1
|
Pisaturo M, Di Fraia A, Occhiello L, Minichini C, Starace M, Iodice V, Farella N, Stanzione M, Coppola N. Genetic Variability in Patients with HCV-Related Hepatocellular Carcinoma. Infect Drug Resist 2021; 14:5199-5208. [PMID: 34908854 PMCID: PMC8665876 DOI: 10.2147/idr.s337647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND The present paper evaluates the genetic variability of HCV in patients with hepatocellular carcinoma (HCC). METHODS Amino acid substitutions (aas) in NS3, NS5A and core regions were analyzed in 17 patients with HCC (Cases) and 13 without HCC (Controls), all naïve to DAAs. For the Cases, a sample of neoplastic liver tissue, non-neoplastic liver tissue and a serum sample were collected; for the Controls, a sample of liver tissue was collected. Sanger sequencing of three regions was performed using homemade protocols. RESULTS Phylogenetic trees showed that there was no difference in the virus populations in the three compartments analyzed for the three HCV regions in patients with HCC. Low variability and no difference between the Cases and Controls were observed in the core and NS5A regions; however, in the NS3 region, a higher variability was observed in the Cases. No difference was observed in the core region between Cases and Controls. In NS3, aa substitutions at positions 103 and 122 were more frequently found in Cases than Controls (in both cases 50% vs 9.1%, p<0.05); moreover, aas in positions 32, 44 (p=0.035 for both), 79 (p=0.008) and 121 (p=0.018) were observed in the Cases and absent in the Controls. Finally, considering the NS5A region, aa substitutions at positions 37 and 54 were more frequently identified in the Cases than the Controls, but without statistical significance. CONCLUSION These data may suggest a higher aa variability in patients with HCC than in those without, especially in the NS3 region.
Collapse
Affiliation(s)
- Mariantonietta Pisaturo
- Infectious Diseases, Department of Mental Health and Public Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Alessandra Di Fraia
- Infectious Diseases, Department of Mental Health and Public Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Laura Occhiello
- Infectious Diseases, Department of Mental Health and Public Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Carmine Minichini
- Infectious Diseases, Department of Mental Health and Public Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Mario Starace
- Infectious Diseases, Department of Mental Health and Public Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | | | - Nunzia Farella
- IX Infectious Disease Unit, AORN dei Colli, Naples, Italy
| | - Maria Stanzione
- Infectious Diseases, Department of Mental Health and Public Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Nicola Coppola
- Infectious Diseases, Department of Mental Health and Public Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
2
|
Tornesello ML, Buonaguro L, Izzo F, Buonaguro FM. Molecular alterations in hepatocellular carcinoma associated with hepatitis B and hepatitis C infections. Oncotarget 2016; 7:25087-25102. [PMID: 26943571 PMCID: PMC5041890 DOI: 10.18632/oncotarget.7837] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/20/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic infections with hepatitis B (HBV) and hepatitis C viruses (HCV) are the leading cause of cirrhosis and hepatocellular carcinoma (HCC) worldwide. Both viruses encode multifunctional regulatory proteins activating several oncogenic pathways, which induce accumulation of multiple genetic alterations in the infected hepatocytes. Gene mutations in HBV- and HCV-induced HCCs frequently impair the TP53, Wnt/b-catenin, RAS/RAF/MAPK kinase and AKT/mTOR pathways, which represent important anti-cancer targets. In this review, we highlight the molecular mechanisms underlying the pathogenesis of primary liver cancer, with particular emphasis on the host genetic variations identified by high-throughput technologies. In addition, we discuss the importance of genetic alterations, such as mutations in the telomerase reverse transcriptase (TERT) promoter, for the diagnosis, prognosis, and tumor stratification for development of more effective treatment approaches.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori “Fondazione G. Pascale” - IRCCS, Napoli, Italy
| | - Luigi Buonaguro
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori “Fondazione G. Pascale” - IRCCS, Napoli, Italy
| | - Francesco Izzo
- Hepato-Biliary Surgery Department, Istituto Nazionale Tumori “Fondazione G. Pascale” - IRCCS, Napoli, Italy
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori “Fondazione G. Pascale” - IRCCS, Napoli, Italy
| |
Collapse
|
3
|
Liu J, Ding X, Tang J, Cao Y, Hu P, Zhou F, Shan X, Cai X, Chen Q, Ling N, Zhang B, Bi Y, Chen K, Ren H, Huang A, He TC, Tang N. Enhancement of canonical Wnt/β-catenin signaling activity by HCV core protein promotes cell growth of hepatocellular carcinoma cells. PLoS One 2011; 6:e27496. [PMID: 22110662 PMCID: PMC3216985 DOI: 10.1371/journal.pone.0027496] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/18/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The Hepatitis C virus (HCV) core protein has been implicated as a potential oncogene or a cofactor in HCV-related hepatocellular carcinoma (HCC), but the underlying mechanisms are unknown. Overactivation of the Wnt/β-catenin signaling is a major factor in oncogenesis of HCC. However, the pathogenesis of HCV core-associated Wnt/β-catenin activation remains to be further characterized. Therefore, we attempted to determine whether HCV core protein plays an important role in regulating Wnt/β-catenin signaling in HCC cells. METHODOLOGY Wnt/β-catenin signaling activity was investigated in core-expressing hepatoma cells. Protein and gene expression were examined by Western blot, immunofluorescence staining, RT-qPCR, and reporter assay. PRINCIPAL FINDINGS HCV core protein significantly enhances Tcf-dependent transcriptional activity induced by Wnt3A in HCC cell lines. Additionally, core protein increases and stabilizes β-catenin levels in hepatoma cell line Huh7 through inactivation of GSK-3β, which contributes to the up-regulation of downstream target genes, such as c-Myc, cyclin D1, WISP2 and CTGF. Also, core protein increases cell proliferation rate and promotes Wnt3A-induced tumor growth in the xenograft tumor model of human HCC. CONCLUSIONS/SIGNIFICANCE HCV core protein enhances Wnt/β-catenin signaling activity, hence playing an important role in HCV-associated carcinogenesis.
Collapse
Affiliation(s)
- Jiao Liu
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiong Ding
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jia Tang
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Youde Cao
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Peng Hu
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Fan Zhou
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaoliang Shan
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xuefei Cai
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Qingmei Chen
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ning Ling
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Bingqiang Zhang
- The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Ke Chen
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hong Ren
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- Stem Cell Biology and Therapy Laboratory, The Children's Hospital, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois, United States of America
| | - Ni Tang
- The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
4
|
Effect of hepatitis C virus infection on the left ventricular systolic and diastolic functions. South Med J 2011; 104:543-6. [PMID: 21886060 DOI: 10.1097/smj.0b013e31822462e2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hepatitis secondary to infection with the hepatitis C virus (HCV) is one of the most common causes of viral hepatitis worldwide. Multiple extrahepatic manifestations of HCV infection have been recognized. Dilated and hypertrophic cardiomyopathy associated with HCV infection have been recently described in the literature; however, the effect of HCV infection on the left ventricular systolic and diastolic functions is unknown. Therefore, in this study we aimed to examine left ventricular systolic and diastolic functions in HCV patients. METHODS AND RESULTS The study included 50 anti-HCV positive patients and 50 persons for control groups. We performed transthorasic echocardiography and P-wave analysis on all participants. We compared left ventricle diastolic parameters, left ventricle ejection fraction, and P-wave dispersion (Pd) between these two groups. In the group with anti-HCV positivity, the ratio of E/A was found to be lower (1.2 ± 0.7 and 1.37 ± 0.6, P = 0.003); the ratio of E/Em was found to be higher (7.6 ± 1.51 and 6.8 ± 1.72, P = 0.0001). Maximum P-wave duration (Pmax) and Pd were higher in the patient group (99.3 ± 8 and 82.4 ± 7.8, P = 0.004; 44.1 ± 0.9 and 25.3 ± 1.5, P = 0.001). No other statistically significant difference was found between the two groups with regard to the left ventricle systolic and diastolic parameters. CONCLUSION Our findings show that HCV infection may be associated with left ventricular systolic and diastolic dysfunction and cardiac arrhythmias.
Collapse
|
5
|
Iwai A, Takegami T, Shiozaki T, Miyazaki T. Hepatitis C virus NS3 protein can activate the Notch-signaling pathway through binding to a transcription factor, SRCAP. PLoS One 2011; 6:e20718. [PMID: 21673954 PMCID: PMC3108961 DOI: 10.1371/journal.pone.0020718] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/09/2011] [Indexed: 11/18/2022] Open
Abstract
Persistent infections of hepatitis C virus (HCV) are known to be a major risk factor for causing hepatocellular carcinomas. Nonstructural protein 3 (NS3) of HCV has serine protease and RNA helicase domains, and is essential for the viral replication. Further, NS3 is also considered to be involved in the development of HCV-induced hepatocellular carcinomas. In this report, we focus on the function of NS3 protein, and propose a novel possible molecular mechanism which is thought to be related to the tumorigenesis caused by the persistent infection of HCV. We identified SRCAP (Snf2-related CBP activator protein) as a NS3 binding protein using yeast two-hybrid screening, and a co-immunoprecipitation assay demonstrated that NS3 can bind to SRCAP in mammalian cells. The results of a reporter gene assay using Hes-1 promoter which is known to be a target gene activated by Notch, indicate that NS3 and SRCAP cooperatively activate the Hes-1 promoter in Hep3B cells. In addition, we show in this report that also p400, which is known as a protein closely resembling SRCAP, would be targeted by NS3. NS3 exhibited binding activity also to the 1449–1808 region of p400 by a co-immunoprecipitation assay, and further the activation of the Notch-mediated transcription of Hes-1 promoter by NS3 decreased significantly by the combined silencing of SRCAP and p400 mRNA using short hairpin RNA. These results suggest that the HCV NS3 protein is involved in the activation of the Notch-signaling pathway through the targeting to both SRCAP and p400.
