nucleus for genome uncoating and replication.
Collapse
|
35
|
Capuano CM, Grzesik P, Kreitler D, Pryce EN, Desai KV, Coombs G, McCaffery JM, Desai PJ. A hydrophobic domain within the small capsid protein of Kaposi's sarcoma-associated herpesvirus is required for assembly. J Gen Virol 2014; 95:1755-1769. [PMID: 24824860 DOI: 10.1099/vir.0.064303-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP-GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present - indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP-GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP-His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP-GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP-GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP-MCP interaction.
Collapse
Affiliation(s)
- Christopher M Capuano
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Peter Grzesik
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dale Kreitler
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Erin N Pryce
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Keshal V Desai
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Gavin Coombs
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - J Michael McCaffery
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Prashant J Desai
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
36
|
Abstract
UNLABELLED Nelfinavir (NFV) is an HIV-1 protease inhibitor with demonstrated antiviral activity against herpes simplex virus 1 (HSV-1) and several other herpesviruses. However, the stages of HSV-1 replication inhibited by NFV have not been explored. In this study, we investigated the effects of NFV on capsid assembly and envelopment. We confirmed the inhibitory effects of NFV on HSV-1 replication by plaque assay and found that treatment with NFV did not affect capsid assembly, activity of the HSV-1 maturational protease, or formation of DNA-containing capsids in the nucleus. Confocal and electron microscopy studies showed that these capsids were transported to the cytoplasm but failed to complete secondary envelopment and subsequent exit from the cell. Consistent with the microscopy results, a light-scattering band corresponding to enveloped virions was not evident following sucrose gradient rate-velocity separation of lysates from drug-treated cells. Evidence of a possibly related effect of NFV on viral glycoprotein maturation was also discovered. NFV also inhibited the replication of an HSV-1 thymidine kinase mutant resistant to nucleoside analogues such as acyclovir. Given that NFV is neither a nucleoside mimic nor a known inhibitor of nucleic acid synthesis, this was expected and suggests its potential as a coinhibitor or alternate antiviral therapeutic agent in cases of resistance. IMPORTANCE Nelfinavir (NFV) is a clinically important antiviral drug that inhibits production of infectious HIV. It was reported to inhibit herpesviruses in cell culture. Herpes simplex virus 1 (HSV-1) infections are common and often associated with several diseases. The studies we describe here confirm and extend earlier findings by investigating how NFV interferes with HSV-1 replication. We show that early steps in virus formation (e.g., assembly of DNA-containing capsids in the nucleus and their movement into the cytoplasm) appear to be unaffected by NFV, whereas later steps (e.g., final envelopment in the cytoplasm and release of infectious virus from the cell) are severely restricted by the drug. Our findings provide the first insight into how NFV inhibits HSV-1 replication and suggest that this drug may have applications for studying the herpesvirus envelopment process. Additionally, NFV may have therapeutic value alone or in combination with other antivirals in treating herpesvirus infections.
Collapse
|
37
|
Elucidation of the block to herpes simplex virus egress in the absence of tegument protein UL16 reveals a novel interaction with VP22. J Virol 2013; 88:110-9. [PMID: 24131716 DOI: 10.1128/jvi.02555-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UL16 is a tegument protein of herpes simplex virus (HSV) that is conserved among all members of the Herpesviridae, but its function is poorly understood. Previous studies revealed that UL16 is associated with capsids in the cytoplasm and interacts with the membrane protein UL11, which suggested a "bridging" function during cytoplasmic envelopment, but this conjecture has not been tested. To gain further insight, cells infected with UL16-null mutants were examined by electron microscopy. No defects in the transport of capsids to cytoplasmic membranes were observed, but the wrapping of capsids with membranes was delayed. Moreover, clusters of cytoplasmic capsids were often observed, but only near membranes, where they were wrapped to produce multiple capsids within a single envelope. Normal virion production was restored when UL16 was expressed either by complementing cells or from a novel position in the HSV genome. When the composition of the UL16-null viruses was analyzed, a reduction in the packaging of glycoprotein E (gE) was observed, which was not surprising, since it has been reported that UL16 interacts with this glycoprotein. However, levels of the tegument protein VP22 were also dramatically reduced in virions, even though this gE-binding protein has been shown not to depend on its membrane partner for packaging. Cotransfection experiments revealed that UL16 and VP22 can interact in the absence of other viral proteins. These results extend the UL16 interaction network beyond its previously identified binding partners to include VP22 and provide evidence that UL16 plays an important function at the membrane during virion production.
