1
|
Usefi F, Rustamzadeh A, Ghobadi Z, Sadigh N, Mohebi N, Ariaei A, Moradi F. Rosuvastatin attenuates total-tau serum levels and increases expression of miR-124-3p in dyslipidemic Alzheimer's patients: a historic cohort study. Metab Brain Dis 2024; 39:1201-1211. [PMID: 38896205 DOI: 10.1007/s11011-024-01371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
microRNAs are candidate diagnostic biomarkers for Alzheimer's disease. This study aimed to compare Silymarin with Rosuvastatin and placebo on total-Tau protein level and expression levels of microRNAs and TGF-β and COX-2 in Alzheimer's patients with secondary dyslipidemia. 36 mild AD patients with dyslipidemia were divided into three groups of 12. The first group received silymarin (140mg), the second group received placebo (140mg), and the third group recieved Rosuvastatin (10mg). Tablets were administered three times a day for Six months. The blood samples of the patients were collected before and after the intervention and the serum was separated. Using the RT-qPCR method, the expression levels of miR-124-3p and miR-125b-5p were assessed, and the serum levels of total-Tau, TGF-β, and COX-2 enzyme were measured using the ELISA method. Data were analyzed with SPSS software. In this study, the level of Δtotal-Tau was significantly lower in the Rosuvastatin group compared to the placebo (P = 0.038). Also, a significant reduction in the level of ΔTGF-β was observed in the Silymarin to Rosuvastatin group (p = 0.046) and ΔmiR-124-3p was significantly increased in the Rosuvastatin compared to the placebo group (p = 0.044). Rosuvastatin outperformed silymarin in decreasing Δtotal-Tau serum levels and enhancing expression of ΔmiR-124-3p, attributed to Rosuvastatin's capacity to lower cholesterol levels and inflammation concurrently. Conversely, silymarin was more effective than Rosuvastatin in reducing levels of ΔTGF-β. Serum miR-124-3p could serve as a promising diagnostic biomarker and a new therapeutic focus in AD.
Collapse
Affiliation(s)
- Farnoosh Usefi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Auob Rustamzadeh
- Cellular and Molecular Research Center, Research Institute for Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Ghobadi
- Advanced Medical Imaging Ward, Pars Darman Medical Imaging Center, Karaj, Iran
| | - Nader Sadigh
- Department of Emergency Medicine, School of Medicine, Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Mohebi
- Department of Neurology, Rasool Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Armin Ariaei
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
| |
Collapse
|
2
|
Vergil Andrews JF, Selvaraj DB, Bhavani Radhakrishnan A, Kandasamy M. Low-dose aspirin increases olfactory sensitivity in association with enhanced neurogenesis and reduced activity of AChE in the experimental aging mice. MEDICINE IN DRUG DISCOVERY 2024; 22:100191. [DOI: 10.1016/j.medidd.2024.100191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
|
3
|
Liu Z, Huang H, Yu Y, Jia Y, Li L, Shi X, Wang F. Exploring the Potential Molecular Mechanism of the Shugan Jieyu Capsule in the Treatment of Depression through Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation. Curr Comput Aided Drug Des 2024; 20:501-517. [PMID: 37340752 DOI: 10.2174/1573409919666230619105254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Shugan Jieyu Capsule (SJC) is a pure Chinese medicine compound prepared with Hypericum perforatum and Acanthopanacis senticosi. SJC has been approved for the clinical treatment of depression, but the mechanism of action is still unclear. OBJECTIVES Network pharmacology, molecular docking, and molecular dynamics simulation (MDS) were applied in the present study to explore the potential mechanism of SJC in the treatment of depression. METHODS TCMSP, BATMAN-TCM, and HERB databases were used, and related literature was reviewed to screen the effective active ingredients of Hypericum perforatum and Acanthopanacis senticosi. TCMSP, BATMAN-TCM, HERB, and STITCH databases were used to predict the potential targets of effective active ingredients. GeneCards database, DisGeNET database, and GEO data set were used to obtain depression targets and clarify the intersection targets of SJC and depression. STRING database and Cytoscape software were used to build a protein-protein interaction (PPI) network of intersection targets and screen the core targets. The enrichment analysis on the intersection targets was conducted. Then the receiver operator characteristic (ROC) curve was constructed to verify the core targets. The pharmacokinetic characteristics of core active ingredients were predicted by SwissADME and pkCSM. Molecular docking was performed to verify the docking activity of the core active ingredients and core targets, and molecular dynamics simulations were performed to evaluate the accuracy of the docking complex. RESULTS We obtained 15 active ingredients and 308 potential drug targets with quercetin, kaempferol, luteolin, and hyperforin as the core active ingredients. We obtained 3598 targets of depression and 193 intersection targets of SJC and depression. A total of 9 core targets (AKT1, TNF, IL6, IL1B, VEGFA, JUN, CASP3, MAPK3, PTGS2) were screened with Cytoscape 3.8.2 software. A total of 442 GO entries and 165 KEGG pathways (p <0.01) were obtained from the enrichment analysis of the intersection targets, mainly enriched in IL-17, TNF, and MAPK signaling pathways. The pharmacokinetic characteristics of the 4 core active ingredients indicated that they could play a role in SJC antidepressants with fewer side effects. Molecular docking showed that the 4 core active components could effectively bind to the 8 core targets (AKT1, TNF, IL6, IL1B, VEGFA, JUN, CASP3, MAPK3, PTGS2), which were related to depression by the ROC curve. MDS showed that the docking complex was stable. CONCLUSION SJC may treat depression by using active ingredients such as quercetin, kaempferol, luteolin, and hyperforin to regulate targets such as PTGS2 and CASP3 and signaling pathways such as IL-17, TNF, and MAPK, and participate in immune inflammation, oxidative stress, apoptosis, neurogenesis, etc.
Collapse
Affiliation(s)
- Zhiyao Liu
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- High Level Key Disciplines of Traditional Chinese Medicine Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hailiang Huang
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- High Level Key Disciplines of Traditional Chinese Medicine Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuqi Jia
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lingling Li
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Shi
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fangqi Wang
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
4
|
Ding S, Wang C, Wang W, Yu H, Chen B, Liu L, Zhang M, Lang Y. Autocrine S100B in astrocytes promotes VEGF-dependent inflammation and oxidative stress and causes impaired neuroprotection. Cell Biol Toxicol 2023; 39:1-25. [PMID: 34792689 DOI: 10.1007/s10565-021-09674-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022]
Abstract
Minimal hepatic encephalopathy (MHE) is strongly associated with neuroinflammation. Nevertheless, the underlying mechanism of the induction of inflammatory response in MHE astrocytes remains not fully understood. In the present study, we investigated the effect and mechanism of S100B, a predominant isoform expressed and released from mature astrocytes, on MHE-like neuropathology in the MHE rat model. We discovered that S100B expressions and autocrine were significantly increased in MHE rat brains and MHE rat brain-derived astrocytes. Furthermore, S100B stimulates VEGF expression via the interaction between TLR2 and RAGE in an autocrine manner. S100B-facilitated VEGF autocrine expression further led to a VEGFR2 and COX-2 interaction, which in turn induced the activation of NFƙB, eventually resulting in inflammation and oxidative stress in MHE astrocytes. MHE astrocytes supported impairment of neuronal survival and growth in a co-culture system. To sum up, a comprehensive understanding of the role of S100B-overexpressed MHE astrocyte in MHE pathogenesis may provide insights into the etiology of MHE.
Collapse
Affiliation(s)
- Saidan Ding
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Chengde Wang
- Neurosurgery department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Weikan Wang
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - He Yu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Baihui Chen
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Leping Liu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Minxue Zhang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yan Lang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| |
Collapse
|
5
|
Teder T, Haeggström JZ, Airavaara M, Lõhelaid H. Cross-talk between bioactive lipid mediators and the unfolded protein response in ischemic stroke. Prostaglandins Other Lipid Mediat 2023; 168:106760. [PMID: 37331425 DOI: 10.1016/j.prostaglandins.2023.106760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Ischemic cerebral stroke is a severe medical condition that affects about 15 million people every year and is the second leading cause of death and disability globally. Ischemic stroke results in neuronal cell death and neurological impairment. Current therapies may not adequately address the deleterious metabolic changes and may increase neurological damage. Oxygen and nutrient depletion along with the tissue damage result in endoplasmic reticulum (ER) stress, including the Unfolded Protein Response (UPR), and neuroinflammation in the affected area and cause cell death in the lesion core. The spatio-temporal production of lipid mediators, either pro-inflammatory or pro-resolving, decides the course and outcome of stroke. The modulation of the UPR as well as the resolution of inflammation promotes post-stroke cellular viability and neuroprotection. However, studies about the interplay between the UPR and bioactive lipid mediators remain elusive and this review gives insights about the crosstalk between lipid mediators and the UPR in ischemic stroke. Overall, the treatment of ischemic stroke is often inadequate due to lack of effective drugs, thus, this review will provide novel therapeutical strategies that could promote the functional recovery from ischemic stroke.
Collapse
Affiliation(s)
- Tarvi Teder
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland
| | - Helike Lõhelaid
- Neuroscience Center, HiLIFE, University of Helsinki, Finland; Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
6
|
Vergil Andrews JF, Selvaraj DB, Kumar A, Roshan SA, Anusuyadevi M, Kandasamy M. A Mild Dose of Aspirin Promotes Hippocampal Neurogenesis and Working Memory in Experimental Ageing Mice. Brain Sci 2023; 13:1108. [PMID: 37509038 PMCID: PMC10376986 DOI: 10.3390/brainsci13071108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Aspirin has been reported to prevent memory decline in the elderly population. Adult neurogenesis in the hippocampus has been recognized as an underlying basis of learning and memory. This study investigated the effect of aspirin on spatial memory in correlation with the regulation of hippocampal neurogenesis and microglia in the brains of ageing experimental mice. Results from the novel object recognition (NOR) test, Morris water maze (MWM), and cued radial arm maze (cued RAM) revealed that aspirin treatment enhances working memory in experimental mice. Further, the co-immunohistochemical assessments on the brain sections indicated an increased number of doublecortin (DCX)-positive immature neurons and bromodeoxyuridine (BrdU)/neuronal nuclei (NeuN) double-positive newly generated neurons in the hippocampi of mice in the aspirin-treated group compared to the control group. Moreover, a reduced number of ionized calcium-binding adaptor molecule (Iba)-1-positive microglial cells was evident in the hippocampus of aspirin-treated animals. Recently, enhanced activity of acetylcholinesterase (AChE) in circulation has been identified as an indicative biomarker of dementia. The biochemical assessment in the blood of aspirin-treated mice showed decreased activity of AChE in comparison with that of the control group. Results from this study revealed that aspirin facilitates hippocampal neurogenesis which might be linked to enhanced working memory.
Collapse
Affiliation(s)
- Jemi Feiona Vergil Andrews
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India; (J.F.V.A.); (D.B.S.); (A.K.)
| | - Divya Bharathi Selvaraj
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India; (J.F.V.A.); (D.B.S.); (A.K.)
| | - Akshay Kumar
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India; (J.F.V.A.); (D.B.S.); (A.K.)
| | - Syed Aasish Roshan
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India; (S.A.R.); (M.A.)
| | - Muthuswamy Anusuyadevi
- Molecular Neuro-Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India; (S.A.R.); (M.A.)
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India; (J.F.V.A.); (D.B.S.); (A.K.)
