1
|
Sanfaçon H. 3C-like proteases at the interface of plant-virus-vector interactions: Focus on potyvirid NIa proteases and secovirid proteases. Virology 2025; 602:110299. [PMID: 39579507 DOI: 10.1016/j.virol.2024.110299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Plant viruses of the families Potyviridae and Secoviridae encode 3C-like proteases (3CLpro) that are related to picornavirus 3C proteases. This review discusses recent advances in deciphering the multifunctional activities of plant virus 3CLpro. These proteases regulate viral polyprotein processing and facilitate virus replication. They are also determinants of host range, virulence, symptomatology and super-infection exclusion in some plant-virus interactions and facilitate aphid transmission. Potyvirid NIa-Pro proteases interact with host factors to interfere with a variety of defense mechanisms: salicylic acid-dependent signaling, ethylene-dependent signaling, transcriptional gene silencing and RNA decay. Potyvirid NIa-Pro also cleave host proteins at signature cleavage sites, although the biological impact of these cleavage remains to be determined. Recently, a plant defense mechanism was uncovered that inhibits the proteolytic activity of a comovirus 3CLpro. Future perspectives are discussed including using proteomic and degradomic techniques to elucidate the network of interactions of plant virus 3CLpro with the host proteome.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, V0H 1Z0, Summerland, BC, Canada.
| |
Collapse
|
2
|
Sanfaçon H, Skern T. AlphaFold modeling of nepovirus 3C-like proteinases provides new insights into their diverse substrate specificities. Virology 2024; 590:109956. [PMID: 38052140 DOI: 10.1016/j.virol.2023.109956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
The majority of picornaviral 3C proteinases (3Cpro) cleavage sites possess glutamine at the P1 position. Plant nepovirus 3C-like proteinases (3CLpro) show however much broader specificity, cleaving not only after glutamine, but also after several basic and hydrophobic residues. To investigate this difference, we employed AlphaFold to generate structural models of twelve selected 3CLpro, representing six substrate specificities. Generally, we observed favorable correlations between the architecture and charge of nepovirus proteinase S1 subsites and their ability to accept or restrict larger residues. The models identified a conserved aspartate residue close to the P1 residue in the S1 subsites of all nepovirus proteinases examined, consistent with the observed strong bias against negatively-charged residues at the P1 position of nepovirus cleavage sites. Finally, a cramped S4 subsite along with the presence of two unique histidine and serine residues explains the strict requirement of the grapevine fanleaf virus proteinase for serine at the P4 position.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, V0H 1Z0, Summerland, BC, Canada.
| | - Tim Skern
- Department of Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, A-1030, Vienna, Austria.
| |
Collapse
|
3
|
Dong J, Chen Y, Xie Y, Cao M, Fu S, Wu J. The Identification of Viral Pathogens in a Physostegia virginiana Plant Using High-Throughput RNA Sequencing. Viruses 2023; 15:1972. [PMID: 37766378 PMCID: PMC10534606 DOI: 10.3390/v15091972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Physostegia virginiana is an important ornamental and cut-flower plant in China. Its commonly used method of clonal propagation leads to virus accumulation in this plant. However, which viruses can infect the Physostegia virginiana plant remains to be illuminated. In this work, five viral pathogens in a Physostegia virginiana plant with virus-like symptoms of yellow, shriveled, and curled leaves were identified using RNA-seq, bioinformatics, and molecular biological techniques. These techniques allowed us to identify five viruses comprising one known alfalfa mosaic virus (AMV) and four novel viruses. The novel viruses include a virus belonging to the genus Fabavirus, temporarily named Physostegia virginiana crinkle-associated virus 1 (PVCaV1); two viruses belonging to the genus Caulimovirus, temporarily named Physostegia virginiana caulimovirus 1 and 2 (PVCV1 and PVCV2); and a virus belonging to the genus Fijivirus, temporarily named Physostegia virginiana fijivirus (PVFV). The genome sequences of PVCaV1, PVCV1, and PVCV2, and the partial genome sequence of PVFV were identified. Genome organizations and genetic evolutionary relationships of all four novel viruses were analyzed. PVCaV1 has a relatively close evolutionary relationship with five analyzed fabiviruses. PVCV1 and PVCV2 have separately a closest evolutionary relationship with lamium leaf distortion-associated virus (LLDAV) and figwort mosaic virus (FMV), and PVFV has a close evolutionary relationship with the five analyzed fijiviruses. Additionally, PVCaV1 can infect Nicotiana benthamiana plants via friction inoculation. The findings enrich our understanding of Physostegia virginiana viruses and contribute to the prevention and control of Physostegia virginiana viral diseases.
Collapse
Affiliation(s)
- Jinxi Dong
- Hainan Institute, Zhejiang University, Sanya 572025, China; (J.D.); (Y.C.)
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yuanling Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China; (J.D.); (Y.C.)
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yi Xie
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Shuai Fu
- Research Center for Biological Computation, Zhejiang Lab, Hangzhou 311100, China
| | - Jianxiang Wu
- Hainan Institute, Zhejiang University, Sanya 572025, China; (J.D.); (Y.C.)