Collapse
Affiliation(s)
- Atsushi Iwai
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Tsutomu Takegami
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
- * E-mail:
| | - Takuya Shiozaki
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Tadaaki Miyazaki
- Department of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| |
Collapse
|
6
|
Zemel R, Issachar A, Tur-Kaspa R. The role of oncogenic viruses in the pathogenesis of hepatocellular carcinoma. Clin Liver Dis 2011; 15:261-79, vii-x. [PMID: 21689612 DOI: 10.1016/j.cld.2011.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HBV and HCV have major roles in hepatocarcinogenesis. More than 500 million people are infected with hepatitis viruses and, therefore, HCC is highly prevalent, especially in those countries endemic for HBV and HCV. Viral and host factors contribute to the development of HCC. The main viral factors include the circulating load of HBV DNA or HCV RNA and specific genotypes. Various mechanisms are involved in the host-viral interactions that lead to HCC development, among which are genetic instability, self-sufficiency in growth signals, insensitivity to antigrowth signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and tissue invasiveness. Prevention of HBV by vaccination, as well as antiviral therapy against HBV and for HCV seem able to inhibit the development of HCC.
Collapse
Affiliation(s)
- Romy Zemel
- Department of Medicine D and the Liver Institute, Rabin Medical Center, Beilinson Hospital, Molecular Hepatology Research Laboratory, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, 39 Jabotinsky Street, Petah-Tikva 49100, Israel
| | | | | |
Collapse
|
7
|
Wang Y, Mao SS, He QQ, Zi Y, Wen JF, Feng DY. Specific activation of 2'-5'oligoadenylate synthetase gene promoter by hepatitis C virus-core protein: A potential for developing hepatitis C virus targeting gene therapy. World J Gastroenterol 2009; 15:3178-82. [PMID: 19575500 PMCID: PMC2705743 DOI: 10.3748/wjg.15.3178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine whether 2'-5'oligoadenylate synthetase (OAS) gene promoter can be specifically activated by hepatitis C virus (HCV)-core protein.
METHODS: Human embryo hepatic cell line L02 was transfected with pcDNA3.1-core plasmid and selected by G418. Expression of HCV-core was detected by reverse transcription polymerase chain reaction and Western blotting. The OAS promoter sequence was amplified from the genomic DNA and inserted into pGL3-basic vector. The resultant pGL3-OAS-Luci plasmid was transiently transfected into L02/core cells and luciferase activity was assayed.
RESULTS: L02/core cell line stably expressing HCV-core protein was established. The pGL3-OAS-Luci construct exhibited significant transcriptional activity in the L02/core cells but not in the L02 cells.
CONCLUSION: HCV-core protein activates the OAS gene promoter specifically and effectively. Utilization of OAS gene promoter would be an ideal strategy for developing HCV-specific gene therapy.
Collapse
|
8
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. Studies indicate that the development of HCC is related to signal transduction of Ras-MAPK.P38MAPK, an important member of the family of mitogen-activated protein kinases. P38MAPK participates in cell proliferation, apoptosis and differentiation and plays a key role in cell apoptosis. P38MAPK is closely related with carcinogenesis, rapid generation and infinite growth of liver cancer and plays a role in the occurrence and development of liver cancer induced by organics, HBV and HCV. Drugs exert their anti-tumor effects through p38MAPK which also takes part in the formation of drug resistance to HCC. This paper reviews the advances in studies on p38MAPK-related HCC.
Collapse
|
9
|
Hepatitis C virus core protein upregulates serine phosphorylation of insulin receptor substrate-1 and impairs the downstream akt/protein kinase B signaling pathway for insulin resistance. J Virol 2007; 82:2606-12. [PMID: 18160431 DOI: 10.1128/jvi.01672-07] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection has a significantly increased prevalence of type 2 diabetes mellitus (T2DM). Insulin resistance is a critical component of T2DM pathogenesis. Several mechanisms are likely to be involved in the pathogenesis of HCV-related insulin resistance. Since we and others have previously observed that HCV core protein activates c-Jun N-terminal kinase (JNK) and mitogen-activated protein kinase, we examined the contribution of these pathways to insulin resistance in hepatocytes. Our experimental findings suggest that HCV core protein alone or in the presence of other viral proteins increases Ser(312) phosphorylation of the insulin receptor substrate-1 (IRS-1). Hepatocytes infected with cell culture-grown HCV genotype 1a or 2a displayed a significant increase in the Ser(473) phosphorylation status of the Ser/Thr kinase protein kinase B (Akt/PKB), while Thr(308) phosphorylation was not significantly altered. HCV core protein-mediated Ser(312) phosphorylation of IRS-1 was inhibited by JNK (SP600125) and phosphatidylinositol-3 kinase (LY294002) inhibitors. A functional assay also suggested that hepatocytes expressing HCV core protein alone or infected with cell culture-grown HCV exhibited a suppression of 2-deoxy-d-[(3)H]glucose uptake. Inhibition of the JNK signaling pathway significantly restored glucose uptake despite HCV core expression in hepatocytes. Taken together, our results demonstrated that HCV core protein increases IRS-1 phosphorylation at Ser(312) which may contribute in part to the mechanism of insulin resistance.
Collapse
|
10
|
Affiliation(s)
- Clara Balsano
- Dipartimento di Medicina Interna e Sanità Pubblica (MISP), University of L'Aquila, L'Aquila, Italy.
| | | |
Collapse
|
11
|
Yan XB, Battaglia S, Boucreux D, Chen Z, Brechot C, Pavio N. Mapping of the interacting domains of hepatitis C virus core protein and the double-stranded RNA-activated protein kinase PKR. Virus Res 2007; 125:79-87. [PMID: 17267064 DOI: 10.1016/j.virusres.2006.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 12/12/2006] [Accepted: 12/14/2006] [Indexed: 01/29/2023]
Abstract
Hepatitis C virus (HCV) core protein has been shown to exhibit several biological properties which suggest an important role in liver pathogenesis and carcinogenesis. During a previous study, we showed that core mutants, isolated from tumour, could directly interact with PKR and maintain it in an activated form. In the present report, we have further investigated this interaction and mapped the core and PKR domains involved. Using glutathion S-transferase fusion protein harbouring the different domains of core or PKR, we determined that the N-terminal 1-58 amino acid (aa) of core protein and the N-terminal 1-180 aa of PKR are responsible for this direct interaction. Using this system we also confirmed that the core-PKR interaction induced PKR autophosphorylation. Furthermore, we found that core protein co-localized and co-immunoprecipitated with PKR in cells expressing a full-length HCV replicon, thus confirming that this interaction occurs when all HCV proteins are expressed. Considering that the activation of PKR has been observed in some cancer cell lines and tissues, it suggests that, depending on the cellular context, PKR may stimulate or inhibit cell proliferation. The precise mapping of core-PKR interaction provides new data to study the molecular mechanism underlying HCV pathogenesis.
Collapse
|
12
|
Abstract
Hepatitis C virus (HCV) is known as one of major causative agents of hepatocellular carcinoma (HCC) in the world. The pathogenesis of HCC associated with HCV, however, has not been fully elucidated yet, although the chronic inflammation induced by HCV infection is considered to contribute greatly to the HCC development. Some HCV gene products have been shown to possess transformation activities in cultured cells. Several oncogenic signal pathways in the cells were modulated by the exogenous expression of the HCV proteins. A few lines of the transgenic mice producing the core protein among those products was also reported to develop liver steatosis and HCC without apparent inflammation after rearing for a relatively long period. So, the functions of the core on the modulation of cellular events have been extensively examined and characterized. Here, I would summarize the progress of the research for the pathogenesis of HCC associated with HCV.
Collapse
Affiliation(s)
- Makoto Hijikata
- Laboratory of Human Tumor Viruses Department of Viral Oncology Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
13
|
Sato S, Fukasawa M, Yamakawa Y, Natsume T, Suzuki T, Shoji I, Aizaki H, Miyamura T, Nishijima M. Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J Biochem 2006; 139:921-30. [PMID: 16751600 DOI: 10.1093/jb/mvj104] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) core protein has been suggested to play crucial roles in the pathogeneses of liver steatosis and hepatocellular carcinomas due to HCV infection. Intracellular HCV core protein is localized mainly in lipid droplets, in which the core protein should exert its significant biological/pathological functions. In this study, we performed comparative proteomic analysis of lipid droplet proteins in core-expressing and non-expressing hepatoma cell lines. We identified 38 proteins in the lipid droplet fraction of core-expressing (Hep39) cells and 30 proteins in that of non-expressing (Hepswx) cells by 1-D-SDS-PAGE/MALDI-TOF mass spectrometry (MS) or direct nanoflow liquid chromatography-MS/MS. Interestingly, the lipid droplet fraction of Hep39 cells had an apparently lower content of adipose differentiation-related protein and a much higher content of TIP47 than that of Hepswx cells, suggesting the participation of the core protein in lipid droplet biogenesis in HCV-infected cells. Another distinct feature is that proteins involved in RNA metabolism, particularly DEAD box protein 1 and DEAD box protein 3, were detected in the lipid droplet fraction of Hep39 cells. These results suggest that lipid droplets containing HCV core protein may participate in the RNA metabolism of the host and/or HCV, affecting the pathopoiesis and/or virus replication/production in HCV-infected cells.
