1
|
Rigault D, Nizard P, Daniel J, Blanćhard-Desce M, Deprez E, Tauc P, Dhimane H, Dalko PI. Triphenylamine Sensitized 8-Dimethylaminoquinoline: An Efficient Two-Photon Caging Group for Intracellular Delivery. Chemistry 2024; 30:e202401289. [PMID: 38959014 DOI: 10.1002/chem.202401289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Triphenylamine-sensitized 8-dimethylaminoquinoline (TAQ) probes showed fair two-photon absorption and fragmentation cross sections in releasing kainate and GABA ligands. The water-soluble PEG and TEG-analogs allowed cell internalization and efficient light-gated liberation of the rhodamine reporter under UV and two-photon (NIR) irradiation conditions.
Collapse
Affiliation(s)
- Delphine Rigault
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, 45 rue des Saints-Pères, 75270, Paris cedex 05, France
| | - Philippe Nizard
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, 45 rue des Saints-Pères, 75270, Paris cedex 05, France
| | - Jonathan Daniel
- Institut des Sciences Moleéculaires, Universite de Bordeaux, Bâtiment A12 351 Cours de la Libération, 33405, TALENCE cedex, France
| | - Mireille Blanćhard-Desce
- Institut des Sciences Moleéculaires, Universite de Bordeaux, Bâtiment A12 351 Cours de la Libération, 33405, TALENCE cedex, France
| | - Eric Deprez
- LBPA, ENS Paris-Saclay, CNRS, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Patrick Tauc
- LBPA, ENS Paris-Saclay, CNRS, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Hamid Dhimane
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, 45 rue des Saints-Pères, 75270, Paris cedex 05, France
| | - Peter I Dalko
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, 45 rue des Saints-Pères, 75270, Paris cedex 05, France
| |
Collapse
|
2
|
Yaya-Candela AP, Ravagnani FG, Dietrich N, Sousa R, Baptista MS. Specific photodamage on HT-29 cancer cells leads to endolysosomal failure and autophagy blockage by cathepsin depletion. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112919. [PMID: 38677261 DOI: 10.1016/j.jphotobiol.2024.112919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Endolysosomes perform a wide range of cellular functions, including nutrient sensing, macromolecule digestion and recycling, as well as plasma membrane repair. Because of their high activity in cancerous cells, endolysosomes are attractive targets for the development of novel cancer treatments. Light-activated compounds termed photosensitizers (PS) can catalyze the oxidation of specific biomolecules and intracellular organelles. To selectively damage endosomes and lysosomes, HT-29 colorectal cancer cells were incubated with nanomolar concentrations of meso-tetraphenylporphine disulfonate (TPPS2a), an amphiphilic PS taken up via endocytosis and activated by green light (522 nm, 2.1 J.cm-1). Several cellular responses were characterized by a combination of immunofluorescence and immunoblotting assays. We showed that TPPS2a photosensitization blocked autophagic flux without extensive endolysosomal membrane rupture. Nevertheless, there was a severe functional failure of endolysosomes due to a decrease in CTSD (cathepsin D, 55%) and CTSB (cathepsin B, 52%) maturation. PSAP (prosaposin) processing (into saposins) was also considerably impaired, a fact that could be detrimental to glycosphingolipid homeostasis. Therefore, photosensitization of HT-29 cells previously incubated with a low concentration of TPPS2a promotes endolysosomal dysfunction, an effect that can be used to improve cancer therapies.
Collapse
Affiliation(s)
| | | | - Natasha Dietrich
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rafaela Sousa
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
3
|
Qiao L, Gao M, Yi X, Peng H, Zhang R, Yao W, Sun G, He X. Biomimetic gene editing system for precise tumor cell reprogramming and augmented tumor therapy. J Control Release 2023; 356:663-677. [PMID: 36924897 DOI: 10.1016/j.jconrel.2023.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
The abnormal level of hypoxia-inducible factor-1 alpha (HIF-1α) is closely related to cancer metastasis and treatment resistance. CRISPR-Cas9-based gene editing technology has sparked profound hope to solve this issue by precise gene disruption, although the in vivo application remains hindered by the lack of a safe and efficient delivery strategy. Herein, we developed a cell membrane biomimetic core-shell system for light-controllable, precise gene editing. The inner core of the system comprises protamine for CRISPR-Cas9/sgRNA plasmid (pCas9) loading and calcium ions for efficient pCas9 transfection. The shell of the system is camouflaged by a cell membrane and modified with AS1411 aptamers for tumor targeting and photosensitizers to induce lysosomal escape and pCas9 release through reactive oxygen species production, thereby producing light-controllable enhanced gene editing. Neoplastic H1299 cells were reprogrammed using the biomimetic gene editing system upon laser irradiation with reduced VEGF and Vimentin expression, leading to enhanced antimetastatic effects. Genetic disruption of HIF-1α augmented the in vivo chemotherapeutic efficacy of paclitaxel. Our approach of using a membrane-camouflaged system combined with light augmentation provides a potential solution for the in vivo delivery of CRISPR-Cas9 as well as a feasible strategy for cancer therapy.
