1
|
Casto AM, Huang MLW, Xie H, Jerome KR, Wald A, Johnston CM, Greninger AL. Herpes Simplex Virus Mistyping due to HSV-1 × HSV-2 Interspecies Recombination in Viral Gene Encoding Glycoprotein B. Viruses 2020; 12:E860. [PMID: 32781734 PMCID: PMC7472045 DOI: 10.3390/v12080860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Human herpes simplex viruses (HSV) 1 and 2 are extremely common human pathogens with overlapping disease spectra. Infections due to HSV-1 and HSV-2 are distinguished in clinical settings using sequence-based "typing" assays. Here we describe a case of HSV mistyping caused by a previously undescribed HSV-1 × HSV-2 recombination event in UL27, the HSV gene that encodes glycoprotein B. This is the first documented case of HSV mistyping caused by an HSV-1 × HSV-2 recombination event and the first description of an HSV interspecies recombination event in UL27, which is frequently used as a target for diagnostics and experimental therapeutics. We also review the primer and probe target sequences for a commonly used HSV typing assay from nearly 700 HSV-1 and HSV-2 samples and find that about 4% of HSV-1 samples have a single nucleotide change in at least one of these loci, which could impact assay performance. Our findings illustrate how knowledge of naturally occurring genomic variation in HSV-1 and HSV-2 is essential for the design and interpretation of molecular diagnostics for these viruses.
Collapse
Affiliation(s)
- Amanda M. Casto
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA; (A.W.); (C.M.J.)
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Meei-Li W. Huang
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| | - Keith R. Jerome
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| | - Anna Wald
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA; (A.W.); (C.M.J.)
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Christine M. Johnston
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA; (A.W.); (C.M.J.)
| | - Alexander L. Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| |
Collapse
|
2
|
Schildgen O, Gräper S, Blümel J, Külshammer M, Matz B. Temperature-sensitive origin-binding protein as a tool for investigations of herpes simplex virus activities in vivo. J Gen Virol 2018; 100:105-117. [PMID: 30520714 DOI: 10.1099/jgv.0.001184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While it is fairly clear that herpes simplex virus (HSV) DNA replication requires at least seven virus-encoded proteins in concert with various host cell factors, the mode of this process in infected cells is still poorly understood. Using HSV-1 mutants bearing temperature-sensitive (ts) lesions in the UL9 gene, we previously found that the origin-binding protein (OBP), a product of the UL9 gene, is only needed in the first 6 hours post-infection. As this finding was just a simple support for the hypothesis of a biphasic replication mode, we became convinced through these earlier studies that the mutants tsR and tsS might represent suitable tools for more accurate investigations in vivo. However, prior to engaging in highly sophisticated research projects, knowledge of the biochemical features of the mutated versions of OBP appeared to be essential. The results of our present study demonstrate that (i) tsR is most appropriate for cell biological studies, where only immediate early and early HSV gene products are being expressed without the concomital viral DNA replication, and (ii) tsS is a prime candidate for the analysis of HSV DNA replication processes because of its reversibly thermosensitive OBP-ATPase, which allows one to switch on the initiation of DNA synthesis precisely.