Collapse
Affiliation(s)
- Shigeko Sato
- Department of Biochemistry and Cell Biology and Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Mark Branda
- Liver Research Center, Department of Medicine, Rhode Island Hospital and Brown Medical School, Providence 02903, USA
| | | |
Collapse
|
15
|
Spaziani A, Alisi A, Sanna D, Balsano C. Role of p38 MAPK and RNA-dependent Protein Kinase (PKR) in Hepatitis C Virus Core-dependent Nuclear Delocalization of Cyclin B1. J Biol Chem 2006; 281:10983-9. [PMID: 16446363 DOI: 10.1074/jbc.m512536200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Some hepatitis C virus (HCV) proteins, including core protein, deregulate the cell cycle of infected cells, thereby playing an important role in the viral pathogenesis of HCC. Thus far, there are only few studies that have deeply investigated in depth the effects of the HCV core protein expression on the progression through the G1/S and G2/M phases of the cell cycle. To shed light on the molecular mechanisms by which the HCV core protein modulates cell proliferation, we have examined its effects on cell cycle in hepatocarcinoma cells. We show here that HCV core protein perturbs progression through both the G1/S and the G2/M phases, by modulating the expression and the activity of several cell cycle regulatory proteins. In particular, our data provided evidence that core-dependent deregulation of the G1/S phase and its related cyclin-CDK complexes depends upon the ERK1/2 pathway. On the other hand, the viral protein also increases the activity of the cyclin B1-CDK1 complex via the p38 MAPK and JNK pathways. Moreover, we show that HCV core protein promotes nuclear import of cyclin B1, which is affected by the inhibition of both the p38 and the RNA-dependent protein kinase (PKR) activities. The important role of p38 MAPK in regulating G2/M phase transition has been previously documented. It is becoming clear that PKR has an important role in regulating both the G1/S and the G2/M phase, in which it induces M phase arrest. Based on our model, we now show, for the first time, that HCV core expression leads to deregulation of the mitotic checkpoint via a p38/PKR-dependent pathway.
Collapse
Affiliation(s)
- Alessandra Spaziani
- Laboratory of Clinical Hepatology, Department of Internal Medicine, University of L'Aquila, 67100 L'Aquila, Italy
| | | | | | | |
Collapse
|
16
|
Naka K, Dansako H, Kobayashi N, Ikeda M, Kato N. Hepatitis C virus NS5B delays cell cycle progression by inducing interferon-beta via Toll-like receptor 3 signaling pathway without replicating viral genomes. Virology 2005; 346:348-62. [PMID: 16325882 DOI: 10.1016/j.virol.2005.10.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/11/2005] [Accepted: 10/18/2005] [Indexed: 01/12/2023]
Abstract
To clarify the pathogenesis of hepatitis C virus (HCV), we have studied the effects of HCV proteins using human hepatocytes. Here, we found that HCV NS5B, an RNA-dependent RNA polymerase, delayed cell cycle progression through the S phase in PH5CH8 immortalized human hepatocyte cells. Since treatment with anti-interferon (IFN)-beta neutralizing antibody restored the cell cycle delay, IFN-beta was deemed responsible for the cell cycle delay in NS5B-expressing PH5CH8 cells. The induction of IFN-beta and the cell cycle delay were overridden by the down-regulation of Toll-like receptor 3 (TLR3) through RNA interference in NS5B-expressing PH5CH8 cells. Moreover, the NS5B full form was required for the cell cycle delay, the induction of IFN-beta, and the activation of the IFN-beta signaling pathway. Our findings revealed that NS5B induced IFN-beta through the TLR3 signaling pathway in immortalized human hepatocytes even without replicating viral genomes.
Collapse
Affiliation(s)
- Kazuhito Naka
- Department of Molecular Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | | | | | | |
Collapse
|
17
|
Miyoshi H, Fujie H, Shintani Y, Tsutsumi T, Shinzawa S, Makuuchi M, Kokudo N, Matsuura Y, Suzuki T, Miyamura T, Moriya K, Koike K. Hepatitis C virus core protein exerts an inhibitory effect on suppressor of cytokine signaling (SOCS)-1 gene expression. J Hepatol 2005; 43:757-63. [PMID: 16083990 DOI: 10.1016/j.jhep.2005.03.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 03/11/2005] [Accepted: 03/16/2005] [Indexed: 01/27/2023]
Abstract
BACKGROUND/AIMS Suppressor of cytokine signaling (SOCS)-1, a negative feedback regulator of cytokine signaling pathway, also has a tumor suppressor activity, the silencing of its gene by hypermethylation is suggested to contribute to hepatocarcinogenesis. We studied the effect of the core protein of hepatitis C virus (HCV) on the expression of SOCS-1 gene. METHODS HCV core gene transgenic mice, which develop hepatocellular carcinoma late in life, HepG2 cells expressing the core protein, and human liver tissues were analyzed. RESULTS The expression of SOCS-1 gene was significantly suppressed in the liver of core gene transgenic mice and HepG2 cells expressing the core protein, while that of SOCS-3 gene was conserved. SOCS-1 expression levels also decreased in HCV-positive human liver tissues. The core protein differentially down-regulated the expression of signal transducer and activator of transcription (STAT) target genes, but rather enhanced STAT1 and STAT3 activation after interleukin-6 stimulation in mouse liver tissues and cells. CONCLUSIONS HCV core protein down-regulates the expression of SOCS-1 gene. This is a mechanism leading to SOCS-1 silencing, an alternative to the hypermethylation of the gene; this effect of the core protein may modulate the intracellular signaling pathway, contributing to the pathogenesis in HCV infection including hepatocarcinogenesis.
Collapse
Affiliation(s)
- Hideyuki Miyoshi
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sundström S, Ota S, Dimberg LY, Masucci MG, Bergqvist A. Hepatitis C virus core protein induces an anergic state characterized by decreased interleukin-2 production and perturbation of mitogen-activated protein kinase responses. J Virol 2005; 79:2230-9. [PMID: 15681425 PMCID: PMC546561 DOI: 10.1128/jvi.79.4.2230-2239.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alterations of cytokine responses are thought to favor the establishment of persistent hepatitis C virus (HCV) infections, enhancing the risk of liver cirrhosis and hepatocellular carcinoma. Here we demonstrate that the expression of the HCV core (C) protein in stably transfected T cells correlates with a selective reduction of interleukin-2 (IL-2) promoter activity and IL-2 production in response to T-cell receptor triggering, whereas the activation of IL-4, IL-10, gamma interferon, and tumor necrosis factor alpha was moderately increased. This altered cytokine expression profile was associated with a perturbation of mitogen-activated protein (MAP) kinase responses. Extracellular regulated kinase and p38 were constitutively phosphorylated in C-expressing cells, while triggering of the costimulatory c-Jun N-terminal kinase (JNK) signaling cascade and activation of the CD28 response element within the IL-2 promoter appeared to be impaired. The perturbations of MAP kinase phosphorylation could be eliminated by cyclosporine A-mediated inhibition of nuclear factor of activated T cells, suggesting that the inactivation of JNK signaling and hyporesponsiveness to IL-2 induction were downstream consequences of C-induced Ca(2+) flux in a manner that mimics the induction of clonal anergy.
Collapse
Affiliation(s)
- Sara Sundström
- Microbiology and Tumor Biology Centre, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
19
|
Fukutomi T, Zhou Y, Kawai S, Eguchi H, Wands JR, Li J. Hepatitis C virus core protein stimulates hepatocyte growth: correlation with upregulation of wnt-1 expression. Hepatology 2005; 41:1096-105. [PMID: 15841445 DOI: 10.1002/hep.20668] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) core protein has been implicated in the development of human hepatocellular carcinoma (HCC). Here we report that expression of HCV core protein by transient transfection increased cell proliferation, DNA synthesis, and cell cycle progression in Huh-7 cells, a human HCC-derived cell line. Culture supernatant from transfected cells also harbored a growth-promoting effect. Moreover, a full-length HCV replicon, but not a subgenomic replicon devoid of the core gene, significantly stimulated growth of transiently transfected Huh-7.5 cells. However, growth of the subgenomic replicon-containing Huh-7.5 cells could be stimulated by secondary transfection with core gene but not other structural genes present in the full-length replicon. Microarray analysis revealed threefold or more transcriptional changes in 372 of 12,500 known human genes in core protein expressing Huh-7 cells, with most genes involved in cell growth or oncogenic signaling, being upregulated rather than downregulated. Of particular interest is the marked upregulation of both wnt-1 and its downstream target gene WISP-2. Indeed, small interfering RNA against wnt-1 blunted growth stimulation by core gene, whereas transfection of Huh-7 cells with the wnt-1 gene sufficed to promote cell proliferation. Consistent with secretion of the wnt-1 protein, conditioned medium from wnt-1 transfected cells accelerated cell growth. In conclusion, HCV core protein induces Huh-7 cell proliferation whether alone or in the context of HCV replication, which is at least partly mediated by transcriptional upregulation of growth-related genes, in particular wnt-1.