Collapse
Affiliation(s)
- Lei Qiao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Min Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Hui Peng
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Ruijie Zhang
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Wanqing Yao
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiaoyan He
- School of Life Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
4
|
Romena G, Nguyen L, Berg K, Madsen SJ, Hirschberg H. Enhanced gene transfection of macrophages by photochemical internalization: Potential for gene-directed enzyme prodrug therapy of gliomas. Photodiagnosis Photodyn Ther 2020; 33:102098. [PMID: 33188941 DOI: 10.1016/j.pdpdt.2020.102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Drawn by tumor synthesis of chemo-attractive factors, macrophages are frequently found in and around glioblastomas and play an important role both in augmenting as well as inhibiting tumor growth. Patient-derived macrophages have the potential, therefore, to act as targeted delivery vectors for a variety of anti-cancer treatments. Among these is ex vivo gene transfection and re-injection back into the patient of macrophages to target residual tumors. In this study, photochemical internalization (PCI) is investigated as a technique for the non-viral transfection of the cytosine deaminase (CD) prodrug activating gene into macrophages. The CD gene encodes an enzyme that converts the nontoxic antifungal agent, 5-fluorocytosine (5-FC), into 5-fluorouracil (5-FU) - a potent chemotherapeutic agent. MATERIALS PCI (photosensitizer + light treatment) mediated CD gene transfection of rat alveolar Ma cells was carried out in vitro. CD gene transfected NR8383 macrophages were co-cultured with F98 rat glioma cells in the presence or absence of 5-FC. Cell viability was assayed using the MTS colorimetric assay. RESULTS Compared to the glioma cells, NR8383 demonstrated enhanced resistance to the toxic effects of 5-FU. PCI greatly increased the transfection efficiency of the CD gene in NR8383 cells. The viability of F98 cells was significantly inhibited by coculture with CD transfected NR8383 macrophages and 5-FC. CONCLUSION Although gene insertion into macrophages has proven difficult, the results presented here show that non-viral transfection of the CD gene into these immune cells can be enhanced via PCI. CD transfected NR8383 cells could efficiently convert 5-FC to 5-FU and export the drug, producing a pronounced bystander toxic effect on adjacent non-transfected glioma cells. Compared to single treatment, repetitive PCI-induced transfection was more efficient at low CD plasmid concentration.
Collapse
Affiliation(s)
- Gabrielle Romena
- Beckman Laser Institute and Medical Clinic, University of California, Irvine 1002 Health Sciences Rd, Irvine, CA, 92617, USA.
| | - Lina Nguyen
- Beckman Laser Institute and Medical Clinic, University of California, Irvine 1002 Health Sciences Rd, Irvine, CA, 92617, USA
| | - Kristian Berg
- Dept. of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Steen J Madsen
- Dept. of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Henry Hirschberg
- Beckman Laser Institute and Medical Clinic, University of California, Irvine 1002 Health Sciences Rd, Irvine, CA, 92617, USA; Dept. of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
5
|
Photochemical Internalization for Intracellular Drug Delivery. From Basic Mechanisms to Clinical Research. J Clin Med 2020; 9:jcm9020528. [PMID: 32075165 PMCID: PMC7073817 DOI: 10.3390/jcm9020528] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023] Open
Abstract
Photochemical internalisation (PCI) is a unique intervention which involves the release of endocytosed macromolecules into the cytoplasmic matrix. PCI is based on the use of photosensitizers placed in endocytic vesicles that, following light activation, lead to rupture of the endocytic vesicles and the release of the macromolecules into the cytoplasmic matrix. This technology has been shown to improve the biological activity of a number of macromolecules that do not readily penetrate the plasma membrane, including type I ribosome-inactivating proteins (RIPs), gene-encoding plasmids, adenovirus and oligonucleotides and certain chemotherapeutics, such as bleomycin. This new intervention has also been found appealing for intracellular delivery of drugs incorporated into nanocarriers and for cancer vaccination. PCI is currently being evaluated in clinical trials. Data from the first-in-human phase I clinical trial as well as an update on the development of the PCI technology towards clinical practice is presented here.
Collapse
|
6
|
Abstract
Nonviral gene transfection overcomes some of the disadvantages of viral vectors, such as undesired immune responses, safety concerns, issues relating to bulk production, payload capacity, and quality control, but generally have low transfection efficiency. Here we describe the effects of a modified form of photodynamic therapy (PDT), i.e., photochemical internalization (PCI) to: (1) greatly increase nonviral cytosine deaminase gene (CD) transfection into tumor cells, significantly increasing the conversion of 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU), and (2) enhance the toxic efficacy of the locally produced 5-FU to induce cell death on both transfected and non-transfected bystander cells.