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
4
|
Sanfaçon H. Re-examination of nepovirus polyprotein cleavage sites highlights the diverse specificities and evolutionary relationships of nepovirus 3C-like proteases. Arch Virol 2022; 167:2529-2543. [PMID: 36042138 PMCID: PMC9741568 DOI: 10.1007/s00705-022-05564-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022]
Abstract
Plant-infecting viruses of the genus Nepovirus (subfamily Comovirinae, family Secoviridae, order Picornavirales) are bipartite positive-strand RNA viruses with each genomic RNA encoding a single large polyprotein. The RNA1-encoded 3C-like protease cleaves the RNA1 polyprotein at five sites and the RNA2 polyprotein at two or three sites, depending on the nepovirus. The specificity of nepovirus 3C-like proteases is notoriously diverse, making the prediction of cleavage sites difficult. In this study, the position of nepovirus cleavage sites was systematically re-evaluated using alignments of the RNA1 and RNA2 polyproteins, phylogenetic relationships of the proteases, and sequence logos to examine specific preferences for the P6 to P1' positions of the cleavage sites. Based on these analyses, the positions of previously elusive cleavage sites, notably the 2a-MP cleavage sites of subgroup B nepoviruses, are now proposed. Distinct nepovirus protease clades were identified, each with different cleavage site specificities, mostly determined by the nature of the amino acid at the P1 and P1' positions of the cleavage sites, as well as the P2 and P4 positions. The results will assist the prediction of cleavage sites for new nepoviruses and help refine the taxonomy of nepoviruses. An improved understanding of the specificity of nepovirus 3C-like proteases can also be used to investigate the cleavage of plant proteins by nepovirus proteases and to understand their adaptation to a broad range of hosts.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, V0H1Z0, Summerland, BC, Canada.
| |
Collapse
|
5
|
Paudel DB, Sanfaçon H. Mapping of sequences in the 5' region and 3' UTR of tomato ringspot virus RNA2 that facilitate cap-independent translation of reporter transcripts in vitro. PLoS One 2021; 16:e0249928. [PMID: 33836032 PMCID: PMC8034749 DOI: 10.1371/journal.pone.0249928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Tomato ringspot virus (ToRSV, genus Nepovirus, family Secoviridae, order Picornavirales) is a bipartite positive-strand RNA virus, with each RNA encoding one large polyprotein. ToRSV RNAs are linked to a 5'-viral genome-linked protein (VPg) and have a 3' polyA tail, suggesting a non-canonical cap-independent translation initiation mechanism. The 3' untranslated regions (UTRs) of RNA1 and RNA2 are unusually long (~1.5 kb) and share several large stretches of sequence identities. Several putative in-frame start codons are present in the 5' regions of the viral RNAs, which are also highly conserved between the two RNAs. Using reporter transcripts containing the 5' region and 3' UTR of the RNA2 of ToRSV Rasp1 isolate (ToRSV-Rasp1) and in vitro wheat germ extract translation assays, we provide evidence that translation initiates exclusively at the first AUG, in spite of a poor codon context. We also show that both the 5' region and 3' UTR of RNA2 are required for efficient cap-independent translation of these transcripts. We identify translation-enhancing elements in the 5' proximal coding region of the RNA2 polyprotein and in the RNA2 3' UTR. Cap-dependent translation of control reporter transcripts was inhibited when RNAs consisting of the RNA2 3' UTR were supplied in trans. Taken together, our results suggest the presence of a CITE in the ToRSV-Rasp1 RNA2 3' UTR that recruits one or several translation factors and facilitates efficient cap-independent translation together with the 5' region of the RNA. Non-overlapping deletion mutagenesis delineated the putative CITE to a 200 nts segment (nts 773-972) of the 1547 nt long 3' UTR. We conclude that the general mechanism of ToRSV RNA2 translation initiation is similar to that previously reported for the RNAs of blackcurrant reversion virus, another nepovirus. However, the position, sequence and predicted structures of the translation-enhancing elements differed between the two viruses.
Collapse
Affiliation(s)
- Dinesh Babu Paudel
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
- * E-mail:
| |
Collapse
|
6
|
Mann KS, Chisholm J, Sanfaçon H. Strawberry Mottle Virus (Family Secoviridae, Order Picornavirales) Encodes a Novel Glutamic Protease To Process the RNA2 Polyprotein at Two Cleavage Sites. J Virol 2019; 93:e01679-18. [PMID: 30541838 PMCID: PMC6384087 DOI: 10.1128/jvi.01679-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/19/2018] [Indexed: 01/29/2023] Open
Abstract
Strawberry mottle virus (SMoV) belongs to the family Secoviridae (order Picornavirales) and has a bipartite genome with each RNA encoding one polyprotein. All characterized secovirids encode a single protease related to the picornavirus 3C protease. The SMoV 3C-like protease was previously shown to cut the RNA2 polyprotein (P2) at a single site between the predicted movement protein and coat protein (CP) domains. However, the SMoV P2 polyprotein includes an extended C-terminal region with a coding capacity of up to 70 kDa downstream of the presumed CP domain, an unusual characteristic for this family. In this study, we identified a novel cleavage event at a P↓AFP sequence immediately downstream of the CP domain. Following deletion of the PAFP sequence, the polyprotein was processed at or near a related PKFP sequence 40 kDa further downstream, defining two protein domains in the C-terminal region of the P2 polyprotein. Both processing events were dependent on a novel protease domain located between the two cleavage sites. Mutagenesis of amino acids that are conserved among isolates of SMoV and of the related Black raspberry necrosis virus did not identify essential cysteine, serine, or histidine residues, suggesting that the RNA2-encoded SMoV protease is not related to serine or cysteine proteases of other picorna-like viruses. Rather, two highly conserved glutamic acid residues spaced by 82 residues were found to be strictly required for protease activity. We conclude that the processing of SMoV polyproteins requires two viral proteases, the RNA1-encoded 3C-like protease and a novel glutamic protease encoded by RNA2.IMPORTANCE Many viruses encode proteases to release mature proteins and intermediate polyproteins from viral polyproteins. Polyprotein processing allows regulation of the accumulation and activity of viral proteins. Many viral proteases also cleave host factors to facilitate virus infection. Thus, viral proteases are key virulence factors. To date, viruses with a positive-strand RNA genome are only known to encode cysteine or serine proteases, most of which are related to the cellular papain, trypsin, or chymotrypsin proteases. Here, we characterize the first glutamic protease encoded by a plant virus or by a positive-strand RNA virus. The novel glutamic protease is unique to a few members of the family Secoviridae, suggesting that it is a recent acquisition in the evolution of this family. The protease does not resemble known cellular proteases. Rather, it is predicted to share structural similarities with a family of fungal and bacterial glutamic proteases that adopt a lectin fold.
