1
|
Abstract
Pulmonary fibrosis (PF) is a chronic and relentlessly progressive interstitial lung disease in which the accumulation of fibroblasts and extracellular matrix (ECM) induces the destruction of normal alveolar structures, ultimately leading to respiratory failure. Patients with advanced PF are unable to perform physical labor and often have concomitant cough and dyspnea, which markedly impair their quality of life. However, there is a paucity of available pharmacological therapies, and to date, lung transplantation remains the only possible treatment for patients suffering from end-stage PF; moreover, the complexity of transplantation surgery and the paucity of donors greatly restrict the application of this treatment. Therefore, there is a pressing need for alternative therapeutic strategies for this complex disease. Due to their capacity for pluripotency and paracrine actions, stem cells are promising therapeutic agents for the treatment of interstitial lung disease, and an extensive body of literature supports the therapeutic efficacy of stem cells in lung fibrosis. Although stem cell transplantation may play an important role in the treatment of PF, some key issues, such as safety and therapeutic efficacy, remain to be resolved. In this review, we summarize recent preclinical and clinical studies on the stem cell-mediated regeneration of fibrotic lungs and present an analysis of concerning issues related to stem cell therapy to guide therapeutic development for this complex disease.
Collapse
|
2
|
Ullah M. Need for Specialized Therapeutic Stem Cells Banks Equipped with Tumor Regression Enzymes and Anti-Tumor Genes. ACTA ACUST UNITED AC 2020; 2. [PMID: 33554055 PMCID: PMC7861576 DOI: 10.37191/mapsci-2582-4937-2(1)-013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stem cells are currently being used in many clinical trials for regenerative purposes. These are promising results for stem cells in the treatment of several diseases, including cancer. Nevertheless, there are still many variables which should be addressed before the application of stem cells for cancer treatment. One approach should be to establish well-characterized therapeutic stem cell banks to minimize the variation in results from different clinical trials and facilitate their effective use in basic and translational research.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Lab, Department of Radiology, School of Medicine, Stanford University, California, USA
| |
Collapse
|
3
|
Jiang Y, Lian XL. Heart regeneration with human pluripotent stem cells: Prospects and challenges. Bioact Mater 2020; 5:74-81. [PMID: 31989061 PMCID: PMC6965207 DOI: 10.1016/j.bioactmat.2020.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease, ranging from congenital heart disease to adult myocardial infarction, is the leading cause of death worldwide. In pursuit of reliable cardiovascular regenerative medicine, human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer plenty of potential cell-based applications. HPSCs are capable of proliferating indefinitely in an undifferentiated state, and are also pluripotent, being able to differentiate into virtually any somatic cell types given specific stepwise cues, thus representing an unlimited source to generate functional cardiovascular cells for heart regeneration. Here we recapitulated current advances in developing efficient protocols to generate hPSC-derived cardiovascular cell lineages, including cardiomyocytes, endothelial cells, and epicardial cells. We also discussed applications of hPSC-derived cells in combination with compatible bioactive materials, promising trials of cell transplantation in animal models of myocardial infarction, and potential hurdles to bring us closer to the ultimate goal of cell-based heart repair. HPSCs hold tremendous therapeutic potential for treating CVDs. HPSCs could differentiate into multiple cardiovascular cell lineages. Transplantation of hPSC-derived cardiovascular cells and biomaterials shows promising results, but challenges still remain.
Collapse
Affiliation(s)
- Yuqian Jiang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
4
|
Madadkar P, Sadavarte R, Ghosh R. Performance Comparison of a Laterally-Fed Membrane Chromatography (LFMC) Device with a Commercial Resin Packed Column. MEMBRANES 2019; 9:E138. [PMID: 31671843 PMCID: PMC6918161 DOI: 10.3390/membranes9110138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022]
Abstract
The use of conventional membrane adsorbers such as radial flow devices is largely restricted to flow-through applications, such as virus and endotoxin removal, as they fail to give acceptable resolution in bind-and-elute separations. Laterally-fed membrane chromatography or LFMC devices have been specifically developed to combine high-speed with high-resolution. In this study, an LFMC device containing a stack of strong cation exchange membranes was compared with an equivalent resin packed column. Preliminary characterization experiments showed that the LFMC device had a significantly greater number of theoretical plates per metre than the column. These devices were used to separate a ternary model protein mixture consisting of ovalbumin, conalbumin and lysozyme. The resolution obtained with the LFMC device was better than that obtained with the column. For instance, the LFMC device could resolve lysozyme dimer from lysozyme monomer, which was not possible using the column. In addition, the LFMC device could be operated at lower pressure and at significantly higher flow rates. The devices were then compared based on an application case study, i.e., preparative separation of monoclonal antibody charge variants. The LFMC device gave significantly better separation of these variants than the column.