Collapse
|
38
|
Hu S, Feng Y, Henson B, Wang B, Huang X, Li M, Desai P, Zhu H. VirD: a virion display array for profiling functional membrane proteins. Anal Chem 2013; 85:8046-54. [PMID: 23941274 DOI: 10.1021/ac401795y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To facilitate high-throughput biochemical analyses of membrane proteins, we have developed a novel display technology in a microarray format. Both single-pass (cluster of differentiation 4, CD4) and multiple-pass (G protein-coupled receptor 77, GPR77) human transmembrane proteins were engineered to be displayed in the membrane envelop of herpes simplex virions. These viruses produce large spherical virions displaying multiple copies of envelop proteins. Our aim was to engineer this virus to express these human proteins during the virus productive cycle and incorporate the human proteins into the virion during the assembly process. Another strategy presented includes engineering a fusion of glycoprotein C (gC), a major constituent of herpes simplex virus type 1 (HSV-1) virions, by hijacking the cis-acting signals to direct incorporation of the chimeric protein into the virion. The expression of the human proteins in infected cells, at the cell surface and in purified virions, is in the correct transmembrane orientation, and the proteins are biochemically functional. Purified virions printed on glass slides form a high-density Virion Display (VirD) Array, and the displayed proteins were demonstrated to retain their native conformations and interactions on the VirD Array judging by similar assays, such as antibody staining, as well as lectin and ligand binding. This method can be readily scaled or tailored for different modalities including a high-content, high-throughput platform for screening ligands and drugs of human membrane proteins.
Collapse
Affiliation(s)
- Shaohui Hu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
The smallest capsid protein mediates binding of the essential tegument protein pp150 to stabilize DNA-containing capsids in human cytomegalovirus. PLoS Pathog 2013; 9:e1003525. [PMID: 23966856 PMCID: PMC3744435 DOI: 10.1371/journal.ppat.1003525] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 06/14/2013] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that causes birth defects in newborns and life-threatening complications in immunocompromised individuals. Among all human herpesviruses, HCMV contains a much larger dsDNA genome within a similarly-sized capsid compared to the others, and it was proposed to require pp150, a tegument protein only found in cytomegaloviruses, to stabilize its genome-containing capsid. However, little is known about how pp150 interacts with the underlying capsid. Moreover, the smallest capsid protein (SCP), while dispensable in herpes simplex virus type 1, was shown to play essential, yet undefined, role in HCMV infection. Here, by cryo electron microscopy (cryoEM), we determine three-dimensional structures of HCMV capsid (no pp150) and virion (with pp150) at sub-nanometer resolution. Comparison of these two structures reveals that each pp150 tegument density is composed of two helix bundles connected by a long central helix. Correlation between the resolved helices and sequence-based secondary structure prediction maps the tegument density to the N-terminal half of pp150. The structures also show that SCP mediates interactions between the capsid and pp150 at the upper helix bundle of pp150. Consistent with this structural observation, ribozyme inhibition of SCP expression in HCMV-infected cells impairs the formation of DNA-containing viral particles and reduces viral yield by 10,000 fold. By cryoEM reconstruction of the resulting “SCP-deficient” viral particles, we further demonstrate that SCP is required for pp150 functionally binding to the capsid. Together, our structural and biochemical results point to a mechanism whereby SCP recruits pp150 to stabilize genome-containing capsid for the production of infectious HCMV virion. Human cytomegalovirus (HCMV) causes birth defects in newborns and life-threatening complications in immunocompromised individuals, such as AIDS patients and organ transplant recipients. The smallest capsid protein (SCP) – only 8 kDa molecular mass as compared to the 155 kDa major capsid protein – has been demonstrated to be essential for HCMV growth, but is dispensable in herpes simplex virus type 1. These seemingly contradictory observations have been a paradox. Here, we solve this paradox by high resolution cryo electron microscopy (cryoEM), in conjunction with functional studies using ribozyme inhibition. Our structural comparisons of HCMV virion and capsid reveal molecular interactions at the secondary structure level and suggest that SCP might contribute to capsid binding of pp150, an essential, cytomegalovirus-specific tegument protein. SCP-deficient particles generated by ribozyme inhibition of SCP-expression in HCMV-infected cells show no pp150 tegument density, demonstrating that SCP is required for the functional binding of pp150 to the capsid. Our results suggest that SCP recruits pp150 to stabilize the HCMV nucleocapsid to enable encapsidation of the genome, which is more densely packaged in HCMV than in other herpesviruses. Overall, this study not only resolves the above paradox, but also illustrates the passive acquisition of a new, essential function by SCP in the production of infectious HCMV virions.