Collapse
Affiliation(s)
- Takayoshi Fukutomi
- Liver Research Center, Rhode Island Hospital and Brown Medical School, Providence, RI 02903, USA
| | | | | | | | | | | |
Collapse
|
20
|
Lu H, Li W, Noble WS, Payan D, Anderson DC. Riboproteomics of the hepatitis C virus internal ribosomal entry site. J Proteome Res 2005; 3:949-57. [PMID: 15473682 DOI: 10.1021/pr0499592] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) protein translation is mediated by a cis-acting RNA, an internal ribosomal entry site (IRES), located in the 5' nontranslated region of the viral RNA. To examine proteins bound to the IRES, which could include proteins important for its function as well as potential drug targets, we used shotgun peptide sequencing to identify proteins in quadruplicate protein affinity extracts of lysed Huh7 cells, obtained using a biotinylated IRES. Twenty-six proteins bound the HCV IRES but not a reversed complementary sequence RNA or vector RNA controls. These included five ribosomal subunits, nine eukaryotic initiation factor 3 subunits, and novel interacting proteins such as the cytoskeletal-related proteins actin, FHOS (formin homologue overexpressed in spleen) and MIP-T3 (microtubule interacting protein that associates with TRAF3). Other novel HCV IRES-binding proteins included UNR (upstream of N-ras), UNR-interacting protein, and the RNA-binding proteins PAI-1 (plasminogen activator inhibitor-1) mRNA binding protein and Ewing sarcoma breakpoint 1 region protein EWS. A large set of additional proteins bound both the HCV IRES and a reversed complementary IRES sequence control, including the known HCV interactors PTB (polypyrimidine tract binding protein), the La autoantigen, and nucleolin. The discovery of these novel HCV IRES-binding proteins suggests links between IRES biology and the cytoskeleton, signal transduction, and other cellular functions.
Collapse
Affiliation(s)
- Henry Lu
- Rigel, Inc., South San Francisco, California 94066, USA
| | | | | | | | | |
Collapse
|
21
|
Hassan M, Ghozlan H, Abdel-Kader O. Activation of RB/E2F signaling pathway is required for the modulation of hepatitis C virus core protein-induced cell growth in liver and non-liver cells. Cell Signal 2005; 16:1375-85. [PMID: 15381253 DOI: 10.1016/j.cellsig.2004.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 04/20/2004] [Accepted: 04/20/2004] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) core protein is a multifunctional protein that affects transcription and cell growth in vitro and in vivo. Here, we confirm the proliferative activities of core protein in liver and non-liver cells and delineate part of the mechanism whereby core protein promotes cell growth. We show that core protein suppresses the expression of tumor suppressor protein p53 and cyclin-dependent kinase (CDK) inhibitor p21 and enhances the activation of cyclin-dependent kinase 2 (CDK2), the phosphorylation of retinoblastoma (Rb), the activation of the transcription factor E2F-1, and the expression of E2F-1 and S phase kinase-interacting protein 2 (SKP2) genes. Pretreatment of core protein-expressing cells with the inhibitor of CDK2, Butyrolactone I, abolished the phosphorylation of Rb, the activation of E2F-1, and inhibited the expression of E2F-1 gene and cell growth induced. Consistent with these findings, we define a new signaling pathway whereby the HCV core protein mediates cell growth in infected cells.
Collapse
Affiliation(s)
- Mohamed Hassan
- Faculty of Medicine, Institute of Pathology, University of Düsseldorf, Mooren Str. 5, 40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
22
|
Chou AH, Tsai HF, Wu YY, Hu CY, Hwang LH, Hsu PI, Hsu PN. Hepatitis C virus core protein modulates TRAIL-mediated apoptosis by enhancing Bid cleavage and activation of mitochondria apoptosis signaling pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 174:2160-2166. [PMID: 15699147 DOI: 10.4049/jimmunol.174.4.2160] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hepatitis C virus (HCV) is a major human pathogen causing chronic liver disease, which leads to cirrhosis of liver and hepatocellular carcinoma. The HCV core protein, a viral nucleocapsid, has been shown to affect various intracellular events, including cell proliferation and apoptosis. However, the precise mechanisms of the effects are not fully understood. In this study, we show that HCV core protein sensitizes human hepatocellular carcinoma cell line, Huh7, conferred sensitivity to TRAIL-, but not Fas ligand-mediated apoptosis. Huh7 cells are resistant to TRAIL, despite the induction of caspase-8 after TRAIL engagement. However, HCV core protein induces TRAIL apoptosis signaling via sequential induction of caspase-8, Bid cleavage, activation of mitochondrial pathway, and effector caspase-3. HCV core protein also induces activation of caspase-9 after TRAIL engagement, and the induction of TRAIL sensitivity by HCV core protein could be reversed by caspase-9 inhibitor. Therefore, the HCV core protein-induced TRAIL-mediated apoptosis is dependent upon activation of caspase-8 downstream pathway to convey the death signal to mitochondria, leading to activation of mitochondrial signaling pathway and breaking the apoptosis resistance. These results combined indicate that the HCV core protein enhances TRAIL-, but not Fas ligand-mediated apoptotic cell death in Huh7 cells via a mechanism dependent on the activation of mitochondria apoptosis signaling pathway. These results suggest that HCV core protein may have a role in immune-mediated liver cell injury by modulation of TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Ai-Hsiang Chou
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
23
|
Shan Y, Chen XG, Huang B, Hu AB, Xiao D, Guo ZM. Malignant transformation of the cultured human hepatocytes induced by hepatitis C virus core protein. Liver Int 2005; 25:141-7. [PMID: 15698411 DOI: 10.1111/j.1478-3231.2005.0999.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIM Hepatitis C virus core protein (HCV-C) has been known to play an important role in hepatocarcinogenesis. But, up to now there is no certain evidence in pathomorphology directly supporting this standpoint. In this study, a human hepatocytes model expressing HCV-C was established for investigating the influence of HCV-C on hepatocytes biological properties. METHODS The HCV-C expression plasmid, PcDNA3-C, was transfected into Chang-liver cells to establish HCV-C expressing cells. Proliferation rate and variation index of DNA content of these cells were measured by MTT and FCM. The malignant transformation of these cells was observed by electron microscope. Furthermore, these cells were subcutaneous injected into nude mice to observed their tumor genesis. RESULTS Proliferation rate and variation index of DNA content of these cells markedly increased. 10/10 of BALB/c-nu/nu nude mice generated tumors at 3 weeks after subcutaneous inoculation of the HCV-C expressing cells. And, histological structure of the tumors coincided with that of hepatocarcinoma. CONCLUSIONS The HCV-C may play a key role in hepatocarcinogenesis resulting from HCV infection.
Collapse
Affiliation(s)
- Yu Shan
- Center of Experimental Animals, Sun Yat-sen (Zhongshan) University, 510080 Guangzhou, China
| | | | | | | | | | | |
Collapse
|
24
|
Gu J, Wang L, Che Y, Liu L, Jiang L, Dong S, Li W, Li Q. Morphological alteration and biological properties of hepatocytes not related to tumorigenesis following transfection with HCV core protein. J Viral Hepat 2005; 12:20-6. [PMID: 15655044 DOI: 10.1111/j.1365-2893.2005.00539.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The hepatitis C virus (HCV) core protein is supposed to play a critical role in HCV-mediated human liver disease with its capabilities to regulate the growth rate of hepatocytes and to partially contribute to the pathogenesis of hepatocellular carcinoma in association with cellular oncogenes. In this study, to analyse the possible pathological mechanism of the HCV core protein, human primary embryo hepatocytes transfected with HCV core were monitored by immunofluorescence, reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot. The morphological changes and biological properties of the transfected hepatocytes were also studied. The results showed that the HCV core gene integrated in the cellular genome and the protein expressed in the transfected hepatocyte, could be detected following serial passage at both the mRNA and protein level. The proliferation assays indicated that hepatocytes transfected with the HCV core gene alone did not exhibit any tumorigenic tendency. Meanwhile, the morphological alterations of these cells demonstrated obvious changes in size, and large vacuolar degeneration. In conclusion, the hepatocytes transfected with the HCV core gene revealed that the core protein expressed induced pathological changes of degeneration, probably related indirectly to tumorigenicity.
Collapse
Affiliation(s)
- J Gu
- Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kawai K, Hata K, Kawai H, Takaoka H, Miyata-Fukuoka Y, Okubo H, Yokoyama M. Pathophysiological Characteristics and Responsiveness to Neurohormonal Antagonism in Idiopathic Dilated Cardiomyopathy Patients With Antihepatitis C Virus Antibody. Int Heart J 2005; 46:407-17. [PMID: 16043937 DOI: 10.1536/ihj.46.407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A high prevalence of hepatitis C virus (HCV) infection has been reported among idiopathic dilated cardiomyopathy (DCM) patients. We examined the prevalence of DCM patients with HCV antibody, and the pathophysiological characteristics and responsiveness to neurohormonal antagonism in DCM with HCV. HCV antibodies were determined in 540 patients with cardiac diseases. In 117 DCM patients, clinicopathologic data were evaluated before and 1 year after angiotensin converting enzyme inhibitor and/or beta-blocker (ACE-inhibitor/BB) administration and their prognosis was followed-up for a mean of 72 +/- 41 months. HCV antibodies were found in 12 of 135 DCM patients (8.9%) and in 37 of 405 patients without DCM (9.1%) (P = NS). At baseline, contrary to DCM without HCV, DCM with HCV was associated (P < 0.05) with greater left ventricular (LV) end-diastolic and end-systolic dimension, LV mass, and myocardial diameter in endomyocardial biopsy, and lower % fractional shortening. By multivariate analysis, HCV infection was independently associated with larger LV end-systolic dimension among DCM patients (P = 0.005). The advanced LV dilatation and hypertrophy in DCM with HCV decreased more in response to the ACE-inhibitor/BB therapy compared to DCM without HCV. There were no differences between DCM patients with and without HCV in survival and cardiac event-free rates. In summary, although HCV infection appears not to be the specific cause of DCM, HCV may enhance ventricular remodeling leading to heart failure among DCM patients. Nevertheless, the advanced ventricular remodeling with HCV was adequately reversed by neurohormonal antagonism, and did not lead to an unfavorable outcome.