Collapse
Affiliation(s)
- Oliver Schildgen
- †Present address: Kliniken der Stadt Köln gGmbH, Krankenhaus Merheim, Klinikum der Privaten Universität Witten/Herdecke, Institut für Pathologie, Ostmerheimer Strasse 200, D-51109 Köln, Germany.,Institute of Virology, University of Bonn, Bonn, Germany
| | - Sascha Gräper
- Institute of Virology, University of Bonn, Bonn, Germany.,‡Present address: Sanofi-Aventis, Industriepark Hoechst, Bldg. D681, D-65926 Frankfurt am Main, Germany
| | - Johannes Blümel
- Institute of Virology, University of Bonn, Bonn, Germany.,§Present address: Paul-Ehrlich-Institu, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany
| | | | - Bertfried Matz
- Institute of Virology, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
The Exonuclease Activity of Herpes Simplex Virus 1 UL12 Is Required for Production of Viral DNA That Can Be Packaged To Produce Infectious Virus. J Virol 2017; 91:JVI.01380-17. [PMID: 28956767 DOI: 10.1128/jvi.01380-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/21/2017] [Indexed: 01/23/2023] Open
Abstract
The herpes simplex virus (HSV) type I alkaline nuclease, UL12, has 5'-to-3' exonuclease activity and shares homology with nucleases from other members of the Herpesviridae family. We previously reported that a UL12-null virus exhibits a severe defect in viral growth. To determine whether the growth defect was a result of loss of nuclease activity or another function of UL12, we introduced an exonuclease-inactivating mutation into the viral genome. The recombinant virus, UL12 D340E (the D340E mutant), behaved identically to the null virus (AN-1) in virus yield experiments, exhibiting a 4-log decrease in the production of infectious virus. Furthermore, both viruses were severely defective in cell-to-cell spread and produced fewer DNA-containing capsids and more empty capsids than wild-type virus. In addition, DNA packaged by the viral mutants was aberrant, as determined by infectivity assays and pulsed-field gel electrophoresis. We conclude that UL12 exonuclease activity is essential for the production of viral DNA that can be packaged to produce infectious virus. This conclusion was bolstered by experiments showing that a series of natural and synthetic α-hydroxytropolones recently reported to inhibit HSV replication also inhibit the nuclease activity of UL12. Taken together, our results demonstrate that the exonuclease activity of UL12 is essential for the production of infectious virus and may be considered a target for development of antiviral agents.IMPORTANCE Herpes simplex virus is a major pathogen, and although nucleoside analogs such as acyclovir are highly effective in controlling HSV-1 or -2 infections in immunocompetent individuals, their use in immunocompromised patients is complicated by the development of resistance. Identification of additional proteins essential for viral replication is necessary to develop improved therapies. In this communication, we confirm that the exonuclease activity of UL12 is essential for viral replication through the analysis of a nuclease-deficient viral mutant. We demonstrate that the exonuclease activity of UL12 is essential for the production of viral progeny and thus provides an attractive, druggable enzymatic target.
Collapse
|
4
|
Bermek O, Weller SK, Griffith JD. The UL8 subunit of the helicase-primase complex of herpes simplex virus promotes DNA annealing and has a high affinity for replication forks. J Biol Chem 2017; 292:15611-15621. [PMID: 28743747 DOI: 10.1074/jbc.m117.799064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Indexed: 12/26/2022] Open
Abstract
During lytic infection, herpes simplex virus (HSV) DNA is replicated by a mechanism involving DNA recombination. For instance, replication of the HSV-1 genome produces X- and Y-branched structures, reminiscent of recombination intermediates. HSV-1's replication machinery includes a trimeric helicase-primase composed of helicase (UL5) and primase (UL52) subunits and a third subunit, UL8. UL8 has been reported to stimulate the helicase and primase activities of the complex in the presence of ICP8, an HSV-1 protein that functions as an annealase, a protein that binds complementary single-stranded DNA (ssDNA) and facilitates its annealing to duplex DNA. UL8 also influences the intracellular localization of the UL5/UL52 subunits, but UL8's catalytic activities are not known. In this study we used a combination of biochemical techniques and transmission electron microscopy. First, we report that UL8 alone forms protein filaments in solution. Moreover, we also found that UL8 binds to ssDNAs >50-nucletides long and promotes the annealing of complementary ssDNA to generate highly branched duplex DNA structures. Finally, UL8 has a very high affinity for replication fork structures containing a gap in the lagging strand as short as 15 nucleotides, suggesting that UL8 may aid in directing or loading the trimeric complex onto a replication fork. The properties of UL8 uncovered here suggest that UL8 may be involved in the generation of the X- and Y-branched structures that are the hallmarks of HSV replication.