- University Grants Commission-Faculty Recharge Programme (UGC-FRP), New Delhi 110002, India
| |
Collapse
|
7
|
Pérez-Martín E, Pérez-Revuelta L, Barahona-López C, Pérez-Boyero D, Alonso JR, Díaz D, Weruaga E. Oleoylethanolamide Treatment Modulates Both Neuroinflammation and Microgliosis, and Prevents Massive Leukocyte Infiltration to the Cerebellum in a Mouse Model of Neuronal Degeneration. Int J Mol Sci 2023; 24:ijms24119691. [PMID: 37298639 DOI: 10.3390/ijms24119691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neurodegenerative diseases involve an exacerbated neuroinflammatory response led by microglia that triggers cytokine storm and leukocyte infiltration into the brain. PPARα agonists partially dampen this neuroinflammation in some models of brain insult, but neuronal loss was not the triggering cause in any of them. This study examines the anti-inflammatory and immunomodulatory properties of the PPARα agonist oleoylethanolamide (OEA) in the Purkinje Cell Degeneration (PCD) mouse, which exhibits striking neuroinflammation caused by aggressive loss of cerebellar Purkinje neurons. Using real-time quantitative polymerase chain reaction and immunostaining, we quantified changes in pro- and anti-inflammatory markers, microglial density and marker-based phenotype, and overall leukocyte recruitment at different time points after OEA administration. OEA was found to modulate cerebellar neuroinflammation by increasing the gene expression of proinflammatory mediators at the onset of neurodegeneration and decreasing it over time. OEA also enhanced the expression of anti-inflammatory and neuroprotective factors and the Pparα gene. Regarding microgliosis, OEA reduced microglial density-especially in regions where it is preferentially located in PCD mice-and shifted the microglial phenotype towards an anti-inflammatory state. Finally, OEA prevented massive leukocyte infiltration into the cerebellum. Overall, our findings suggest that OEA may change the environment to protect neurons from degeneration caused by exacerbated inflammation.
Collapse
Affiliation(s)
- Ester Pérez-Martín
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Pérez-Revuelta
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Cristina Barahona-López
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
| | - David Pérez-Boyero
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José R Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
8
|
Licochalcone A Inhibits Prostaglandin E 2 by Targeting the MAPK Pathway in LPS Activated Primary Microglia. Molecules 2023; 28:molecules28041927. [PMID: 36838914 PMCID: PMC9965579 DOI: 10.3390/molecules28041927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Neuroinflammation and oxidative stress are conditions leading to neurological and neuropsychiatric disorders. Natural compounds exerting anti-inflammatory and anti-oxidative effects, such as Licochalcone A, a bioactive flavonoid present in a traditional Chinese herb (licorice), might be beneficial for the treatment of those disorders. Therefore, this study aimed to investigate the anti-inflammatory and anti-oxidative effects of Licochalcone A in LPS-activated primary rat microglia. Licochalcone A dose-dependently prevented LPS-induced PGE2 release by inhibiting the arachidonic acid (AA)/cylcooxygenase (COX) pathway decreasing phospholipase A2, COX-1, and COX-2 protein levels. Furthermore, LPS-induced levels of the cytokines IL-6 and TNFα were reduced by Licochalcone A, which also inhibited the phosphorylation and, thus, activation of the mitogen-activated protein kinases (MAPK) p38 MAPK and Erk 1/2. With the reduction of 8-iso-PGF2α, a sensitive marker for oxidative stress, anti-oxidative effects of Licochalcone A were demonstrated. Our data demonstrate that Licochalcone A can affect microglial activation by interfering in important inflammatory pathways. These in vitro findings further demonstrate the potential value of Licochalcone A as a therapeutic option for the prevention of microglial dysfunction related to neuroinflammatory diseases. Future research should continue to investigate the effects of Licochalcone A in different disease models with a focus on its anti-oxidative and anti-neuroinflammatory properties.
Collapse
|
9
|
Resveratrol, Endocrine Disrupting Chemicals, Neurodegenerative Diseases and Depression: Genes, Transcription Factors, microRNAs, and Sponges Involved. Neurochem Res 2023; 48:604-624. [PMID: 36245065 DOI: 10.1007/s11064-022-03787-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 10/06/2022] [Indexed: 02/04/2023]
Abstract
We aimed to examine the molecular basis of the positive effect of resveratrol against amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), cognitive impairment (CI), and depression induced by a mixture of bisphenol A (BPA), BPS, and BPF. The CTD, GeneMania, Metascape, SwissADME, Cytoscape, MIENTURNET, miRNAsong, and Autodock Vina were the fundamental tools for analysis. Resveratrol exerts its protective effects on selected diseases induced by a mixture of BPA, BPS, and BPF through the following genes: PTGS2 and GSR for ALS; INS, IL6, BDNF, and SOD1 for PD; BDNF, CASP3, TNF, INS, IGF1, IL1B for CI; and BDNF, PTGS2, and IL6 for depression. Detoxification was noted as the most important for ALS, dopamine metabolism for PD, apoptosis for CI, and the selenium micronutrient network for depression. hsa-miR-377-3p, hsa-miR-1-3p, hsa-miR-128-3p, and hsa-miR-204-5p were highlighted. We created and tested in silico sponges that inhibited these miRNAs. NFE2L2, BACH1, PPARG, and NR4A3 were listed as the key transcription factors implicated in resveratrol's protective effect against harmful studied chemicals. Furthermore, resveratrol's physicochemical properties and pharmacokinetics are consistent with its therapeutic benefits in ALS, PD, CI, and depression, owing to its high gastrointestinal absorption, drug-likeness, non-P-glycoprotein substrate, and capacity to penetrate the blood-brain barrier.
Collapse
|
10
|
Liu Z, Huang H, Yu Y, Jia Y, Dang X, Wang Y, Huang L. Exploring the Potential Mechanism of Danshen in the Treatment of Concurrent Ischemic Heart Disease and Depression Using Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221143637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective: This study aimed to explore the potential targets and mechanism of action of Danshen in treating concurrent ischemic heart disease (IHD) and depression using network pharmacology, molecular docking, and molecular dynamics simulation (MDS). Methods: The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to obtain active ingredients and targets of Danshen. Candidate targets for IHD and depression were obtained from the Genecards and DisGeNet databases. The protein–protein interaction (PPI) network was constructed using the STRING database and the Cytoscape 3.8.2 software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using the Metascape database and the GlueGO package of the Cytoscape 3.8.2 software. Molecular docking was performed using Autodock 1.5.6 and Vina, and the MDS was completed using GROMACS 5.1.2. Results: We obtained 65 active ingredients of Danshen with 131 candidate targets and 39 intersection targets of the active ingredients and diseases. Luteolin, tanshinone IIA, and salviolone were the core active ingredients, and AKT1, TNF, IL-6, MMP9, CASP3, IL-10, PTGS2, STAT3, PPARG, IL-4, EGFR, MAPK14, NOS3, and EDN1 were the core targets. The GO and KEGG pathway enrichment analyses revealed that the intersection targets were mainly enriched in positive regulation of protein phosphorylation, blood circulation, IL-17 signaling pathway, VEGF signaling pathway, and JAK/STAT signaling pathway. The molecular docking revealed that the core active ingredients had a good affinity for the core targets. The results of MDS revealed that the protein-ligand complexes were stable. Conclusions: This study used network pharmacology to analyze the potential mechanism of action of Danshen in the treatment of concurrent IHD and depression. Additionally, the study provided a theoretical basis for further studying the pharmacological mechanisms and targets of Danshen.
Collapse
Affiliation(s)
- Zhiyao Liu
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hailiang Huang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuqi Jia
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaowen Dang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yajie Wang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Huang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Maternal Prenatal Inflammation Increases Brain Damage Susceptibility of Lipopolysaccharide in Adult Rat Offspring via COX-2/PGD-2/DPs Pathway Activation. Int J Mol Sci 2022; 23:ijms23116142. [PMID: 35682823 PMCID: PMC9181626 DOI: 10.3390/ijms23116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
A growing body of research suggests that inflammatory insult contributes to the etiology of central nervous system diseases, such as depression, Alzheimer’s disease, and so forth. However, the effect of prenatal systemic inflammation exposure on offspring brain development and cerebral susceptibility to inflammatory insult remains unknown. In this study, we utilized the prenatal inflammatory insult model in vivo and the neuronal damage model in vitro. The results obtained show that prenatal maternal inflammation exacerbates LPS-induced memory impairment, neuronal necrosis, brain inflammatory response, and significantly increases protein expressions of COX-2, DP2, APP, and Aβ, while obviously decreasing that of DP1 and the exploratory behaviors of offspring rats. Meloxicam significantly inhibited memory impairment, neuronal necrosis, oxidative stress, and inflammatory response, and down-regulated the expressions of APP, Aβ, COX-2, and DP2, whereas significantly increased exploring behaviors and the expression of DP1 in vivo. Collectively, these findings suggested that maternal inflammation could cause offspring suffering from inflammatory and behavioral disorders and increase the susceptibility of offspring to cerebral pathological factors, accompanied by COX-2/PGD-2/DPs pathway activation, which could be ameliorated significantly by COX-2 inhibitor meloxicam treatment.
Collapse
|
12
|
Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021; 64:17656-17689. [PMID: 34905377 PMCID: PMC9094091 DOI: 10.1021/acs.jmedchem.1c01571] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroinflammation is an adaptive response of the central nervous system to diverse potentially injurious stimuli, which is closely associated with neurodegeneration and typically characterized by activation of microglia and astrocytes. As a noninvasive and translational molecular imaging tool, positron emission tomography (PET) could provide a better understanding of neuroinflammation and its role in neurodegenerative diseases. Ligands to translator protein (TSPO), a putative marker of neuroinflammation, have been the most commonly studied in this context, but they suffer from serious limitations. Herein we present a repertoire of different structural chemotypes and novel PET ligand design for classical and emerging neuroinflammatory targets beyond TSPO. We believe that this Perspective will support multidisciplinary collaborations in academic and industrial institutions working on neuroinflammation and facilitate the progress of neuroinflammation PET probe development for clinical use.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Luca Gobbi
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Steven E. Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
13
|
Zhao Q, Shao X, Ding X, Lin S, Zhang D, Qin J, Wang W, Yu W, Zhang R, Tao L, Zhao W, Zhang H. PDPOB Exerts Multiaspect Anti-Ischemic Effects Associated with the Regulation of PI3K/AKT and MAPK Signaling Pathways. ACS Chem Neurosci 2021; 12:4416-4427. [PMID: 34755509 DOI: 10.1021/acschemneuro.1c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The discovery of new therapeutic agents for ischemic stroke remains an urgent need. Here, we identified a novel phenyl carboxylic acid derivative, n-pentyl 4-(3,4-dihydroxyphenyl)-4-oxobutanoate (PDPOB), with anti-ischemic activities. The in vitro anti-ischemic neuroprotective and anti-inflammatory capacities of PDPOB were investigated using neuronal cells suffering from oxygen-glucose deprivation/reperfusion (OGD/R) and microglial cells stimulated by lipopolysaccharide (LPS). PDPOB attenuated the OGD/R-evoked cellular damage of SH-SY5Y cells and primary cortical neurons in a concentration-dependent manner. Likewise, PDPOB displayed protective roles against OGD/R-evoked multiaspect neuronal deterioration in SH-SY5Y cells, as evidenced by alleviated mitochondrial dysfunction, oxidative stress, and apoptosis. A further study unveiled the accelerated phosphorylation of protein kinase B (AKT) by PDPOB treatment, while blockade of phosphoinositide 3-kinase (PI3K)/AKT signaling substantially diminished the neuroprotective capacities of PDPOB. Additionally, the PDPOB pretreatment dampened the LPS-evoked neuroinflammation in BV2 cells, characterized by the suppressed secretion of nitric oxide (NO) and proinflammatory cytokines, as well as normalized expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Western blotting further revealed that PDPOB abated the overabundant phosphorylation of the extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK), and p38 in LPS-exposed BV2 cells. The intravenous application of PDPOB (30 mg/kg, single dose) attenuated ipsilateral cerebral infarction in middle cerebral artery occlusion (MCAO) rats, accompanied by recovered neurological behaviors. Collectively, the above observations provided substantial evidence for the favorable properties and mechanistic explanations of PDPOB in the regulation of ischemia-associated neuronal injury and microglial inflammation, which may furnish ideas for the discovery of new therapeutic strategies against cerebral ischemia.
