1
|
Li R, Wang H, Wang X, Yang Y, Zhong K, Zhang X, Li H. MSC-EVs and UCB-EVs promote skin wound healing and spatial transcriptome analysis. Sci Rep 2025; 15:4006. [PMID: 39893214 PMCID: PMC11787299 DOI: 10.1038/s41598-025-87592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
Extracellular vesicles (EVs) are important paracrine mediators derived from various cells and biological fluids, including plasma, that are capable of inducing regenerative effects by transferring bioactive molecules such as microRNAs (miRNAs). This study investigated the effect of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) isolated from umbilical cord blood and human umbilical cord plasma-derived extracellular vesicles (UCB-EVs) on wound healing and scar formation reduction. Spatial transcriptomics (ST) was used to study the effects of MSC-EVs and UCB-EVs on the heterogeneity of major cell types and wound healing pathways in mouse skin tissue. MSC-EVs and UCB-EVs were isolated using ultracentrifugation and identified using transmission electron microscopy, nanoparticle tracking analysis, and western blot. The effects of MSC-EVs and UCB-EVs on human dermal fibroblast-adult cell (HDF-a) migration and proliferation were evaluated using cell scratch assays, cell migration assays, and cell proliferation assays. In vivo, MSC-EVs and UCB-EVs were injected around full-cut wounds to evaluate their efficacy of wound healing by measuring wound closure rates and scar width and performing histological analysis. ST was performed on skin tissue samples from mice in each group after wound healing to analyze the heterogeneity of major cell types compared with the control group and investigate potential mechanisms affecting wound healing and scar formation. In vitro experiments demonstrated that MSC-EVs and UCB-EVs promoted the proliferation and migration of HDF-a cells. Local injection of MSC-EVs and UCB-EVs into the periphery of a mouse skin wound accelerated re-epithelialization, promoted wound healing, and reduced scar width. ST analysis of skin tissue from each group after wound healing revealed that MSC-EVs and UCB-EVs reduced the relative expression of marker genes in myofibroblasts, regulated wound healing, and decreased scar formation by reducing the expression of the TGF-β signaling pathway and increasing the expression of the Wnt signaling pathway. The results suggest that MSC-EVs and UCB-EVs play a significant role in the activity of cord blood plasma-derived mesenchymal stem cells and cord blood plasma. They can be considered promising new agents for promoting skin wound healing.
Collapse
Affiliation(s)
- Ruonan Li
- Key Laboratory of Animal Biochemistry and Nutrition of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Haotian Wang
- Key Laboratory of Animal Biochemistry and Nutrition of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Xiaolong Wang
- HenanYinfeng Biological Engineering Technology Co., LTD, No. 11 Changchun Road, Zhengzhou High tech Industrial Development Zone, Zhengzhou, 450000, China
| | - Yanbin Yang
- Key Laboratory of Animal Biochemistry and Nutrition of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Kai Zhong
- Key Laboratory of Animal Biochemistry and Nutrition of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China.
| | - Xuemei Zhang
- HenanYinfeng Biological Engineering Technology Co., LTD, No. 11 Changchun Road, Zhengzhou High tech Industrial Development Zone, Zhengzhou, 450000, China.
| | - Heping Li
- Key Laboratory of Animal Biochemistry and Nutrition of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Sarvari M, Alavi-Moghadam S, Aghayan HR, Tayanloo-Beik A, Payab M, Tootee A, Sajjadi-Jazi SM, Larijani B, Arjmand B. Stem cells researches and therapies towards endocrine diseases treatment; strategies, challenges, and opportunities. J Diabetes Metab Disord 2024; 23:1461-1467. [PMID: 39610510 PMCID: PMC11599503 DOI: 10.1007/s40200-020-00674-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Due to the limitations of organ transplantation and the urgent need for treatment of chronic diseases, the benefit of stem cells for treatment has been studied and evaluated as an effective approach worldwide. One of the leading countries in this field is Iran. In this respect, several research and treatment institutes, including endocrinology and metabolism research institute are active in the use of stem cells in Iran. Herein, the aim is to review strategies, challenges, and opportunities for stem cell research and treatment in endocrinology and metabolism research institute.