Collapse
Affiliation(s)
- Keisuke Kawai
- Division of Cardiovascular and Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
New tumor necrosis factor-alpha-inducing protein released from Helicobacter pylori for gastric cancer progression. J Cancer Res Clin Oncol 2004. [PMID: 15616827 DOI: 10.1007/s00432-004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the association between Helicobacter pylori infection and its inflammatory reaction in gastritis, gastric ulcer, and gastric cancer, a new tumor necrosis factor-alpha (TNF-alpha)-inducing protein of H. pylori was studied. METHODS The HP0596 gene of H. pylori was identified as the TNF-alpha-inducing protein (Tipalpha) gene from genome sequence of H. pylori strain 26695. Using recombinant Tipalpha (rTipalpha) and deleted Tipalpha (rdel-Tipalpha) proteins, the latter of which lacks six amino acids containing two cysteines in the N-terminal domain, we examined their activities in TNF-alpha gene expression and NF-kappaB activation in both Bhas 42 (v-H-ras transfected BALB/3T3) cells and mouse gastric epithelial cell line MGT-40, and in vitro transformation of Bhas 42 cells. RESULTS Tipalpha protein as a homodimer form (38 kDa) was found in both extracts and culture medium of various H. pylori strains. rTipalpha significantly induced TNF-alpha gene expression and NF-kappaB activation in both Bhas 42 cells and MGT-40, and induced in vitro transformation of Bhas 42 cells. However, rdel-Tipalpha did not. Treatment with MG-132, a proteasome inhibitor, inhibited translocation of NF-kappaB p65, and abrogated TNF-alpha induction induced by Tipalpha protein. CONCLUSION Tipalpha is a new carcinogenic factor released from H. pylori mediated through NF-kappaB activation.
Collapse
|
27
|
Suganuma M, Kurusu M, Suzuki K, Nishizono A, Murakami K, Fujioka T, Fujiki H. New tumor necrosis factor-alpha-inducing protein released from Helicobacter pylori for gastric cancer progression. J Cancer Res Clin Oncol 2004; 131:305-13. [PMID: 15616827 DOI: 10.1007/s00432-004-0652-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 10/25/2004] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the association between Helicobacter pylori infection and its inflammatory reaction in gastritis, gastric ulcer, and gastric cancer, a new tumor necrosis factor-alpha (TNF-alpha)-inducing protein of H. pylori was studied. METHODS The HP0596 gene of H. pylori was identified as the TNF-alpha-inducing protein (Tipalpha) gene from genome sequence of H. pylori strain 26695. Using recombinant Tipalpha (rTipalpha) and deleted Tipalpha (rdel-Tipalpha) proteins, the latter of which lacks six amino acids containing two cysteines in the N-terminal domain, we examined their activities in TNF-alpha gene expression and NF-kappaB activation in both Bhas 42 (v-H-ras transfected BALB/3T3) cells and mouse gastric epithelial cell line MGT-40, and in vitro transformation of Bhas 42 cells. RESULTS Tipalpha protein as a homodimer form (38 kDa) was found in both extracts and culture medium of various H. pylori strains. rTipalpha significantly induced TNF-alpha gene expression and NF-kappaB activation in both Bhas 42 cells and MGT-40, and induced in vitro transformation of Bhas 42 cells. However, rdel-Tipalpha did not. Treatment with MG-132, a proteasome inhibitor, inhibited translocation of NF-kappaB p65, and abrogated TNF-alpha induction induced by Tipalpha protein. CONCLUSION Tipalpha is a new carcinogenic factor released from H. pylori mediated through NF-kappaB activation.
Collapse
Affiliation(s)
- Masami Suganuma
- Saitama Cancer Center, Ina Kitaadachi-gun, 362-0806 Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Sun BS, Pan J, Clayton MM, Liu J, Yan X, Matskevich AA, Strayer DS, Gerber M, Feitelson MA. Hepatitis C virus replication in stably transfected HepG2 cells promotes hepatocellular growth and tumorigenesis. J Cell Physiol 2004; 201:447-58. [PMID: 15389552 DOI: 10.1002/jcp.20083] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HepG2 cells stably transfected with a full-length, infectious hepatitis C virus (HCV) cDNA demonstrated consistent replication of HCV for more than 3 years. Intracellular minus strand HCV RNA was present. Minus strand synthesis was NS5B dependent, and was sensitive to interferon alpha (IFN alpha) treatment. NS5B and HCV core protein were detectable. HCV stimulated HepG2 cell growth and survival in culture, in soft agar, and accelerated tumor growth in SCID mice. These mice became HCV RNA positive in blood, where the virus was also sensitive to IFN alpha. The RNA banded at the density of HCV, and was resistant to RNase prior to extraction. Hence, HCV stably replicates in HepG2 cells, stimulates hepatocellular growth and tumorigenesis, and is susceptible to IFN alpha both in vitro and in vivo.
Collapse
Affiliation(s)
- Bill S Sun
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-6799, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Kao CF, Chen SY, Lee YHW. Activation of RNA polymerase I transcription by hepatitis C virus core protein. J Biomed Sci 2004; 11:72-94. [PMID: 14730212 DOI: 10.1007/bf02256551] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Accepted: 09/01/2003] [Indexed: 12/31/2022] Open
Abstract
The hepatitis C virus (HCV) core protein has been implicated in the transregulation of various RNA polymerase (Pol) II dependent genes as well as in the control of cellular growth and proliferation. In this study, we show that the core protein, whether individually expressed or produced as part of the HCV viral polyprotein, is the only viral product that has the potential to activate RNA Pol I transcription. Deletion analysis demonstrated that the fragment containing the N-terminal 1-156 residues, but not the 1-122 residues, of HCV core protein confers the same level of transactivation activity as the full-length protein. Moreover, the integrity of the Ser(116) and Arg(117) residues of HCV core protein was found to be critical for its transregulatory functions. We used DNA affinity chromatography to analyze the human ribosomal RNA promoter associated transcription machinery, and the results indicated that recruitment of the upstream binding factor and RNA Pol I to the ribosomal RNA promoter is enhanced in the presence of HCV core protein. Additionally, the HCV core protein mediated activation of ribosomal RNA transcription is accompanied by the hyperphosphorylation of upstream binding factor on serine residues, but not on threonine residues. Moreover, HCV core protein is present within the RNA Pol I multiprotein complex, indicating its direct involvement in facilitating the formation of a functional transcription complex. Protein-protein interaction studies further indicated that HCV core protein can associate with the selectivity factor (SL1) via direct contact with a specific component, TATA-binding protein (TBP). Additionally, the HCV core protein in cooperation with TBP is able to activate RNA Pol II and Pol III mediated transcription, in addition to RNA Pol I transcription. Thus, the results of this study suggest that HCV has evolved a mechanism to deregulate all three nuclear transcription systems, partly through targeting of the common transcription factor, TBP. Notably, the ability of the HCV core protein to upregulate RNA Pol I and Pol III transcription supports its active role in promoting cell growth, proliferation, and the progression of liver carcinogenesis during HCV infection.
Collapse
Affiliation(s)
- Chih-Fei Kao
- Institute of Biochemistry, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | | | | |
Collapse
|
31
|
Basu A, Steele R, Ray R, Ray RB. Functional properties of a 16 kDa protein translated from an alternative open reading frame of the core-encoding genomic region of hepatitis C virus. J Gen Virol 2004; 85:2299-2306. [PMID: 15269371 DOI: 10.1099/vir.0.80028-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) often causes persistent infection in humans. This could be due in part to the effect of viral proteins on cellular gene expression. Earlier observations suggest that the HCV core protein expressed from genotype 1a modulates important cellular genes at the transcriptional level, affects programmed cell death (apoptosis) and promotes cell growth. Recently, different groups of investigators have reported the translation of an approximately 16 kDa protein (named F/ARFP/core+1 ORF) from an alternate open reading frame of the HCV core-encoding genomic region. The functional significance of this F protein is presently unknown. Thus, whether the F and core proteins have both shared and distinct functions was investigated here. The experimental observations suggested that the F protein does not significantly modulate c-myc, hTERT and p53 promoter activities, unlike the HCV core protein. Interestingly, the F protein repressed p21 expression. Further studies indicated that the F protein does not inhibit tumour necrosis factor alpha-mediated apoptosis of HepG2 cells or promote rat embryo fibroblast growth. Taken together, these results suggest that the F protein does not share major properties identified previously for the HCV core protein, other than regulating p21 expression.