Collapse
Affiliation(s)
- Qinyuan Zhao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xingcheng Shao
- Department of Natural Product Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang
Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xun Ding
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Sijin Lin
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Dong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang
Hi-Tech Park, Shanghai 201203, China
| | - Junjun Qin
- Department of Natural Product Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang
Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Weichen Yu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Rujun Zhang
- Department of Natural Product Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang
Hi-Tech Park, Shanghai 201203, China
| | - Lingxue Tao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Weimin Zhao
- Department of Natural Product Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang
Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
14
|
Koshti B, Kshtriya V, Nardin C, Gour N. Chemical Perspective of the Mechanism of Action of Antiamyloidogenic Compounds Using a Minimalistic Peptide as a Reductionist Model. ACS Chem Neurosci 2021; 12:2851-2864. [PMID: 34264635 DOI: 10.1021/acschemneuro.1c00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The diphenylalanine (FF) residue which is present at the 19 and 20 positions of the amyloid beta (1-42) (Aβ42) peptide sequence is considered as a reductionist model for studying Aβ42 aggregation. FF self-assembles into well-ordered tubular structures via aromatic π-π stacking. Herein the manuscript, we have presented a chemical perspective on the mechanism of action of antiamyloid compounds by assessing their interaction with FF. Therefore, we first coincubated FF fibers with single amino acids, since they are constituted of different R side chains yet have a common structural unit. This study revealed a crucial role of aromatic rings and functional groups like thiol (-SH) in causing destabilization of FF assembly via their interaction with π-electrons participating in π-π stacking present in FF. We further studied the interaction of different nonsteroidal anti-inflammatory drugs (NSAIDs), other known antiamyloidogenic compounds, and host-guest inclusion compounds like cyclodextrin (CD) to assess their mechanism of action and to decipher the functional moiety present in these compounds which could cause destabilization of π-π stacking. From the coincubation experiments, we could surmise a crucial role of aromatic rings present in these compounds for causing interference in aromatic stacking. We further consolidated our observations through microscopy analysis by various spectroscopic methods such as aggregation-induced emission enhancement (AIEE), fluorescence spectroscopy, solution-state 1H NMR, FTIR, and circular dichroism. The studies presented in the manuscript thus provide significant insights into the role of functional groups in imparting antiamyloid action and open new avenues for an efficient design of antiamyloid drugs in the future.
Collapse
Affiliation(s)
- Bharti Koshti
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| | - Vivekshinh Kshtriya
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
| | - Corinne Nardin
- Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau 64053, France
| | - Nidhi Gour
- Department of Chemistry, School of Science, Indrashil University, Kadi, Mehsana, Gujarat 382740, India
- Department of Medicinal Chemistry, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| |
Collapse
|
15
|
Strigolactones, from Plants to Human Health: Achievements and Challenges. Molecules 2021; 26:molecules26154579. [PMID: 34361731 PMCID: PMC8348160 DOI: 10.3390/molecules26154579] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Strigolactones (SLs) are a class of sesquiterpenoid plant hormones that play a role in the response of plants to various biotic and abiotic stresses. When released into the rhizosphere, they are perceived by both beneficial symbiotic mycorrhizal fungi and parasitic plants. Due to their multiple roles, SLs are potentially interesting agricultural targets. Indeed, the use of SLs as agrochemicals can favor sustainable agriculture via multiple mechanisms, including shaping root architecture, promoting ideal branching, stimulating nutrient assimilation, controlling parasitic weeds, mitigating drought and enhancing mycorrhization. Moreover, over the last few years, a number of studies have shed light onto the effects exerted by SLs on human cells and on their possible applications in medicine. For example, SLs have been demonstrated to play a key role in the control of pathways related to apoptosis and inflammation. The elucidation of the molecular mechanisms behind their action has inspired further investigations into their effects on human cells and their possible uses as anti-cancer and antimicrobial agents.
Collapse
|
16
|
Singh AK, Rai SN, Maurya A, Mishra G, Awasthi R, Shakya A, Chellappan DK, Dua K, Vamanu E, Chaudhary SK, Singh MP. Therapeutic Potential of Phytoconstituents in Management of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5578574. [PMID: 34211570 PMCID: PMC8208882 DOI: 10.1155/2021/5578574] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
Since primitive times, herbs have been extensively used in conventional remedies for boosting cognitive impairment and age-associated memory loss. It is mentioned that medicinal plants have a variety of dynamic components, and they have become a prominent choice for synthetic medications for the care of cognitive and associated disorders. Herbal remedies have played a major role in the progression of medicine, and many advanced drugs have already been developed. Many studies have endorsed practicing herbal remedies with phytoconstituents, for healing Alzheimer's disease (AD). All the information in this article was collated from selected research papers from online scientific databases, such as PubMed, Web of Science, and Scopus. The aim of this article is to convey the potential of herbal remedies for the prospect management of Alzheimer's and related diseases. Herbal remedies may be useful in the discovery and advancement of drugs, thus extending new leads for neurodegenerative diseases such as AD. Nanocarriers play a significant role in delivering herbal medicaments to a specific target. Therefore, many drugs have been described for the management of age-linked complaints such as dementia, AD, and the like. Several phytochemicals are capable of managing AD, but their therapeutic claims are restricted due to their lower solubility and metabolism. These limitations of natural therapeutics can be overcome by using a targeted nanocarrier system. This article will provide the primitive remedies as well as the development of herbal remedies for AD management.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Anand Maurya
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Gaurav Mishra
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, Uttar Pradesh, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Assam 786004, Dibrugarh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, New South Wales, Australia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 1 District, 011464, Bucharest, Romania
| | - Sushil Kumar Chaudhary
- Faculty of Pharmacy, DIT University, Mussoorie-Diversion Road, Makkawala, Dehradun 248 009, Uttarakhand, India
| | - M P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
17
|
Bialek K, Czarny P, Wigner P, Synowiec E, Barszczewska G, Bijak M, Szemraj J, Niemczyk M, Tota-Glowczyk K, Papp M, Sliwinski T. Chronic Mild Stress and Venlafaxine Treatment Were Associated with Altered Expression Level and Methylation Status of New Candidate Inflammatory Genes in PBMCs and Brain Structures of Wistar Rats. Genes (Basel) 2021; 12:genes12050667. [PMID: 33946816 PMCID: PMC8146372 DOI: 10.3390/genes12050667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023] Open
Abstract
Preclinical studies conducted to date suggest that depression could be elicited by the elevated expression of proinflammatory molecules: these play a key role in the mediation of neurochemical, neuroendocrine and behavioral changes. Thus, this study investigates the effect of chronic mild stress (CMS) and administration of venlafaxine (SSRI) on the expression and methylation status of new target inflammatory genes: TGFA, TGFB, IRF1, PTGS2 and IKBKB, in peripheral blood mononuclear cells (PMBCs) and in selected brain structures of rats. Adult male Wistar rats were subjected to the CMS and further divided into matched subgroups to receive vehicle or venlafaxine. TaqMan gene expression assay and methylation-sensitive high-resolution melting (MS-HRM) were used to evaluate the expression of the genes and the methylation status of their promoters, respectively. Our results indicate that both CMS and chronic treatment with venlafaxine were associated with changes in expression of the studied genes and their promoter methylation status in PMBCs and the brain. Moreover, the effect of antidepressant administration clearly differed between brain structures. Summarizing, our results confirm at least a partial association between TGFA, TGFB, IRF1, PTGS2 and IKBKB and depressive disorders.
Collapse
Affiliation(s)
- Katarzyna Bialek
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland; (P.C.); (J.S.)
| | - Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Gabriela Barszczewska
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland; (P.C.); (J.S.)
| | - Monika Niemczyk
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Katarzyna Tota-Glowczyk
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (M.N.); (K.T.-G.); (M.P.)
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.B.); (E.S.); (G.B.)
- Correspondence: ; Tel.: +48-42-635-44-86; Fax: +48-42-635-44-84
| |
Collapse
|
18
|
Andreadou EG, Katsipis G, Tsolaki M, Pantazaki AA. Involvement and relationship of bacterial lipopolysaccharides and cyclooxygenases levels in Alzheimer's Disease and Mild Cognitive Impairment patients. J Neuroimmunol 2021; 357:577561. [PMID: 34091099 DOI: 10.1016/j.jneuroim.2021.577561] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022]
Abstract
This study reports elevated levels of bacterial lipopolysaccharides (LPSs) and cyclooxygenases (COX-1/2) in blood serum and cerebrospinal fluid (CSF) of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) patients compared to cognitively healthy individuals, indicating LPSs as promising biomarkers, especially in serum. LPSs, in both fluids, positively correlate with COX-1/2, Αβ42 and tau and negatively with mental state. Furthermore, COX-2 is the main determinant of LPSs presence in serum, whereas COX-1 in CSF. These results underline the significance of microbial/ inflammatory involvement in dementia and offer novel perspectives on the roles of LPSs and COX in pathogenesis of AD.
Collapse
Affiliation(s)
- Eleni G Andreadou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece.
| | - Georgios Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece
| | - Magda Tsolaki
- First Neurology Department, "AHEPA" University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Greek Association of Alzheimer's Disease and Related Disorders - GAADRD, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), 57001 Thermi, Thessaloniki, Greece.
| |
Collapse
|
19
|
Sharma S, Kalra H, Akundi RS. Extracellular ATP Mediates Cancer Cell Migration and Invasion Through Increased Expression of Cyclooxygenase 2. Front Pharmacol 2021; 11:617211. [PMID: 33584298 PMCID: PMC7873692 DOI: 10.3389/fphar.2020.617211] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment plays a major role in the ability of the tumor cells to undergo metastasis. A major player of tumors gaining metastatic property is the inflammatory protein, cyclooxygenase 2 (COX-2). Several tumors show upregulation of this protein, which has been implicated in mediating metastasis in various cancer types such as of colon, breast and lung. In this report, we show that the concentration of extracellular ATP (eATP) is increased in response to cell death mediated by chemotherapeutic agents such as doxorubicin. By using three different cell-lines-HeLa (cervical), IMR-32 (neuronal) and MCF-7 (breast)-we show that this eATP goes on to act on purinergic (P2) receptors. Among the various P2 receptors expressed in these cells we identified P2X7, in IMR-32 and MCF-7 cells, and P2Y12, in HeLa cells, as important in modulating cell migration and invasion. Downstream of the P2 receptor activation, both p42/44 mitogen-activated protein kinase (MAPK) and the p38 MAPK are activated in these cells. These result in an increase in the expression of COX-2 mRNA and protein. We also observe an increase in the activity of matrix metalloproteinase 2 (MMP-2) enzyme in these cells. Blocking the P2 receptors not only blocks migration and invasion, but also COX-2 synthesis and MMP-2 activity. Our results show the link between purinergic receptors and COX-2 expression. Increased levels of ATP in the tumor microenvironment, therefore, leads to increased COX-2 expression, which, in turn, affords migratory and invasive properties to the tumor. This provides P2 receptor-based anti-inflammatory drugs (PBAIDs) a potential opportunity to be explored as cancer therapeutics.