Collapse
|
7
|
Haug M, Brede G, Håkerud M, Nedberg AG, Gederaas OA, Flo TH, Edwards VT, Selbo PK, Høgset A, Halaas Ø. Photochemical Internalization of Peptide Antigens Provides a Novel Strategy to Realize Therapeutic Cancer Vaccination. Front Immunol 2018; 9:650. [PMID: 29670624 PMCID: PMC5893651 DOI: 10.3389/fimmu.2018.00650] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/16/2018] [Indexed: 12/30/2022] Open
Abstract
Effective priming and activation of tumor-specific CD8+ cytotoxic T lymphocytes (CTLs) is crucial for realizing the potential of therapeutic cancer vaccination. This requires cytosolic antigens that feed into the MHC class I presentation pathway, which is not efficiently achieved with most current vaccination technologies. Photochemical internalization (PCI) provides an emerging technology to route endocytosed material to the cytosol of cells, based on light-induced disruption of endosomal membranes using a photosensitizing compound. Here, we investigated the potential of PCI as a novel, minimally invasive, and well-tolerated vaccination technology to induce priming of cancer-specific CTL responses to peptide antigens. We show that PCI effectively promotes delivery of peptide antigens to the cytosol of antigen-presenting cells (APCs) in vitro. This resulted in a 30-fold increase in MHC class I/peptide complex formation and surface presentation, and a subsequent 30- to 100-fold more efficient activation of antigen-specific CTLs compared to using the peptide alone. The effect was found to be highly dependent on the dose of the PCI treatment, where optimal doses promoted maturation of immature dendritic cells, thus also providing an adjuvant effect. The effect of PCI was confirmed in vivo by the successful induction of antigen-specific CTL responses to cancer antigens in C57BL/6 mice following intradermal peptide vaccination using PCI technology. We thus show new and strong evidence that PCI technology holds great potential as a novel strategy for improving the outcome of peptide vaccines aimed at triggering cancer-specific CD8+ CTL responses.
Collapse
Affiliation(s)
- Markus Haug
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology, Trondheim, Norway.,Department of Infection, St. Olavs University Hospital, Trondheim, Norway
| | - Gaute Brede
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Monika Håkerud
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway
| | - Anne Grete Nedberg
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway
| | - Odrun A Gederaas
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,Department of Chemistry, Faculty of Natural Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trude H Flo
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Victoria T Edwards
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway.,PCI Biotech AS, Oslo, Norway
| | - Pål K Selbo
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Oslo, Norway
| | | | - Øyvind Halaas
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
8
|
Sellevold S, Peng Q, Fremstedal ASV, Berg K. Photochemical internalization (PCI) of bleomycin is equally effective in two dissimilar leiomyosarcoma xenografts in athymic mice. Photodiagnosis Photodyn Ther 2017; 20:95-106. [PMID: 28865875 DOI: 10.1016/j.pdpdt.2017.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/21/2017] [Accepted: 08/27/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Photochemical internalization (PCI) is a novel technique for delivery of active macromolecules into cancerous cells, via light activation of a specific photosensitizer and a low dose systemic drug. Numerous pre-clinical studies and one clinical trial have confirmed the treatment potential in carcinomas. Soft tissue sarcomas are rare and generally resistant to radio- and chemotherapy. Due to treatment resistance and surgical morbidity in sarcoma care, we seek to increase knowledge on PCI effects in sarcomas by studying two different, but closely related leiomyosarcomas. METHODS MES-SA and SK-LMS-1 tumours were established in the leg muscles of athymic mice. Treatment effects after AlPcS2a-PCI of bleomycin, PCI with no drug (photodynamic therapy, PDT) and control groups were evaluated by: 1) assessment of tumour growth, 2) uptake of contrast agent during MRI and 3) histopathology. RESULTS PCI of bleomycin induced a similar and significant increase in time to reach the end point in both tumour models, while neither responded to AlPcS2a-PDT. In the MES-SA tumours PCI reduced the growth rate, while in the SK-LMS-1 tumours the growth was blocked for 12days followed by exponential growth close to that of untreated tumours. SK-LMS-1 tumours were more homogenously and better vascularized than MES-SA. After PCI the vascular shutdown was more complete in the SK-LMS-1 tumours than in the MES-SA tumours. CONCLUSIONS AlPcS2a-based PCI, but not PDT, induced significant tumour growth delay in the evaluated sarcomas. Cellular responsiveness to bleomycin and tumour vascularity are identified as predictive markers for PCI treatment effects.
Collapse
Affiliation(s)
- Simen Sellevold
- Division of Orthopaedic Surgery, Oslo University Hospital, Norway; Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Qian Peng
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Ane Sofie Viset Fremstedal
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway.