Collapse
|
40
|
Zaichick SV, Bohannon KP, Hughes A, Sollars PJ, Pickard GE, Smith GA. The herpesvirus VP1/2 protein is an effector of dynein-mediated capsid transport and neuroinvasion. Cell Host Microbe 2013; 13:193-203. [PMID: 23414759 DOI: 10.1016/j.chom.2013.01.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/13/2012] [Accepted: 01/11/2013] [Indexed: 12/23/2022]
Abstract
Microtubule transport of herpesvirus capsids from the cell periphery to the nucleus is imperative for viral replication and, in the case of many alphaherpesviruses, transmission into the nervous system. Using the neuroinvasive herpesvirus, pseudorabies virus (PRV), we show that the viral protein 1/2 (VP1/2) tegument protein associates with the dynein/dynactin microtubule motor complex and promotes retrograde microtubule transport of PRV capsids. Functional activation of VP1/2 requires binding to the capsid protein pUL25 or removal of the capsid-binding domain. A proline-rich sequence within VP1/2 is required for the efficient interaction with the dynein/dynactin microtubule motor complex as well as for PRV virulence and retrograde axon transport in vivo. Additionally, in the absence of infection, functionally active VP1/2 is sufficient to move large surrogate cargoes via the dynein/dynactin microtubule motor complex. Thus, VP1/2 tethers PRV capsids to dynein/dynactin to enhance microtubule transport, neuroinvasion, and pathogenesis.
Collapse
Affiliation(s)
- Sofia V Zaichick
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
41
|
Directional spread of alphaherpesviruses in the nervous system. Viruses 2013; 5:678-707. [PMID: 23435239 PMCID: PMC3640521 DOI: 10.3390/v5020678] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 12/30/2022] Open
Abstract
Alphaherpesviruses are pathogens that invade the nervous systems of their mammalian hosts. Directional spread of infection in the nervous system is a key component of the viral lifecycle and is critical for the onset of alphaherpesvirus-related diseases. Many alphaherpesvirus infections originate at peripheral sites, such as epithelial tissues, and then enter neurons of the peripheral nervous system (PNS), where lifelong latency is established. Following reactivation from latency and assembly of new viral particles, the infection typically spreads back out towards the periphery. These spread events result in the characteristic lesions (cold sores) commonly associated with herpes simplex virus (HSV) and herpes zoster (shingles) associated with varicella zoster virus (VZV). Occasionally, the infection spreads transsynaptically from the PNS into higher order neurons of the central nervous system (CNS). Spread of infection into the CNS, while rarer in natural hosts, often results in severe consequences, including death. In this review, we discuss the viral and cellular mechanisms that govern directional spread of infection in the nervous system. We focus on the molecular events that mediate long distance directional transport of viral particles in neurons during entry and egress.
Collapse
|
42
|
Sandbaumhüter M, Döhner K, Schipke J, Binz A, Pohlmann A, Sodeik B, Bauerfeind R. Cytosolic herpes simplex virus capsids not only require binding inner tegument protein pUL36 but also pUL37 for active transport prior to secondary envelopment. Cell Microbiol 2012. [PMID: 23186167 DOI: 10.1111/cmi.12075] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As the inner tegument proteins pUL36 and pUL37 of alphaherpesviruses may contribute to efficient intracellular transport of viral particles, we investigated their role in cytosolic capsid motility during assembly of herpes simplex virus type 1 (HSV1). As reported previously for pUL36, untagged pUL37 and UL37GFP bound to cytosolic capsids before these acquired outer tegument and envelope proteins. Capsids tagged with CheVP26 analysed by live cell imaging were capable of directed long-distance cytoplasmic transport during the assembly of wild-type virions, while capsids of the HSV1-ΔUL37 or HSV1-ΔUL36 deletion mutants showed only random, undirected motion. The HSV1-ΔUL37 phenotype was restored when UL37GFP had been overexpressed prior to infection. Quantitative immunoelectron microscopy revealed that capsids of HSV1-ΔUL37 still recruited pUL36, whereas pUL37 did not colocalize with capsids of HSV1-ΔUL36. Nevertheless, the cytosolic capsids of neither mutant could undergo secondary envelopment. Our data suggest that pUL36 and pUL37 are important prior to their functions in linking the inner to the outer tegument. Efficient capsid transport to the organelle of secondary envelopment requires recruitment ofpUL37 onto capsids, most likely via its interaction with pUL36, while capsid-associated pUL36 alone is insufficient.