Collapse
Affiliation(s)
- Shilpa Sharma
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Harshit Kalra
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Ravi Shankar Akundi
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
20
|
Akter S, Sharma RK, Sharma S, Rastogi S, Fiebich BL, Akundi RS. Exogenous ATP modulates PGE 2 release in macrophages through sustained phosphorylation of CDK9 and p38 MAPK. J Leukoc Biol 2021; 110:663-677. [PMID: 33438260 DOI: 10.1002/jlb.3a1219-697rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
An important mediator of inflammation is prostaglandin E2 (PGE2 ), whose levels are determined by the activity of the enzyme cyclooxygenase (COX). Of the two isoforms of the enzyme, COX-2 has been shown to be induced in macrophages during inflammation. Although general COX inhibitors, belonging to the class of nonsteroidal anti-inflammatory drugs, or specific COX-2 inhibitors, called coxibs, are useful in the control of acute inflammation, adverse reactions were seen when used chronically in the treatment of rheumatoid arthritis or neurodegenerative diseases. Extracellular ATP (eATP) has been reported as a damage-associated molecular pattern signal. In this report, we show that eATP synergistically increases the levels of COX-2 enzyme and PGE2 in LPS-activated RAW264.7 macrophages and human monocytes. Activation of macrophages also occurred when cultured in media obtained from dying neurons that contained higher levels of ATP. We show that eATP increases the levels of COX-2 protein, which is sustained up to 36 h poststimulation. This is in turn due to sustained levels of phosphorylated, or activated, cyclin-dependent kinase 9 and p38 MAPK in ATP-treated cells compared to LPS-stimulated cells. The eATP-dependent increase in COX-2/PGE2 levels in LPS-activated RAW264.7 cells could be abolished using antagonists for purinergic P2X7 -and P2Y6 receptors. Similarly, the increase in COX-2/PGE2 levels in the peritoneum of LPS-treated mice could be significantly abolished in mice that were preinjected with the nonspecific P2 receptor antagonist, suramin. P2 receptor antagonists, therefore, should be explored in our search for an ideal anti-inflammatory candidate.
Collapse
Affiliation(s)
- Shamima Akter
- Neuroinflammation Research Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Rakesh Kumar Sharma
- Neuroinflammation Research Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Shilpa Sharma
- Neuroinflammation Research Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Saumya Rastogi
- Neuroinflammation Research Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Ravi Shankar Akundi
- Neuroinflammation Research Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
21
|
Brandolini L, Antonosante A, Giorgio C, Bagnasco M, d'Angelo M, Castelli V, Benedetti E, Cimini A, Allegretti M. NSAIDs-dependent adaption of the mitochondria-proteasome system in immortalized human cardiomyocytes. Sci Rep 2020; 10:18337. [PMID: 33110169 PMCID: PMC7591859 DOI: 10.1038/s41598-020-75394-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
The progressive consumption growth of non-steroidal anti-inflammatory drugs (NSAIDs) has progressively raised the attention toward the gastrointestinal, renal, and cardiovascular toxicity. Increased risk of cardiovascular diseases was strictly associated with the usage of COX-2 selective NSAIDs. Other studies allowed to clarify that the cardiovascular risk is not limited to COX-2 selective but also extended to non-selective NSAIDs, such as Diclofenac and Ketoprofen. To date, although a less favorable cardiovascular risk profile for Diclofenac as compared to Ketoprofen is reported, the mechanisms through which NSAIDs cause adverse cardiovascular events are not entirely understood. The present study aimed to evaluate the effects of Ketoprofen in comparison with Diclofenac in immortalized human cardiomyocytes. The results obtained highlight the dose-dependent cardiotoxicity of Diclofenac compared to Ketoprofen. Despite both drugs induce the increase in ROS production, decrease of mitochondrial membrane potential, and proteasome activity modulation, only Diclofenac exposure shows a marked alteration of these intracellular parameters, leading to cell death. Noteworthy, Diclofenac decreases the proteasome 26S DC and this scenario may be dependent on the intracellular overload of oxidized proteins. The data support the hypothesis that immortalized human cardiomyocytes exposed to Ketoprofen are subjected to tolerable stress events, conversely Diclofenac exposition triggers cell death.
Collapse
Affiliation(s)
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy. .,Sbarro Institute for Cancer Research and Molecular Medicine and Centre for Biotechnology, Temple University, Philadelphia, USA.
| | | |
Collapse
|
22
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effects of rosmarinic acid on nervous system disorders: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1779-1795. [PMID: 32725282 DOI: 10.1007/s00210-020-01935-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Nowadays, the worldwide interest is growing to use medicinal plants and their active constituents to develop new potent medicines with fewer side effects. Precise dietary compounds have prospective beneficial applications for various neurodegenerative ailments. Rosmarinic acid is a polyphenol and is detectable most primarily in many Lamiaceae families, for instance, Rosmarinus officinalis also called rosemary. This review prepared a broad and updated literature review on rosmarinic acid elucidating its biological activities on some nervous system disorders. Rosmarinic acid has significant antinociceptive, neuroprotective, and neuroregenerative effects. In this regard, we classified and discussed our findings in different nervous system disorders including Alzheimer's disease, epilepsy, depression, Huntington's disease, familial amyotrophic lateral sclerosis, Parkinson's disease, cerebral ischemia/reperfusion injury, spinal cord injury, stress, anxiety, and pain.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Mhillaj E, Papi M, Paciello F, Silvestrini A, Rolesi R, Palmieri V, Perini G, Fetoni AR, Trabace L, Mancuso C. Celecoxib Exerts Neuroprotective Effects in β-Amyloid-Treated SH-SY5Y Cells Through the Regulation of Heme Oxygenase-1: Novel Insights for an Old Drug. Front Cell Dev Biol 2020; 8:561179. [PMID: 33134292 PMCID: PMC7550645 DOI: 10.3389/fcell.2020.561179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022] Open
Abstract
The formation and aggregation of amyloid-β-peptide (Aβ) into soluble and insoluble species represent the pathological hallmarks of Alzheimer’s disease (AD). Over the last few years, however, soluble Aβ (sAβ) prevailed over fibrillar Aβ (fAβ) as determinant of neurotoxicity. One of the main therapeutic strategies for challenging neurodegeneration is to fight against neuroinflammation and prevent free radical-induced damage: in this light, the heme oxygenase/biliverdin reductase (HO/BVR) system is considered a promising drug target. The aim of this work was to investigate whether or not celecoxib (CXB), a selective inhibitor of the pro-inflammatory cyclooxygenase-2, modulates the HO/BVR system and prevents lipid peroxidation in SH-SY5Y neuroblastoma cells. Both sAβ (6.25–50 nM) and fAβ (1.25–50 nM) dose-dependently over-expressed inducible HO (HO-1) after 24 h of incubation, reaching statistical significance at 25 and 6.25 nM, respectively. Interestingly, CXB (1–10 μM, for 1 h) further enhanced Aβ-induced HO-1 expression through the nuclear translocation of the transcriptional factor Nrf2. Furthermore, 10 μM CXB counteracted the Aβ-induced ROS production with a mechanism fully dependent on HO-1 up-regulation; nevertheless, 10 μM CXB significantly counteracted only 25 nM sAβ-induced lipid peroxidation damage in SH-SY5Y neurons by modulating HO-1. Both carbon monoxide (CORM-2, 50 nM) and bilirubin (50 nM) significantly prevented ROS production in Aβ-treated neurons and favored both the slowdown of the growth rate of Aβ oligomers and the decrease in oligomer/fibril final size. In conclusion, these results suggest a novel mechanism through which CXB is neuroprotective in subjects with early AD or mild cognitive impairment.
Collapse
Affiliation(s)
- Emanuela Mhillaj
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabiola Paciello
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Silvestrini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giordano Perini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Rita Fetoni
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Head and Neck Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Cesare Mancuso
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
24
|
Kumar S, Maurya VK, Nayak D, Khurana A, Manchanda RK, Gadugu S, Bhatt MLB, Saxena SK. Calcarea carbonica treatment rescues lipopolysaccharide-induced inflammatory response in human mononuclear cells via downregulation of inducible cyclooxygenase pathway. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:441-449. [PMID: 32732109 DOI: 10.1016/j.joim.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/28/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Prolonged use of nonsteroidal anti-inflammatory drugs is associated with severe side effects and toxicity. Therefore, we studied the anti-inflammatory role of Calcarea carbonica which had minimal toxicity at the low doses. METHODS THP-1 human mononuclear cells were treated with C. carbonica to evaluate the 50% cytotoxicity concentration (CC50) and 50% effective concentration (EC50). Cell survival was evaluated in lipopolysaccharide-stimulated C. carbonica-treated cells. Nitric oxide (NO) and tumor necrosis factor-α (TNF-α) were measured to evaluate the anti-inflammatory activity of C. carbonica. Cyclooxygenase-2 (COX-2) protein expression was determined by Western blotting analysis, and the interaction of C. carbonica with the COX-2 protein was evaluated using molecular docking simulation. RESULTS The CC50 and EC50 of C. carbonica were found to be 43.26 and 11.99 µg/mL, respectively. The cell survival assay showed a 1.192-fold (P = 0.0129), 1.443-fold (P = 0.0009) and 1.605-fold (P = 0.0004) increase in cell survival at 24, 48 and 72 h after initiating C. carbonica treatment, respectively. C. carbonica-treated cells showed a reduction in NO levels by 2.355 folds (P = 0.0001), 2.181 folds (P = 0.0001) and 2.071 folds (P = 0.0001) at 24, 48 and 72 h, respectively. The treated cells also showed a reduction in TNF-α levels by 1.395 folds (P = 0.0013), 1.541 folds (P = 0.0005) and 1.550 folds (P = 0.0005) at 24, 48 and 72 h, respectively. In addition, a 1.193-fold reduction (P = 0.0126) in COX-2 protein expression was found in C. carbonica-treated cells. The molecular docking showed interaction of C. carbonica with the phenylalanine 367 residue present in active site of Cox-2. CONCLUSION C. carbonica exhibited anti-inflammatory properties in lipopolysaccharide-stimulated cells by significantly reducing NO production and TNF-α level through downregulation of the COX-2 protein. This effect is probably mediated through interaction of C. carbonica with the phenylalanine 367 residue present in active site of Cox-2.
Collapse
Affiliation(s)
- Swatantra Kumar
- Centre for Advanced Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, India
| | - Vimal K Maurya
- Centre for Advanced Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, India
| | - Debadatta Nayak
- Central Council for Research in Homoeopathy, Ministry of Ayush, Janakpuri, New Delhi 110058, India
| | - Anil Khurana
- Central Council for Research in Homoeopathy, Ministry of Ayush, Janakpuri, New Delhi 110058, India
| | - Raj K Manchanda
- Central Council for Research in Homoeopathy, Ministry of Ayush, Janakpuri, New Delhi 110058, India
| | - Srinivasulu Gadugu
- Department of Medicine, Jaisoorya and Potti Sreeramulu Government Medical College, Hyderabad 500013, India
| | - Madan L B Bhatt
- Centre for Advanced Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, India
| | - Shailendra K Saxena
- Centre for Advanced Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, India.
| |
Collapse
|
25
|
Liu S, Dai Y, Zhou C, Zhu T. Parecoxib exhibits anti-inflammatory and neuroprotective effects in a rat model of transient global cerebral ischemia. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A 2020; 83:203-214. [PMID: 32216542 DOI: 10.1080/15287394.2020.1745722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transient global cerebral ischemia (tGCI) induces inflammation leading to secondary brain injury. Data suggested that cyclooxygenase-2 (COX-2) is involved in the occurrence and development of inflammatory reaction after reperfusion; however, the effectiveness of a highly selective COX-2 inhibitor, parecoxib, to counteract tGCI remains to be determined. Thus, the aim of this study was to investigate the potential protective actions of parecoxib in a rat model of tGCI and the role inflammation plays in this disorder. Adult male Sprague-Dawley rats were administered parecoxib 10 or 20 mg/kg intraperitoneally (ip) at 5 min, 24 or 48 hr after tGCI. Control rats received an equal volume of 0.9% saline. The rat model of tGCI was established using the method of bilateral common carotid artery occlusion combined with arterial hypotension. The following parameters were measured: Neurological Severity Score, morphological changes in the hippocampal CA1 region, Evans blue (EB) extravasation, brain water content, levels of matrix metalloproteinase-9 (MMP-9), zonula occludens-1 (ZO-1), neuronal apoptosis, the protein expression of Bcl-2, Bax, COX-2, prostaglandin E2 (PGE2), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α). Parecoxib treatment significantly improved neurological function and morphological defects in the hippocampal CA1 region, reduced levels of COX-2, PGE2, IL-1β, and TNF-α. In addition, parecoxib attenuated brain edema and BBB destruction as evidenced by increased ZO-1 expression and decreased MMP-9 expression. Further, parecoxib reduced neuronal apoptosis via diminished protein expression of Bax and enhanced expression of Bcl-2.