Collapse
Affiliation(s)
- Oya Bermek
- From the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295 and
| | - Sandra K Weller
- Department of Molecular Biology and Biophysics and the Molecular Biology and Biochemistry Graduate Program, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Jack D Griffith
- From the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295 and
| |
Collapse
|
5
|
Abstract
Peter Wildy first observed genetic recombination between strains of HSV in 1955. At the time, knowledge of DNA repair mechanisms was limited, and it has only been in the last decade that particular DNA damage response (DDR) pathways have been examined in the context of viral infections. One of the first reports addressing the interaction between a cellular DDR protein and HSV-1 was the observation by Lees-Miller et al. that DNA-dependent protein kinase catalytic subunit levels were depleted in an ICP0-dependent manner during Herpes simplex virus 1 infection. Since then, there have been numerous reports describing the interactions between HSV infection and cellular DDR pathways. Due to space limitations, this review will focus predominantly on the most recent observations regarding how HSV navigates a potentially hostile environment to replicate its genome.
Collapse
Affiliation(s)
- Samantha Smith
- Department of Molecular Biology & Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Sandra K Weller
- Department of Molecular Biology & Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
6
|
Abstract
The purpose of this review is to explore recombination strategies in DNA viruses. Homologous recombination is a universal genetic process that plays multiple roles in the biology of all organisms, including viruses. Recombination and DNA replication are interconnected, with recombination being essential for repairing DNA damage and supporting replication of the viral genome. Recombination also creates genetic diversity, and viral recombination mechanisms have important implications for understanding viral origins as well as the dynamic nature of viral-host interactions. Both bacteriophage λ and herpes simplex virus (HSV) display high rates of recombination, both utilizing their own proteins and commandeering cellular proteins to promote recombination reactions. We focus primarily on λ and HSV, as they have proven amenable to both genetic and biochemical analysis and have recently been shown to exhibit some surprising similarities that will guide future studies.
Collapse
Affiliation(s)
- Sandra K. Weller
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - James A. Sawitzke
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702
| |
Collapse
|
7
|
Identification of rep-associated factors in herpes simplex virus type 1-induced adeno-associated virus type 2 replication compartments. J Virol 2010; 84:8871-87. [PMID: 20573815 DOI: 10.1128/jvi.00725-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated virus (AAV) is a human parvovirus that replicates only in cells coinfected with a helper virus, such as adenovirus or herpes simplex virus type 1 (HSV-1). We previously showed that nine HSV-1 factors are able to support AAV rep gene expression and genome replication. To elucidate the strategy of AAV replication in the presence of HSV-1, we undertook a proteomic analysis of cellular and HSV-1 factors associated with Rep proteins and thus potentially recruited within AAV replication compartments (AAV RCs). This study resulted in the identification of approximately 60 cellular proteins, among which factors involved in DNA and RNA metabolism represented the largest functional categories. Validation analyses indicated that the cellular DNA replication enzymes RPA, RFC, and PCNA were recruited within HSV-1-induced AAV RCs. Polymerase delta was not identified but subsequently was shown to colocalize with Rep within AAV RCs even in the presence of the HSV-1 polymerase complex. In addition, we found that AAV replication is associated with the recruitment of components of the Mre11/Rad50/Nbs1 complex, Ku70 and -86, and the mismatch repair proteins MSH2, -3, and -6. Finally, several HSV-1 factors were also found to be associated with Rep, including UL12. We demonstrated for the first time that this protein plays a role during AAV replication by enhancing the resolution of AAV replicative forms and AAV particle production. Altogether, these analyses provide the basis to understand how AAV adapts its replication strategy to the nuclear environment induced by the helper virus.