Collapse
Affiliation(s)
- Malte Sandbaumhüter
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Nagel CH, Döhner K, Binz A, Bauerfeind R, Sodeik B. Improper tagging of the non-essential small capsid protein VP26 impairs nuclear capsid egress of herpes simplex virus. PLoS One 2012; 7:e44177. [PMID: 22952920 PMCID: PMC3432071 DOI: 10.1371/journal.pone.0044177] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/30/2012] [Indexed: 01/10/2023] Open
Abstract
To analyze the subcellular trafficking of herpesvirus capsids, the small capsid protein has been labeled with different fluorescent proteins. Here, we analyzed the infectivity of several HSV1(17(+)) strains in which the N-terminal region of the non-essential small capsid protein VP26 had been tagged at different positions. While some variants replicated with similar kinetics as their parental wild type strain, others were not infectious at all. Improper tagging resulted in the aggregation of VP26 in the nucleus, prevented efficient nuclear egress of viral capsids, and thus virion formation. Correlative fluorescence and electron microscopy showed that these aggregates had sequestered several other viral proteins, but often did not contain viral capsids. The propensity for aggregate formation was influenced by the type of the fluorescent protein domain, the position of the inserted tag, the cell type, and the progression of infection. Among the tags that we have tested, mRFPVP26 had the lowest tendency to induce nuclear aggregates, and showed the least reduction in replication when compared to wild type. Our data suggest that bona fide monomeric fluorescent protein tags have less impact on proper assembly of HSV1 capsids and nuclear capsid egress than tags that tend to dimerize. Small chemical compounds capable of inducing aggregate formation of VP26 may lead to new antiviral drugs against HSV infections.
Collapse
Affiliation(s)
| | - Katinka Döhner
- Institute of Virology, Hanover Medical School, Hanover, Germany
| | - Anne Binz
- Institute of Virology, Hanover Medical School, Hanover, Germany
| | | | - Beate Sodeik
- Institute of Virology, Hanover Medical School, Hanover, Germany
| |
Collapse
|
44
|
Bosse JB, Bauerfeind R, Popilka L, Marcinowski L, Taeglich M, Jung C, Striebinger H, von Einem J, Gaul U, Walther P, Koszinowski UH, Ruzsics Z. A beta-herpesvirus with fluorescent capsids to study transport in living cells. PLoS One 2012; 7:e40585. [PMID: 22792376 PMCID: PMC3394720 DOI: 10.1371/journal.pone.0040585] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 06/09/2012] [Indexed: 11/18/2022] Open
Abstract
Fluorescent tagging of viral particles by genetic means enables the study of virus dynamics in living cells. However, the study of beta-herpesvirus entry and morphogenesis by this method is currently limited. This is due to the lack of replication competent, capsid-tagged fluorescent viruses. Here, we report on viable recombinant MCMVs carrying ectopic insertions of the small capsid protein (SCP) fused to fluorescent proteins (FPs). The FPs were inserted into an internal position which allowed the production of viable, fluorescently labeled cytomegaloviruses, which replicated with wild type kinetics in cell culture. Fluorescent particles were readily detectable by several methods. Moreover, in a spread assay, labeled capsids accumulated around the nucleus of the newly infected cells without any detectable viral gene expression suggesting normal entry and particle trafficking. These recombinants were used to record particle dynamics by live-cell microscopy during MCMV egress with high spatial as well as temporal resolution. From the resulting tracks we obtained not only mean track velocities but also their mean square displacements and diffusion coefficients. With this key information, we were able to describe particle behavior at high detail and discriminate between particle tracks exhibiting directed movement and tracks in which particles exhibited free or anomalous diffusion.