Collapse
Affiliation(s)
- Shaoxing Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Anesthesiology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Yue'e Dai
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chen Zhou
- The Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Kurt B, Ozleyen A, Antika G, Yilmaz YB, Tumer TB. Multitarget Profiling of a Strigolactone Analogue for Early Events of Alzheimer's Disease: In Vitro Therapeutic Activities against Neuroinflammation. ACS Chem Neurosci 2020; 11:501-507. [PMID: 32017526 DOI: 10.1021/acschemneuro.9b00694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropathological changes in Alzheimer's disease (AD) are directly linked to the early inflammatory microenvironment in the brain. Therefore, disease-modifying agents targeting neuroinflammation may open up new avenues in the treatment of AD. Strigolactones (SLs), subclasses of structurally diverse and biologically active apocarotenoids, have been recently identified as novel phytohormones. In spite of the remarkable anticancer capacity shown by SLs, their effects on the brain remained unexplored. Herein, the SIM-A9 microglial cell line was used as a phenotypic screening tool to search for the representative SL, GR24, demonstrating marked potency in the suppression of lipopolysaccharide (LPS)-induced neuroinflammatory/neurotoxic mediators by regulating NF-κB, Nrf2, and PPARγ signaling. GR24 also in the brain endothelial cell line bEnd.3 mitigated the LPS-increased permeability as evidenced by reduced Evans' blue extravasation through enhancing the expression of tight junction protein, occludin. Collectively, the present work shows the anti-neuroinflammatory and glia/neuroprotective properties of GR24, making SLs promising scaffolds for the development of novel anti-AD candidates.
Collapse
Affiliation(s)
- Begum Kurt
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| | - Gizem Antika
- Graduate Program of Molecular Biology and Genetics, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| | - Yakup Berkay Yilmaz
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| |
Collapse
|
27
|
Jang JH, Lee SH, Jung K, Yoo H, Park G. Inhibitory Effects of Myricetin on Lipopolysaccharide-Induced Neuroinflammation. Brain Sci 2020; 10:brainsci10010032. [PMID: 31935983 PMCID: PMC7016734 DOI: 10.3390/brainsci10010032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/23/2022] Open
Abstract
Microglial activation elicits an immune response by producing proinflammatory modulators and cytokines that cause neurodegeneration. Therefore, a plausible strategy to prevent neurodegeneration is to inhibit neuroinflammation caused by microglial activation. Myricetin, a natural flavanol, induces neuroprotective effects by inhibiting inflammation and oxidative stress. However, whether myricetin inhibits lipopolysaccharide (LPS)-induced neuroinflammation in hippocampus and cortex regions is not known. To test this, we examined the effects of myricetin on LPS-induced neuroinflammation in a microglial BV2 cell line. We found that myricetin significantly downregulated several markers of the neuroinflammatory response in LPS-induced activated microglia, including inducible nitric oxide (NO) synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory modulators and cytokines such as prostaglandin E2 (PGE2), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α). Moreover, myricetin suppressed the expression of c-Jun NH2-terminal kinase (JNK), p38 MAPK, and extracellular signal-regulated kinase (ERK), which are components of the mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, myricetin inhibited LPS-induced macrophages and microglial activation in the hippocampus and cortex of mice. Based on our results, we suggest that myricetin inhibits neuroinflammation in BV2 microglia by inhibiting the MAPK signaling pathway and the production of proinflammatory modulators and cytokines. Therefore, this could potentially be used for the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Jung-Hee Jang
- Department of Neurologic Disorders & Aging Brain Constitution, Dunsan Korean Medicine Hospital, Daejeon 34054, Korea;
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Seung Hoon Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea;
| | - Kyungsook Jung
- Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeonbuk 56212, Korea;
| | - Horyong Yoo
- Department of Neurologic Disorders & Aging Brain Constitution, Dunsan Korean Medicine Hospital, Daejeon 34054, Korea;
- Correspondence: (H.Y.); or (G.P.); Tel.: +82-42-470-9490 (H.Y.); +82-61-338-7112 (G.P.)
| | - Gunhyuk Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Jeollanam-do 58245, Korea
- Correspondence: (H.Y.); or (G.P.); Tel.: +82-42-470-9490 (H.Y.); +82-61-338-7112 (G.P.)
| |
Collapse
|
28
|
Rajagopal S, Fitzgerald AA, Deep SN, Paul S, Poddar R. Role of GluN2A NMDA receptor in homocysteine-induced prostaglandin E2 release from neurons. J Neurochem 2019; 150:44-55. [PMID: 31125437 DOI: 10.1111/jnc.14775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022]
Abstract
Hyperhomocysteinemia or systemic elevation of homocysteine is a metabolic condition that has been linked to multiple neurological disorders where inflammation plays an important role in the progression of the disease. However, it is unclear whether hyperhomocysteinemia contributes to disease pathology by inducing an inflammatory response. The current study investigates whether exposure of primary cultures from rat and mice cortical neurons to high levels of homocysteine induces the expression and release of the proinflammatory prostanoid, Prostaglandin E2 (PGE2). Using enzymatic assays and immunoblot analysis we show concurrent increase in the activity of cytosolic phospholipase A2 (cPLA2) and level of cyclooxygenase-2 (COX2), two enzymes involved in PGE2 biosynthesis. The findings also show an increase in PGE2 release from neurons. Pharmacological inhibition of GluN2A-containing NMDAR (GluN2A-NMDAR) with NVP-AAM077 significantly reduces homocysteine-induced cPLA2 activity, COX2 expression, and subsequent PGE2 release. Whereas, inhibition of GluN2B-containing NMDAR (GluN2A-NMDAR) with Ro 25-6981 has no effect. Complementary studies in neuron cultures obtained from wild type and GluN2A knockout mice show that genetic deletion of GluN2A subunit of NMDAR attenuates homocysteine-induced neuronal increase in cPLA2 activity, COX2 expression, and PGE2 release. Pharmacological studies further establish the role of both extracellular-regulated kinase/mitogen-activated protein kinase and p38 MAPK in homocysteine-GluN2A NMDAR-dependent activation of cPLA2-COX2-PGE2 pathway. Collectively, these findings reveal a novel role of GluN2A-NMDAR in facilitating homocysteine-induced proinflammatory response in neurons.
Collapse
Affiliation(s)
- Sathyanarayanan Rajagopal
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ashley Anne Fitzgerald
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Satya Narayan Deep
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
29
|
Sulforaphane-Enriched Broccoli Sprouts Pretreated by Pulsed Electric Fields Reduces Neuroinflammation and Ameliorates Scopolamine-Induced Amnesia in Mouse Brain through Its Antioxidant Ability via Nrf2-HO-1 Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3549274. [PMID: 31049133 PMCID: PMC6458888 DOI: 10.1155/2019/3549274] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/12/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023]
Abstract
Activated microglia-mediated neuroinflammation plays a key pathogenic role in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and ischemia. Sulforaphane is an active compound produced after conversion of glucoraphanin by the myrosinase enzyme in broccoli (Brassica oleracea var) sprouts. Dietary broccoli extract as well as sulforaphane has previously known to mitigate inflammatory conditions in aged models involving microglial activation. Here, we produced sulforaphane-enriched broccoli sprouts through the pretreatment of pulsed electric fields in order to trigger the biological role of normal broccoli against lipopolysaccharide-activated microglia. The sulforaphane-enriched broccoli sprouts showed excellent potency against neuroinflammation conditions, as evidenced by its protective effects in both 6 and 24 h of microglial activation in vitro. We further postulated the underlying mechanism of action of sulforaphane in broccoli sprouts, which was the inhibition of an inflammatory cascade via the downregulation of mitogen-activated protein kinase (MAPK) signaling. Simultaneously, sulforaphane-enriched broccoli sprouts inhibited the LPS-induced activation of the NF-κB signaling pathway and the secretions of inflammatory proteins (iNOS, COX-2, TNF-α, IL-6, IL-1β, PGE2, etc.), which are responsible for the inflammatory cascades in both acute and chronic inflammation. It also upregulated the expression of Nrf2 and HO-1 in normal and activated microglia followed by the lowered neuronal apoptosis induced by activated microglia. Based on these results, it may exhibit anti-inflammatory effects via the NF-κB and Nrf2 pathways. Interestingly, sulforaphane-enriched broccoli sprouts improved the scopolamine-induced memory impairment in mice through Nrf2 activation, inhibiting neuronal apoptosis particularly through inhibition of caspase-3 activation which could lead to the neuroprotection against neurodegenerative disorders. The present study suggests that sulforaphane-enriched broccoli sprouts might be a potential nutraceutical with antineuroinflammatory and neuroprotective activities.
Collapse
|
30
|
Wang Z, He D, Zeng YY, Zhu L, Yang C, Lu YJ, Huang JQ, Cheng XY, Huang XH, Tan XJ. The spleen may be an important target of stem cell therapy for stroke. J Neuroinflammation 2019; 16:20. [PMID: 30700305 PMCID: PMC6352449 DOI: 10.1186/s12974-019-1400-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Stroke is the most common cerebrovascular disease, the second leading cause of death behind heart disease and is a major cause of long-term disability worldwide. Currently, systemic immunomodulatory therapy based on intravenous cells is attracting attention. The immune response to acute stroke is a major factor in cerebral ischaemia (CI) pathobiology and outcomes. Over the past decade, the significant contribution of the spleen to ischaemic stroke has gained considerable attention in stroke research. The changes in the spleen after stroke are mainly reflected in morphology, immune cells and cytokines, and these changes are closely related to the stroke outcomes. Autonomic nervous system (ANS) activation, release of central nervous system (CNS) antigens and chemokine/chemokine receptor interactions have been documented to be essential for efficient brain-spleen cross-talk after stroke. In various experimental models, human umbilical cord blood cells (hUCBs), haematopoietic stem cells (HSCs), bone marrow stem cells (BMSCs), human amnion epithelial cells (hAECs), neural stem cells (NSCs) and multipotent adult progenitor cells (MAPCs) have been shown to reduce the neurological damage caused by stroke. The different effects of these cell types on the interleukin (IL)-10, interferon (IFN), and cholinergic anti-inflammatory pathways in the spleen after stroke may promote the development of new cell therapy targets and strategies. The spleen will become a potential target of various stem cell therapies for stroke represented by MAPC treatment.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China.,Institute of Reproductive and Stem Cell Research, School of Basic Medical Science, Central South University, Changsha, 410000, China
| | - Da He
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Ya-Yue Zeng
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Li Zhu
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Chao Yang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Yong-Juan Lu
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Jie-Qiong Huang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiao-Yan Cheng
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiang-Hong Huang
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China
| | - Xiao-Jun Tan
- Xiangtan Central Hospital, Clinical Practice Base of Central South University, Xiangtan, 411100, China.