| |
Collapse
|
9
|
Gaware VS, Håkerud M, Juzeniene A, Høgset A, Berg K, Másson M. Endosome Targeting meso-Tetraphenylchlorin-Chitosan Nanoconjugates for Photochemical Internalization. Biomacromolecules 2017; 18:1108-1126. [PMID: 28245649 DOI: 10.1021/acs.biomac.6b01670] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four amphiphilic covalently linked meso-tetraphenylchlorin-chitosan nanoconjugates were synthesized and evaluated for use in photochemical internalization (PCI) in vitro and in vivo. The synthetic protocol for the preparation of two different hydrophobic chlorin photosensitizers, 5-(4-aminophenyl)-10,15,20-triphenylchlorin and 5-(4-carboxyphenyl)-10,15,20-triphenylchlorin, was optimized. These monofunctional photosensitizers were covalently attached to carrier chitosan via silyl-protected 3,6-di-O-tert-butyldimethylsilyl-chitosan (Di-TBDMS-chitosan) with 0.10 degree of substitution per glucosamine (DS). Hydrophilic moieties such as trimethylamine and/or 1-methylpiperazine were incorporated with 0.9 DS to give fully water-soluble conjugates after removal of the TBDMS groups. A dynamic light scattering (DLS) study confirmed the formation of nanoparticles with a 140-200 nm diameter. These nanoconjugates could be activated at 650 nm (red region) light, with a fluorescence quantum yield (ΦF) of 0.43-0.45, and are thus suitable candidates for use in PCI. These nanoconjugates were taken up and localized in the endocytic vesicles of HCT116/LUC human colon carcinoma cells, and upon illumination they substantially enhanced plasmid DNA transfection. The nanoconjugates were also evaluated in preliminary in vivo experiments in tumor-bearing mice, showing that the nanoconjugates could induce a strong photodynamic therapy (PDT) and also PCI effects in treatment with bleomycin.
Collapse
Affiliation(s)
- Vivek S Gaware
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland , Hofsvallagata 53, IS-107 Reykjavik, Iceland.,PCI Biotech AS , Ullernchauséen 64, N0379 Oslo, Norway
| | - Monika Håkerud
- PCI Biotech AS , Ullernchauséen 64, N0379 Oslo, Norway.,Oslo University Hospital , The Norwegian Radium Hospital, Institute for Cancer Research, Department of Radiation Biology, Montebello, N-0310 Oslo, Norway
| | - Asta Juzeniene
- Oslo University Hospital , The Norwegian Radium Hospital, Institute for Cancer Research, Department of Radiation Biology, Montebello, N-0310 Oslo, Norway
| | - Anders Høgset
- PCI Biotech AS , Ullernchauséen 64, N0379 Oslo, Norway
| | - Kristian Berg
- Oslo University Hospital , The Norwegian Radium Hospital, Institute for Cancer Research, Department of Radiation Biology, Montebello, N-0310 Oslo, Norway
| | - Már Másson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland , Hofsvallagata 53, IS-107 Reykjavik, Iceland
| |
Collapse
|
10
|
Hirschberg H, Madsen SJ. Synergistic efficacy of ultrasound, sonosensitizers and chemotherapy: a review. Ther Deliv 2017; 8:331-342. [PMID: 28361613 PMCID: PMC6367792 DOI: 10.4155/tde-2016-0080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/03/2017] [Indexed: 12/13/2022] Open
Abstract
Chemotherapeutic agents, either in the form of systemically injected free drug or encapsulated in nanoparticles transport vehicles, must overcome three main obstacles prior to reaching and interacting with their intended target inside tumor cells. Drugs must leave the circulation, overcome the tissue-tumor barrier and penetrate the cell's plasma membrane. Since, many agents enter the cell by endocytosis, they must avoid entrapment and degradation by the intracellular endolysosome complex. Ultrasound has demonstrated potential to enhance the efficacy of chemotherapy by reducing these barriers. The purpose of this review is to highlight the potential of ultrasound in combination with sonosensitizers to enhance the efficacy of chemotherapy by optimizing the anticancer agent's intracellular ability to engage and interact with its target.
Collapse
Affiliation(s)
- Henry Hirschberg
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, CA 92612, USA
- Department of Health Physics & Diagnostic Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Steen J Madsen
- Department of Health Physics & Diagnostic Sciences, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
11
|
Aparici-Espert I, Francés-Monerris A, Rodríguez-Muñiz GM, Roca-Sanjuán D, Lhiaubet-Vallet V, Miranda MA. A Combined Experimental and Theoretical Approach to the Photogeneration of 5,6-Dihydropyrimidin-5-yl Radicals in Nonaqueous Media. J Org Chem 2016; 81:4031-8. [DOI: 10.1021/acs.joc.6b00314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Isabel Aparici-Espert
- Instituto
Universitario Mixto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos s/n, 46022 València, Spain
| | | | - Gemma M. Rodríguez-Muñiz
- Instituto
Universitario Mixto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos s/n, 46022 València, Spain
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | - Virginie Lhiaubet-Vallet
- Instituto
Universitario Mixto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos s/n, 46022 València, Spain
| | - Miguel A. Miranda
- Instituto
Universitario Mixto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Avda de los Naranjos s/n, 46022 València, Spain
| |
Collapse
|
12
|
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45:1457-501. [PMID: 26776487 PMCID: PMC4775468 DOI: 10.1039/c5cs00798d] [Citation(s) in RCA: 958] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Parham Sahandi Zangabad
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Reza Rahighi
- Department of Research and Development, Sharif Ultrahigh Nanotechnologists (SUN) Company, P.O. Box: 13488-96394, Tehran, Iran and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran, Iran
| | - S Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - H Mirshekari
- Department of Biotechnology, University of Kerala, Trivandrum, India
| | - M Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Z Shafaei Pishabad
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - A Aslani