Collapse
Affiliation(s)
- Jens B. Bosse
- Max von Pettenkofer-Institute, Ludwig Maximilians University, Munich, Germany
| | - Rudolf Bauerfeind
- Department of Cell Biology, Hannover Medical School, Hannover, Germany
| | - Leonhard Popilka
- Max von Pettenkofer-Institute, Ludwig Maximilians University, Munich, Germany
| | - Lisa Marcinowski
- Max von Pettenkofer-Institute, Ludwig Maximilians University, Munich, Germany
| | - Martina Taeglich
- Department of Biochemistry, Gene Center, Ludwig Maximilians University, Munich, Germany
| | - Christophe Jung
- Department of Biochemistry, Gene Center, Ludwig Maximilians University, Munich, Germany
| | - Hannah Striebinger
- Max von Pettenkofer-Institute, Ludwig Maximilians University, Munich, Germany
| | - Jens von Einem
- Institute of Virology, University Medical Center Ulm, Ulm, Germany
| | - Ulrike Gaul
- Department of Biochemistry, Gene Center, Ludwig Maximilians University, Munich, Germany
| | - Paul Walther
- Central Unit for Electron Microscopy, University of Ulm, Ulm, Germany
| | | | - Zsolt Ruzsics
- Max von Pettenkofer-Institute, Ludwig Maximilians University, Munich, Germany
- * E-mail:
| |
Collapse
|
45
|
Abstract
Herpes simplex virus, varicella zoster virus, and pseudorabies virus are neurotropic pathogens of the Alphaherpesvirinae subfamily of the Herpesviridae. These viruses efficiently invade the peripheral nervous system and establish lifelong latency in neurons resident in peripheral ganglia. Primary and recurrent infections cycle virus particles between neurons and the peripheral tissues they innervate. This remarkable cycle of infection is the topic of this review. In addition, some of the distinguishing hallmarks of the infections caused by these viruses are evaluated in terms of their underlying similarities.
Collapse
Affiliation(s)
- Gregory Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| |
Collapse
|
46
|
The C terminus of the large tegument protein pUL36 contains multiple capsid binding sites that function differently during assembly and cell entry of herpes simplex virus. J Virol 2012; 86:3682-700. [PMID: 22258258 DOI: 10.1128/jvi.06432-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The largest tegument protein of herpes simplex virus type 1 (HSV1), pUL36, is a multivalent cross-linker between the viral capsids and the tegument and associated membrane proteins during assembly that upon subsequent cell entry releases the incoming capsids from the outer tegument and viral envelope. Here we show that pUL36 was recruited to cytosolic progeny capsids that later colocalized with membrane proteins of herpes simplex virus type 1 (HSV1) and the trans-Golgi network. During cell entry, pUL36 dissociated from viral membrane proteins but remained associated with cytosolic capsids until arrival at the nucleus. HSV1 UL36 mutants lacking C-terminal portions of increasing size expressed truncated pUL36 but could not form plaques. Cytosolic capsids of mutants lacking the C-terminal 735 of the 3,164 amino acid residues accumulated in the cytosol but did not recruit pUL36 or associate with membranes. In contrast, pUL36 lacking only the 167 C-terminal residues bound to cytosolic capsids and subsequently colocalized with viral and host membrane proteins. Progeny virions fused with neighboring cells, but incoming capsids did not retain pUL36, nor could they target the nucleus or initiate HSV1 gene expression. Our data suggest that residues 2430 to 2893 of HSV1 pUL36, containing one binding site for the capsid protein pUL25, are sufficient to recruit pUL36 onto cytosolic capsids during assembly for secondary envelopment, whereas the 167 residues of the very C terminus with the second pUL25 binding site are crucial to maintain pUL36 on incoming capsids during cell entry. Capsids lacking pUL36 are targeted neither to membranes for virus assembly nor to nuclear pores for genome uncoating.
Collapse
|
47
|
A domain in the herpes simplex virus 1 triplex protein VP23 is essential for closure of capsid shells into icosahedral structures. J Virol 2011; 85:12698-707. [PMID: 21957296 DOI: 10.1128/jvi.05791-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VP23 is a key component of the triplex structure. The triplex, which is unique to herpesviruses, is a complex of three proteins, two molecules of VP23 which interact with a single molecule of VP19C. This structure is important for shell accretion and stability of the protein coat. Previous studies utilized a random transposition mutagenesis approach to identify functional domains of the triplex proteins. In this study, we expand on those findings to determine the key amino acids of VP23 that are required for triplex formation. Using alanine-scanning mutagenesis, we have made mutations in 79 of 318 residues of the VP23 polypeptide. These mutations were screened for function both in the yeast two-hybrid assay for interaction with VP19C and in a genetic complementation assay for the ability to support the replication of a VP23 null mutant virus. These assays identified a number of amino acids that, when altered, abolish VP23 function. Abrogation of virus assembly by a single-amino-acid change bodes well for future development of small-molecule inhibitors of this process. In addition, a number of mutations which localized to a C-terminal region of VP23 (amino acids 205 to 241) were still able to interact with VP19C but were lethal for virus replication when introduced into the herpes simplex virus 1 (HSV-1) KOS genome. The phenotype of many of these mutant viruses was the accumulation of large open capsid shells. This is the first demonstration of capsid shell accumulation in the presence of a lethal VP23 mutation. These data thus identify a new domain of VP23 that is required for or regulates capsid shell closure during virus assembly.