Collapse
Affiliation(s)
- Arnab Basu
- Department of Internal Medicine, Saint Louis University, St Louis, MO 63110, USA
| | - Robert Steele
- Department of Pathology, Saint Louis University, St Louis, MO 63110, USA
| | - Ranjit Ray
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63110, USA
- Department of Internal Medicine, Saint Louis University, St Louis, MO 63110, USA
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, St Louis, MO 63110, USA
- Department of Internal Medicine, Saint Louis University, St Louis, MO 63110, USA
| |
Collapse
|
32
|
Schang LM. Effects of pharmacological cyclin-dependent kinase inhibitors on viral transcription and replication. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:197-209. [PMID: 15023361 DOI: 10.1016/j.bbapap.2003.11.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
Cyclin-dependent kinases (CDKs) are required for replication of adeno-, papilloma- and other viruses that replicate only in dividing cells. Surprisingly, CDKs are also required for replication of HIV-1, HSV-1, and other viruses that can replicate in non-dividing cells. Since two low-molecular weight pharmacological CDK inhibitors (PCIs), flavopiridol (Flavo) and roscovitine (Rosco), appear to be non-toxic in human clinical trials against cancer, these drugs have been proposed as potential antiviral drugs. Rosco preferentially inhibits CDKs involved in cell cycle regulation (CDK1, 2, and 7) or neuronal functions (CDK5), whereas Flavo preferentially inhibits CDKs involved in cell cycle (CDK1, 2, 4, 7) or transcription (CDK7, and 9). As potential antivirals, PCIs display several advantages: (i) they are active against many different viruses, including drug-resistant strains of HIV-1 and HSV-1; (ii) PCI-resistant mutants of HIV-1 or HSV-1 have not been identified; and (iii) the antiviral effects of PCIs and conventional antivirals appear to be additive (as expected from drugs that target independent pathways). Moreover, PCIs target both the etiological agents (i.e., the virus) and the pathogenic mechanisms (i.e., unrestricted cell division) of the many diseases that include both a CDK-requiring virus and unrestricted cell division (e.g., Kaposi's sarcoma, cervical carcinoma, HIV-associated nephropathy-HIVAN). This is nicely illustrated in a recent study which demonstrated the efficacy of Flavo in a mouse model of HIVAN. Herein, we will review the involvement of CDKs in viral replication and the antiviral properties of the most extensively characterized PCIs, with special emphasis on the mechanisms of inhibition of viral transcription.
Collapse
Affiliation(s)
- Luis M Schang
- Department of Biochemistry and Department of Medical Microbiology and Immunology, Signal Transduction Research Group, Molecular Mechanisms of Growth Control Research Group, University of Alberta, Canada.
| |
Collapse
|
33
|
N/A, 成 军, 郎 振, 刘 妍, 王 建, 纪 冬, 党 晓. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:151-155. [DOI: 10.11569/wcjd.v12.i1.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
34
|
Ohkawa K, Ishida H, Nakanishi F, Hosui A, Ueda K, Takehara T, Hori M, Hayashi N. Hepatitis C virus core functions as a suppressor of cyclin-dependent kinase-activating kinase and impairs cell cycle progression. J Biol Chem 2004; 279:11719-26. [PMID: 14711830 DOI: 10.1074/jbc.m308560200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We investigated how the hepatitis C virus (HCV) core protein affects the cell cycle profile and cell cycle-related molecules by using the HCV core-expressing stable transfectant. Analysis of the cell cycle profile showed that HCV core impaired G(1) to S transition. The E2F-mediated transcription, phosphorylation of the retinoblastoma protein, and cyclin-dependent kinase (CDK) 4 and CDK2 activities were suppressed in HCV core-expressing cells. The expression levels of G(1) phase-related CDKs/cyclins and various CDK inhibitors were not substantially affected by expression of HCV core. When influences of HCV core on CDK-activating kinase (CAK) were examined, the expression levels of the CAK components, CDK7, cyclin H, and MAT1, were not affected. However, formation of the ternary CAK complex, CAK activity, and the CDK2 level with activating phosphorylation were inhibited by expression of the HCV core. The direct effect of HCV core on CAK was further assessed in the cell-free system by adding the in vitro translated HCV core protein to the anti-CDK7 immunoprecipitate from the cell. The results showed that HCV core led to dissociation of MAT1 from the CAK complex and suppressed the CAK activity. Furthermore, the binding assay revealed that the HCV core was directed against CDK7. Their interaction occurred mainly in the nucleus by the immunostaining. In conclusion, the HCV core protein interacts with CAK and functions as an extrinsic suppressor of CAK. This may be the molecular basis of HCV core-mediated suppression of cell cycle progression. Our findings suggest a novel mechanism concerning HCV core-mediated alteration in the cell cycle machinery.
Collapse
Affiliation(s)
- Kazuyoshi Ohkawa
- Department of Molecular Therapeutics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Taniguchi H, Kato N, Otsuka M, Goto T, Yoshida H, Shiratori Y, Omata M. Hepatitis C virus core protein upregulates transforming growth factor-beta 1 transcription. J Med Virol 2004; 72:52-59. [PMID: 14635011 DOI: 10.1002/jmv.10545] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The majority of persons with chronic hepatitis C virus (HCV) infection develop liver fibrosis. Transforming growth factor (TGF)-beta 1 plays a pivotal role in the pathogenesis of post-inflammatory liver scarring. To clarify the influence of HCV infection on liver fibrosis, a reporter assay was used to investigate the effect of viral proteins on TGF-beta 1 expression in human hepatoma cells. Of all HCV proteins investigated (core, E1/E2/p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B), only the core protein activated the TGF-beta 1 promoter and upregulated TGF-beta 1 expression measured by an RNase protection assay. Bases -376 to -331 bp in the promoter region of TGF-beta 1 are responsible for upregulation by HCV core protein, and the nuclear protein that binds to this region increased with the stimulation of HCV core protein. Blocking the mitogen-activated protein kinase pathway prevented upregulation of TGF-beta 1 by HCV core protein. The immunological response is supposed to be a major factor to cause the secretion of TGF-beta 1 from non-parenchymal cells, but the results suggest that the HCV core protein expression may upregulate directly TGF-beta 1 transcription in parenchymal cells and suggest a new paradigm for exacerbation of liver fibrosis by HCV infection.
Collapse
Affiliation(s)
- Hiroyoshi Taniguchi
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Sansonno D, Lauletta G, Dammacco F. Detection and quantitation of HCV core protein in single hepatocytes by means of laser capture microdissection and enzyme-linked immunosorbent assay. J Viral Hepat 2004; 11:27-32. [PMID: 14738555 DOI: 10.1046/j.1365-2893.2003.00474.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Immunohistochemistry provides valuable information concerning the localization and distribution of hepatitis C virus (HCV)-related proteins in histological sections of liver tissue, but does not readily permit their quantitation in individual cells and the staining intensity of cell immunodeposits cannot be calibrated with the current number of antigen molecules. We specifically detected and quantitated HCV core protein in single hepatocytes by coupling laser capture microdissection (LCM) with a sensitive enzyme-linked immunosorbent assay (ELISA). Quantitation of HCV core protein per cell was carried out on liver tissue cells obtained by LCM from fixed and stained frozen sections of 10 HCV-positive patients with chronic active hepatitis (CAH). Macromolecules from captured cells were solubilized in an extraction buffer and directly assayed for core protein using a sandwich ELISA. Calibration was achieved by developing a standard curve based on known concentrations of HCV core protein. Precision, linearity and sensitivity were verified for known numbers of microdissected tissue cells. In this study, the concentration of HCV core protein in single hepatocytes ranged from 7 to 56 pg/cell. Specificity was verified on 10 replicates of 10 HCV-negative liver tissues. Immunohistochemical staining of HCV core protein was compared with the results of the soluble immunoassay for the adjacent liver tissue sections. Independent scoring of HCV immunostaining failed to parallel the LCM quantitative immunoassay. LCM-based immunoassay significantly expands our ability to investigate function-related antigens in apparently pure cell populations in HCV infection.
Collapse
Affiliation(s)
- D Sansonno
- Section of Internal Medicine and Clinical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | | | | |
Collapse
|
37
|
Watashi K, Hijikata M, Tagawa A, Doi T, Marusawa H, Shimotohno K. Modulation of retinoid signaling by a cytoplasmic viral protein via sequestration of Sp110b, a potent transcriptional corepressor of retinoic acid receptor, from the nucleus. Mol Cell Biol 2003; 23:7498-509. [PMID: 14559998 PMCID: PMC207568 DOI: 10.1128/mcb.23.21.7498-7509.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hepatitis C virus (HCV) core protein (core) plays a significant role in the development of chronic liver diseases caused by HCV infection. We have discovered that the core sensitized all-trans-retinoic acid (ATRA)-induced cell death in MCF-7 cells. Activation of retinoic acid receptor alpha (RARalpha)-mediated transcription by the core was also seen in all the cell lines tested. By use of a yeast two-hybrid system, we identified Sp110b as a candidate for a core-interacting cellular factor. Although the function of Sp110b has remained unknown, we observed that Sp110b interacts with RARalpha and suppresses RARalpha-mediated transcription. These data suggest that Sp110b is a transcriptional cofactor negatively regulating RARalpha-mediated transcription. RNA interference-mediated reduction of endogenous Sp110b levels depressed the ability of the core to activate RARalpha-mediated transcription, suggesting an essential role for Sp110b in this pathway. The normal nuclear subcellular localization of Sp110b was altered by molecular interaction with the core to the cytoplasmic surface of the endoplasmic reticulum. This evidence suggests a model in which the core sequesters Sp110b from the nucleus and inactivates its corepressor function to activate RARalpha-mediated transcription. These findings likely describe a novel system in which a cytoplasmic viral protein regulates host cell transcription.