| |
Collapse
|
31
|
Yan Z, Tian X, Zhu J, Lu Z, Yu L, Zhang D, Liu Y, Yang C, Zhu Q, Cao X. Metformin suppresses UHMWPE particle-induced osteolysis in the mouse calvaria by promoting polarization of macrophages to an anti-inflammatory phenotype. Mol Med 2018; 24:20. [PMID: 30134793 PMCID: PMC6016863 DOI: 10.1186/s10020-018-0013-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/06/2018] [Indexed: 03/02/2023] Open
Abstract
Background Implant failure remains a major obstacle to successful treatment via TJA. Periprosthetic osteolysis and aseptic loosening are considered as proof of wear debris-induced disruption of local regulatory mechanisms related to excessive bone resorption associated with osteolysis and the damage at the bone-prosthesis interface. Therefore, there is an immediate need to explore strategies for limiting and curing periprosthetic osteolysis and aseptic loosening. Methods We analyzed the in vitro cytokine production by primary mouse bone marrow macrophages (BMMs) that were exposed to ultra-high molecular weight polyethylene (UHMWPE) particles and treated with metformin at different concentrations with or without 5-aminoimidazole-4-carboxamide ribonucleoside to activate or inhibit AMPK. A mouse calvarial model was used to examine the in vivo effects of metformin on UHMWPE particle-induced osteolysis. Results With particles, primary mouse BMMs secreted more pro-inflammatory cytokines tumor necrosis factor-α and interleukin (IL)-6. Treatment with metformin inhibited these variations and promoted the release of cytokine IL-10 with anti-inflammatory capability. In vivo, metformin reduced the production of pro-inflammatory cytokines, osteoclastogenesis, and osteolysis, increasing IL-10 production. Metformin also promoted the polarization of macrophages to an anti-inflammatory phenotype in vivo via AMPK activation. Discussion A crucial point in limiting and correcting the periprosthetic osteolysis and aseptic loosening is the inhibition of inflammatory factor production and osteoclast activation induced by activated macrophages. The ability of metformin to attenuate osteolysis induced in mouse calvaria by the particles was related to a reduction in osteoclast number and polarization of macrophages to an anti-inflammatory functional phenotype. Conclusions Metformin could limit the osteolysis induced by implant debris. Therefore, we hypothesized that metformin could be a potential drug for osteolysis induced by implant debris. Electronic supplementary material The online version of this article (10.1186/s10020-018-0013-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhao Yan
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoxi Tian
- Emergency department of Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jinyu Zhu
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, 710032, China
| | - Lifeng Yu
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dawei Zhang
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yanwu Liu
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chongfei Yang
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qingsheng Zhu
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xiaorui Cao
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
32
|
Mhillaj E, Morgese MG, Tucci P, Furiano A, Luongo L, Bove M, Maione S, Cuomo V, Schiavone S, Trabace L. Celecoxib Prevents Cognitive Impairment and Neuroinflammation in Soluble Amyloid β-treated Rats. Neuroscience 2018; 372:58-73. [PMID: 29306052 DOI: 10.1016/j.neuroscience.2017.12.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Recent findings suggest that soluble forms of amyloid-β (sAβ) peptide contribute to synaptic and cognitive dysfunctions in early stages of Alzheimer's disease (AD). On the other hand, neuroinflammation and cyclooxygenase-2 (COX-2) enzyme have gained increased interest as key factors involved early in AD, although the signaling pathways and pathophysiologic mechanisms underlying a link between sAβ-induced neurotoxicity and inflammation are still unclear. Here, we investigated the effects of selective COX-2 enzyme inhibition on neuropathological alterations induced by sAβ administration in rats. To this purpose, animals received an intracerebroventricular (icv) injection of predominantly monomeric forms of sAβ and, 7 days after, behavioral as well as biochemical parameters and neurotransmitter alterations were evaluated. During this period, rats also received a sub-chronic treatment with celecoxib. Biochemical results demonstrated that icv sAβ injection significantly increased both COX-2 and pro-inflammatory cytokines expression in the hippocampus (Hipp) of treated rats. In addition, the number of hypertrophic microglial cells and astrocytes were upregulated in sAβ-treated group. Interestingly, rats treated with sAβ showed long-term memory deficits, as confirmed by a significant reduction of discrimination index in the novel object recognition test, along with reduced brain-derived neurotrophic factor expression and increased noradrenaline levels in the Hipp. Systemic administration of celecoxib prevented behavioral dysfunctions, as well as biochemical and neurotransmitter alterations. In conclusion, our results suggest that sAβ neurotoxicity might be associated to COX-2-mediated inflammatory pathways and that early treatment with selective COX-2 inhibitor might provide potential remedies to counterbalance the sAβ-induced effects.
Collapse
Affiliation(s)
- Emanuela Mhillaj
- Dept. of Physiology and Pharmacology, "Sapienza" University of Rome, Rome, Italy
| | - Maria Grazia Morgese
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paolo Tucci
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Furiano
- Dept. of Experimental Medicine, The Second University of Naples, Naples, Italy
| | - Livio Luongo
- Dept. of Experimental Medicine, The Second University of Naples, Naples, Italy
| | - Maria Bove
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Sabatino Maione
- Dept. of Experimental Medicine, The Second University of Naples, Naples, Italy
| | - Vincenzo Cuomo
- Dept. of Physiology and Pharmacology, "Sapienza" University of Rome, Rome, Italy
| | - Stefania Schiavone
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Dept. of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
33
|
Pedersen AL, Saldanha CJ. Reciprocal interactions between prostaglandin E2- and estradiol-dependent signaling pathways in the injured zebra finch brain. J Neuroinflammation 2017; 14:262. [PMID: 29284502 PMCID: PMC5747085 DOI: 10.1186/s12974-017-1040-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/12/2017] [Indexed: 01/19/2023] Open
Abstract
Background Astrocytic aromatization and consequent increases in estradiol are neuroprotective in the injured brain. In zebra finches, cyclooxygenase-activity is necessary for injury-induced aromatase expression, and increased central estradiol lowers neuroinflammation. The mechanisms underlying these influences are unknown. Here, we document injury-induced, cyclooxygenase-dependent increases in glial aromatase expression and replicate previous work in our lab showing increases in central prostaglandin E2 and estradiol following brain damage. Further, we describe injury-dependent changes in E-prostanoid and estrogen receptor expression and reveal the necessity of E-prostanoid and estrogen receptors in the injury-dependent, reciprocal interactions of neuroinflammatory and neurosteroidogenic pathways. Methods Adult male and female birds were shams or received bilateral injections of the appropriate drug or vehicle into contralateral telencephalic lobes. Results Injuries sustained in the presence of indomethacin (a cyclooxygenase inhibitor) had fewer aromatase-expressing reactive astrocytes relative to injuries injected with vehicle suggesting that cyclooxygenase activity is necessary for the induction of glial aromatase around the site of damage. Injured hemispheres had higher prostaglandin E2 and estradiol content relative to shams. Importantly, injured hemispheres injected with E-prostanoid- or estrogen receptor-antagonists showed elevated prostaglandin E2 and estradiol, respectively, but lower prostaglandin E2 or estradiol-dependent downstream activity (protein kinase A or phosphoinositide-3-kinase mRNA) suggesting that receptor antagonism did not affect injury-induced prostaglandin E2 or estradiol, but inhibited the effects of these ligands. Antagonism of E-prostanoid receptors 3 or 4 prevented injury-induced increases in neural estradiol in males and females, respectively, albeit this apparent sex-difference needs to be tested more stringently. Further, estrogen receptor-α, but not estrogen receptor-β antagonism, exaggerated neural prostaglandin E2 levels relative to the contralateral lobe in both sexes. Conclusion These data suggest injury-induced, sex-specific prostaglandin E2-dependent estradiol synthesis, and estrogen receptor-α dependent decreases in neuroinflammation in the vertebrate brain.
Collapse
Affiliation(s)
- Alyssa L Pedersen
- Department of Biology, Program in Behavior, Cognition and Neuroscience, and the Center for Behavioral Neuroscience, American University, 4400 Massachusetts Avenue NW, Washington, DC, 20016, USA
| | - Colin J Saldanha
- Department of Biology, Program in Behavior, Cognition and Neuroscience, and the Center for Behavioral Neuroscience, American University, 4400 Massachusetts Avenue NW, Washington, DC, 20016, USA.
| |
Collapse
|
34
|
Dusaban SS, Chun J, Rosen H, Purcell NH, Brown JH. Sphingosine 1-phosphate receptor 3 and RhoA signaling mediate inflammatory gene expression in astrocytes. J Neuroinflammation 2017; 14:111. [PMID: 28577576 PMCID: PMC5455202 DOI: 10.1186/s12974-017-0882-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/17/2017] [Indexed: 12/23/2022] Open
Abstract
Background Sphingosine 1-phosphate (S1P) signals through G protein-coupled receptors to elicit a wide range of cellular responses. In CNS injury and disease, the blood-brain barrier is compromised, causing leakage of S1P from blood into the brain. S1P can also be locally generated through the enzyme sphingosine kinase-1 (Sphk1). Our previous studies demonstrated that S1P activates inflammation in murine astrocytes. The S1P1 receptor subtype has been most associated with CNS disease, particularly multiple sclerosis. S1P3 is most highly expressed and upregulated on astrocytes, however, thus we explored the involvement of this receptor in inflammatory astrocytic responses. Methods Astrocytes isolated from wild-type (WT) or S1P3 knockout (KO) mice were treated with S1P3 selective drugs or transfected with short interfering RNA to determine which receptor subtypes mediate S1P-stimulated inflammatory responses. Interleukin-6 (IL-6), and vascular endothelial growth factor A (VEGFa) messenger RNA (mRNA) and cyclooxygenase-2 (COX-2) mRNA and protein were assessed by q-PCR and Western blotting. Activation of RhoA was measured using SRE.L luciferase and RhoA implicated in S1P signaling by knockdown of Gα12/13 proteins or by inhibiting RhoA activation with C3 exoenzyme. Inflammation was simulated by in vitro scratch injury of cultured astrocytes. Results S1P3 was highly expressed in astrocytes and further upregulated in response to simulated inflammation. Studies using S1P3 knockdown and S1P3 KO astrocytes demonstrated that S1P3 mediates activation of RhoA and induction of COX-2, IL-6, and VEGFa mRNA, with some contribution from S1P2. S1P induces expression of all of these genes through coupling to the Gα12/13 proteins which activate RhoA. Studies using S1P3 selective agonists/antagonists as well as Fingolimod (FTY720) confirmed that stimulation of S1P3 induces COX-2 expression in astrocytes. Simulated inflammation increased expression of Sphk1 and consequently activated S1P3, demonstrating an autocrine pathway through which S1P is formed and released from astrocytes to regulate COX-2 expression. Conclusions S1P3, through its ability to activate RhoA and its upregulation in astrocytes, plays a unique role in inducing inflammatory responses and should be considered as a potentially important therapeutic target for CNS disease progression.
Collapse
Affiliation(s)
- Stephanie S Dusaban
- Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, Biomedical Sciences Building Room 3024, La Jolla, CA, 92093-0636, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Hugh Rosen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nicole H Purcell
- Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, Biomedical Sciences Building Room 3024, La Jolla, CA, 92093-0636, USA.
| | - Joan Heller Brown
- Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, Biomedical Sciences Building Room 3024, La Jolla, CA, 92093-0636, USA.
| |
Collapse
|
35
|
The Process and Regulatory Components of Inflammation in Brain Oncogenesis. Biomolecules 2017; 7:biom7020034. [PMID: 28346397 PMCID: PMC5485723 DOI: 10.3390/biom7020034] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/09/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Central nervous system tumors comprising the primary cancers and brain metastases remain the most lethal neoplasms and challenging to treat. Substantial evidence points to a paramount role for inflammation in the pathology leading to gliomagenesis, malignant progression and tumor aggressiveness in the central nervous system (CNS) microenvironment. This review summarizes the salient contributions of oxidative stress, interleukins, tumor necrosis factor-α(TNF-α), cyclooxygenases, and transcription factors such as signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and the associated cross-talks to the inflammatory signaling in CNS cancers. The roles of reactive astrocytes, tumor associated microglia and macrophages, metabolic alterations, microsatellite instability, O6-methylguanine DNA methyltransferase (MGMT) DNA repair and epigenetic alterations mediated by the isocitrate dehydrogenase 1 (IDH1) mutations have been discussed. The inflammatory pathways with relevance to the brain cancer treatments have been highlighted.