Collapse
|
8
|
Boehmer PE. RNA binding and R-loop formation by the herpes simplex virus type-1 single-stranded DNA-binding protein (ICP8). Nucleic Acids Res 2004; 32:4576-84. [PMID: 15329407 PMCID: PMC516068 DOI: 10.1093/nar/gkh797] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In an effort to decipher the molecular mechanisms of homologous recombination during herpes simplex virus type-1 replication, we recently demonstrated that the virus-encoded single-stranded (ss) DNA-binding protein (ICP8) promotes the salt-dependent assimilation of ssDNA into a homologous plasmid, resulting in the formation of a displacement loop. In this paper, the results presented show for the first time a direct interaction between ICP8 and RNA. ICP8 binds to RNA with positive cooperativity but with approximately 5-fold lower affinity than to ssDNA. In addition, competition experiments indicate that the dissociation rate of ICP8 from RNA is faster than from ssDNA, although it is also dependent on the nature of the challenger. Importantly, ICP8 can promote the salt-dependent assimilation of RNA into a homologous acceptor plasmid to generate a joint molecule in which the RNA is stably paired with the complementary strand of the acceptor DNA, indicative of an R-loop. These findings have important implications on the role of ICP8 in mediating recombination reactions using viral transcripts. The RNA-binding activity of ICP8 also provides a molecular basis for its role in the regulation of viral gene expression.
Collapse
Affiliation(s)
- Paul E Boehmer
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, PO Box 016129, Miami, FL 33101-6129, USA
| |
Collapse
|
9
|
Meyers C, Andreansky SS, Courtney RJ. Replication and interaction of herpes simplex virus and human papillomavirus in differentiating host epithelial tissue. Virology 2003; 315:43-55. [PMID: 14592758 DOI: 10.1016/s0042-6822(03)00466-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have investigated the interactions and consequences of superinfecting and coreplication of human papillomavirus (HPV) and herpes simplex virus (HSV) in human epithelial organotypic (raft) culture tissues. In HPV-positive tissues, HSV infection and replication induced significant cytopathic effects (CPE), but the tissues were able to recover and maintain a certain degree of tissue integrity and architecture. HPV31b not only maintained the episomal state of its genomic DNA but also maintained its genomic copy number even during times of extensive HSV-induced CPE. E2 transcripts encoded by HPV31b were undetectable even though HPV31b replication was maintained in HSV- infected raft tissues. Expression of HPV31b oncogenes (E6 and E7) was also repressed but to a lesser degree than was E2 expression. The extent of CPE induced by HSV is dependent on the magnitude of HPV replication and gene expression at the time of HSV infection. During active HSV infection, HPV maintains its genomic copy number even though genes required for its replication were repressed. These studies provide new insight into the complex interaction between two common human sexually transmitted viruses in an in vitro system, modeling their natural host tissue in vivo.
Collapse
MESH Headings
- Cell Differentiation
- Cell Line, Transformed
- Cells, Cultured
- Culture Techniques
- Cytopathogenic Effect, Viral
- DNA, Viral/analysis
- Epithelial Cells
- Female
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 1, Human/physiology
- Herpesvirus 2, Human/genetics
- Herpesvirus 2, Human/pathogenicity
- Herpesvirus 2, Human/physiology
- Humans
- Immunohistochemistry
- Papillomaviridae/genetics
- Papillomaviridae/pathogenicity
- Papillomaviridae/physiology
- Tumor Cells, Cultured
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
10
|
Dolcetti R, Martini F, Quaia M, Gloghini A, Vignocchi B, Cariati R, Martinelli M, Carbone A, Boiocchi M, Tognon M. Simian virus 40 sequences in human lymphoblastoid B-cell lines. J Virol 2003; 77:1595-7. [PMID: 12502874 PMCID: PMC140833 DOI: 10.1128/jvi.77.2.1595-1597.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human Epstein-Barr virus-immortalized lymphoblastoid B-cell lines tested positive by PCR for simian virus 40 (SV40) DNA (22 of 42 cell lines, 52.3%). B lymphocytes or tissues from which B-cell lines derived were also SV40 positive. In situ hybridization showed that SV40 DNA was present in the nucleus of a small fraction (1/250) of cells. SV40 T-antigen mRNA was detected by reverse transcription-PCR. Lymphoblastoid B-cell lines (n = 4) infected with SV40 remained SV40 positive for 4 to 6 months. SV40-positive B-cell lines were more tumorigenic in SCID mice than were SV40-negative cell lines (4 of 5 [80%] SV40-positive cell lines versus 2 of 4 [50%] SV40-negative cell lines). These results suggest that SV40 may play a role in the early phases of human lymphomagenesis.
