1
|
Boychenko S, Egorova VS, Brovin A, Egorov AD. White-to-Beige and Back: Adipocyte Conversion and Transcriptional Reprogramming. Pharmaceuticals (Basel) 2024; 17:790. [PMID: 38931457 PMCID: PMC11206576 DOI: 10.3390/ph17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown. While white adipose tissue functions predominantly as a key energy storage, brown adipose tissue has a greater mass of mitochondria and expresses the uncoupling protein 1 (UCP1) gene, which allows thermogenesis and rapid catabolism. Even though white and brown adipocytes are of different origin, activation of the brown adipocyte differentiation program in white adipose tissue cells forces them to transdifferentiate into "beige" adipocytes, characterized by thermogenesis and intensive lipolysis. Nowadays, researchers in the field of small molecule medicinal chemistry and gene therapy are making efforts to develop new drugs that effectively overcome insulin resistance and counteract obesity. Here, we discuss various aspects of white-to-beige conversion, adipose tissue catabolic re-activation, and non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Vera S. Egorova
- Biotechnology Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia
| | - Andrew Brovin
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| |
Collapse
|
2
|
Ferreira ALL, Freitas-Costa N, da Silva Rosa Freire S, Figueiredo ACC, Padilha M, Alves-Santos NH, Kac G. Association of pre-pregnancy maternal overweight/obesity and dietary intake during pregnancy with the concentrations of persistent organic pollutants in the human milk of women from Rio de Janeiro, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44999-45014. [PMID: 36701066 DOI: 10.1007/s11356-023-25308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Persistent organic pollutants (POPs) are toxic chemical compounds that can bioaccumulate, adhere to lipid matrices, and affect human health. This study aimed to investigate the association between maternal pre-pregnancy overweight/obesity and dietary intake during pregnancy and POP concentrations in the human milk of women from Rio de Janeiro, Brazil. One hundred and forty-seven women were followed from the third trimester of pregnancy until 119 days postpartum, and 77 human milk samples were analyzed between 2 and 119 days postpartum. POP concentrations were analyzed using gas chromatography-triple quadrupole mass spectrometry. Pregnancy dietary intake was estimated using a semi-quantitative food frequency questionnaire, and pre-pregnancy body mass index at baseline was classified as normal or overweight/obesity. Multiple logistic and linear regression models were performed to investigate the association between pre-pregnancy overweight/obesity, dietary intake during pregnancy, and POP concentrations in human milk. The models were adjusted for maternal age, maternal schooling, total cholesterol serum concentrations, and time postpartum. The analyses were corrected for multiple comparisons using the Benjamini-Hochberg test. Significant associations were observed between pre-pregnancy overweight/obesity and dichlorodiphenyldichloroethane (ppDDE), polychlorinated biphenyl (PCB)74, PCB138, PCB153, PCB170, PCB180, total PCBs, total 4PCBs, total 2 organochlorine pesticides (OCPs), and total POP concentrations. Higher daily lipid intake during pregnancy increased human milk hexachlorobenzene (HCB). This study showed that pre-pregnancy overweight/obesity and total lipid intake during pregnancy were associated with POP concentrations in the milk of women from Rio de Janeiro, Brazil. To promote adequate nutritional status since preconception and surveillance and control of POP in the environment could be essential to ensure binomial mother-infant health and biomonitoring studies and programs for these POPs should be stimulated.