Collapse
Affiliation(s)
- Pedram Madadkar
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4L8, Canada.
| | - Rahul Sadavarte
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4L8, Canada.
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
5
|
Stelcer E, Kulcenty K, Rucinski M, Jopek K, Richter M, Trzeciak T, Suchorska WM. The Role of MicroRNAs in Early Chondrogenesis of Human Induced Pluripotent Stem Cells (hiPSCs). Int J Mol Sci 2019; 20:ijms20184371. [PMID: 31492046 PMCID: PMC6770352 DOI: 10.3390/ijms20184371] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/24/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) play an important role in research regarding regenerative medicine. Particularly, chondrocytes differentiated from hiPSCs seems to be a promising solution for patients suffering from osteoarthritis. We decided to perform chondrogenesis in a three-week monolayer culture. Based on transcriptome analysis, hiPSC-derived chondrocytes (ChiPS) demonstrate the gene expression profile of cells from early chondrogenesis. Chondrogenic progenitors obtained by our group are characterized by significantly high expression of Hox genes, strongly upregulated during limb formation and morphogenesis. There are scanty literature data concerning the role of microRNAs in early chondrogenesis, especially in chondrogenic differentiation of hiPSCs. The main aim of this study was to investigate the microRNA expression profile and to select microRNAs (miRNAs) taking part in early chondrogenesis. Our findings allowed for selection crucial miRNAs engaged in both diminishing pluripotency state and chondrogenic process (inter alia hsa-miR-525-5p, hsa-miR-520c-3p, hsa-miR-628-3p, hsa-miR-196b-star, hsa-miR-629-star, hsa-miR-517b, has-miR-187). These miRNAs regulate early chondrogenic genes such as: HOXD10, HOXA11, RARB, SEMA3C. These results were confirmed by RT-qPCR analysis. This work contributes to a better understanding of the role of miRNAs directly involved in chondrogenic differentiation of hiPSCs. These data may result in the establishment of a more efficient protocol of obtaining chondrocyte-like cells from hiPSCs.
Collapse
Affiliation(s)
- Ewelina Stelcer
- Radiobiology Lab, Greater Poland Cancer Centre, Garbary 15th Street, 61-866 Poznan, Poland.
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland.
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15th, 61-866 Poznan, Poland.
| | - Katarzyna Kulcenty
- Radiobiology Lab, Greater Poland Cancer Centre, Garbary 15th Street, 61-866 Poznan, Poland.
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15th, 61-866 Poznan, Poland.
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland.
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781 Poznan, Poland.
| | - Magdalena Richter
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 18 czerwca 1956r Street, 61-545 Poznan, Poland.
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland.
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 18 czerwca 1956r Street, 61-545 Poznan, Poland.
| | - Wiktoria Maria Suchorska
- Radiobiology Lab, Greater Poland Cancer Centre, Garbary 15th Street, 61-866 Poznan, Poland.
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15th, 61-866 Poznan, Poland.