Collapse
Affiliation(s)
- Koichi Watashi
- Laboratory of Human Tumor Viruses, Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Perlemuter G, Lettéron P, Carnot F, Zavala F, Pessayre D, Nalpas B, Bréchot C. Alcohol and hepatitis C virus core protein additively increase lipid peroxidation and synergistically trigger hepatic cytokine expression in a transgenic mouse model. J Hepatol 2003; 39:1020-7. [PMID: 14642621 DOI: 10.1016/s0168-8278(03)00414-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIMS Alcohol consumption accelerates the appearance of liver fibrosis and hepatocellular carcinoma in patients with chronic hepatitis C virus (HCV) infection, but the mechanisms of these interactions are unknown. We therefore investigated the effects of chronic ethanol consumption in HCV core protein-expressing transgenic mice. METHODS Ethanol was progressively added (up to 20%) to the drinking water that was given ad libidum. RESULTS In vivo fatty acid oxidation was not inhibited by ethanol consumption and/or HCV core expression. Both chronic ethanol consumption and HCV core expression decreased hepatic lipoprotein secretion and caused steatosis, but had no additive effects on lipoprotein secretion or steatosis. However, chronic ethanol consumption and HCV core protein additively increased lipid peroxidation and acted synergistically to increase the hepatic expression of transforming growth factor-beta (TGF-beta) and, to a less extent, tumor necrosis factor-alpha (TNF-alpha). CONCLUSIONS HCV core protein expression and chronic alcohol consumption have no effects on in vivo fatty acid oxidation and do not additively impair hepatic lipoprotein secretion, but additively increase hepatic lipid peroxidation and synergistically increase hepatic TNF-alpha and TGF-beta expression. These effects may be involved in the activation of fibrogenesis and the development of hepatocellular carcinoma in patients cumulating alcohol abuse and HCV infection.
Collapse
Affiliation(s)
- Gabriel Perlemuter
- Liver Cancer and Molecular Virology, Institut National de la Santé et de la Recherche Médicale Unité 370, Faculté de Médecine Necker-Enfants Malades, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Oka K, Nagano-Fujii M, Yoshida I, Hidajat R, Deng L, Akutsu M, Hotta H. Hepatitis C virus core protein selectively inhibits synthesis and accumulation of p21/Waf1 and certain nuclear proteins. Microbiol Immunol 2003; 47:429-38. [PMID: 12906103 DOI: 10.1111/j.1348-0421.2003.tb03380.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
By using a vaccinia virus-T7 expression system, possible effects of hepatitis C virus (HCV) core protein on synthesis and accumulation of host cellular proteins transiently expressed in cultured cells were analyzed. Immunoblot and immunofluorescence analyses revealed that synthesis and accumulation of certain nuclear proteins, such as p21/Waf1, p53, proliferating cell nuclear antigen and c-Fos, were strongly inhibited by HCV core protein. On the other hand, synthesis and accumulation of cytoplasmic proteins, such as 2'-5'-oligoadenylate synthetase (2'-5'-OAS), RNase L and MEK1, were barely affected by HCV core protein. Northern blot analysis showed that the degrees of mRNA expression for those proteins did not differ between HCV core protein-expressing cells and the control, suggesting that the inhibition occurred at the post-transcription level. Pulse-labeling analysis suggested that HCV core protein strongly inhibited synthesis of p21/Waf1 at the translation level. Once being accumulated in the nucleus, p21/Waf1 stability was not significantly affected by HCV core protein. Mutants of HCV core protein C-terminally deleted by 18 or 41 amino acids (aa), which were localized almost exclusively in the nucleus, lost their ability to inhibit synthesis/accumulation of p21/Waf1 whereas another mutant C-terminally deleted by 8 aa still maintained the same properties (subcellular localization and the inhibitory effect) as the full-length HCV core protein of 191 aa. Taken together, our present results suggest that expression of HCV core protein in the cytoplasm selectively inhibits synthesis of p21/Waf1 and some other nuclear proteins at the translation level.
Collapse
Affiliation(s)
- Kiyomasa Oka
- Department of Microbiology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Tsutsumi T, Suzuki T, Moriya K, Shintani Y, Fujie H, Miyoshi H, Matsuura Y, Koike K, Miyamura T. Hepatitis C virus core protein activates ERK and p38 MAPK in cooperation with ethanol in transgenic mice. Hepatology 2003. [PMID: 14512869 DOI: 10.1002/hep.1840380408] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In human chronic hepatitis C, alcohol intake is a synergistic factor for the acceleration of hepatocarcinogenesis. Recently, we showed a significant increase of reactive oxygen species (ROS) in hepatitis C virus (HCV) core-transgenic mice fed ethanol-containing diets. Because previous studies indicated that ROS is closely associated with mitogen-activated protein kinases (MAPK), we examined activities of c-Jun N-terminal kinase, p38 MAPK, and extracellular signal-regulated kinase (ERK) in the liver of core-transgenic and nontransgenic mice with short-term ethanol feeding. Activity of ERK and p38 MAPK was increased in core-transgenic mice compared with nontransgenic mice, whereas neither ERK nor p38 MAPK was activated in core-transgenic mice with normal diets. In addition, activity of cyclic-AMP and serum responsive element, downstream pathways of p38 MAPK and ERK, was also increased. Comparison of gene expression profiles by cDNA microarray and real-time PCR revealed that galectin-1, which is associated with cell transformation, was significantly increased in ethanol-fed core-transgenic mice. On the other hand, glutathione S-transferase (GST), which plays a key role in protecting cells from oxidative stress, was decreased. In conclusion, these results suggest that HCV core protein cooperates with ethanol for the activation of some MAPK pathways, and leads to the modulation of several genes, contributing to the pathogenesis of liver disease of HCV-infected patients with high ethanol consumption.
Collapse
Affiliation(s)
- Takeya Tsutsumi
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kato T, Miyamoto M, Date T, Yasui K, Taya C, Yonekawa H, Ohue C, Yagi S, Seki E, Hirano T, Fujimoto J, Shirai T, Wakita T. Repeated hepatocyte injury promotes hepatic tumorigenesis in hepatitis C virus transgenic mice. Cancer Sci 2003; 94:679-85. [PMID: 12901792 PMCID: PMC11160254 DOI: 10.1111/j.1349-7006.2003.tb01502.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Revised: 05/29/2003] [Accepted: 06/02/2003] [Indexed: 12/23/2022] Open
Abstract
Although hepatitis C virus (HCV) is a well-known causative agent of hepatocellular carcinoma (HCC), the mechanism by which HCV induces HCC remains obscure. To elucidate the role of HCV in hepatocarcinogenesis, a model of hepatocyte injury was established using HCV core transgenic mice, which were developed using C57BL/6 mice transfected with the HCV core gene under control of the serum amyloid P component promoter. After 18-24 months, neither steatosis nor hepatic tumors were found in transgenic mice. The extent of hepatocyte injury and tumorigenesis were then examined in transgenic mice following repeated administration of carbon tetrachloride (CCl(4)) using various protocols (20%, 1/week; 10%, 2/week and 20%, 2/week). Serum alanine aminotransferase (ALT) levels did not differ among HCV core transgenic mice and non-transgenic littermates; however, after 40 weeks, hepatic adenomas preferentially developed in transgenic mice receiving 20% CCl(4) once weekly. Moreover, HCC was observed in transgenic mice receiving 2 weekly injections of a 20% solution of CCl(4), and was not observed in the non-transgenic control mice. In conclusion, the HCV core protein did not promote hepatic steatosis or tumor development in the absence of hepatotoxicity. However, the HCV core protein promoted adenoma and HCC development in transgenic mice following repeated CCl(4) administration. These results suggest that hepatotoxicity resulting in an increased rate of hepatocyte regeneration enhances hepatocarcinogenesis in HCV-infected livers. Furthermore, this experimental mouse model provides a valuable method with which to investigate hepatocarcinogenesis.
Collapse
Affiliation(s)
- Takanobu Kato
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, Fucyu, Tokyo 183-8526, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hosui A, Ohkawa K, Ishida H, Sato A, Nakanishi F, Ueda K, Takehara T, Kasahara A, Sasaki Y, Hori M, Hayashi N. Hepatitis C virus core protein differently regulates the JAK-STAT signaling pathway under interleukin-6 and interferon-gamma stimuli. J Biol Chem 2003; 278:28562-71. [PMID: 12764155 DOI: 10.1074/jbc.m210485200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We established hepatitis C virus (HCV) core-expressing cells and investigated whether HCV core would modify the Janus kinase (JAK)-signal transducer and activator transcription factor (STAT) pathway under interleukin-6 (IL-6) and interferon (IFN)-gamma stimuli. Phosphorylation of JAK1/2 and STAT3, and STAT3-mediated transcription, were prevented by HCV core under IL-6 stimulation. In contrast, HCV core increased phosphorylation of JAK1/2 and STAT1 and STAT1-mediated transcription under IFN-gamma stimulation. Immunoprecipitation/Western blot analysis showed that HCV core could bind to JAK1/2. The PGYPWP sequences at codons 79-84 within HCV core were important for interaction with JAKs by in vitro binding analysis. In the reporter gene assay, HCV core-mediated suppression of JAK-STAT pathway under IL-6 stimulation was not observed by abrogation of PGYPWP sequence, suggesting that HCV core/JAK interaction may directly affect the signal transduction. In contrast, augmentation of JAK-STAT pathway was still seen by HCV core without functional PGYPWP sequence under IFN-gamma stimulation. Flow cytometric analysis revealed that HCV core up-regulated of IFN-gamma receptor 2 expression, which may be responsible for HCV core-mediated enhancement of JAK-STAT pathway under IFN-gamma stimulation. In conclusion, HCV core has different effects on the JAK-STAT pathway under IL-6 and IFN-gamma stimuli. This may be exerted by these two independent mechanisms.