Collapse
Affiliation(s)
- Krin S Mann
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Joan Chisholm
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| | - Hélène Sanfaçon
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia, Canada
| |
Collapse
|
7
|
Mann KS, Sanfaçon H. Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases. Viruses 2019; 11:v11010066. [PMID: 30650571 PMCID: PMC6357015 DOI: 10.3390/v11010066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/13/2022] Open
Abstract
Many plant viruses express their proteins through a polyprotein strategy, requiring the acquisition of protease domains to regulate the release of functional mature proteins and/or intermediate polyproteins. Positive-strand RNA viruses constitute the vast majority of plant viruses and they are diverse in their genomic organization and protein expression strategies. Until recently, proteases encoded by positive-strand RNA viruses were described as belonging to two categories: (1) chymotrypsin-like cysteine and serine proteases and (2) papain-like cysteine protease. However, the functional characterization of plant virus cysteine and serine proteases has highlighted their diversity in terms of biological activities, cleavage site specificities, regulatory mechanisms, and three-dimensional structures. The recent discovery of a plant picorna-like virus glutamic protease with possible structural similarities with fungal and bacterial glutamic proteases also revealed new unexpected sources of protease domains. We discuss the variety of plant positive-strand RNA virus protease domains. We also highlight possible evolution scenarios of these viral proteases, including evidence for the exchange of protease domains amongst unrelated viruses.
Collapse
Affiliation(s)
- Krin S Mann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| |
Collapse
|
8
|
Mann KS, Walker M, Sanfaçon H. Identification of Cleavage Sites Recognized by the 3C-Like Cysteine Protease within the Two Polyproteins of Strawberry Mottle Virus. Front Microbiol 2017; 8:745. [PMID: 28496438 PMCID: PMC5407059 DOI: 10.3389/fmicb.2017.00745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/10/2017] [Indexed: 01/10/2023] Open
Abstract
Strawberry mottle virus (SMoV, family Secoviridae, order Picornavirales) is one of several viruses found in association with strawberry decline disease in Eastern Canada. The SMoV genome consists of two positive-sense single-stranded RNAs, each encoding one large polyprotein. The RNA1 polyprotein (P1) includes the domains for a putative helicase, a VPg, a 3C-like cysteine protease and an RNA-dependent RNA polymerase at its C-terminus, and one or two protein domains at its N-terminus. The RNA2 polyprotein (P2) is predicted to contain the domains for a movement protein (MP) and one or several coat proteins at its N-terminus, and one or more additional domains for proteins of unknown function at its C-terminus. The RNA1-encoded 3C-like protease is presumed to cleave the two polyproteins in cis (P1) and in trans (P2). Using in vitro processing assays, we systematically scanned the two polyproteins for cleavage sites recognized by this protease. We identified five cis-cleavage sites in P1, with cleavage between the putative helicase and VPg domains being the most efficient. The presence of six protein domains in the SMoV P1, including two upstream of the putative helicase domain, is a feature shared with nepoviruses but not with comoviruses. Results from trans-cleavage assays indicate that the RNA1-encoded 3C-like protease recognized a single cleavage site, which was between the predicted MP and coat protein domains in the P2 polyprotein. The cleavage site consensus sequence for the SMoV 3C-like protease is AxE (E or Q)/(G or S).
Collapse
Affiliation(s)
| | | | - Hélène Sanfaçon
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, SummerlandBC, Canada
| |
Collapse
|
9
|
Fuchs M, Schmitt-Keichinger C, Sanfaçon H. A Renaissance in Nepovirus Research Provides New Insights Into Their Molecular Interface With Hosts and Vectors. Adv Virus Res 2016; 97:61-105. [PMID: 28057260 DOI: 10.1016/bs.aivir.2016.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nepoviruses supplied seminal landmarks to the historical trail of plant virology. Among the first agriculturally relevant viruses recognized in the late 1920s and among the first plant viruses officially classified in the early 1970s, nepoviruses also comprise the first species for which a soil-borne ectoparasitic nematode vector was identified. Early research on nepoviruses shed light on the genome structure and expression, biological properties of the two genomic RNAs, and mode of transmission. In recent years, research on nepoviruses enjoyed an extraordinary renaissance. This resurgence provided new insights into the molecular interface between viruses and their plant hosts, and between viruses and dagger nematode vectors to advance our understanding of some of the major steps of the infectious cycle. Here we examine these recent findings, highlight ongoing work, and offer some perspectives for future research.