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - M Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - D Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - A Beyzavi
- School of Mechanical Engineering, Boston University, Boston, MA, USA
| | - A Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - A R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - L Haghani
- School of Medicine, International Campus of Tehran University of Medical Science, Tehran, Iran
| | - S Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Mitochondria-targeted Triphenylamine Derivatives Activatable by Two-Photon Excitation for Triggering and Imaging Cell Apoptosis. Sci Rep 2016; 6:21458. [PMID: 26947258 PMCID: PMC4780088 DOI: 10.1038/srep21458] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/20/2016] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy (PDT) leads to cell death by using a combination of a photosensitizer and an external light source for the production of lethal doses of reactive oxygen species (ROS). Since a major limitation of PDT is the poor penetration of UV-visible light in tissues, there is a strong need for organic compounds whose activation is compatible with near-infrared excitation. Triphenylamines (TPAs) are fluorescent compounds, recently shown to efficiently trigger cell death upon visible light irradiation (458 nm), however outside the so-called optical/therapeutic window. Here, we report that TPAs target cytosolic organelles of living cells, mainly mitochondria, triggering a fast apoptosis upon two-photon excitation, thanks to their large two-photon absorption cross-sections in the 760–860 nm range. Direct ROS imaging in the cell context upon multiphoton excitation of TPA and three-color flow cytometric analysis showing phosphatidylserine externalization indicate that TPA photoactivation is primarily related to the mitochondrial apoptotic pathway via ROS production, although significant differences in the time courses of cell death-related events were observed, depending on the compound. TPAs represent a new class of water-soluble organic photosensitizers compatible with direct two-photon excitation, enabling simultaneous multiphoton fluorescence imaging of cell death since a concomitant subcellular TPA re-distribution occurs in apoptotic cells.
Collapse
|
14
|
Abstract
In chemotherapy a fine balance between therapeutic and toxic effects needs to be found for each patient, adapting standard combination protocols each time. Nanotherapeutics has been introduced into clinical practice for treating tumors with the aim of improving the therapeutic outcome of conventional therapies and of alleviating their toxicity and overcoming multidrug resistance. Photodynamic therapy (PDT) is a clinically approved, minimally invasive procedure emerging in cancer treatment. It involves the administration of a photosensitizer (PS) which, under light irradiation and in the presence of molecular oxygen, produces cytotoxic species. Unfortunately, most PSs lack specificity for tumor cells and are poorly soluble in aqueous media, where they can form aggregates with low photoactivity. Nanotechnological approaches in PDT (nanoPDT) can offer a valid option to deliver PSs in the body and to solve at least some of these issues. Currently, polymeric nanoparticles (NPs) are emerging as nanoPDT system because their features (size, surface properties, and release rate) can be readily manipulated by selecting appropriate materials in a vast range of possible candidates commercially available and by synthesizing novel tailor-made materials. Delivery of PSs through NPs offers a great opportunity to overcome PDT drawbacks based on the concept that a nanocarrier can drive therapeutic concentrations of PS to the tumor cells without generating any harmful effect in non-target tissues. Furthermore, carriers for nanoPDT can surmount solubility issues and the tendency of PS to aggregate, which can severely affect photophysical, chemical, and biological properties. Finally, multimodal NPs carrying different drugs/bioactive species with complementary mechanisms of cancer cell killing and incorporating an imaging agent can be developed. In the following, we describe the principles of PDT use in cancer and the pillars of rational design of nanoPDT carriers dictated by tumor and PS features. Then we illustrate the main nanoPDT systems demonstrating potential in preclinical models together with emerging concepts for their advanced design.
Collapse
|
15
|
Avci P, Erdem SS, Hamblin MR. Photodynamic therapy: one step ahead with self-assembled nanoparticles. J Biomed Nanotechnol 2015; 10:1937-52. [PMID: 25580097 DOI: 10.1166/jbn.2014.1953] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT) is a promising treatment modality for cancer with possible advantages over current treatment alternatives. It involves combination of light and a photosensitizer (PS), which is activated by absorption of specific wavelength light and creates local tissue damage through generation of reactive oxygen species (ROS) that induce a cascade of cellular and molecular events. However, as of today, PDT is still in need of improvement and nanotechnology may play a role. PDT frequently employs PS with molecular structures that are highly hydrophobic, water insoluble and prone to aggregation. Aggregation of PS leads to reduced ROS generation and thus lowers the PDT activity. Some PS such as 5-aminolevulinic acid (ALA) cannot penetrate through the stratum corneum of the skin and systemic administration is not an option due to frequently encountered side effects. Therefore PS are often encapsulated or conjugated in/on nano-drug delivery vehicles to allow them to be better taken up by cells and to more selectively deliver them to tumors or other target tissues. Several nano-drug delivery vehicles including liposomes, fullerosomes and nanocells have been tested and reviewed. Here we cover non-liposomal self-assembled nanoparticles consisting of polymeric micelles including block co-polymers, polymeric micelles, dendrimers and porphysomes.