Collapse
|
36
|
Zolezzi JM, Santos MJ, Bastías-Candia S, Pinto C, Godoy JA, Inestrosa NC. PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol Rev Camb Philos Soc 2017; 92:2046-2069. [PMID: 28220655 DOI: 10.1111/brv.12320] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/21/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
Over 25 years have passed since peroxisome proliferators-activated receptors (PPARs), were first described. Like other members of the nuclear receptors superfamily, PPARs have been defined as critical sensors and master regulators of cellular metabolism. Recognized as ligand-activated transcription factors, they are involved in lipid, glucose and amino acid metabolism, taking part in different cellular processes, including cellular differentiation and apoptosis, inflammatory modulation and attenuation of acute and chronic neurological damage in vivo and in vitro. Interestingly, PPAR activation can simultaneously reprogram the immune response, stimulate metabolic and mitochondrial functions, promote axonal growth, induce progenitor cells to differentiate into myelinating oligodendrocytes, and improve brain clearance of toxic molecules such as β-amyloid peptide. Although the molecular mechanisms and cross-talk with different molecular pathways are still the focus of intense research, PPARs are considered potential therapeutic targets for several neuropathological conditions, including degenerative disorders such as Alzheimer's, Parkinson's and Huntington's disease. This review considers recent advances regarding PPARs, as well as new PPAR agonists. We focus on the mechanisms behind the neuroprotective effects exerted by PPARs and summarise the roles of PPARs in different pathologies of the central nervous system, especially those associated with degenerative and inflammatory mechanisms.
Collapse
Affiliation(s)
- Juan M Zolezzi
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Manuel J Santos
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Sussy Bastías-Candia
- Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Gral. Velásquez 1775, 1000007, Arica, Chile
| | - Claudio Pinto
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.,Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Avoca Street Randwick NSW 2031, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, PO Box 113-D, Avenida Bulnes 01855, 6210427, Punta Arenas, Chile
| |
Collapse
|
37
|
Vidale S, Consoli A, Arnaboldi M, Consoli D. Postischemic Inflammation in Acute Stroke. J Clin Neurol 2017; 13:1-9. [PMID: 28079313 PMCID: PMC5242162 DOI: 10.3988/jcn.2017.13.1.1] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is caused by arterial occlusion due to a thrombus or an embolus. Such occlusion induces multiple and concomitant pathophysiological processes that involve bioenergetic failure, acidosis, loss of cell homeostasis, excitotoxicity, and disruption of the blood-brain barrier. All of these mechanisms contribute to neuronal death, mainly via apoptosis or necrosis. The immune system is involved in this process in the early phases after brain injury, which contributes to potential enlargement of the infarct size and involves the penumbra area. Whereas inflammation and the immune system both exert deleterious effects, they also contribute to brain protection by stimulating a preconditioning status and to the concomitant repair of the injured parenchyma. This review describes the main phases of the inflammatory process occurring after arterial cerebral occlusion, with an emphasis on the role of single mediators.
Collapse
Affiliation(s)
- Simone Vidale
- Department of Neurology and Stroke Unit, Sant'Anna Hospital, Como, Italy.
| | - Arturo Consoli
- Department of Interventional Neurovascular Unit, Careggi University Hospital, Florence, Italy
| | - Marco Arnaboldi
- Department of Neurology and Stroke Unit, Sant'Anna Hospital, Como, Italy
| | - Domenico Consoli
- Department of Neurology, G. Jazzolino Hospital, Vibo Valentia, Italy
| |
Collapse
|
38
|
Chibowska K, Baranowska-Bosiacka I, Falkowska A, Gutowska I, Goschorska M, Chlubek D. Effect of Lead (Pb) on Inflammatory Processes in the Brain. Int J Mol Sci 2016; 17:ijms17122140. [PMID: 27999370 PMCID: PMC5187940 DOI: 10.3390/ijms17122140] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/10/2016] [Accepted: 12/14/2016] [Indexed: 12/29/2022] Open
Abstract
That the nervous system is the main target of lead (Pb) has long been considered an established fact until recent evidence has linked the Pb effect on the immune system to the toxic effects of Pb on the nervous system. In this paper, we present recent literature reports on the effect of Pb on the inflammatory processes in the brain, particularly the expression of selected cytokines in the brain (interleukin 6, TGF-β1, interleukin 16, interleukin 18, and interleukin 10); expression and activity of enzymes participating in the inflammatory processes, such as cyclooxygenase 2, caspase 1, nitrogen oxide synthase (NOS 2) and proteases (carboxypeptidases, metalloproteinases and chymotrypsin); and the expression of purine receptors P2X4 and P2X7. A significant role in the development of inflammatory processes in the brain is also played by microglia (residual macrophages in the brain and the spinal cord), which act as the first line of defense in the central nervous system, and astrocytes—Whose most important function is to maintain homeostasis for the proper functioning of neurons. In this paper, we also present evidence that exposure to Pb may result in micro and astrogliosis by triggering TLR4-MyD88-NF-κB signaling cascade and the production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Karina Chibowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Anna Falkowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|
39
|
Pan W, Lin L, Zhang N, Yuan F, Hua X, Wang Y, Mo L. Neuroprotective Effects of Dexmedetomidine Against Hypoxia-Induced Nervous System Injury are Related to Inhibition of NF-κB/COX-2 Pathways. Cell Mol Neurobiol 2016; 36:1179-88. [PMID: 26683659 PMCID: PMC11482469 DOI: 10.1007/s10571-015-0315-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022]
Abstract
Dexmedetomidine has been reported to provide neuroprotection against hypoxia-induced damage. However, the underlying mechanisms remain unclear. We examined whether dexmedetomidine's neuroprotective effects were mediated by the NF-κB/COX-2 pathways. Adult male C57BL/6 mice were subjected to a 30-min hypoxic treatment followed by recovery to normal conditions. They received dexmedetomidine (16 or 160 μg/kg) or 25 mg/kg atipamezole, an α2-adrenoreceptor antagonist, intraperitoneally before exposure to hypoxia. The whole brain was harvested 6, 18, or 36 h after the hypoxia to determine the histopathological outcome and cleaved caspase-3, Bax/Bcl, NF-κB, and COX-2 levels. Hypoxia treatment induced significant neurotoxicity, including destruction of the tissue structure and upregulation of the protein levels of caspase-3, the ratio of Bax/Bcl-2, NF-κB, and COX-2. Dexmedetomidine pretreatment effectively improved histological outcome and restored levels of caspase-3, the Bax/Bcl-2 ratio, NF-κB, and COX-2. Atipamezole reversed the neuroprotection induced by dexmedetomidine. Neuroprotection was achieved by PDTC and NS-398, inhibitors of NF-κB and COX-2, respectively. Dexmedetomidine use before hypoxia provides neuroprotection. Inhibition of NF-κB/COX-2 pathways activation may contribute to the neuroprotection of dexmedetomidine.
Collapse
Affiliation(s)
- Wanying Pan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Lin Lin
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Nan Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Fuli Yuan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xiaoxiao Hua
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Yueting Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Liqiu Mo
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
40
|
Chuang DY, Simonyi A, Kotzbauer PT, Gu Z, Sun GY. Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway. J Neuroinflammation 2015; 12:199. [PMID: 26520095 PMCID: PMC4628268 DOI: 10.1186/s12974-015-0419-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/21/2015] [Indexed: 11/10/2022] Open
Abstract
Background Oxidative stress and inflammation are important factors contributing to the pathophysiology of numerous neurological disorders, including Alzheimer’s disease, Parkinson’s disease, acute stroke, and infections of the brain. There is well-established evidence that proinflammatory cytokines and glutamate, as well as reactive oxygen species (ROS) and nitric oxide (NO), are produced upon microglia activation, and these are important factors contributing to inflammatory responses and cytotoxic damage to surrounding neurons and neighboring cells. Microglial cells express relatively high levels of cytosolic phospholipase A2 (cPLA2), an enzyme known to regulate membrane phospholipid homeostasis and release of arachidonic acid (AA) for synthesis of eicosanoids. The goal for this study is to elucidate the role of cPLA2IV in mediating the oxidative and inflammatory responses in microglial cells. Methods Experiments involved primary microglia cells isolated from transgenic mice deficient in cPLA2α or iPLA2β, as well as murine immortalized BV-2 microglial cells. Inhibitors of cPLA2/iPLA2/cyclooxygenase (COX)/lipoxygenase (LOX) were used in BV-2 microglial cell line. siRNA transfection was employed to knockdown cPLA2 expression in BV-2 cells. Griess reaction protocol was used to determine NO concentration, and CM-H2DCF-DA was used to detect ROS production in primary microglia and BV-2 cells. WST-1 assay was used to assess cell viability. Western blotting was used to assess protein expression levels. Immunocytochemical staining for phalloidin against F-actin was used to demonstrate cell morphology. Results In both primary and BV-2 microglial cells, stimulation with lipopolysaccharide (LPS) or interferon gamma (IFNγ) resulted in a time-dependent increase in phosphorylation of cPLA2 together with ERK1/2. In BV-2 cells, LPS- and IFNγ-induced ROS and NO production was inhibited by arachidonyl trifluoromethyl ketone (AACOCF3) and pyrrophenone as well as RNA interference, but not BEL, suggesting a link between cPLA2, and not iPLA2, on LPS/IFNγ-induced nitrosative and oxidative stress in microglial cells. Primary microglial cells isolated from cPLA2α-deficient mice generated significantly less NO and ROS as compared with the wild-type mice. Microglia isolated from iPLA2β-deficient mice did not show a decrease in LPS-induced NO and ROS production. LPS/IFNγ induced morphological changes in primary microglia, and these changes were mitigated by AACOCF3. Interestingly, despite that LPS and IFNγ induced an increase in phospho-cPLA2 and prostaglandin E2 (PGE2) release, LPS- and IFNγ-induced NO and ROS production were not altered by the COX-1/2 inhibitor but were suppressed by the LOX-12 and LOX-15 inhibitors instead. Conclusions In summary, the results in this study demonstrated the role of cPLA2 in microglial activation with metabolic links to oxidative and inflammatory responses, and this was in part regulated by the AA metabolic pathways, namely the LOXs. Further studies with targeted inhibition of cPLA2/LOX in microglia during neuroinflammatory conditions can be valuable to investigate the therapeutic potential in ameliorating neurological disease pathology. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0419-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dennis Y Chuang
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA.,Center for Translational Neuroscience, University of Missouri, Columbia, MO, USA.,Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA
| | - Agnes Simonyi
- Center for Translational Neuroscience, University of Missouri, Columbia, MO, USA.,Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Paul T Kotzbauer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zezong Gu
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA.,Center for Translational Neuroscience, University of Missouri, Columbia, MO, USA.,Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA.,Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - Grace Y Sun
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA. .,Center for Translational Neuroscience, University of Missouri, Columbia, MO, USA. .,Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA. .,Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
41
|
El-Kashef DH, El-Kenawi AE, Suddek GM, Salem HA. Flavocoxid attenuates gentamicin-induced nephrotoxicity in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:1305-15. [DOI: 10.1007/s00210-015-1164-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/02/2015] [Indexed: 11/30/2022]
|
42
|
BDNF and COX-2 participate in anti-depressive mechanisms of catalpol in rats undergoing chronic unpredictable mild stress. Physiol Behav 2015; 151:360-8. [PMID: 26255123 DOI: 10.1016/j.physbeh.2015.08.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 01/06/2023]
Abstract
Catalpol, a major compound in Rehmannia glutinosa with both medicinal and nutritional values, has been previously confirmed to shorten the duration of immobility in mice exposed to tail suspension and forced swimming tests. This study attempted to examine the anti-depressive mechanisms of catalpol in rats undergoing chronic unpredictable mild stress (CUMS) by involving brain-derived neurotrophic factor (BDNF) and cyclooxygenase-2 (COX-2). CUMS-exposed rats were given catalpol daily (5, 10, and 20mg/kg, ig) or a reference drug, fluoxetine hydrochloride (FH, 10mg/kg, ig), at 5 weeks after starting the CUMS procedure. Sucrose preference test was performed to observe depression-like behavior, and serum and brain tissues were used for neurochemical and fluorescent quantitative reverse transcription PCR analysis. CUMS induced depression-like behavior, whereas catalpol and FH administration attenuated this symptom. Moreover, CUMS caused excessively elevated levels of serum corticosterone, an index of hypothalamic-pituitary-adrenal (HPA) axis hyperactivation, in a manner attenuated by catalpol and FH administration. Catalpol administration also further decreased BDNF activities, downregulated the mRNA expression of BDNF and tropomyosin-related kinase B (TrkB), and reversed the excessive elevation in the activities and mRNA expression levels of COX-2 and prostaglandin E2 (PGE2) in the hippocampus and frontal cortex of rats undergoing CUMS. Results indicate that catalpol can ameliorate CUMS-induced depression-like behavior, and suggest its mechanisms may partially be ascribed to restoring HPA axis dysfunctions, upregulating BDNF expression and its cognate receptor TrkB, and downregulating COX-2 expression, thereby reducing PGE2 levels in the brain.