| |
Collapse
|
6
|
Branco MA, Cotovio JP, Rodrigues CAV, Vaz SH, Fernandes TG, Moreira LM, Cabral JMS, Diogo MM. Transcriptomic analysis of 3D Cardiac Differentiation of Human Induced Pluripotent Stem Cells Reveals Faster Cardiomyocyte Maturation Compared to 2D Culture. Sci Rep 2019; 9:9229. [PMID: 31239450 PMCID: PMC6592905 DOI: 10.1038/s41598-019-45047-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/30/2019] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) represent an almost limitless source of cells for disease modelling and drug screening applications. Here we established an efficient and robust 3D platform for cardiomyocyte (CMs) production from hiPSCs, solely through small-molecule-based temporal modulation of the Wnt signalling, which generates more than 90% cTNT+ cells. The impact of performing the differentiation process in 3D conditions as compared to a 2D culture system, was characterized by transcriptomic analysis by using data collected from sequential stages of 2D and 3D culture. We highlight that performing an initial period of hiPSC aggregation before cardiac differentiation primed hiPSCs towards an earlier mesendoderm lineage differentiation, via TGF-β/Nodal signaling stabilization. Importantly, it was also found that CMs in the 3D microenvironment mature earlier and show an improved communication system, which we suggested to be responsible for a higher structural and functional maturation of 3D cardiac aggregates.
Collapse
Affiliation(s)
- Mariana A Branco
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - João P Cotovio
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Carlos A V Rodrigues
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Sandra H Vaz
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Tiago G Fernandes
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Leonilde M Moreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Maria Margarida Diogo
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal. .,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| |
Collapse
|
7
|
Farooq QUA, Khan FF. Construction and analysis of a comprehensive protein interaction network of HCV with its host Homo sapiens. BMC Infect Dis 2019; 19:367. [PMID: 31039741 PMCID: PMC6492420 DOI: 10.1186/s12879-019-4000-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/17/2019] [Indexed: 12/24/2022] Open
Abstract
Background Hepatitis C Virus is becoming a major health problem in Asia and across the globe since it is causing serious liver diseases including liver cirrhosis, chronic hepatitis and hepatocarcinoma (HCC). Protein interaction networks presents us innumerable novel insights into functional constitution of proteome and helps us finding potential candidates for targeting the drugs. Methods Here we present a comprehensive protein interaction network of Hepatitis C Virus with its host, constructed by literature curated interactions. The network was constructed and explored using Cytoscape and the results were further analyzed using KEGG pathway, Gene Ontology enrichment analysis and MCODE. Results We found 1325 interactions between 12 HCV proteins and 940 human genes, among which 21 were intraviral and 1304 were HCV-Human. By analyzing the network, we found potential human gene list with their number of interactions with HCV proteins. ANXA2 and NR4A1 were interacting with 6 HCV proteins while we found 11 human genes which were interacting with 5 HCV proteins. Furthermore, the enrichment analysis and Gene Ontology of the top genes to find the pathways and the biological processes enriched with those genes. Among the viral proteins, NS3 was interacting with most number of interactors followed by NS5A and so on. KEGG pathway analysis of three set of most HCV- associated human genes was performed to find out which gene products are involved in certain disease pathways. Top 5, 10 and 20 human genes with most interactions were analyzed which revealed some striking results among which the top 10 host genes came up to be significant because they were more related to Influenza A viral infection previously. This insight provides us with a clue that the set of genes are highly enriched in HCV but are not well studied in its infection pathway. Conclusions We found out a group of proteins which were rich in HCV viral pathway but there were no drugs targeting them according to the drug repurposing hub. It can be concluded that the cluster we obtained from MCODE contains potential targets for HCV treatment and could be implemented for molecular docking and drug designing further by the scientists.
Collapse
Affiliation(s)
- Qurat Ul Ain Farooq
- College of Life Sciences and Bio Engineering, Beijing University of Technology, Beijing, China.