Collapse
|
16
|
Theodossiou TA, Gonçalves AR, Yannakopoulou K, Skarpen E, Berg K. Photochemical internalization of tamoxifens transported by a "Trojan-horse" nanoconjugate into breast-cancer cell lines. Angew Chem Int Ed Engl 2015; 54:4885-9. [PMID: 25663536 DOI: 10.1002/anie.201500183] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 12/15/2022]
Abstract
Photochemical internalization (PCI) has shown great promise as a therapeutic alternative for targeted drug delivery by light-harnessed activation. However, it has only been applicable to therapeutic macromolecules or medium-sized molecules. Herein we describe the use of an amphiphilic, water-soluble porphyrin-β-cyclodextrin conjugate (mTHPP-βCD) as a "Trojan horse" to facilitate the endocytosis of CD-guest tamoxifens into breast-cancer cells. Upon irradiation, the porphyrin core of mTHPP-βCD expedited endosomal membrane rupture and tamoxifen release into the cytosol, as documented by confocal microscopy. The sustained complexation of mTHPP-βCD with tamoxifen was corroborated by 2D NMR spectroscopy and FRET studies. Following the application of PCI protocols with 4-hydroxytamoxifen (4-OHT), estrogen-receptor β-positive (Erβ+, but not ERβ-) cell groups exhibited extensive cytotoxicity and/or growth suspension even at 72 h after irradiation.
Collapse
Affiliation(s)
- Theodossis A Theodossiou
- Department of Radiation Biology (T.A.T., K.B.) and Department of Biochemistry (E.S.), Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo (Norway).
| | | | | | | | | |
Collapse
|
17
|
Theodossiou TA, Gonçalves AR, Yannakopoulou K, Skarpen E, Berg K. Photochemical Internalization of Tamoxifens Transported by a “Trojan-Horse” Nanoconjugate into Breast-Cancer Cell Lines. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Bostad M, Kausberg M, Weyergang A, Olsen CE, Berg K, Høgset A, Selbo PK. Light-Triggered, Efficient Cytosolic Release of IM7-Saporin Targeting the Putative Cancer Stem Cell Marker CD44 by Photochemical Internalization. Mol Pharm 2014; 11:2764-76. [DOI: 10.1021/mp500129t] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | - Anders Høgset
- PCI Biotech
AS, Strandveien 55, N-1366 Lysaker, Norway
| | | |
Collapse
|
19
|
Muthukrishnan N, Donovan S, Pellois JP. The photolytic activity of poly-arginine cell penetrating peptides conjugated to carboxy-tetramethylrhodamine is modulated by arginine residue content and fluorophore conjugation site. Photochem Photobiol 2014; 90:1034-42. [PMID: 24815901 DOI: 10.1111/php.12288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/05/2014] [Indexed: 12/16/2022]
Abstract
Upon light irradiation, Fluorophore-cell-penetrating peptide (Fl-CPP) conjugates can disrupt the integrity of biological membranes. This activity can in turn be used to photoinduce the disruption of endocytic organelles and promote the delivery of entrapped macromolecules such as proteins or RNAs into live cells. Recent mechanistic studies have shown that ROS production by the fluorophore and a latent lytic ability of CPPs act in synergy to elicit photolysis. However, how the structure of fluorophore-CPP conjugates impacts this synergistic activity remains unclear. Herein, using red blood cells (RBCs) as a model of biological membranes, we show that the number of arginine residues in a CPP as well as the position of fluorophore with respect to the CPP dramatically affect the photolytic activity of a fluorophore-CPP conjugate. These factors should therefore be considered for the development of effective photoinducible delivery agents.
Collapse
|
20
|
Increased sensitivity of glioma cells to 5-fluorocytosine following photo-chemical internalization enhanced nonviral transfection of the cytosine deaminase suicide gene. J Neurooncol 2014; 118:29-37. [PMID: 24610460 DOI: 10.1007/s11060-014-1410-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Despite advances in surgery, chemotherapy and radiotherapy, the outcomes of patients with GBM have not significantly improved. Tumor recurrence in the resection margins occurs in more than 80% of cases indicating aggressive treatment modalities, such as gene therapy are warranted. We have examined photochemical internalization (PCI) as a method for the non-viral transfection of the cytosine deaminase (CD) suicide gene into glioma cells. The CD gene encodes an enzyme that can convert the nontoxic antifungal agent, 5-fluorocytosine, into the chemotherapeutic drug, 5-fluorouracil. Multicell tumor spheroids derived from established rat and human glioma cell lines were used as in vitro tumor models. Plasmids containing either the CD gene alone or together with the uracil phosphoribosyl transferase (UPRT) gene combined with the gene carrier protamine sulfate were employed in all experiments.PCI was performed with the photosensitizer AlPcS2a and 670 nm laser irradiance. Protamine sulfate/CD DNA polyplexes proved nontoxic but inefficient transfection agents due to endosomal entrapment. In contrast, PCI mediated CD gene transfection resulted in a significant inhibition of spheroid growth in the presence of, but not in the absence of, 5-FC. Repetitive PCI induced transfection was more efficient at low CD plasmid concentration than single treatment. The results clearly indicate that AlPcS2a-mediated PCI can be used to enhance transfection of a tumor suicide gene such as CD, in malignant glioma cells and cells transfected with both the CD and UPRT genes had a pronounced bystander effect.