Collapse
Affiliation(s)
- M Fuchs
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, United States.
| | - C Schmitt-Keichinger
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - H Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| |
Collapse
|
10
|
In vitro and in vivo evidence for differences in the protease activity of two arabis mosaic nepovirus isolates and their impact on the infectivity of chimeric cDNA clones. Virology 2013; 446:102-11. [DOI: 10.1016/j.virol.2013.07.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/11/2013] [Accepted: 07/31/2013] [Indexed: 11/19/2022]
|
11
|
Ye S, Xia H, Dong C, Cheng Z, Xia X, Zhang J, Zhou X, Hu Y. Identification and characterization of Iflavirus 3C-like protease processing activities. Virology 2012; 428:136-45. [PMID: 22534091 PMCID: PMC7111971 DOI: 10.1016/j.virol.2012.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 12/13/2022]
Abstract
Viral replication and capsid assembly in the viruses in the order Picornavirales requires polyprotein proteolytic processing by 3C or 3C-like (3CL) proteases. We identified and characterized the 3CL protease of Ectropis obliqua virus (EoV) of the newly established family Iflaviridae (order Picornavirales). The bacterially expressed EoV 3CL protease domain autocatalytically released itself from larger precursors by proteolytic cleavage, and cleavage sites were determined via N-terminal sequencing of the cleavage products. This protease also mediated trans-proteolytic activity and cleaved the polyprotein at the same specific positions. Moreover, we determined the critical catalytic residues (H2261, D2299, C2383) for the protease activity, and characterized the biochemical properties of EoV 3CL and its responses to various protease inhibitors. Our work is the first study to identify an iflaviral 3CL protease and further characterize it in detail and should foster our understanding of EoV and other iflaviruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi Zhou
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yuanyang Hu
- The State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
12
|
von Bargen S, Langer J, Robel J, Rumbou A, Büttner C. Complete nucleotide sequence of Cherry leaf roll virus (CLRV), a subgroup C nepovirus. Virus Res 2011; 163:678-83. [PMID: 22230314 DOI: 10.1016/j.virusres.2011.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/22/2011] [Accepted: 12/26/2011] [Indexed: 11/26/2022]
Abstract
The complete nucleotide sequence of both genomic (+)ss RNAs of a rhubarb isolate of Cherry leaf roll virus (CLRV) was determined. The larger RNA1 is 7918 nucleotides and the shorter RNA2 6360 nucleotides in size, each genome component comprising a single open reading frame (ORF). The RNA1-encoded polyprotein (P1) is 2112 amino acids long (235.6 kDa) containing domains characteristic for a proteinase-cofactor (PCo), nucleotide-binding helicase (Hel), genome-linked protein (VPg), proteinase (Pro), and an RNA-dependent RNA polymerase (Pol). The RNA2-encoded polyprotein (P2) has a molecular mass of 174.9 kDa (1589 aa) encoding the putative movement protein (MP) and the coat protein (CP) of CLRV. The genome region upstream of the MP has a coding capacity of 77 kDa, however processing of P2 by the putative virus-encoded proteinase and protein-function encoded by this region is unknown. Furthermore, it could be demonstrated that the 5'-termini including the N-terminal region (208 aa) of P1 and P2 of the rhubarb isolate of CLRV are nearly identical among the two genome segments. The taxonomic position of CLRV as member of the genus Nepovirus was confirmed by phylogenetic analyses employing the amino acid sequences of the conserved Pro-Pol region of RNA1, the complete P2, and the CP. However, clustering of Nepovirus-species according to allocated subgroups was inconsistent and depended on the compared genome fragment.
Collapse
Affiliation(s)
- Susanne von Bargen
- Humboldt-Universität zu Berlin, Department of Crop and Animal Sciences, Division Phytomedicine, Lentzeallee 55/57, D-14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
13
|
Insertion of large amino acid repeats and point mutations contribute to a high degree of sequence diversity in the X4 protein of tomato ringspot virus (genus Nepovirus). Arch Virol 2009; 154:1713-7. [DOI: 10.1007/s00705-009-0497-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
|
14
|
Sanfaçon H, Wellink J, Le Gall O, Karasev A, van der Vlugt R, Wetzel T. Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Arch Virol 2009; 154:899-907. [DOI: 10.1007/s00705-009-0367-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 03/16/2009] [Indexed: 11/24/2022]
|
15
|
Wetzel T, Chisholm J, Bassler A, Sanfaçon H. Characterization of proteinase cleavage sites in the N-terminal region of the RNA1-encoded polyprotein from Arabis mosaic virus (subgroup A nepovirus). Virology 2008; 375:159-69. [DOI: 10.1016/j.virol.2008.01.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 12/20/2007] [Accepted: 01/30/2008] [Indexed: 11/25/2022]
|
16
|
Chisholm J, Zhang G, Wang A, Sanfaçon H. Peripheral association of a polyprotein precursor form of the RNA-dependent RNA polymerase of Tomato ringspot virus with the membrane-bound viral replication complex. Virology 2007; 368:133-44. [PMID: 17658576 DOI: 10.1016/j.virol.2007.06.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 06/13/2007] [Accepted: 06/29/2007] [Indexed: 11/23/2022]
Abstract
Replication of Tomato ringspot virus (ToRSV) occurs in association with endoplasmic reticulum (ER)-derived membranes. We have previously shown that the putative nucleotide triphosphate-binding protein (NTB) of ToRSV is an ER-targeted protein and that an intermediate polyprotein containing the domains for NTB and for the genome-linked viral protein (VPg) is associated with the replication complex. We now report the detection of a 95-kDa polyprotein that contains the domains for the RNA-dependent RNA polymerase (Pol), the proteinase (Pro) and the VPg. This polyprotein appears to be a truncated version of the full-length 111-kDa VPg-Pro-Pol polyprotein and was termed VPg-Pro-Pol'. A subpopulation of VPg-Pro-Pol' was peripherally associated with ER-derived membranes active in viral replication. However, the VPg, Pro and Pol domains did not target to membranes in the absence of viral infection. We propose a model in which VPg-Pro-Pol' is brought to the site of replication through interaction with a viral membrane protein.