| | - Faisal F Khan
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| |
Collapse
|
8
|
Scarnati MS, Halikere A, Pang ZP. Using human stem cells as a model system to understand the neural mechanisms of alcohol use disorders: Current status and outlook. Alcohol 2019; 74:83-93. [PMID: 30087005 DOI: 10.1016/j.alcohol.2018.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 01/23/2023]
Abstract
Alcohol use disorders (AUDs), which include alcohol abuse and dependence, are among the most common types of neuropsychiatric disorders in the United States (U.S.). Approximately 14% of the U.S. population is affected in a single year, thus placing a tremendous burden on individuals from all socioeconomic backgrounds. Animal models have been pivotal in revealing the basic mechanisms of how alcohol impacts neuronal function, yet there are currently limited effective therapies developed based on these studies. This is mainly due to a limited understanding of the exact cellular and molecular mechanisms underlying AUDs in humans, which leads to a lack of targeted therapeutics. Furthermore, compounding factors including genetic background, gene copy number variants, single nucleotide polymorphisms (SNP) as well as environmental and social factors that affect and promote the development of AUDs are complex and heterogeneous. Recent developments in stem cell biology, especially the human induced pluripotent stem (iPS) cell development and differentiation technologies, has provided us a unique opportunity to model neuropsychiatric disorders like AUDs in a manner that is highly complementary to animal studies, but that maintains fidelity with complex human genetic contexts. Patient-specific neuronal cells derived from iPS cells can then be used for drug discovery and precision medicine, e.g. for pathway-directed development in alcoholism. Here, we review recent work employing iPS cell technology to model and elucidate the genetic, molecular and cellular mechanisms of AUDs in a human neuronal background and provide our perspective on future development in this direction.
Collapse
Affiliation(s)
- Matthew S Scarnati
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA.
| | - Apoorva Halikere
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA.
| |
Collapse
|
9
|
Label-free classification of neurons and glia in neural stem cell cultures using a hyperspectral imaging microscopy combined with machine learning. Sci Rep 2019; 9:633. [PMID: 30679652 PMCID: PMC6345994 DOI: 10.1038/s41598-018-37241-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Due to a growing demand for a viable label-free observation method in the biomedical field, many techniques, such as quantitative phase imaging and Raman spectroscopy, have been studied, and a complementary approach, hyperspectral imaging, has also been introduced. We developed a high-speed hyperspectral imaging microscopy imaging method with commercially available apparatus, employing a liquid crystal tunable bandpass filter combined with a pixel-wise machine learning classification. Next, we evaluated the feasibility of the application of this method for stem cell research utilizing neural stem cells. Employing this microscopy method, with a 562 × 562 μm2 field of view, 2048 × 2048 pixel resolution images containing 63 wavelength pixel-wise spectra could be obtained in 30 seconds. The neural stem cells were differentiated into neurons and astroglia (glia), and a four-class cell classification evaluation (including neuronal cell body, glial cell body, process and extracellular region) was conducted under co-cultured conditions. As a result, an average of 88% of the objects of interest were correctly classified, with an average precision of 94%, and more than 99% of the extracellular pixels were correctly segregated. These results indicated that the proposed hyperspectral imaging microscopy is feasible as a label-free observation method for stem cell research.
Collapse
|
10
|
Lin H, Qiu X, Du Q, Li Q, Wang O, Akert L, Wang Z, Anderson D, Liu K, Gu L, Zhang C, Lei Y. Engineered Microenvironment for Manufacturing Human Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells. Stem Cell Reports 2019; 12:84-97. [PMID: 30527760 PMCID: PMC6335449 DOI: 10.1016/j.stemcr.2018.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022] Open
Abstract
Human pluripotent stem cell-derived vascular smooth muscle cells (hPSC-VSMCs) are of great value for disease modeling, drug screening, cell therapies, and tissue engineering. However, producing a high quantity of hPSC-VSMCs with current cell culture technologies remains very challenging. Here, we report a scalable method for manufacturing hPSC-VSMCs in alginate hydrogel microtubes (i.e., AlgTubes), which protect cells from hydrodynamic stresses and limit cell mass to <400 μm to ensure efficient mass transport. The tubes provide cells a friendly microenvironment, leading to extremely high culture efficiency. We have shown that hPSC-VSMCs can be generated in 10 days with high viability, high purity, and high yield (∼5.0 × 108 cells/mL). Phenotype and gene expression showed that VSMCs made in AlgTubes and VSMCs made in 2D cultures were similar overall. However, AlgTube-VSMCs had higher expression of genes related to vasculature development and angiogenesis, and 2D-VSMCs had higher expression of genes related to cell death and biosynthetic processes.