Collapse
|
21
|
Vikdal M, Generalov R, Berg K. The photosensitizer disulfonated aluminum phthalocyanine reduces uptake and alters trafficking of fluid phase endocytosed drugs in vascular endothelial cells--impact on efficacy of photochemical internalization. Biochem Pharmacol 2013; 86:748-58. [PMID: 23876343 DOI: 10.1016/j.bcp.2013.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/31/2023]
Abstract
Targeting cancer vasculature is an emerging field in cancer treatment. Photochemical internalization (PCI) is a drug delivery technology based on photochemical lysis of drug-bearing endocytic vesicles originally designed to target cancer cells. Recent investigations have revealed a lower PCI efficacy in vascular endothelial cells (HUVECs) in vitro than in HT1080 fibrosarcoma cells. This manuscript aims to explore the limiting factor for the PCI effect in HUVECs. Cellular uptake of the photosensitizers AlPcS(2a) and TPPS(2a), and a model compound for macromolecular drugs taken up by fluid phase endocytosis, Alexa⁴⁸⁸-dextran, was explored by flow cytometry. The uptake of AlPcS(2a) and TPPS(2a) was 3.8-fold and 37-fold higher in HUVECs than in HT1080 cells, respectively, while the Alexa⁴⁸⁸-dextran uptake was 50% lower. AlPcS(2a) (but not TPPS(2a)) was shown to reduce Alexa⁴⁸⁸-dextran uptake in a concentration-dependent manner, resulting in 66% and 33% attenuation of Alexa⁴⁸⁸-dextran uptake at 20 μg/ml AlPcS(2a) in HUVECs and HT1080 cells respectively. Studies of intracellular localization of Alexa⁴⁸⁸-dextran and AlPcS(2a) by confocal microscopy in HUVECs uncovered a concentration-dependent AlPcS(2a)-induced inhibition of Alexa⁴⁸⁸-dextran trafficking into AlPcS(2a)-stained and acidic vesicles. The localization of Alexa⁴⁸⁸-dextran to AlPcS(2a)-localizing compartments was reduced by 40% when the AlPcS(2a) concentration was increased from 5 to 20 μg/ml. The treatment dose of AlPcS(2a) was found to influence on the efficacy of PCI of saporin, but to a lesser extent than expected considering the data from cellular uptake and intracellular trafficking of Alexa⁴⁸⁸-dextran. The implications of these results for further development of vascular targeting-PCI are discussed.
Collapse
Affiliation(s)
- Marie Vikdal
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway
| | | | | |
Collapse
|
22
|
Gaware VS, Håkerud M, Leósson K, Jónsdóttir S, Høgset A, Berg K, Másson M. Tetraphenylporphyrin Tethered Chitosan Based Carriers for Photochemical Transfection. J Med Chem 2013; 56:807-19. [DOI: 10.1021/jm301270r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vivek S. Gaware
- Faculty of Pharmaceutical Sciences,
School of Health Sciences, University of Iceland, Hofsvallagata 53,
IS-107 Reykjavík, Iceland
- PCI Biotech AS, N-1366 Lysaker,
Norway
| | - Monika Håkerud
- PCI Biotech AS, N-1366 Lysaker,
Norway
- Oslo University Hospital,
The
Norwegian Radium Hospital, Institute for Cancer Research, Department
of Radiation Biology, N-0310 Oslo, Norway
| | - Kristján Leósson
- Department of Physics, Science
Institute, University of Iceland, Dunhagi 3, IS-107 Reykjavik, Iceland
| | - Sigrídur Jónsdóttir
- Department of Chemistry, Science
Institute, University of Iceland, Dunhagi 3, IS-107 Reykjavik, Iceland
| | | | - Kristian Berg
- Oslo University Hospital,
The
Norwegian Radium Hospital, Institute for Cancer Research, Department
of Radiation Biology, N-0310 Oslo, Norway
| | - Már Másson
- Faculty of Pharmaceutical Sciences,
School of Health Sciences, University of Iceland, Hofsvallagata 53,
IS-107 Reykjavík, Iceland
| |
Collapse
|
23
|
Erazo-Oliveras A, Muthukrishnan N, Baker R, Wang TY, Pellois JP. Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals (Basel) 2012; 5:1177-1209. [PMID: 24223492 PMCID: PMC3816665 DOI: 10.3390/ph5111177] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 12/13/2022] Open
Abstract
Cell penetrating peptides (CPPs) can deliver cell-impermeable therapeutic cargos into cells. In particular, CPP-cargo conjugates tend to accumulate inside cells by endocytosis. However, they often remain trapped inside endocytic organelles and fail to reach the cytosolic space of cells efficiently. In this review, the evidence for CPP-mediated endosomal escape is discussed. In addition, several strategies that have been utilized to enhance the endosomal escape of CPP-cargos are described. The recent development of branched systems that display multiple copies of a CPP is presented. The use of viral or synthetic peptides that can disrupt the endosomal membrane upon activation by the low pH of endosomes is also discussed. Finally, we survey how CPPs labeled with chromophores can be used in combination with light to stimulate endosomal lysis. The mechanisms and challenges associated with these intracellular delivery methodologies are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Jean-Philippe Pellois