Collapse
Affiliation(s)
- Masoumeh Sarvari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Tootee
- Diabetes Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Borowiec BM, Dyszkiewicz-Konwińska M, Bukowska D, Nowicki M, Budna-Tukan J. Small Extracellular Vesicles and Oral Mucosa: The Power Couple in Regenerative Therapies? Cells 2024; 13:1514. [PMID: 39329698 PMCID: PMC11429515 DOI: 10.3390/cells13181514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Although ongoing debates persist over the scope of phenomena classified as regenerative processes, the most up-to-date definition of regeneration is the replacement or restoration of damaged or missing cells, tissues, organs, or body parts to full functionality. Despite extensive research on this topic, new methods in regenerative medicine are continually sought, and existing ones are being improved. Small extracellular vesicles (sEVs) have gained attention for their regenerative potential, as evidenced by existing studies conducted by independent research groups. Of particular interest are sEVs derived from the oral mucosa, a tissue renowned for its rapid regeneration and minimal scarring. While the individual regenerative potential of both sEVs and the oral mucosa is somewhat understood, the combined potential of sEVs derived from the oral mucosa has not been sufficiently explored and highlighted in the existing literature. Serving as a broad compendium, it aims to provide scientists with essential and detailed information on this subject, including the nature of the materials employed, isolation and analysis methodologies, and clinical applications. The content of this survey aims to facilitate the comparison of diverse methods for working with sEVs derived from the oral mucosa, aiding in the planning of research endeavors and identifying potential research gaps.
Collapse
Affiliation(s)
- Blanka Maria Borowiec
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | | | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
4
|
Rodrigues GM, de Almeida ME, Marcelino SAC, Fernandes PBU, da Cruz JOP, Araújo FL, Ferreira RDS, Botelho AFM, Bedoya FJ, Cahuana GM, Hitos AB, Soria B, Costal-Oliveira F, Duarte CG, Tejedo JR, Chávez-Olórtegui C, Melo MM. Protective effects of mesenchymal stromal cell-derived secretome on dermonecrosis induced in rabbits by Loxosceles intermedia spider venom. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20240004. [PMID: 39069986 PMCID: PMC11276892 DOI: 10.1590/1678-9199-jvatitd-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Background Loxoscelism refers to a set of clinical manifestations caused by the bite of spiders from the Loxosceles genus. The classic clinical symptoms are characterized by an intense inflammatory reaction at the bite site followed by local necrosis and can be classified as cutaneous loxoscelism. This cutaneous form presents difficult healing, and the proposed treatments are not specific or effective. This study aimed to evaluate the protective effect of mesenchymal stromal cells-derived secretome on dermonecrosis induced by Loxosceles intermedia spider venom in rabbits. Methods Sixteen rabbits were distributed into four groups (n = 4). Except for group 1 (G1), which received only PBS, the other three groups (G2, G3, and G4) were initially challenged with 10 μg of L. intermedia venom, diluted in 100 μL of NaCl 0.9%, by intradermic injection in the interscapular region. Thirty minutes after the challenge all groups were treated with secretome, except for group 2. Group 1 (G1-control group) received intradermal injection (ID) of 60 μg of secretome in 0.15 M PBS; Group 2 (G2) received 0.9% NaCl via ID; Group 3 (G3) received 60 μg of secretome, via ID and Group 4 (G4), received 60 μg of secretome by intravenous route. Rabbits were evaluated daily and after 15 days were euthanized, necropsied and skin samples around the necrotic lesions were collected for histological analysis. Results Rabbits of G1 did not present edema, erythema, hemorrhagic halo, or necrosis. In animals from G2, G3, and G4, edema appeared after 6h. However, minor edema was observed in the animals of G2 and G3. Hemorrhagic halo was observed in animals, six hours and three days after, on G2, G3, and G4. Macroscopically, in G4, only one animal out of four had a lesion that evolved into a dermonecrotic wound. No changes were observed in the skin of the animals of G1, by microscopic evaluation. All animals challenged with L. intermedia venom showed similar alterations, such as necrosis and heterophilic infiltration. However, animals from G4 showed fibroblast activation, early development of connective tissue, neovascularization, and tissue re-epithelialization, indicating a more prominent healing process. Conclusion These results suggest that secretome from mesenchymal stromal cells cultured in a xeno-free and human component-free culture media can be promising to treat dermonecrosis caused after Loxosceles spiders bite envenoming.