Collapse
Affiliation(s)
- Atsushi Hosui
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
|
45
|
MESH Headings
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/prevention & control
- Carcinoma, Hepatocellular/virology
- Cell Adhesion/genetics
- Cell Transformation, Neoplastic
- Cell Transformation, Viral
- Chronic Disease
- Genes, cdc
- Genes, p53
- Growth Substances/physiology
- Hepacivirus/pathogenicity
- Hepatitis B virus/pathogenicity
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/virology
- Hepatitis C, Chronic/complications
- Hepatitis C, Chronic/virology
- Humans
- Liver Diseases/complications
- Liver Diseases/pathology
- Liver Neoplasms/etiology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/prevention & control
- Liver Neoplasms/virology
- Neoplasm Invasiveness/genetics
- Neoplasm Metastasis
- Neovascularization, Pathologic/genetics
- Precancerous Conditions/complications
- Precancerous Conditions/pathology
Collapse
|
46
|
He QQ, Cheng RX, Sun Y, Feng DY, Chen ZC, Zheng H. Hepatocyte transformation and tumor development induced by hepatitis C virus NS3 C-terminal deleted protein. World J Gastroenterol 2003; 9:474-8. [PMID: 12632500 PMCID: PMC4621564 DOI: 10.3748/wjg.v9.i3.474] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of hepatitis C virus nonstructural protein 3 c-terminal deleted protein (HCV NS3-5’) on hepatocyte transformation and tumor development.
METHODS: QSG7701 cells were transfected with plasmid pRcHCNS3-5’ (expressing HCV NS3 c-terminal deleted protein) by lipofectamine and selected in G418. The expression of HCV NS3 gene and protein was determined by PCR and immunohistochemistry respectively. Biological behavior of transfected cells was observed through cell proliferation assay, anchorage-independent growth and tumor development in nude mice. The expression of HCV NS3 and c-myc proteins in the induced tumor was evaluated by immunohistochemistry.
RESULTS: HCV NS3 was strongly expressed in QSG7701 cells transfected with plasmid pRcHCNS3-5’ and the positive signal was located in cytoplasm. Cell proliferation assay showed that the population doubling time in pRcHCNS3-5’ transfected cells was much shorter than that in pRcCMV and non-transfected cells (24 h, 26 h, 28 h respectively). The cloning ratio of cells transfected with pRcHCNS3-5’, pRcCMV and non-transfected cells was 33%, 1.46%, 1.11%, respectively, the former one was higher than that in the rest two groups (P < 0.01). Tumor development was seen in nude mice inoculated with pRcHCNS3-5’ transfected cells after 15 days. HE staining showed its feature of hepatocarcinoma, and immunohistochemistry confirmed the expressions of HCV NS3 and c-myc proteins in tumor tissue. The positive control group inoculated with HepG2 also showed tumor development, while no tumor developed in the nude mice injected with pRcCMV and non-transfected cells after 40 days.
CONCLUSION: 1.HCV NS3 c-terminal deleted protein has transforming and oncogenic potential. 2. Human liver cell line QSG7701 may be used as a good model to study HCV NS3 pathogenesis.
Collapse
Affiliation(s)
- Qiong-Qiong He
- Department of Pathology, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan Province, China
| | | | | | | | | | | |
Collapse
|
47
|
Ishikawa T, Shibuya K, Yasui K, Mitamura K, Ueda S. Expression of hepatitis C virus core protein associated with malignant lymphoma in transgenic mice. Comp Immunol Microbiol Infect Dis 2003; 26:115-24. [PMID: 12493492 DOI: 10.1016/s0147-9571(02)00038-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hepatitis C virus (HCV) is a major causative agent for chronic liver diseases leading to hepatocellular carcinoma (HCC) and has also been suggested to be a possible etiologic factor for different lymphoproliferative diseases, including mixed cryoglobulinemia (MC) and B-cell non-Hodgkin's lymphoma (NHL). To understand the roles of HCV core protein in the pathogenesis of HCV related diseases, we produced two lines of the transgenic mice (HC82310 and HC9053) that express the HCV core transgene. One of the lines, HC9053, developed malignant lymphoma (ML, follicular center cell type) with a high frequency (80%) at the ages over 20 months. Hepatocellular adenoma was also observed in this line of transgenic mouse. We demonstrated expression of HCV core protein and mRNA in the liver of transgenic mice, and also detected the core mRNA in the enlarged lymph nodes of the transgenic mice which developed ML. These results suggest that the core protein may play an important role in the development of ML, and that the HC9053 transgenic mice provide suitable models for understanding the mechanism of HCV-related lymphoproliferative diseases.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Disease Models, Animal
- Female
- Gene Expression Regulation, Viral
- Hepacivirus/genetics
- Hepacivirus/metabolism
- Humans
- Immunohistochemistry
- Liver/pathology
- Liver/virology
- Lymph Nodes/pathology
- Lymph Nodes/virology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/virology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Serum Amyloid P-Component/genetics
- Specific Pathogen-Free Organisms
- Viral Core Proteins/biosynthesis
- Viral Core Proteins/genetics
Collapse
Affiliation(s)
- Takayuki Ishikawa
- Nippon Institute for Biological Science, 3331-114 Kamisasao, Kobuchizawa, Yamanashi 408-0041, Japan.
| | | | | | | | | |
Collapse
|
48
|
Abstract
In summary, HCV-cell interactions include those directly involved with the HCV life cycle such as virus attachment, entry, and replication. Included within this broad area of research are the interactions of HCV proteins with the IFN system, cytokine and chemokine pathways such as IL-8, and various other cellular proteins and pathways. The plethora of contradictory and sometimes confusing accessory HCV-host interactions defies precise predictions of their role in HCV biology. It is clear that these virus-cell interactions affect HCV replication, antiviral resistance, persistence, and pathogenesis. Because HCV-host interactions are initiated immediately on infection, they are operative during acute HCV infection, whereby HCV interacts with innate cellular antiviral and immune systems. The magnitude and duration of these HCV-host interactions therefore may influence the development of acquired immunity. Because HCV exists as a quasispecies in all infected individuals, heterogeneity in biological responses to HCV-host interactions is predicted, revealing opportunities for the development of various genotypic and phenotypic prognostic indicators. With the model systems in place, these hypotheses can be tested. The challenge for the future is to determine if there is a hierarchical importance to these interactions, to delineate how these virus-cell interactions affect the patient infected with HCV, and to determine whether any of these interactions represents a target for therapeutic intervention.
Collapse
Affiliation(s)
- Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Box 359690, 325 9th Avenue, Seattle, WA 98104-2499, USA.
| |
Collapse
|
49
|
Shimotohno K, Watashi K, Tsuchihara K, Fukuda K, Marusawa H, Hijikata M. Hepatitis C virus and its roles in cell proliferation. J Gastroenterol 2003; 37 Suppl 13:50-4. [PMID: 12109666 DOI: 10.1007/bf02990100] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus (HCV) causes chronic hepatitis and is linked to the development of hepatocellular carcinoma (HCC). The role of HCV infection in the development of HCC remains to be clarified. We analyzed the effect of HCV core protein on modulation of cell proliferation. HCV core protein was shown to have at least two functions: activation of the Ras/Raf signaling pathway and anti-apototic function.
Collapse
Affiliation(s)
- Kunitada Shimotohno
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Chen SY, Kao CF, Chen CM, Shih CM, Hsu MJ, Chao CH, Wang SH, You LR, Lee YHW. Mechanisms for inhibition of hepatitis B virus gene expression and replication by hepatitis C virus core protein. J Biol Chem 2003; 278:591-607. [PMID: 12401801 DOI: 10.1074/jbc.m204241200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have demonstrated previously that the core protein of hepatitis C virus (HCV) exhibits suppression activity on gene expression and replication of hepatitis B virus (HBV). Here we further elucidated the suppression mechanism of HCV core protein. We demonstrated that HCV core protein retained the inhibitory effect on HBV gene expression and replication when expressed as part of the full length of HCV polyprotein. Based on the substitution mutational analysis, our results suggested that mutation introduced into the bipartite nuclear localization signal of the HCV core protein resulted in the cytoplasmic localization of core protein but did not affect its suppression ability on HBV gene expression. Mutational studies also indicated that almost all dibasic residue mutations within the N-terminal 101-amino acid segment of the HCV core protein (except Arg(39)-Arg(40)) impaired the suppression activity on HBV replication but not HBV gene expression. The integrity of Arg residues at positions 101, 113, 114, and 115 was found to be essential for both suppressive effects, whereas the Arg residue at position 104 was important only in the suppression of HBV gene expression. Moreover, our results indicated that the suppression on HBV gene expression was mediated through the direct interaction of HCV core protein with the trans-activator HBx protein, whereas the suppression of HBV replication involved the complex formation between HBV polymerase (pol) and the HCV core protein, resulting in the structural incompetence for the HBV pol to bind the package signal and consequently abolished the formation of the HBV virion. Altogether, this study suggests that these two suppression effects on HBV elicited by the HCV core protein likely depend on different structural context but not on nuclear localization of the core protein, and the two effects can be decoupled as revealed by its differential targets (HBx or HBV pol) on these two processes of the HBV life cycle.
Collapse
Affiliation(s)
- Shiow-Yi Chen
- Institute of Biochemistry and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|