Collapse
Affiliation(s)
- Haishuang Lin
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Du
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Qiang Li
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Biomedical Engineering Program, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ou Wang
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Biomedical Engineering Program, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Leonard Akert
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Zhanqi Wang
- Department of Vascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Dirk Anderson
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kan Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Linxia Gu
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Chi Zhang
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Yuguo Lei
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Biomedical Engineering Program, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
11
|
Charbe NB, Zacconi FC, Amnerkar N, Pardhi D, Shukla P, Mukattash TL, McCarron PA, Tambuwala MM. Emergence of Three Dimensional Printed Cardiac Tissue: Opportunities and Challenges in Cardiovascular Diseases. Curr Cardiol Rev 2019; 15:188-204. [PMID: 30648518 PMCID: PMC6719392 DOI: 10.2174/1573403x15666190112154710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023] Open
Abstract
Three-dimensional (3D) printing, also known as additive manufacturing, was developed originally for engineering applications. Since its early advancements, there has been a relentless development in enthusiasm for this innovation in biomedical research. It allows for the fabrication of structures with both complex geometries and heterogeneous material properties. Tissue engineering using 3D bio-printers can overcome the limitations of traditional tissue engineering methods. It can match the complexity and cellular microenvironment of human organs and tissues, which drives much of the interest in this technique. However, most of the preliminary evaluations of 3Dprinted tissues and organ engineering, including cardiac tissue, relies extensively on the lessons learned from traditional tissue engineering. In many early examples, the final printed structures were found to be no better than tissues developed using traditional tissue engineering methods. This highlights the fact that 3D bio-printing of human tissue is still very much in its infancy and more work needs to be done to realise its full potential. This can be achieved through interdisciplinary collaboration between engineers, biomaterial scientists and molecular cell biologists. This review highlights current advancements and future prospects for 3D bio-printing in engineering ex vivo cardiac tissue and associated vasculature, such as coronary arteries. In this context, the role of biomaterials for hydrogel matrices and choice of cells are discussed. 3D bio-printing has the potential to advance current research significantly and support the development of novel therapeutics which can improve the therapeutic outcomes of patients suffering fatal cardiovascular pathologies.
Collapse
Affiliation(s)
- Nitin B. Charbe
- Address correspondence to this author at the Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; Tel: 0091-7972524296; E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang S, Miao Z, Yang Q, Wang Y, Zhang J. The Dynamic Roles of Mesenchymal Stem Cells in Colon Cancer. Can J Gastroenterol Hepatol 2018; 2018:7628763. [PMID: 30533404 PMCID: PMC6247728 DOI: 10.1155/2018/7628763] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Colon cancer is still one of the most common causes of cancer in human and is characterized by lymphocyte infiltrates and originates from the epithelial cells found in the lining of colon or rectum of the gastrointestinal tract. Mesenchymal stem cells (MSCs) are composed of the multipotent stem cell group of stroma and can be differentiated as various cell lineages, such as fibroblasts, osteoblasts, and adipocytes. MSCs provide mechanical and structural support and have potential functions during tumor growth and metastasis. The efficacy of MSC-based therapies is partly dependent on the migration and homing of MSCs to tumors and metastatic sites. However, their migratory and engraftment potential is poorly understood. In this review, the characteristics and mechanisms of MSC's dynamic interaction with colon cancer were summarized, particularly the potential functions of MSCs on colon cancer, including its role in improving tumor growth and as a potential candidate for tumor therapy. Understanding MSC homing provides new insights into the manipulation of MSC and the improvement of their efficacy for colon cancer therapy.