Collapse
Affiliation(s)
- Gabriela Marques Rodrigues
- Department of Veterinary Clinic and Surgery, Veterinary College,
Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Mara Elvira de Almeida
- Department of Veterinary Clinic and Surgery, Veterinary College,
Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Sóstenes Apolo Correia Marcelino
- Department of Veterinary Clinic and Surgery, Veterinary College,
Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Paula Bretas Ullmann Fernandes
- Department of Veterinary Clinic and Surgery, Veterinary College,
Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Jessica Oliveira Pereira da Cruz
- Department of Veterinary Clinic and Surgery, Veterinary College,
Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Françoise Louanne Araújo
- Department of Veterinary Clinic and Surgery, Veterinary College,
Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Raquel da Silva Ferreira
- Department of Veterinary Clinic and Surgery, Veterinary College,
Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ana Flávia Machado Botelho
- Department of Veterinary Clinic and Surgery, Veterinary College,
Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Francisco Javier Bedoya
- Department of Molecular Biology and Biochemical Engineering,
Universidad Pablo de Olavide, Seville, Spain
- Biomedical Research Network for Diabetes and Related Metabolic
Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Gladys Margot Cahuana
- Department of Molecular Biology and Biochemical Engineering,
Universidad Pablo de Olavide, Seville, Spain
- Biomedical Research Network for Diabetes and Related Metabolic
Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Hitos
- Institute of Bioengineering and Institute of Biomedical Research
ISABIAL, University Miguel Hernández de Elche, Alicante, Spain
| | - Bernat Soria
- Biomedical Research Network for Diabetes and Related Metabolic
Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Bioengineering and Institute of Biomedical Research
ISABIAL, University Miguel Hernández de Elche, Alicante, Spain
| | - Fernanda Costal-Oliveira
- Department of Biochemistry and Immunology, Institute of Biological
Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG,
Brazil
| | | | - Juan R. Tejedo
- Department of Molecular Biology and Biochemical Engineering,
Universidad Pablo de Olavide, Seville, Spain
- Biomedical Research Network for Diabetes and Related Metabolic
Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Tropical Diseases, Universidad Nacional Toribio
Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Carlos Chávez-Olórtegui
- Department of Biochemistry and Immunology, Institute of Biological
Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG,
Brazil
| | - Marília Martins Melo
- Department of Veterinary Clinic and Surgery, Veterinary College,
Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
5
|
Wang T, Xue Y, Zhang W, Zheng Z, Peng X, Zhou Y. Collagen sponge scaffolds loaded with Trichostatin A pretreated BMSCs-derived exosomes regulate macrophage polarization to promote skin wound healing. Int J Biol Macromol 2024; 269:131948. [PMID: 38688338 DOI: 10.1016/j.ijbiomac.2024.131948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The process of wound healing includes the inflammatory stage, which plays an important role. Macrophages can promote inflammatory response and also promote angiogenesis, wound contraction and tissue remodeling required for wound healing. It is crucial to promote macrophages to polarize from M1 pro-inflammatory phenotype to M2 anti-inflammatory phenotype at a critical time for the quality of wound healing. Because mesenchymal stem cell-derived exosomes have broad therapeutic prospects in the field of tissue repair and regeneration, in this study, we explored whether trichostatin A pretreated bone marrow mesenchymal stem cells (BMSCs)-derived exosomes (T-Exo) could promote wound healing by binding to biomaterial scaffolds through certain anti-inflammatory effects. In the cell experiment, we established macrophage inflammation model and then treated with T-Exo, and finally detected the expression levels of macrophage polarization proteins CD206, CD86 and TNF-α, iNOS, and Arg-1 by Western Blot and immunofluorescence staining; detected the expression levels of inflammation-related genes TNF-α, iNOS, IL-1β, IL-10 and anti-inflammatory genes CD206 and Arg-1 by qRT-PCR; explored the promoting ability of T-Exo to promote cell migration and tube formation by cell scratch experiment and angiogenesis experiment. The results showed that T-Exo could promote the polarization of M1 macrophages to M2 macrophages, and promote the migration and angiogenesis of HUVECs. Because TSA pretreatment may bring about changes in the content and function of BMSCs-derived exosomes, proteomic analysis was performed on T-Exo and unpretreated BMSCs-derived exosomes (Exo). The results showed that the differentially expressed proteins in T-Exo were related to some pathways that promote angiogenesis, cell migration, proliferation, and re-epithelialization. Then, exosome/collagen sponge (T-Exo/Col) biological scaffolds were prepared, and the physicochemical properties and biocompatibility of the scaffolds were investigated. Animal skin wound models were established, and the therapeutic effect and anti-inflammatory effect of T-Exo/Col in wound repair were evaluated by small animal in vivo imaging, H&E staining, Masson trichrome staining, immunohistochemical staining, Western Blot, and qRT-PCR. The results showed that T-Exo significantly promoted wound healing by inhibiting inflammation, thereby further promoting angiogenesis and collagen formation in vivo. Moreover, the existence of Col scaffold in T-Exo/Col enabled T-Exo to achieve a certain sustained release effect. Finally, we further explored whether TSA exerts beneficial effects by inhibiting HDAC6 gene of BMSCs, but the results showed that knockdown of HDAC6 gene would cause oxidative stress damage to BMSCs, which means that TSA does not produce these beneficial effects by inhibiting HDAC6 gene. What molecular mechanisms TSA exerts beneficial effects through needs to be further elucidated in the future.