Collapse
Affiliation(s)
- Joan Chisholm
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, P.O. Box 5000, 4200 Highway 97, Summerland, B.C., Canada V0H 1Z0
| | | | | | | |
Collapse
|
17
|
Zhang SC, Zhang G, Yang L, Chisholm J, Sanfaçon H. Evidence that insertion of Tomato ringspot nepovirus NTB-VPg protein in endoplasmic reticulum membranes is directed by two domains: a C-terminal transmembrane helix and an N-terminal amphipathic helix. J Virol 2005; 79:11752-65. [PMID: 16140753 PMCID: PMC1212610 DOI: 10.1128/jvi.79.18.11752-11765.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 06/28/2005] [Indexed: 12/18/2022] Open
Abstract
The NTB-VPg protein of Tomato ringspot nepovirus is an integral membrane protein found in association with endoplasmic reticulum (ER)-derived membranes active in virus replication. A transmembrane helix present in a hydrophobic region at the C terminus of the NTB domain was previously shown to traverse the membranes, resulting in the translocation of the VPg domain in the lumen. We have now conducted an in planta analysis of membrane-targeting domains within NTB-VPg using in-frame fusions to the green fluorescent protein (GFP). As expected, the entire NTB-VPg protein directed the GFP fluorescence to ER membranes. GFP fusion proteins containing the C-terminal 86 amino acids of NTB-VPg also associated with ER membranes, resulting in ER-specific glycosylation at a naturally occurring glycosylation site in the VPg domain. Deletion of the hydrophobic region prevented the membrane association. The N-terminal 80 amino acids of NTB were also sufficient to direct the GFP fluorescence to intracellular membranes. A putative amphipathic helix in this region was necessary and sufficient to promote membrane association of the fusion proteins. Using in vitro membrane association assays and glycosylation site mapping, we show that the N terminus of NTB can be translocated in the lumen at least in vitro. This translocation was dependent on the presence of the putative amphipathic helix, suggesting that oligomeric forms of this helix traverse the membrane. Taken together, our results suggest that at least two distinct elements play a key role in the insertion of NTB-VPg in the membranes: a C-terminal transmembrane helix and an N-terminal amphipathic helix. An updated model of the topology of the protein in the membrane is presented.
Collapse
Affiliation(s)
- Shuo Cheng Zhang
- Pacific Agri-Food Research Centre, 4200 Highway 97, Summerland, BC, Canada V0H 1Z0
| | | | | | | | | |
Collapse
|
18
|
Wen R, Zhang SC, Michaud D, Sanfaçon H. Inhibitory effects of cystatins on proteolytic activities of the Plum pox potyvirus cysteine proteinases. Virus Res 2005; 105:175-82. [PMID: 15351491 DOI: 10.1016/j.virusres.2004.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 05/28/2004] [Accepted: 05/28/2004] [Indexed: 11/17/2022]
Abstract
In an effort to develop new antiviral strategies effective against potyviruses, several cystatins were evaluated for their ability to inhibit the cysteine proteinases of Plum pox potyvirus (PPV) using in vitro proteolytic assays. The following cystatins were purified as GST fusion proteins and shown to be active against papain:oryzacystatins I and II (OCI and OCII), corn cystatin II (CCII), human stefin A (HSA), the domain 8 of tomato multicystatin (TMC-8) and a large 24kDa tomato cystatin (LTCyst). These cystatins did not inhibit the activity of purified recombinant PPV NIa proteinase, a serine-like cysteine proteinases related to the 3C proteinases of picornaviruses and to chymotrypsin. The cystatins were shown to inhibit slightly the activity of the PPV HC-Pro proteinase with CCII being the best inhibitor. However a large excess of the cystatins was required to observe any inhibition. Based on these results and on the documented pleiotropic effects of cystatins on the metabolism of plants, we conclude that they are not the best candidates for antiviral strategies targeted to viral cysteine proteinases. The availability of soluble active recombinant PPV NIa proteinase will be instrumental for the selection of other proteinase inhibitors with increased affinity and specificity for this proteinase.