Collapse
Affiliation(s)
- Shan Wang
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Qiyuan Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yimin Wang
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan institute of Science and Technology, Xinxiang, Henan, 453003, China
| |
Collapse
|
13
|
Gorry PL, Sánchez L, Morales M. Microalgae Biorefineries for Energy and Coproduct Production. ENERGY FROM MICROALGAE 2018. [DOI: 10.1007/978-3-319-69093-3_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Wordofa GG, Kristensen M, Schrübbers L, McCloskey D, Forster J, Schneider K. Quantifying the Metabolome of Pseudomonas taiwanensis VLB120: Evaluation of Hot and Cold Combined Quenching/Extraction Approaches. Anal Chem 2017; 89:8738-8747. [PMID: 28727413 DOI: 10.1021/acs.analchem.7b00793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Absolute quantification of free intracellular metabolites is a valuable tool in both pathway discovery and metabolic engineering. In this study, we conducted a comprehensive examination of different hot and cold combined quenching/extraction approaches to extract and quantify intracellular metabolites of Pseudomonas taiwanensis (P. taiwanensis) VLB120 to provide a useful reference data set of absolute intracellular metabolite concentrations. The suitability of commonly used metabolomics tools including a pressure driven fast filtration system followed by combined quenching/extraction techniques (such as cold methanol/acetonitrile/water, hot water, and boiling ethanol/water, as well as cold ethanol/water) were tested and evaluated for P. taiwanensis VLB120 metabolome analysis. In total 94 out of 107 detected intracellular metabolites were quantified using an isotope-ratio-based approach. The quantified metabolites include amino acids, nucleotides, central carbon metabolism intermediates, redox cofactors, and others. The acquired data demonstrate that the pressure driven fast filtration approach followed by boiling ethanol quenching/extraction is the most adequate technique for P. taiwanensis VLB120 metabolome analysis based on quenching efficiency, extraction yields of metabolites, and experimental reproducibility.
Collapse
Affiliation(s)
- Gossa G Wordofa
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , DK-2800 Lyngby, Denmark
| | - Mette Kristensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , DK-2800 Lyngby, Denmark
| | - Lars Schrübbers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , DK-2800 Lyngby, Denmark
| | - Douglas McCloskey
- Department of Bioengineering, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0412, United States
| | - Jochen Forster
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , DK-2800 Lyngby, Denmark
| | - Konstantin Schneider
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , DK-2800 Lyngby, Denmark
| |
Collapse
|
15
|
Bahmad H, Hadadeh O, Chamaa F, Cheaito K, Darwish B, Makkawi AK, Abou-Kheir W. Modeling Human Neurological and Neurodegenerative Diseases: From Induced Pluripotent Stem Cells to Neuronal Differentiation and Its Applications in Neurotrauma. Front Mol Neurosci 2017; 10:50. [PMID: 28293168 PMCID: PMC5329035 DOI: 10.3389/fnmol.2017.00050] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
With the help of several inducing factors, somatic cells can be reprogrammed to become induced pluripotent stem cell (iPSCs) lines. The success is in obtaining iPSCs almost identical to embryonic stem cells (ESCs), therefore various approaches have been tested and ultimately several ones have succeeded. The importance of these cells is in how they serve as models to unveil the molecular pathways and mechanisms underlying several human diseases, and also in its potential roles in the development of regenerative medicine. They further aid in the development of regenerative medicine, autologous cell therapy and drug or toxicity screening. Here, we provide a comprehensive overview of the recent development in the field of iPSCs research, specifically for modeling human neurological and neurodegenerative diseases, and its applications in neurotrauma. These are mainly characterized by progressive functional or structural neuronal loss rendering them extremely challenging to manage. Many of these diseases, including Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) have been explored in vitro. The main purpose is to generate patient-specific iPS cell lines from the somatic cells that carry mutations or genetic instabilities for the aim of studying their differentiation potential and behavior. This new technology will pave the way for future development in the field of stem cell research anticipating its use in clinical settings and in regenerative medicine in order to treat various human diseases, including neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|
16
|
Wen Y, Wang F, Zhang W, Li Y, Yu M, Nan X, Chen L, Yue W, Xu X, Pei X. Application of induced pluripotent stem cells in generation of a tissue-engineered tooth-like structure. Tissue Eng Part A 2012; 18:1677-85. [PMID: 22676377 PMCID: PMC3419858 DOI: 10.1089/ten.tea.2011.0220] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/09/2012] [Indexed: 01/06/2023] Open
Abstract
Stem cells, such as adult stem cells or embryonic stem cells, are the most important seed cells employed in tooth tissue engineering. Even though dental-derived stem cells are a good source of seed cells for such procedures, they are not often used in clinical applications because of the limited supply. Induced pluripotent stem (iPS) cells, with their high proliferation and differentiation ability, are now considered a promising alternative. The objectives of this study were to assess the role of iPS cells in tooth tissue engineering. We used real-time polymerase chain reaction to confirm that mouse iPS (miPS) cells can be induced to express both odontogenic and osteogenic gene profiles. We then established a tooth germ model and transplanted the recombinant tooth germ into a mouse subrenal capsule for 4 weeks to reproduce early-tooth organogenesis. After 4 weeks, hematoxylin and eosin staining results showed newly formed bone-like and dental pulp-like areas. Further immunohistochemical staining confirmed that osteopontin was present in the apical part of the tooth-like structure. These results demonstrate that miPS cells have the potential to differentiate into odontogenic cells, confirming that they could be a new source of seed cells for use in tooth tissue engineering.