Collapse
Affiliation(s)
- Ana Lorena Lima Ferreira
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Avenida Carlos Chagas Filho 373/CCS, Bloco J, 2º Andar, Sala 29, Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Nathalia Freitas-Costa
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Avenida Carlos Chagas Filho 373/CCS, Bloco J, 2º Andar, Sala 29, Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Samary da Silva Rosa Freire
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Avenida Carlos Chagas Filho 373/CCS, Bloco J, 2º Andar, Sala 29, Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Amanda Caroline Cunha Figueiredo
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Avenida Carlos Chagas Filho 373/CCS, Bloco J, 2º Andar, Sala 29, Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Marina Padilha
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Avenida Carlos Chagas Filho 373/CCS, Bloco J, 2º Andar, Sala 29, Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Nadya Helena Alves-Santos
- Faculty of Collective Health, Institute for Health and Biological Studies, Federal University of South and Southeast of Pará, Rodovia BR-230 (Transamazônica), Loteamento Cidade Jardim, Avenida Dos Ipês, S/N.°-Cidade Jardim, Marabá, PA, 68500-000, Brazil
| | - Gilberto Kac
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Avenida Carlos Chagas Filho 373/CCS, Bloco J, 2º Andar, Sala 29, Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
3
|
Mannino GC, Mancuso E, Sbrignadello S, Morettini M, Andreozzi F, Tura A. Chemical Compounds and Ambient Factors Affecting Pancreatic Alpha-Cells Mass and Function: What Evidence? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16489. [PMID: 36554367 PMCID: PMC9778390 DOI: 10.3390/ijerph192416489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
The exposure to different substances present in the environment can affect the ability of the human body to maintain glucose homeostasis. Some review studies summarized the current evidence about the relationships between environment and insulin resistance or beta-cell dysfunction. Instead, no reviews focused on the relationships between the environment and the alpha cell, although in recent years clear indications have emerged for the pivotal role of the alpha cell in glucose regulation. Thus, the aim of this review was to analyze the studies about the effects of chemical, biological, and physical environmental factors on the alpha cell. Notably, we found studies focusing on the effects of different categories of compounds, including air pollutants, compounds of known toxicity present in common objects, pharmacological agents, and compounds possibly present in food, plus studies on the effects of physical factors (mainly heat exposure). However, the overall number of relevant studies was limited, especially when compared to studies related to the environment and insulin sensitivity or beta-cell function. In our opinion, this was likely due to the underestimation of the alpha-cell role in glucose homeostasis, but since such a role has recently emerged with increasing strength, we expect several new studies about the environment and alpha-cell in the near future.
Collapse
Affiliation(s)
- Gaia Chiara Mannino
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Elettra Mancuso
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Andrea Tura
- CNR Institute of Neuroscience, 35127 Padova, Italy
| |
Collapse
|
4
|
Ighalo JO, Rangabhashiyam S, Adeyanju CA, Ogunniyi S, Adeniyi AG, Igwegbe CA. Zeolitic Imidazolate Frameworks (ZIFs) for aqueous phase adsorption – A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Mohammadi P, Rahimifard M, Baeeri M, Abdollahi M, Mostafalou S. Mechanistic assessment of cadmium toxicity in association with the functions of estrogen receptors in the Langerhans islets. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:445-451. [PMID: 31168351 PMCID: PMC6535201 DOI: 10.22038/ijbms.2019.33939.8076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objectives Diabetes is a metabolic disease with an increasing prevalence for which finding new and efficient therapeutic approaches has always been a challenge. Preserving integrity and functionality of pancreatic β-cells as the only source of insulin in the body is such a case. To achieve this goal different cellular targets have been proposed among which pancreatic estrogen receptors have gotten much attention. In this work, we evaluated the integrity and function of islets of Langerhans under the influence of factors known to intervene with estrogen receptors. Cadmium, a toxic heavy metal, has been recently shown to interact with estrogen receptors but its toxicity in the pancreatic islets regarding this mechanism remains unclear. Materials and Methods Isolated islets of Langerhans from the pancreas of rats were grouped and treated with cadmium chloride and also cadmium chloride plus β-estradiol. After 24 hr incubation, parameters of cellular viability, oxidative stress, apoptosis, and insulin secretion were measured . Results The results indicated that cadmium reduced viability of the islets along with an increase in the formation of reactive oxygen species and apoptosis markers, and β-estradiol, in turn, was able to alleviate these disturbances to some extent, implicating the protective role of β-estradiol against pancreatic toxicity of cadmium. Conclusion It can be concluded that modification of estrogen receptors in the endocrine pancreas and especially β-cells may be a promising target to find a new therapeutic strategy for diabetes and even uncovering mechanisms of environmental toxicants that have been known as risk factors of diabetes.
Collapse
Affiliation(s)
- Perham Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Mostafalou
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
6
|
Ramirez-Vargas MA, Flores-Alfaro E, Uriostegui-Acosta M, Alvarez-Fitz P, Parra-Rojas I, Moreno-Godinez ME. Effects of exposure to malathion on blood glucose concentration: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3233-3242. [PMID: 29235025 DOI: 10.1007/s11356-017-0890-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
Exposure to malathion (an organophosphate pesticide widely used around the world) has been associated with alterations in blood glucose concentration in animal models. However, the results are inconsistent. The aim of this meta-analysis was to evaluate whether malathion exposure can disturb the concentrations of blood glucose in exposed rats. We performed a literature search of online databases including PubMed, EBSCO, and Google Scholar and reviewed original articles that analyzed the relation between malathion exposure and glucose levels in animal models. The selection of articles was based on inclusion and exclusion criteria. The database search identified thirty-five possible articles, but only eight fulfilled our inclusion criteria, and these studies were included in the meta-analysis. The effect of malathion on blood glucose concentration showed a non-monotonic dose-response curve. In addition, pooled analysis showed that blood glucose concentrations were 3.3-fold higher in exposed rats than in the control group (95% CI, 2-5; Z = 3.9; p < 0.0001) in a random-effect model. This result suggested that alteration of glucose homeostasis is a possible mechanism of toxicity associated with exposure to malathion.