Collapse
Affiliation(s)
- Tingyu Wang
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
| | - Yuanye Xue
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
| | - Wenwen Zhang
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
| | - Zetai Zheng
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Institute of Marine Medicine, Guangdong Medical University, Zhanjiang 524023, China.
| | - Yanfang Zhou
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
6
|
He Y, Cen Y, Tian M. Immunomodulatory hydrogels for skin wound healing: cellular targets and design strategy. J Mater Chem B 2024; 12:2435-2458. [PMID: 38284157 DOI: 10.1039/d3tb02626d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Skin wounds significantly impact the global health care system and represent a significant burden on the economy and society due to their complicated dynamic healing processes, wherein a series of immune events are required to coordinate normal and sequential healing phases, involving multiple immunoregulatory cells such as neutrophils, macrophages, keratinocytes, and fibroblasts, since dysfunction of these cells may impede skin wound healing presenting persisting inflammation, impaired vascularization, and excessive collagen deposition. Therefore, cellular target-based immunomodulation is promising to promote wound healing as cells are the smallest unit of life in immune response. Recently, immunomodulatory hydrogels have become an attractive avenue to promote skin wound healing. However, a detailed and comprehensive review of cellular targets and related hydrogel design strategies remains lacking. In this review, the roles of the main immunoregulatory cells participating in skin wound healing are first discussed, and then we highlight the cellular targets and state-of-the-art design strategies for immunomodulatory hydrogels based on immunoregulatory cells that cover defect, infected, diabetic, burn and tumor wounds and related scar healing. Finally, we discuss the barriers that need to be addressed and future prospects to boost the development and prosperity of immunomodulatory hydrogels.
Collapse
Affiliation(s)
- Yinhai He
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Cen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Tian
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Cheng B, Song X, Yin L, Lin J, Liu Z, Zhu Y, Wu H. HMOX1-overexpressing mesenchymal stem cell-derived exosomes facilitate diabetic wound healing by promoting angiogenesis and fibroblast function. Biochem Biophys Res Commun 2024; 690:149271. [PMID: 38006802 DOI: 10.1016/j.bbrc.2023.149271] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Many scholars have suggested that exosomes (Exos) can carry active molecules to induce angiogenesis and thus accelerate diabetic wound healing. Heme oxygenase-1 (HO-1) encoded by the gene HMOX1 promotes wound healing in DM by enhancing angiogenesis. Nevertheless, whether HMOX1 regulates wound healing in DM through mesenchymal stem cell-derived exosomes (MSC-Exos) remains to be further explored. The primary isolated- and cultured-cells expressed MSC-specific marker proteins, and had low immunogenicity and multi-differentiation potential, which means that MSCs were successfully isolated in this study. Notably, HO-1 protein expression was significantly higher in Exo-HMOX1 than in Exos, indicating that HMOX1 could be delivered to Exos as an MSCs-secreted protein. After verifying the -Exo structure, fibroblasts, keratinocytes, and human umbilical vein endothelial cells (HUVECs) were incubated with Exo-HMOX1 or Exo, and the findings displayed that Exo-HMOX1 introduction promoted the proliferation and migration of fibroblasts, keratinocytes and the angiogenic ability of HUVECs in vitro study. After establishing diabetic wound model mice, PBS, Exo, and Exo-HMOX1 were subcutaneously injected into multiple sites on the 1st, 3rd, 7th, and 14th day, DM injected with Exo-HMOX1 showed faster wound healing, re-epithelialization, collagen deposition, and angiogenesis than those in PBS and Exo groups in vitro study. In summary, Exo-HMOX1 could enhance the activity of fibroblasts, keratinocytes, and HUVEC, and accelerate wound healing by promoting angiogenesis in DM.