Collapse
Affiliation(s)
- Yong Wen
- School of Stomatology, Shandong University, Jinan, P.R. China
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, P.R. China
- Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, P.R. China
| | - Fang Wang
- School of Stomatology, Shandong University, Jinan, P.R. China
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, P.R. China
- Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, P.R. China
| | - Wencheng Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, P.R. China
| | - Yanhua Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, P.R. China
| | - Meijiao Yu
- School of Stomatology, Shandong University, Jinan, P.R. China
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, P.R. China
- Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, P.R. China
| | - Xue Nan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, P.R. China
| | - Lin Chen
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, P.R. China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, P.R. China
| | - Xin Xu
- School of Stomatology, Shandong University, Jinan, P.R. China
- Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, P.R. China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing, P.R. China
| |
Collapse
|
17
|
Garcia O, Carraro G, Navarro S, Bertoncello I, McQualter J, Driscoll B, Jesudason E, Warburton D. Cell-based therapies for lung disease. Br Med Bull 2012; 101:147-61. [PMID: 22279079 PMCID: PMC3695661 DOI: 10.1093/bmb/ldr051] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION OR BACKGROUND The adult lung is a complex organ whose large surface area interfaces extensively with both the environment and circulatory system. Yet, in spite of the high potential for exposure to environmental or systemic harm, epithelial cell turnover in adult lung is comparatively slow. Moreover, loss of lung function with advancing age is becoming an increasingly costly healthcare problem. Cell-based therapies stimulating endogenous stem/progenitor cells or supplying exogenous ones have therefore become a prime translational goal. Alternatively when lung repair becomes impossible, replacement with tissue-engineered lung is an attractive emerging alternative using a decellularized matrix or bioengineered scaffold. SOURCES OF DATA Endogenous and exogenous stem cells for lung therapy are being characterized by defining developmental lineages, surface marker expression, functions within the lung and responses to injury and disease. Seeding decellularized lung tissue or bioengineered matrices with various stem and progenitor cells is an approach that has already been used to replace bronchus and trachea in human patients and awaits further development for whole lung tissue. AREAS OF AGREEMENT Cellular therapies have clear potential for respiratory disease. However, given the surface size and complexity of lung structure, the probability of a single cellular population sufficing to regenerate the entire organ, as in the bone marrow, remains low. Hence, lung regenerative medicine is currently focused around three aims: (i) to identify and stimulate resident cell populations that respond to injury or disease, (ii) to transplant exogenous cells which can ameliorate disease and (iii) to repopulate decellularized or bioengineered lung matrix creating a new implantable organ. AREAS OF CONTROVERSY Lack of consensus on specific lineage markers for lung stem and progenitor cells in development and disease constrains transferability of research between laboratories and sources of cellular therapy. Furthermore, effectiveness of individual cellular therapies to correct gas exchange and provide other critical lung functions remains unproven. Finally, feasibility of autologous whole organ replacement has not been confirmed as a durable therapy. Growing points Cellular therapies for lung regeneration would be enhanced by better lineage tracing within the lung, the ability to direct differentiation of exogenous stem or progenitor cells, and the development of functional assays for cellular viability and regenerative properties. Whether endogenous or exogeneous cells will ultimately play a greater therapeutic role remains to be seen. Reducing the need for lung replacement via endogenous cell-mediated repair is a key goal. Thereafter, improving the potential of donor lungs in transplant recipients is a further area where cell-based therapies may be beneficial. Ultimately, lung replacement with autologous tissue-engineered lungs is another goal for cell-based therapy. Areas timely for developing research Defining 'lung stem or progenitor cell' populations in both animal models and human tissue may help. Additionally, standardizing assays for assessing the potential of endogenous or exogenous cells within the lung is important. Understanding cell-matrix interactions in real time and with biomechanical insight will be central for lung engineering. Cautionary note Communicating the real potential for cell-based lung therapy needs to remain realistic, given the keen expectations of patients with end-stage lung disease.