Collapse
Affiliation(s)
- Marco Antonio Ramirez-Vargas
- Laboratorio De Toxicología y Salud Ambiental, Facultad De Ciencias Químico Biológicas, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, Ciudad Universitaria, 39070, Chilpancingo, Guerrero, Mexico
| | - Eugenia Flores-Alfaro
- Laboratorio De Investigación En Epidemiologia Clínica y Molecular, Facultad De Ciencias Químico Biológicas, Universidad Autónoma De Guerrero, Chilpancingo, Mexico
| | - Mayrut Uriostegui-Acosta
- Laboratorio de Inmunotoxicogenómica, Escuela Superior de Ciencias Naturales, Universidad Autónoma De Guerrero, Chilpancingo, Mexico
| | - Patricia Alvarez-Fitz
- Laboratorio De Toxicología y Salud Ambiental, Facultad De Ciencias Químico Biológicas, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, Ciudad Universitaria, 39070, Chilpancingo, Guerrero, Mexico
| | - Isela Parra-Rojas
- Laboratorio De Investigación En Obesidad y Diabetes, Facultad De Ciencias Químico Biológicas, Universidad Autónoma De Guerrero, Chilpancingo, Mexico
| | - Ma Elena Moreno-Godinez
- Laboratorio De Toxicología y Salud Ambiental, Facultad De Ciencias Químico Biológicas, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, Ciudad Universitaria, 39070, Chilpancingo, Guerrero, Mexico.
| |
Collapse
|
7
|
Wu X, Xie G, Xu X, Wu W, Yang B. Adverse bioeffect of perfluorooctanoic acid on liver metabolic function in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4787-4793. [PMID: 29198028 DOI: 10.1007/s11356-017-0872-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/28/2017] [Indexed: 05/28/2023]
Abstract
Perfluorooctanoic acid (PFOA), a kind of manufactured material, is widely accumulated around environmental system and into wildlife, including human beings. Toxicologically, PFOA induces hepatomegaly (liver enlargement) in the dose- and time-dependent manners. However, biological mechanism of hepatotoxicity warrants to be further investigated. In the present study, mature male mice were exposed to dosed PFOA for 21 days before conducting biochemical tests and immunoassays. As results, decreased fast blood glucose and elevated insulin contents were observed in PFOA-dosed mice. In addition, PFOA-dosed mice resulted in increased liver functional enzymes (GPT, GOT) in serum. And lipid contents (TG, lipoproteins) in serum and liver were changed abnormally. As shown in immunohistochemistry, increased insulin- and poly (ADP-ribose) polymerase (PARP)-positive cells were showed in PFOA-exposed pancreatic tissues. Moreover, CD36-positive cells were increased in PFOA-exposed livers, while ApoB-labeled cells were reduced. Further, immunoblot data showed that hepatocellular fibroblast growth factor 21 (FGF21) in PFOA-exposed liver was down-regulated dose-dependently. Taken together, our preliminary findings demonstrated that PFOA-induced hepatocellular lipotoxicity may be linked to impairing lipid-regulated proteins, as well as inducing insulin expression from pancreatic tissue.
Collapse
Affiliation(s)
- Xinmou Wu
- College of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China, No.22 Shuangyong Road, Nanning, Guangxi, China
| | - Guojie Xie
- Department of Gynecology, Guigang City People's Hospital, The Eight Affiliated Hospital of Guangxi Medical University, Guigang, 537100, People's Republic of China
| | - Xiaoxiao Xu
- Guilin Medical University, Guangxi, Guilin, 541004, People's Republic of China
| | - Wei Wu
- Guilin Medical University, Guangxi, Guilin, 541004, People's Republic of China
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China, No.22 Shuangyong Road, Nanning, Guangxi, China.