Collapse
Affiliation(s)
- Bomin Cheng
- Chinese Medicine Health Management Center, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| | - Xiaorong Song
- Chinese Medicine Health Management Center, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| | - Lin Yin
- Thyroid Gland Breast Surgery, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| | - Jiwei Lin
- Chinese Medicine Health Management Center, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| | - Zhuochao Liu
- Chinese Medicine Health Management Center, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| | - Yanping Zhu
- Chinese Medicine Health Management Center, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| | - Haibin Wu
- Chinese Medicine Health Management Center, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| |
Collapse
|
8
|
Arjmand B, Alavi-Moghadam S, Kokabi-Hamidpour S, Arjmand R, Rezaei-Tavirani M, Larijani B. Preparation and Validation of Zebrafish Psoriasis Model to Investigate the Therapeutic Effects of Stem Cells. Methods Mol Biol 2024; 2849:227-238. [PMID: 37801254 DOI: 10.1007/7651_2023_505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Psoriasis is a chronic, inflammatory, autoimmune disease with systemic symptoms including seborrheic psoriasis, pustular lesions, plaque lesions, intestinal eruptions, and sometimes arthritis. Moreover, most of the psoriatic subjects report life challenges due to the condition, impacting social activities and daily tasks. Generally, psoriasis treatment options depend on the severity, coexisting conditions, and medical availability. Although psoriasis therapies reduce symptoms and appearance, still it is not curable. Hereupon, searching for optimal therapeutic options continues. Accordingly, stem cell therapy is considered an advanced psoriasis treatment. Subsequently, stem cell therapies' efficacy is uncertain yet. Therefore, further studies are needed. In this context, preclinical studies such as animal experiments are essential for evaluation of treatment modalities. Herein, zebrafish offer advantages in testing treatments and biomedical research applications compared to other vertebrate models. Further, zebrafish skin shares similarities with human skin, making it suitable for studying inflammatory disorders. Hence, the authors discuss the zebrafish psoriasis development method for evaluating the stem cell therapeutic influence.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Arjmand B, Bahrami-Vahdat E, Alavi-Moghadam S, Arjmand R, Rezaei-Tavirani M, Namazi N, Larijani B. Human-Induced Pluripotent Stem Cell‒Derived Keratinocytes, as Therapeutic Option in Vitiligo. Methods Mol Biol 2024; 2849:185-202. [PMID: 38189899 DOI: 10.1007/7651_2023_510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Vitiligo is a skin condition affecting 1% of the global population, causing non-scaly, chalky-white macules on the skin and hair. It is caused by the pathologic destruction of melanocytes, which produce melanin. Research has focused on the abnormalities of melanocytes and their interaction with neighboring keratinocytes. Current treatments are mainly immunosuppressive drugs and UV radiation, which are scarce and ineffective. To treat vitiligo, regenerative medicine techniques, such as cell-based and cell-free methods, are recommended. Keratinocyte cell transplantation has shown promising results in treating vitiligo. Moreover, studies suggest individualized therapy for diseases can be provided by reprogramming somatic cells into induced pluripotent stem cells. On the other hand, differentiation into particular cell types is a key component of induced pluripotent stem cells-based treatment. In this chapter, the differentiation and validation of human induced pluripotent stem cells into a keratinocyte as a therapeutic option in vitiligo will be discussed.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| |
Collapse
|
10
|
Shi R, Zhan A, Li X, Kong B, Liang G. Biomimetic extracellular vesicles for the tumor targeted treatment. ENGINEERED REGENERATION 2023; 4:427-437. [DOI: 10.1016/j.engreg.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
11
|
Hodge JG, Robinson JL, Mellott AJ. Mesenchymal Stem Cell Extracellular Vesicles from Tissue-Mimetic System Enhance Epidermal Regeneration via Formation of Migratory Cell Sheets. Tissue Eng Regen Med 2023; 20:993-1013. [PMID: 37515738 PMCID: PMC10519905 DOI: 10.1007/s13770-023-00565-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND The secretome of adipose-derived mesenchymal stem cells (ASCs) offers a unique approach to understanding and treating wounds, including the critical process of epidermal regeneration orchestrated by keratinocytes. However, 2D culture techniques drastically alter the secretory dynamics of ASCs, which has led to ambiguity in understanding which secreted compounds (e.g., growth factors, exosomes, reactive oxygen species) may be driving epithelialization. METHODS A novel tissue-mimetic 3D hydrogel system was utilized to enhance the retainment of a more regenerative ASC phenotype and highlight the functional secretome differences between 2D and 3D. Subsequently, the ASC-secretome was stratified by molecular weight and the presence/absence of extracellular vesicles (EVs). The ASC-secretome fractions were then evaluated to assess for the capacity to augment specific keratinocyte activities. RESULTS Culture of ASCs within the tissue-mimetic system enhanced protein secretion ~ 50%, exclusively coming from the > 100 kDa fraction. The ASC-secretome ability to modulate epithelialization functions, including migration, proliferation, differentiation, and morphology, resided within the "> 100 kDa" fraction, with the 3D ASC-secretome providing the greatest improvement. 3D ASC EV secretion was enhanced two-fold and exhibited dose-dependent effects on epidermal regeneration. Notably, ASC-EVs induced morphological changes in keratinocytes reminiscent of native regeneration, including formation of stratified cell sheets. However, only 3D-EVs promoted collective cell sheet migration and an epithelial-to-mesenchymal-like transition in keratinocytes, whereas 2D-EVs contained an anti-migratory stimulus. CONCLUSION This study demonstrates how critical the culture environment is on influencing ASC-secretome regenerative capabilities. Additionally, the critical role of EVs in modulating epidermal regeneration is revealed and their translatability for future clinical therapies is discussed.