Collapse
Affiliation(s)
- Orquidea Garcia
- Developmental Biology and Regenerative Medicine Program,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype. PLoS One 2011; 6:e28175. [PMID: 22194812 PMCID: PMC3241623 DOI: 10.1371/journal.pone.0028175] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 11/02/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Regarding regenerative medicine for diabetes, accessible sources of Mesenchymal Stem Cells (MSCs) for induction of insular beta cell differentiation may be as important as mastering the differentiation process itself. METHODOLOGY/PRINCIPAL FINDINGS In the present work, stem cells from pancreatic islets (human islet-mesenchymal stem cells, HI-MSCs) and from human bone marrow (bone marrow mesenchymal stem cells, BM-MSCs) were cultured in custom-made serum-free medium, using suitable conditions in order to induce differentiation into Islet-like Cells (ILCs). HI-MSCs and BM-MSCs were positive for the MSC markers CD105, CD73, CD90, CD29. Following this induction, HI-MSC and BM-MSC formed evident islet-like structures in the culture flasks. To investigate functional modifications after induction to ILCs, ultrastructural analysis and immunofluorescence were performed. PDX1 (pancreatic duodenal homeobox gene-1), insulin, C peptide and Glut-2 were detected in HI-ILCs whereas BM-ILCs only expressed Glut-2 and insulin. Insulin was also detected in the culture medium following glucose stimulation, confirming an initial differentiation that resulted in glucose-sensitive endocrine secretion. In order to identify proteins that were modified following differentiation from basal MSC (HI-MSCs and BM-MSCs) to their HI-ILCs and BM-ILCs counterparts, proteomic analysis was performed. Three new proteins (APOA1, ATL2 and SODM) were present in both ILC types, while other detected proteins were verified to be unique to the single individual differentiated cells lines. Hierarchical analysis underscored the limited similarities between HI-MSCs and BM-MSCs after induction of differentiation, and the persistence of relevant differences related to cells of different origin. CONCLUSIONS/SIGNIFICANCE Proteomic analysis highlighted differences in the MSCs according to site of origin, reflecting spontaneous differentiation and commitment. A more detailed understanding of protein assets may provide insights required to master the differentiation process of HI-MSCs to functional beta cells based only upon culture conditioning. These findings may open new strategies for the clinical use of BM-MSCs in diabetes.
Collapse
|
19
|
Ho JCY, Zhou T, Lai WH, Huang Y, Chan YC, Li X, Wong NLY, Li Y, Au KW, Guo D, Xu J, Siu CW, Pei D, Tse HF, Esteban MA. Generation of induced pluripotent stem cell lines from 3 distinct laminopathies bearing heterogeneous mutations in lamin A/C. Aging (Albany NY) 2011; 3:380-90. [PMID: 21483033 PMCID: PMC3117453 DOI: 10.18632/aging.100277] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The term laminopathies defines a group of genetic disorders caused by defects in the nuclear envelope, mostly the lamins. Lamins are the main constituents of the nuclear lamina, a filamentous meshwork associated with the inner nuclear membrane that provides mechanical stability and plays important roles in processes such as transcription, DNA replication and chromatin organization. More than 300 mutations in lamin A/C have been associated with diverse clinical phenotypes, understanding the molecular basis of these diseases may provide a rationale for treating them. Here we describe the generation of induced pluripotent stem cells (iPSCs) from a patient with inherited dilated cardiomiopathy and 2 patients with distinct accelerated forms of aging, atypical Werner syndrome and Hutchinson Gilford progeria, all of which are caused by mutations in lamin A/C. These cell lines were pluripotent and displayed normal nuclear membrane morphology compared to donor fibroblasts. Their differentiated progeny reproduced the disease phenotype, reinforcing the idea that they represent excellent tools for understanding the role of lamin A/C in normal physiology and the clinical diversity associated with these diseases.
Collapse
Affiliation(s)
- Jenny C Y Ho
- Cardiology Division, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|