Collapse
|
48
|
Liashkovich I, Hafezi W, Kühn JM, Oberleithner H, Shahin V. Nuclear delivery mechanism of herpes simplex virus type 1 genome. J Mol Recognit 2011; 24:414-21. [PMID: 21504018 DOI: 10.1002/jmr.1120] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is a widespread human pathogen infecting more than 80% of the population worldwide. Its replication involves an essential, poorly understood multistep process, referred to as uncoating. Uncoating steps are as follows: (1) The incoming capsid pinpoints the nuclear pore complex (NPC). (2) It opens up at the NPC and releases the highly pressurized viral genome. (3) The viral genome translocates through the NPC. In the present review, we highlight recent advances in this field and propose mechanisms underlying the individual steps of uncoating. We presume that the incoming HSV-1 capsid pinpoints the NPC by hydrophobic interactions and opens up upon binding to NPC proteins. Genome translocation is initially pressure-driven.
Collapse
Affiliation(s)
- Ivan Liashkovich
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48147 Münster, Germany
| | | | | | | | | |
Collapse
|
49
|
Coupling viruses to dynein and kinesin-1. EMBO J 2011; 30:3527-39. [PMID: 21878994 DOI: 10.1038/emboj.2011.283] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/21/2011] [Indexed: 12/13/2022] Open
Abstract
It is now clear that transport on microtubules by dynein and kinesin family motors has an important if not critical role in the replication and spread of many different viruses. Understanding how viruses hijack dynein and kinesin motors using a limited repertoire of proteins offers a great opportunity to determine the molecular basis of motor recruitment. In this review, we discuss the interactions of dynein and kinesin-1 with adenovirus, the α herpes viruses: herpes simplex virus (HSV1) and pseudorabies virus (PrV), human immunodeficiency virus type 1 (HIV-1) and vaccinia virus. We highlight where the molecular links to these opposite polarity motors have been defined and discuss the difficulties associated with identifying viral binding partners where the basis of motor recruitment remains to be established. Ultimately, studying microtubule-based motility of viruses promises to answer fundamental questions as to how the activity and recruitment of the dynein and kinesin-1 motors are coordinated and regulated during bi-directional transport.
Collapse
|
50
|
Merino-Gracia J, García-Mayoral MF, Rodríguez-Crespo I. The association of viral proteins with host cell dynein components during virus infection. FEBS J 2011; 278:2997-3011. [PMID: 21777384 PMCID: PMC7164101 DOI: 10.1111/j.1742-4658.2011.08252.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
After fusion with the cellular plasma membrane or endosomal membranes, viral particles are generally too large to diffuse freely within the crowded cytoplasm environment. Thus, they will never reach the cell nucleus or the perinuclear areas where replication or reverse transcription usually takes place. It has been proposed that many unrelated viruses are transported along microtubules in a retrograde manner using the cellular dynein machinery or, at least, some dynein components. A putative employment of the dynein motor in a dynein‐mediated transport has been suggested from experiments in which viral capsid proteins were used as bait in yeast two‐hybrid screens using libraries composed of cellular proteins and dynein‐associated chains were retrieved as virus‐interacting proteins. In most cases DYNLL1, DYNLT1 or DYNLRB1 were identified as the dynein chains that interact with viral proteins. The importance of these dynein–virus interactions has been supported, in principle, by the observation that in some cases the dynein‐interacting motifs of viral proteins altered by site‐directed mutagenesis result in non‐infective virions. Furthermore, overexpression of p50 dynamitin, which blocks the dynein–dynactin interaction, or incubation of infected cells with peptides that compete with viral polypeptides for dynein binding have been shown to alter the viral retrograde transport. Still, it remains to be proved that dynein light chains can bind simultaneously to incoming virions and to the dynein motor for retrograde transport to take place. In this review, we will analyse the association of viral proteins with dynein polypeptides and its implications for viral infection.
Collapse
Affiliation(s)
- Javier Merino-Gracia
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|