- Author to whom correspondence should be addressed; ; Tel.: +1-979-845-0101; Fax: +1-979-862-4718
| |
Collapse
|
24
|
Garaiova Z, Strand SP, Reitan NK, Lélu S, Størset SØ, Berg K, Malmo J, Folasire O, Bjørkøy A, Davies CDL. Cellular uptake of DNA-chitosan nanoparticles: the role of clathrin- and caveolae-mediated pathways. Int J Biol Macromol 2012; 51:1043-51. [PMID: 22947453 DOI: 10.1016/j.ijbiomac.2012.08.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/03/2012] [Accepted: 08/19/2012] [Indexed: 10/27/2022]
Abstract
The success of gene therapy depends on efficient delivery of DNA and requires a vector. A promising non-viral vector is chitosan. We tailored chitosan to optimize it for transfection by synthesizing self-branched and trisaccharide-substituted chitosan oligomers (SBTCO), which show superior transfection efficacy compared with linear chitosan (LCO). The aim of the work was to compare the cellular uptake and endocytic pathways of polyplexes formed by LCO and SBTCO. Both polyplexes were taken up by the majority of the cells, but the uptake of LCO was lower than SBTCO polyplexes. LCO polyplexes were internalized through both clathrin-dependent and clathrin-independent pathways, whereas SBTCO polyplexes were primarily taken up by clathrin-independent endocytosis. The different level of cellular uptake and the distinct endocytic pathways, may explain the difference in transfection efficacy. This was supported by the observation that photochemical internalization increased the transfection by LCO polyplexes considerably, whereas no effect on transfection was found for SBTCO polyplexes.
Collapse
Affiliation(s)
- Zuzana Garaiova
- Department of Physics, The Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Muthukrishnan N, Johnson GA, Lim J, Simanek EE, Pellois JP. TAT-mediated photochemical internalization results in cell killing by causing the release of calcium into the cytosol of cells. Biochim Biophys Acta Gen Subj 2012; 1820:1734-43. [PMID: 22771830 DOI: 10.1016/j.bbagen.2012.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/06/2012] [Accepted: 06/25/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lysis of endocytic organelles is a necessary step in many cellular delivery methodologies. This is achieved efficiently in the photochemical internalization approach but the cell death that accompanies this process remains a problem. METHODS We investigate the mechanisms of cell death that accompanies photochemical internalization of the fluorescent peptide TMR-TAT. RESULTS TMR-TAT kills cells after endocytosis and light irradiation. The lysis of endocytic organelles by TMR-TAT causes a rapid increase in the concentration of calcium in the cytosol. TMR-TAT co-localizes with endocytic organelles containing calcium prior to irradiation and photochemical internalization leads to the release of the lumenal content of these organelles. Ruthenium red and cyclosporin A, inhibitors of calcium import in mitochondria and of the mitochondria permeability transition pore, inhibit cell death. CONCLUSIONS TMR-TAT mediated photochemical internalization leads to a disruption of calcium homeostasis. The subsequent import of calcium in mitochondria is a causative factor of the cell death that accompanies photochemical internalization. General significance Understanding how the lysis of endocytic organelles affects cellular physiology and causes cell death is crucial to the development of optimal delivery methodologies.
Collapse
Affiliation(s)
- Nandhini Muthukrishnan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
26
|
Rodríguez-Muñiz GM, Marin ML, Lhiaubet-Vallet V, Miranda MA. Reactivity of nucleosides with a hydroxyl radical in non-aqueous medium. Chemistry 2012; 18:8024-7. [PMID: 22649034 DOI: 10.1002/chem.201201090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Indexed: 12/27/2022]
Abstract
DNA damage: The reactivity of HO(.) with silylated 2'-deoxyribonucleosides was investigated in acetonitrile by means of a time-resolved technique. The obtained rate constants were in general slightly lower than those reported for the natural nucleosides in water. Analysis of the reaction mixture by UPLC-MS revealed that HO(.) attack occurred at the nucleobase (see scheme).
Collapse
Affiliation(s)
- Gemma M Rodríguez-Muñiz
- Instituto de Tecnología Química UPV-CSIC, Universidad Politécnica de Valencia, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| | | | | | | |
Collapse
|
27
|
Berg K, Nordstrand S, Selbo PK, Tran DTT, Angell-Petersen E, Høgset A. Disulfonated tetraphenyl chlorin (TPCS2a), a novel photosensitizer developed for clinical utilization of photochemical internalization. Photochem Photobiol Sci 2011; 10:1637-51. [DOI: 10.1039/c1pp05128h] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|