Collapse
Affiliation(s)
- Rui Wen
- Pacific Agri-Food Research Centre, 4200 Highway 97, Summerland, BC, Canada V0H 1Z0
| | | | | | | |
Collapse
|
19
|
Andret-Link P, Schmitt-Keichinger C, Demangeat G, Komar V, Fuchs M. The specific transmission of Grapevine fanleaf virus by its nematode vector Xiphinema index is solely determined by the viral coat protein. Virology 2004; 320:12-22. [PMID: 15003859 DOI: 10.1016/j.virol.2003.11.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 11/18/2003] [Accepted: 11/19/2003] [Indexed: 11/24/2022]
Abstract
The viral determinants involved in the specific transmission of Grapevine fanleaf virus (GFLV) by its nematode vector Xiphinema index are located within the 513 C-terminal residues of the RNA2-encoded polyprotein, that is, the 9 C-terminal amino acids of the movement protein (2BMP) and contiguous 504 amino acids of the coat protein (2CCP) [Virology 291 (2001) 161]. To further delineate the viral determinants responsible for the specific spread, the four amino acids that are different within the 9 C-terminal 2BMP residues between GFLV and Arabis mosaic virus (ArMV), another nepovirus which is transmitted by Xiphinema diversicaudatum but not by X. index, were subjected to mutational analysis. Of the recombinant viruses derived from transcripts of GFLV RNA1 and RNA2 mutants that systemically infected herbaceous host plants, all with the 2CCP of GFLV were transmitted by X. index unlike none with the 2CCP of ArMV, regardless of the mutations within the 2BMP C-terminus. These results demonstrate that the coat protein is the sole viral determinant for the specific spread of GFLV by X. index.
Collapse
Affiliation(s)
- Peggy Andret-Link
- Laboratoire de Virologie, Institut National de la Recherche Agronomique, Unité Mixte de Recherche INRA-Université Louis Pasteur Vigne et Vins d'Alsace, 68021 Colmar, France
| | | | | | | | | |
Collapse
|
20
|
Ebel R, Schnabel A, Reustle GM, Krczal G, Wetzel T. Complete nucleotide sequence of an isolate of the nepovirus raspberry ringspot virus from grapevine. Virus Res 2004; 97:141-4. [PMID: 14602206 DOI: 10.1016/j.virusres.2003.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The complete nucleotide sequence of the RNAs 1 and 2 of the nepovirus Raspberry ringspot virus cherry isolate (RpRSV-ch) from grapevine was determined. The RNA 1 is 7935 nucleotides (nt) long excluding the poly(A) tail, and contains one long open reading frame (ORF) encoding a polypeptide of 2367 amino acids. This ORF is preceeded by a 136nt 5' non-coding region, and followed by a 695nt 3' non-coding region. Conserved amino acid motifs, characteristic of the viral protease cofactor, the NTP-binding protein, proteinase and polymerase, were found in the sequence of the RNA 1-encoded polyprotein. The RNA 2 is 3915nt long excluding the poly(A) tail, and contains one long ORF encoding a polypeptide of 1106 amino acids. This ORF is preceeded by a 203nt 5' non-coding region, and followed by a 390nt 3' non-coding region. When compared to the corresponding sequences of other nepoviruses, a maximum level of 34% identity was found between the RNA 1-encoded polypetides of RpRSV-ch and other nepoviruses. For the RNA 2-encoded polypeptide, 88% identity was found between RpRSV-ch and RpRSV-S, a Scottish isolate of RpRSV from raspberry, and a maximum 29% identity between RpRSV-ch and other nepoviruses.
Collapse
Affiliation(s)
- R Ebel
- Centrum Gruene Gentechnik, DLR Rheinpfalz, Breitenweg 71, 67435 Neustadt an der Weinstrasse, Germany
| | | | | | | | | |
Collapse
|
21
|
Han S, Sanfaçon H. Tomato ringspot virus proteins containing the nucleoside triphosphate binding domain are transmembrane proteins that associate with the endoplasmic reticulum and cofractionate with replication complexes. J Virol 2003; 77:523-34. [PMID: 12477857 PMCID: PMC140641 DOI: 10.1128/jvi.77.1.523-534.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication of all known positive-strand RNA viruses occurs in replication complexes associated with intracellular membranes. The putative nucleoside triphosphate binding (NTB) protein of Tomato ringspot virus (ToRSV) contains a stretch of hydrophobic residues at its C terminus, suggesting that it may act as a membrane anchor for the replication complex. Anti-NTB antibodies detected two predominant proteins in membrane-enriched fractions (the 66-kDa NTB and 69-kDa NTB-VPg proteins) along with other, larger proteins. The proteins containing the NTB domain cofractionated with markers of the endoplasmic reticulum (ER) and with ToRSV-specific RNA-dependent RNA polymerase activity in sucrose gradients. ToRSV infection induced severe changes in the morphology of the ER in plants expressing an ER-targeted green fluorescent protein (ER-GFP), and proteins containing the NTB domain colocalized with ER-GFP in indirect immunofluorescence assays. The proteins containing the NTB domain have properties of integral membrane proteins. Proteinase K protection assays using purified membranes from infected plants revealed that although the central portion of the NTB domain is exposed to the cytoplasmic face of the membranes, an 8-kDa fragment, recognized by anti-VPg antibodies, is protected by the membranes. This fragment probably consists of the 3-kDa VPg and the 5-kDa stretch of hydrophobic residues at the C terminus of the NTB protein, suggesting a luminal location for the VPg in at least a portion of the molecules. These results provide evidence that proteins containing the NTB domain are transmembrane proteins associated with ER-derived membranes and support the hypothesis that one or several of the proteins containing the NTB domain anchor the replication complex to the ER.