| |
Collapse
|
8
|
Wu H, Yu W, Meng F, Mi J, Peng J, Liu J, Zhang X, Hai C, Wang X. Polychlorinated biphenyls-153 induces metabolic dysfunction through activation of ROS/NF-κB signaling via downregulation of HNF1b. Redox Biol 2017; 12:300-310. [PMID: 28285191 PMCID: PMC5345977 DOI: 10.1016/j.redox.2017.02.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 11/26/2022] Open
Abstract
Polychlorinated biphenyls (PCB) is a major type of persistent organic pollutants (POPs) that act as endocrine-disrupting chemicals. In the current study, we examined the mechanism underlying the effect of PCB-153 on glucose and lipid metabolism in vivo and in vitro. We found that PCB-153 induced per se and worsened high fat diet (HFD)-resulted increase of blood glucose level and glucose and insulin intolerance. In addition, PCB-153 induced per se and worsened HFD-resulted increase of triglyceride content and adipose mass. Moreover, PCB-153 concentration-dependently inhibited insulin-dependent glucose uptake and lipid accumulation in cultured hepatocytes and adipocytes. PCB-153 induced the expression and nuclear translocation of p65 NF-κB and the expression of its downstream inflammatory markers, and worsened HFD-resulted increase of those inflammatory markers. Inhibition of NF-κB significantly suppressed PCB-153-induced inflammation, lipid accumulation and decrease of glucose uptake. PCB-153 induced oxidative stress and decreased hepatocyte nuclear factor 1b (HNF1b) and glutathione peroxidase 1 (GPx1) expression in vivo and in vitro. Overexpression of HNF1b increased GPx1 expression, decreased ROS level, decreased Srebp1, ACC and FAS expression, and inhibited PCB-153-resulted oxidative stress, NF-κB-mediated inflammation, and final glucose/lipid metabolic disorder. Our results suggest that dysregulation of HNF1b/ROS/NF-κB plays an important role in PCB-153-induced glucose/lipid metabolic disorder.
Collapse
Affiliation(s)
- Hao Wu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Weihua Yu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Fansen Meng
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jie Mi
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jie Peng
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jiangzheng Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaodi Zhang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
9
|
Mostafalou S, Abdollahi M. Pesticides: an update of human exposure and toxicity. Arch Toxicol 2017; 91:549-599. [PMID: 27722929 DOI: 10.1007/s00204-016-1849-x] [Citation(s) in RCA: 407] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
Abstract
Pesticides are a family of compounds which have brought many benefits to mankind in the agricultural, industrial, and health areas, but their toxicities in both humans and animals have always been a concern. Regardless of acute poisonings which are common for some classes of pesticides like organophosphoruses, the association of chronic and sub-lethal exposure to pesticides with a prevalence of some persistent diseases is going to be a phenomenon to which global attention has been attracted. In this review, incidence of various malignant, neurodegenerative, respiratory, reproductive, developmental, and metabolic diseases in relation to different routes of human exposure to pesticides such as occupational, environmental, residential, parental, maternal, and paternal has been systematically criticized in different categories of pesticide toxicities like carcinogenicity, neurotoxicity, pulmonotoxicity, reproductive toxicity, developmental toxicity, and metabolic toxicity. A huge body of evidence exists on the possible role of pesticide exposures in the elevated incidence of human diseases such as cancers, Alzheimer, Parkinson, amyotrophic lateral sclerosis, asthma, bronchitis, infertility, birth defects, attention deficit hyperactivity disorder, autism, diabetes, and obesity. Most of the disorders are induced by insecticides and herbicides most notably organophosphorus, organochlorines, phenoxyacetic acids, and triazine compounds.
Collapse
Affiliation(s)
- Sara Mostafalou
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Toxicology Interest Group, Universal Scientific Education and Research Network, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Nappi F, Barrea L, Di Somma C, Savanelli MC, Muscogiuri G, Orio F, Savastano S. Endocrine Aspects of Environmental "Obesogen" Pollutants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13080765. [PMID: 27483295 PMCID: PMC4997451 DOI: 10.3390/ijerph13080765] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/11/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022]
Abstract
Growing evidence suggests the causal link between the endocrine-disrupting chemicals (EDCs) and the global obesity epidemics, in the context in the so-called “obesogenic environment”. Dietary intake of contaminated foods and water, especially in association with unhealthy eating pattern, and inhalation of airborne pollutants represent the major sources of human exposure to EDCs. This is of particular concern in view of the potential impact of obesity on chronic non-transmissible diseases, such as type 2 diabetes, cardiovascular disease, and hormone-sensitive cancers. The key concept is the identification of adipose tissue not only as a preferential site of storage of EDCs, but also as an endocrine organ and, as such, susceptible to endocrine disruption. The timing of exposure to EDCs is critical to the outcome of that exposure, with early lifetime exposures (e.g., fetal or early postnatal) particularly detrimental because of their permanent effects on obesity later in life. Despite that the mechanisms operating in EDCs effects might vary enormously, this minireview is aimed to provide a general overview on the possible association between the pandemics of obesity and EDCs, briefly describing the endocrine mechanisms linking EDCs exposure and latent onset of obesity.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Orio
- Department of Sports Science and Wellness, "Parthenope" University of Naples, 80133 Naples, Italy.
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy.
| |
Collapse
|