Collapse
Affiliation(s)
- Jacob G Hodge
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
- Department of Plastic Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd., Mail Stop: 3051, Kansas City, KS, USA
| | - Jennifer L Robinson
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Adam J Mellott
- Department of Plastic Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd., Mail Stop: 3051, Kansas City, KS, USA.
- Ronawk Inc., Olathe, KS, USA.
| |
Collapse
|
12
|
Qin X, He J, Wang X, Wang J, Yang R, Chen X. The functions and clinical application potential of exosomes derived from mesenchymal stem cells on wound repair: a review of recent research advances. Front Immunol 2023; 14:1256687. [PMID: 37691943 PMCID: PMC10486026 DOI: 10.3389/fimmu.2023.1256687] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Wound repair is a complex problem for both clinical practitioners and scientific investigators. Conventional approaches to wound repair have been associated with several limitations, including prolonged treatment duration, high treatment expenses, and significant economic and psychological strain on patients. Consequently, there is a pressing demand for more efficacious and secure treatment modalities to enhance the existing treatment landscapes. In the field of wound repair, cell-free therapy, particularly the use of mesenchymal stem cell-derived exosomes (MSC-Exos), has made notable advancements in recent years. Exosomes, which are small lipid bilayer vesicles discharged by MSCs, harbor bioactive constituents such as proteins, lipids, microRNA (miRNA), and messenger RNA (mRNA). These constituents facilitate material transfer and information exchange between the cells, thereby regulating their biological functions. This article presents a comprehensive survey of the function and mechanisms of MSC-Exos in the context of wound healing, emphasizing their beneficial impact on each phase of the process, including the regulation of the immune response, inhibition of inflammation, promotion of angiogenesis, advancement of cell proliferation and migration, and reduction of scar formation.
Collapse
Affiliation(s)
- Xinchi Qin
- Zunyi Medical University, Zunyi, China
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Jia He
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Xiaoxiang Wang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jingru Wang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Xiaodong Chen
- Zunyi Medical University, Zunyi, China
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| |
Collapse
|
13
|
Ding JY, Chen MJ, Wu LF, Shu GF, Fang SJ, Li ZY, Chu XR, Li XK, Wang ZG, Ji JS. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges. Mil Med Res 2023; 10:36. [PMID: 37587531 PMCID: PMC10433599 DOI: 10.1186/s40779-023-00472-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023] Open
Abstract
Skin wounds are characterized by injury to the skin due to trauma, tearing, cuts, or contusions. As such injuries are common to all human groups, they may at times represent a serious socioeconomic burden. Currently, increasing numbers of studies have focused on the role of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in skin wound repair. As a cell-free therapy, MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy. Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures, including the regeneration of vessels, nerves, and hair follicles. In addition, MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization, wound angiogenesis, cell proliferation, and cell migration, and by inhibiting excessive extracellular matrix production. Additionally, these structures can serve as a scaffold for components used in wound repair, and they can be developed into bioengineered EVs to support trauma repair. Through the formulation of standardized culture, isolation, purification, and drug delivery strategies, exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair. In conclusion, MSC-derived EVs-based therapies have important application prospects in wound repair. Here we provide a comprehensive overview of their current status, application potential, and associated drawbacks.
Collapse
Affiliation(s)
- Jia-Yi Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Min-Jiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ling-Feng Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Gao-Feng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Shi-Ji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China
| | - Zhao-Yu Li
- Department of Overseas Education College, Jimei University, Xiamen, 361021, Fujian, China
| | - Xu-Ran Chu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Medicine II, Internal Medicine, Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392, Giessen, Germany
- Pulmonary and Critical Care, Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Xiao-Kun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Zhou-Guang Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, 323000, Lishui, China.