Collapse
Affiliation(s)
- Sumin Han
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
22
|
Chisholm J, Wieczorek A, Sanfaçon H. Expression and partial purification of recombinant tomato ringspot nepovirus 3C-like proteinase: comparison of the activity of the mature proteinase and the VPg-proteinase precursor. Virus Res 2001; 79:153-64. [PMID: 11551656 PMCID: PMC7172257 DOI: 10.1016/s0168-1702(01)00344-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2001] [Revised: 06/20/2001] [Accepted: 06/20/2001] [Indexed: 11/28/2022]
Abstract
The 3C-like proteinase (Pro) from Tomato ringspot virus (genus Nepovirus) is responsible for the processing of the RNA1-encoded (P1) and RNA2-encoded (P2) polyproteins. Cleavage between the VPg and Pro domains is inefficient in vitro and in E. coli, resulting in the accumulation of the VPg-Pro. In this study, we have compared the trans-activity of the Pro and VPg-Pro on various P1- and P2-derived precursors. Recombinant Pro and VPg-Pro were partially purified using an E. coli expression system. A mutation of the VPg-Pro cleavage site was introduced into the VPg-Pro to prevent slow release of the Pro. The Pro was five to ten times more active than the VPg-Pro on two P2 cleavage sites (at the N- and C-termini of the movement protein domain) and was approximately two times more active than the VPg-Pro on the third P2 cleavage site (between the X3 and X4 domains). Neither the Pro nor the VPg-Pro could cleave in trans P1-derived substrates containing the three cleavage sites delineating the X1, X2, putative NTP-binding protein and VPg domains. These results are discussed in light of the possible regulation of the proteinase activity during virus replication.
Collapse
Affiliation(s)
- J Chisholm
- Pacific Agri-Food Research Centre, BC, V0H 1Z0, Summerland, Canada
| | | | | |
Collapse
|
23
|
Pacot-Hiriart C, Latvala-Kilby S, Lehto K. Nucleotide sequence of black currant reversion associated nepovirus RNA1. Virus Res 2001; 79:145-52. [PMID: 11551655 DOI: 10.1016/s0168-1702(01)00342-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The RNA1 of black currant reversion associated nepovirus (BRAV) is 7711 nucleotides (nt) long, excluding the poly-A tail, and contains one long open reading frame (ORF) which is translated into a polyprotein of 2094 amino acids. The 5' NTR of BRAV RNA1 is 66 nt long and 78% identical with RNA2 5' NTR only over the first 57 nucleotides. The 3' non-translated region (3'NTR) is 1360 nucleotides long, and after the first 24 nucleotides 95% identical with the 3'NTR of RNA2. RNA1 3'NTR contains several stretches, 694-24 nucleotides in length, which are 60-80% similar to corresponding areas of the other viruses of the subgroup c of nepoviruses (BLMV, CLRV, PRMV or TomRSV). The 2094 amino acids-long polypeptide encoded by BRAV RNA1 is 33% identical with that of PRMV between amino acids 9 and 2057, and has significant similarity also to those of other nepoviruses and comoviruses. Conserved amino acid motifs, characteristic for the viral protease co-factor, the NTP-binding protein, the cysteine protease and the RdRp core domains, known to occur in the polyproteins of different viruses of the picornavirus-like supergroup, are all detected in the amino acid sequences encoded by BRAV RNA1.
Collapse
Affiliation(s)
- C Pacot-Hiriart
- Department of Biology, Laboratory of Plant Physiology and Molecular Biology, University of Turku, FIN-20014, Turku, Finland
| | | | | |
Collapse
|
24
|
Carrier K, Xiang Y, Sanfaçon H. Genomic organization of RNA2 of Tomato ringspot virus: processing at a third cleavage site in the N-terminal region of the polyprotein in vitro. J Gen Virol 2001; 82:1785-1790. [PMID: 11413391 DOI: 10.1099/0022-1317-82-7-1785] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proteinase of Tomato ringspot virus (genus Nepovirus) is responsible for proteolytic cleavage of the RNA2-encoded polyprotein (P2) at two cleavage sites, allowing definition of the domains for the movement protein (MP) and coat protein. In this study, we have characterized a third cleavage site in the N-terminal region of P2 using an in vitro processing assay and partial cDNA clones. Results from site-directed mutagenesis of putative cleavage sites suggest that cleavage occurs at dipeptide Q(301)/G. Cleavage at this site is predicted to result in the release of two proteins from the N-terminal region of P2: a 34 kDa protein located at the N terminus of P2 (assuming translation initiation at the first AUG codon) and a 71 kDa protein located immediately upstream of the MP domain. In contrast, only one protein domain is present in the equivalent region of the P2 polyprotein of other characterized nepoviruses.