Collapse
|
43
|
BAI LIJUAN, ZHANG XIQUE, LI XIAOHONG, LIU NA, LOU FAN, MA HONGLEI, LUO XIAOGUANG, REN YAN. Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia. Mol Med Rep 2015; 12:1002-8. [PMID: 25777539 PMCID: PMC4438927 DOI: 10.3892/mmr.2015.3494] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 01/30/2015] [Indexed: 12/15/2022] Open
Abstract
Somatostatin (SST) is a neuromodulator which is abundant throughout the central nervous system (CNS) and has a crucial role in neurodegenerative disorders. However, little is known about the effects and mechanisms of SST in dopaminergic (DA) neurons in the context of Parkinson's disease (PD). In the present study, a model of PD was generated by injecting lipopolysaccharide (LPS) into the substantia nigra (SN) of rats in order to investigate the effects of SST on LPS-induced degeneration of DA in vivo. Intramural injection of LPS resulted in a significant loss of DA neurons, while reduction of neuronal death by SST pretreatment was confirmed using immunohistochemical staining for tyrosine hydroxylase and Nissl. In parallel, immunohistochemical detection of OX-42 and hydroethidine staining were employed to determine the activation of microglia and production of reactive oxygen species (ROS), respectively. It was found that SST inhibited the LPS-induced microglial activity and ROS production. ELISA revealed a decreased production of pro-inflammatory mediators, including tumor necrosis factor-α, interleukin-1β and prostaglandin E2 when SST was administered prior to LPS treatment. Western blot analysis showed that LPS-induced expression of inducible nitric oxide synthase, cyclooxygenase-2 and nuclear factor κB (NF-κB) p-p65 was attenuated by administration of SST prior to LPS application. The results indicated that LPS-induced loss of nigral DA neurons was inhibited by SST and the observed effects of SST on neuroprotection were associated with suppression of microglial activation and the NF-κB pathway, ensuing decreases of neuroinflammation and oxidative stress. The present study therefore suggested that SST is beneficial for treating neurodegenerative diseases, such as PD, through inhibiting the activation of microglia.
Collapse
Affiliation(s)
- LIJUAN BAI
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
- Department of Neurology, The People’s Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - XIQUE ZHANG
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - XIAOHONG LI
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - NA LIU
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - FAN LOU
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - HONGLEI MA
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - XIAOGUANG LUO
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - YAN REN
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
44
|
Wei J, Du K, Cai Q, Ma L, Jiao Z, Tan J, Xu Z, Li J, Luo W, Chen J, Gao J, Zhang D, Huang C. Lead induces COX-2 expression in glial cells in a NFAT-dependent, AP-1/NFκB-independent manner. Toxicology 2014; 325:67-73. [PMID: 25193092 DOI: 10.1016/j.tox.2014.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 12/22/2022]
Abstract
Epidemiologic studies have provided solid evidence for the neurotoxic effect of lead for decades of years. In view of the fact that children are more vulnerable to the neurotoxicity of lead, lead exposure has been an urgent public health concern. The modes of action of lead neurotoxic effects include disturbance of neurotransmitter storage and release, damage of mitochondria, as well as induction of apoptosis in neurons, cerebrovascular endothelial cells, astroglia and oligodendroglia. Our studies here, from a novel point of view, demonstrates that lead specifically caused induction of COX-2, a well known inflammatory mediator in neurons and glia cells. Furthermore, we revealed that COX-2 was induced by lead in a transcription-dependent manner, which relayed on transcription factor NFAT, rather than AP-1 and NFκB, in glial cells. Considering the important functions of COX-2 in mediation of inflammation reaction and oxidative stress, our studies here provide a mechanistic insight into the understanding of lead-associated inflammatory neurotoxicity effect via activation of pro-inflammatory NFAT3/COX-2 axis.
Collapse
Affiliation(s)
- Jinlong Wei
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Kejun Du
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; Department of Occupational and Environmental Health and Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Qinzhen Cai
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lisha Ma
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhenzhen Jiao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinrong Tan
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhou Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Wenjin Luo
- Department of Occupational and Environmental Health and Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jingyuan Chen
- Department of Occupational and Environmental Health and Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| |
Collapse
|
45
|
Singh DP, Chopra K. Flavocoxid, dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, exhibits neuroprotection in rat model of ischaemic stroke. Pharmacol Biochem Behav 2014; 120:33-42. [DOI: 10.1016/j.pbb.2014.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/27/2014] [Accepted: 02/08/2014] [Indexed: 01/02/2023]
|
46
|
Abstract
Reperfusion of ischemic brain can reduce injury and improve outcome, but secondary injury due to inflammatory mechanisms limits the efficacy and time window of such treatments for stroke. This review summarizes the cellular and molecular basis of inflammation in ischemic injury as well as possible therapeutic strategies.
Collapse
Affiliation(s)
- Muzamil Ahmad
- Geriatric Research Educational and Clinical Center (00-GR-H), V.A. Pittsburgh Healthcare System, 7180 Highland Drive, Pittsburgh, PA 15206, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
47
|
Dileep KV, Remya C, Tintu I, Sadasivan C. Interactions of selected indole derivatives with COX-2 and their in silico structure modifications towards the development of novel NSAIDs. J Biomol Struct Dyn 2013; 32:1855-63. [PMID: 24053423 DOI: 10.1080/07391102.2013.839960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cyclooxygenase-2 (COX-2) is an important enzyme responsible for the formation of potent inflammatory mediators like prostaglandins, prostacyclin and thromboxane. Hence, inhibition of COX-2 is one of the best ways to control the inflammation. Non-steroidal anti-inflammatory drugs can control inflammation by inhibiting Cyclooxygenase. Selective inhibition of COX-2 is preferable over the inhibition of COX-1 because of the fewer adverse effects produced. Molecular modeling and docking of 134 selected indole compounds were done against COX-2. The pharmacophore-based in silico structural modifications of the best scored compounds were carried out in order to enhance the binding affinity and selectivity. The modification resulted in derivatives with better binding energies than that of known COX-2 inhibitors. The four best derivatives in terms of the binding energies were selected and their binding stabilities were studied by molecular dynamics simulation methods.
Collapse
Affiliation(s)
- K V Dileep
- a Department of Biotechnology and Microbiology and Inter-University Centre for Bioscience , Kannur University , Thalassery Campus, Palayad , 670661 , India
| | | | | | | |
Collapse
|
48
|
Ajmone-Cat MA, Mancini M, De Simone R, Cilli P, Minghetti L. Microglial polarization and plasticity: evidence from organotypic hippocampal slice cultures. Glia 2013; 61:1698-711. [PMID: 23918452 DOI: 10.1002/glia.22550] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 05/18/2013] [Accepted: 06/17/2013] [Indexed: 01/24/2023]
Abstract
Increasing evidence indicates that "functional plasticity" is not solely a neuronal attribute but a hallmark of microglial cells, the main brain resident macrophage population. Far from being a univocal phenomenon, microglial activation can originate a plethora of functional phenotypes, encompassing the classic M1 proinflammatory and the alternative M2 anti-inflammatory phenotypes. This concept overturns the popular view of microglial activation as a synonym of neurotoxicity and neurogenesis failure in brain disorders. The characterization of the alternative programs is a matter of intense investigation, but still scarce information is available on the course of microglial activation, on the reversibility of the different commitments and on the capability of preserving molecular memory of previous priming stimuli. By using organotypic hippocampal slice cultures as a model, we developed paradigms of stimulation aimed at shedding light on some of these aspects. We show that persistent stimulation of TLR4 signaling promotes an anti-inflammatory response and microglial polarization toward M2-like phenotype. Moreover, acute and chronic preconditioning regimens permanently affect the capability to respond to a later challenge, suggesting the onset of mechanisms of molecular memory. Similar phenomena could occur in the intact brain and differently affect the vulnerability of mature and newborn neurons to noxious signals.
Collapse
|
49
|
Berk M, Dean O, Drexhage H, McNeil JJ, Moylan S, O'Neil A, Davey CG, Sanna L, Maes M. Aspirin: a review of its neurobiological properties and therapeutic potential for mental illness. BMC Med 2013; 11:74. [PMID: 23506529 PMCID: PMC3751197 DOI: 10.1186/1741-7015-11-74] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/18/2013] [Indexed: 12/27/2022] Open
Abstract
There is compelling evidence to support an aetiological role for inflammation, oxidative and nitrosative stress (O&NS), and mitochondrial dysfunction in the pathophysiology of major neuropsychiatric disorders, including depression, schizophrenia, bipolar disorder, and Alzheimer's disease (AD). These may represent new pathways for therapy. Aspirin is a non-steroidal anti-inflammatory drug that is an irreversible inhibitor of both cyclooxygenase (COX)-1 and COX-2, It stimulates endogenous production of anti-inflammatory regulatory 'braking signals', including lipoxins, which dampen the inflammatory response and reduce levels of inflammatory biomarkers, including C-reactive protein, tumor necrosis factor-α and interleukin (IL)--6, but not negative immunoregulatory cytokines, such as IL-4 and IL-10. Aspirin can reduce oxidative stress and protect against oxidative damage. Early evidence suggests there are beneficial effects of aspirin in preclinical and clinical studies in mood disorders and schizophrenia, and epidemiological data suggests that high-dose aspirin is associated with a reduced risk of AD. Aspirin, one of the oldest agents in medicine, is a potential new therapy for a range of neuropsychiatric disorders, and may provide proof-of-principle support for the role of inflammation and O&NS in the pathophysiology of this diverse group of disorders.
Collapse
Affiliation(s)
- Michael Berk
- School of Medicine, Deakin University, 75 Pigdon's Road, Waurn Ponds, Geelong, Victoria 3216, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Maes M. Targeting cyclooxygenase-2 in depression is not a viable therapeutic approach and may even aggravate the pathophysiology underpinning depression. Metab Brain Dis 2012; 27:405-13. [PMID: 22773310 DOI: 10.1007/s11011-012-9326-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/26/2012] [Indexed: 01/25/2023]
Abstract
Depression is a complex progressive disorder accompanied by activation of inflammatory and Th-1 driven pathways, oxidative and nitrosative stress (O&NS), lowered antioxidant levels, mitochondrial dysfunctions, neuroprogression and increased bacterial translocation. In depression, activation of immuno-inflammatory pathways is associated with an increased risk for cardio-vascular disorder (CVD). Because of the inflammatory component, the use of cyclooxygenase 2 (COX-2) inhibitors, such as celecoxib, has been advocated to treat depression. Electronic databases, i.e. PUBMED, Scopus and Google Scholar were used as sources for this selective review on the effects of COX-2 inhibitors aggravating the abovementioned pathways. COX-2 inhibitors may induce neuroinflammation, exacerbate Th1 driven responses, increase lipid peroxidation, decrease the levels of key antioxidants, damage mitochondria and aggravate neuroprogression. COX-2 inhibitors may aggravate bacterial translocation and CVD through Th1-driven mechanisms. COX-2 inhibitors may aggravate the pathophysiology of depression. Since Th1 and O&NS pathways are risk factors for CVD, the use of COX-2 inhibitors may further aggravate the increased risk for CVD in depression. Selectively targeting COX-2 may not be a viable therapeutic approach to treat depression. Multi-targeting of the different pathways that play a role in depression is more likely to yield good treatment results.
Collapse
Affiliation(s)
- Michael Maes
- Maes Clinics @ TRIA, Piyavate Hospital 998 Rimklongsamsen Road, Bangkok, 10310, Thailand.
| |
Collapse
|