- Clinical College of the Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
14
|
Nie W, Huang X, Zhao L, Wang T, Zhang D, Xu T, Du L, Li Y, Zhang W, Xiao F, Wang L. Exosomal miR-17-92 derived from human mesenchymal stem cells promotes wound healing by enhancing angiogenesis and inhibiting endothelial cell ferroptosis. Tissue Cell 2023; 83:102124. [PMID: 37269748 DOI: 10.1016/j.tice.2023.102124] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Wound healing is a complex and dynamic process that involves a series of cellular and molecular events. Mesenchymal stem cells (MSCs) and their exosomes (MSC-Exos) have crucial functions in cutaneous wound healing. MiR-17-92 is a multifunctional microRNA (miRNA) cluster that plays vital roles in tissue development and tumor angiogenesis. This study aimed to explore the function of miR-17.92 in wound healing as a component of MSC-Exos. METHODS Human MSCs were cultured in serum-free medium, and exosomes were collected by ultracentrifugation. The levels of miR-17-92 in MSCs and MSC-Exos were determined by quantitative real-time polymerase chain reaction. MSC-Exos were topically applied to full-thickness excision wounds in the skin of miR-17-92 knockout (KO) and wild-type (WT) mice. The proangiogenic and antiferroptotic effects of MSC-Exos overexpressing miR-17-92 were assayed by evaluating the relative levels of angiogenic and ferroptotic markers. RESULTS MiRNA-17-92 was found to be highly expressed in MSCs and enriched in MSC-Exos. Moreover, MSC-Exos promoted the proliferation and migration of human umbilical vein endothelial cells in vitro. KO of miR-17-92 effectively attenuated the promotion of wound healing by MSC-Exos. Furthermore, exosomes derived from miR-17-92-overexpressing human umbilical cord-derived MSCs accelerated cell proliferation, migration, angiogenesis, and enhanced against erastin-induced ferroptosis in vitro. miR-17-92 plays a key role in the protective effects of MSC-Exos against erastin-induced ferroptosis in HUVECs CONCLUSION: These findings suggest that miR-17-92 participates in the repair ability of MSC-Exos and that miR-17-92-overexpressing exosomes may represent a new strategy for cutaneous wound repair.
Collapse
Affiliation(s)
- Wenbo Nie
- Laboratory Management Office, Jilin University, Changchun, Jilin 130021, PR China; Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Xuemiao Huang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Lijing Zhao
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Taiwei Wang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Dan Zhang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Tianxin Xu
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Lin Du
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China
| | - Yuxiang Li
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China; Department of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliate Hospital of Qingdao University, Qingdao 266000, PR China
| | - Weiyuan Zhang
- Department of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, the Affiliate Hospital of Qingdao University, Qingdao 266000, PR China
| | - Fengjun Xiao
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Lisheng Wang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, Jilin 130021, PR China; Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
15
|
Masalova OV, Lesnova EI, Kalsin VA, Klimova RR, Fedorova NE, Kozlov VV, Demidova NA, Yurlov KI, Konoplyannikov MA, Nikolaeva TN, Pronin AV, Baklaushev VP, Kushch AA. Human Mesenchymal Stem Cells Modified with the NS5A Gene of Hepatitis C Virus Induce a Cellular Immune Response Exceeding the Response to DNA Immunization with This Gene. BIOLOGY 2023; 12:792. [PMID: 37372076 PMCID: PMC10295215 DOI: 10.3390/biology12060792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023]
Abstract
Hepatitis C virus (HCV) is one of the basic culprits behind chronic liver disease, which may result in cirrhosis and hepatocarcinoma. In spite of the extensive research conducted, a vaccine against HCV has not been yet created. We have obtained human mesenchymal stem cells (hMSCs) and used them for expressing the HCV NS5A protein as a model vaccination platform. Sixteen hMSC lines of a different origin were transfected with the pcNS5A-GFP plasmid to obtain genetically modified MSCs (mMSCs). The highest efficiency was obtained by the transfection of dental pulp MSCs. C57BL/6 mice were immunized intravenously with mMSCs, and the immune response was compared with the response to the pcNS5A-GFP plasmid, which was injected intramuscularly. It was shown that the antigen-specific lymphocyte proliferation and the number of IFN-γ-synthesizing cells were two to three times higher after the mMSC immunization compared to the DNA immunization. In addition, mMSCs induced more CD4+ memory T cells and an increase in the CD4+/CD8+ ratio. The results suggest that the immunostimulatory effect of mMSCs is associated with the switch of MSCs to the pro-inflammatory phenotype and a decrease in the proportion of myeloid derived suppressor cells. Thus, the possibility of using human mMSCs for the creation of a vaccine against HCV has been shown for the first time.
Collapse
Affiliation(s)
- Olga V. Masalova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Ekaterina I. Lesnova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Vladimir A. Kalsin
- Federal Research Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency of the Russian Federation, 115682 Moscow, Russia; (V.A.K.); (M.A.K.); (V.P.B.)
| | - Regina R. Klimova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Natalya E. Fedorova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Vyacheslav V. Kozlov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Natalya A. Demidova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Kirill I. Yurlov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Mikhail A. Konoplyannikov
- Federal Research Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency of the Russian Federation, 115682 Moscow, Russia; (V.A.K.); (M.A.K.); (V.P.B.)