Collapse
Affiliation(s)
- Karma Carrier
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, CanadaV6T 1Z41
| | - Yu Xiang
- Pacific Agri-Food Research Centre, Summerland, British Columbia, CanadaV0H 1Z02
| | - Hélène Sanfaçon
- Pacific Agri-Food Research Centre, Summerland, British Columbia, CanadaV0H 1Z02
| |
Collapse
|
25
|
Wang A, Sanfaçon H. Proteolytic processing at a novel cleavage site in the N-terminal region of the tomato ringspot nepovirus RNA-1-encoded polyprotein in vitro. J Gen Virol 2000; 81:2771-2781. [PMID: 11038391 DOI: 10.1099/0022-1317-81-11-2771] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tomato ringspot nepovirus RNA-1-encoded polyprotein (P1) contains the domains for the putative NTP-binding protein, VPg, 3C-like protease and a putative RNA-dependent RNA polymerase in its C-terminal region. The N-terminal region of P1, with a coding capacity for a protein (or a precursor) of 67 kDa, has not been characterized. Using partial cDNA clones, it is shown that the 3C-like protease can process the N-terminal region of P1 at a novel cleavage site in vitro, allowing the release of two proteins, X1 (located at the N terminus of P1) and X2 (located immediately upstream of the NTB domain). P1 precursors in which the protease was inactive or absent were not cleaved by exogenously added protease, suggesting that P1 processing was predominantly in cis. Results from site-directed mutagenesis of putative cleavage sites suggest that dipeptides Q(423)/G and Q(620)/G are the X1-X2 and X2-NTB cleavage sites, respectively. The putative X1 protein contains a previously identified alanine-rich sequence which is present in nepoviruses but not in the related comoviruses. The putative X2 protein contains a region with similarity to the comovirus 32 kDa protease co-factor (the only mature protein released from the N terminus of comovirus P1 polyproteins) and to the corresponding region of other nepovirus P1 polyproteins. These results raise the possibility that the presence of two distinct protein domains in the N-terminal part of the P1 polyprotein may be a common feature of nepoviruses.
Collapse
Affiliation(s)
- Aiming Wang
- Department of Botany, The University of British Columbia, Vancouver, BC, , CanadaV6T 1Z41
| | - Hélène Sanfaçon
- Pacific Agri-Food Research Centre, Summerland, BC, , CanadaV0H 1Z02
| |
Collapse
|
26
|
Gopinath K, Wellink J, Porta C, Taylor KM, Lomonossoff GP, van Kammen A. Engineering cowpea mosaic virus RNA-2 into a vector to express heterologous proteins in plants. Virology 2000; 267:159-73. [PMID: 10662612 DOI: 10.1006/viro.1999.0126] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of new cowpea mosaic virus (CPMV) RNA-2-based expression vectors were designed. The jellyfish green fluorescent protein (GFP) was introduced between the movement protein (MP) and the large (L) coat protein or downstream of the small (S) coat protein. Release of the GFP inserted between the MP and L proteins was achieved by creating artificial processing sites each side of the insert, either by duplicating the MP-L cleavage site or by introducing a sequence encoding the foot-and-mouth disease virus (FMDV) 2A catalytic peptide. Eight amino acids derived from the C-terminus of the MP and 14-19 amino acids from the N-terminus of the L coat protein were necessary for efficient processing of the artificial Gln/Met sites. Insertion of the FMDV 2A sequence at the C-terminus of the GFP resulted in a genetically stable construct, which produced particles containing about 10 GFP-2A-L fusion proteins. Immunocapture experiments indicated that some of the GFP is present on the virion surface. Direct fusion of GFP to the C-terminus of the S coat protein resulted in a virus which was barely viable. However, when the sequence of GFP was linked to the C-terminus by an active FMDV 2A sequence, a highly infectious construct was obtained.
Collapse
Affiliation(s)
- K Gopinath
- Laboratory of Molecular Biology, Agricultural University, Dreijenlaan 3, Wageningen, 6703 HA, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Clark AJ, Bertens P, Wellink J, Shanks M, Lomonossoff GP. Studies on hybrid comoviruses reveal the importance of three-dimensional structure for processing of the viral coat proteins and show that the specificity of cleavage is greater in trans than in cis. Virology 1999; 263:184-94. [PMID: 10544093 DOI: 10.1006/viro.1999.9947] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of cowpea mosaic virus (CPMV)-based hybrid comoviral RNA-2 molecules have been constructed. In these, the region encoding both the large (L) and small (S) viral coat proteins was replaced by the equivalent region from bean pod mottle virus (BPMV). The hybrid RNA-2 molecules were able to replicate in cowpea protoplasts in the presence of CPMV RNA-1. Though processing of the hybrid polyproteins by the CPMV-specific 24K proteinase at the site between the 58/48K and L proteins could readily be achieved, no processing at the site between the L and S coat proteins could be obtained even when the sequence of amino acids between the two coat proteins was made CPMV-like. As a result, none of the hybrids was able to form functional virus particles, and they could not infect cowpea plants. Comparison with the processing of the L-S site in cis in reticulocyte lysates demonstrated that the requirements for processing are more stringent in trans than in cis. The results suggest that the L-S cleavage site is defined by more than just a linear sequence of amino acids and probably involves interactions between the L-S loop and the beta barrels of the viral coat proteins.
Collapse
Affiliation(s)
- A J Clark
- Department of Virus Research, John Innes Centre, Colney Lane, Norwich, NR4 7UH, United Kingdom
| | | | | | | | | |
Collapse
|