Collapse
Affiliation(s)
- Riccardo Dolcetti
- Divisions of Experimental Oncology, Centro di Riferimento Oncologico, IRCCS, 33081 Aviano (Pordenone), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fu X, Wang H, Zhang X. High-frequency intermolecular homologous recombination during herpes simplex virus-mediated plasmid DNA replication. J Virol 2002; 76:5866-74. [PMID: 12021319 PMCID: PMC136225 DOI: 10.1128/jvi.76.12.5866-5874.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2001] [Accepted: 03/18/2002] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination is a prominent feature of herpes simplex virus (HSV) type 1 DNA replication. This has been demonstrated and traditionally studied in experimental settings where repeated sequences are present or are being introduced into a single molecule for subsequent genome isomerization. In the present study, we have designed a pair of unique HSV amplicon plasmids to examine in detail intermolecular homologous recombination (IM-HR) between these amplicon plasmids during HSV-mediated DNA replication. Our data show that IM-HR occurred at a very high frequency: up to 60% of the amplicon concatemers retrieved from virion particles underwent intermolecular homologous recombination. Such a high frequency of IM-HR required that both plasmids be replicated by HSV-mediated replication, as IM-HR events were not detected when either one or both plasmids were replicated by simian virus 40-mediated DNA replication, even with the presence of HSV infection. In addition, the majority of the homologous recombination events resulted in sequence replacement or targeted gene repair, while the minority resulted in sequence insertion. These findings imply that frequent intermolecular homologous recombination may contribute directly to HSV genome isomerization. In addition, HSV-mediated amplicon replication may be an attractive model for studying intermolecular homologous recombination mechanisms in general in a mammalian system. In this regard, the knowledge obtained from such a study may facilitate the development of better strategies for targeted gene correction for gene therapy purposes.
Collapse
Affiliation(s)
- Xinping Fu
- Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
12
|
Marintcheva B, Weller SK. A tale of two HSV-1 helicases: roles of phage and animal virus helicases in DNA replication and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:77-118. [PMID: 11642367 DOI: 10.1016/s0079-6603(01)70014-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Helicases play essential roles in many important biological processes such as DNA replication, repair, recombination, transcription, splicing, and translation. Many bacteriophages and plant and animal viruses encode one or more helicases, and these enzymes have been shown to play many roles in their respective viral life cycles. In this review we concentrate primarily on the roles of helicases in DNA replication and recombination with special emphasis on the bacteriophages T4, T7, and A as model systems. We explore comparisons between these model systems and the herpesviruses--primarily herpes simplex virus. Bacteriophage utilize various pathways of recombination-dependent DNA replication during the replication of their genomes. In fact the study of recombination in the phage systems has greatly enhanced our understanding of the importance of recombination in the replication strategies of bacteria, yeast, and higher eukaryotes. The ability to "restart" the replication process after a replication fork has stalled or has become disrupted for other reasons is a critical feature in the replication of all organisms studied. Phage helicases and other recombination proteins play critical roles in the "restart" process. Parallels between DNA replication and recombination in phage and in the herpesviruses is explored. We and others have proposed that recombination plays an important role in the life cycle of the herpesviruses, and in this review, we discuss models for herpes simplex virus type 1 (HSV-1) DNA replication. HSV-1 encodes two helicases. UL9 binds specifically to the origins of replication and is believed to initiate HSV DNA replication by unwinding at the origin; the heterotrimeric helicase-primase complex, encoded by UL5, UL8, and UL52 genes, is believed to unwind duplex viral DNA at replication forks. Structure-function analyses of UL9 and the helicase-primase are discussed with attention to the roles these proteins might play during HSV replication.
Collapse
Affiliation(s)
- B Marintcheva
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|