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Tatyana N. Nikolaeva
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Alexander V. Pronin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| | - Vladimir P. Baklaushev
- Federal Research Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency of the Russian Federation, 115682 Moscow, Russia; (V.A.K.); (M.A.K.); (V.P.B.)
| | - Alla A. Kushch
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (N.E.F.); (V.V.K.); (N.A.D.); (K.I.Y.); (T.N.N.); (A.V.P.); (A.A.K.)
| |
Collapse
|
16
|
Jiang M, Jiang X, Li H, Zhang C, Zhang Z, Wu C, Zhang J, Hu J, Zhang J. The role of mesenchymal stem cell-derived EVs in diabetic wound healing. Front Immunol 2023; 14:1136098. [PMID: 36926346 PMCID: PMC10011107 DOI: 10.3389/fimmu.2023.1136098] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Diabetic foot is one of the most common complications of diabetes, requiring repeated surgical interventions and leading to amputation. In the absence of effective drugs, new treatments need to be explored. Previous studies have found that stem cell transplantation can promote the healing of chronic diabetic wounds. However, safety issues have limited the clinical application of this technique. Recently, the performance of mesenchymal stem cells after transplantation has been increasingly attributed to their production of exocrine functional derivatives such as extracellular vesicles (EVs), cytokines, and cell-conditioned media. EVs contain a variety of cellular molecules, including RNA, DNA and proteins, which facilitate the exchange of information between cells. EVs have several advantages over parental stem cells, including a high safety profile, no immune response, fewer ethical concerns, and a reduced likelihood of embolism formation and carcinogenesis. In this paper, we summarize the current knowledge of mesenchymal stem cell-derived EVs in accelerating diabetic wound healing, as well as their potential clinic applications.
Collapse
Affiliation(s)
- Min Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongmei Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Can Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Junhui Zhang
- Department of Geriatic Oncology, Department of Palliative Care, Department of Clinical Nutrition, Chongqing University Cancer Hospital, Chongqing, China.,Endocrinology Department, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiongyu Hu
- Endocrinology Department, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
17
|
Clément V, Roy V, Paré B, Goulet CR, Deschênes LT, Berthod F, Bolduc S, Gros-Louis F. Tridimensional cell culture of dermal fibroblasts promotes exosome-mediated secretion of extracellular matrix proteins. Sci Rep 2022; 12:19786. [PMID: 36396670 PMCID: PMC9672399 DOI: 10.1038/s41598-022-23433-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Extracellular matrix (ECM) secretion, deposition and assembly are part of a whole complex biological process influencing the microenvironment and other cellular behaviors. Emerging evidence is attributing a significant role to extracellular vesicles (EVs) and exosomes in a plethora of ECM-associated functions, but the role of dermal fibroblast-derived EVs in paracrine signalling is yet unclear. Herein, we investigated the effect of exosomes isolated from stimulated human dermal fibroblasts. We report that tridimensional (3D) cell culture of dermal fibroblasts promotes secretion of exosomes carrying a large quantity of proteins involved in the formation, organisation and remodelling of the ECM. In our 3D model, gene expression was highly modulated and linked to ECM, cellular migration and proliferation, as well as inflammatory response. Mass spectrometry analysis of exosomal proteins, isolated from 3D cultured fibroblast-conditioned media, revealed ECM protein enrichment, of which many were associated with the matrisome. We also show that the cytokine interleukin 6 (IL-6) is predicted to be central to the signalling pathways related to ECM formation and contributing to cell migration and proliferation. Overall, our data suggest that dermal fibroblast-derived EVs participate in many steps of the establishment of dermis's ECM.
Collapse
Affiliation(s)
- Vincent Clément
- grid.23856.3a0000 0004 1936 8390Department of Surgery, Faculty of Medicine, Laval University, Québec, QC Canada ,grid.23856.3a0000 0004 1936 8390Division of Regenerative Medicine, Laval University Experimental Organogenesis Research Center/LOEX, CHU de Québec Research Center – Enfant-Jésus Hospital, Québec, QC Canada
| | - Vincent Roy
- grid.23856.3a0000 0004 1936 8390Department of Surgery, Faculty of Medicine, Laval University, Québec, QC Canada ,grid.23856.3a0000 0004 1936 8390Division of Regenerative Medicine, Laval University Experimental Organogenesis Research Center/LOEX, CHU de Québec Research Center – Enfant-Jésus Hospital, Québec, QC Canada
| | - Bastien Paré
- grid.23856.3a0000 0004 1936 8390Department of Surgery, Faculty of Medicine, Laval University, Québec, QC Canada ,grid.23856.3a0000 0004 1936 8390Division of Regenerative Medicine, Laval University Experimental Organogenesis Research Center/LOEX, CHU de Québec Research Center – Enfant-Jésus Hospital, Québec, QC Canada
| | - Cassandra R. Goulet
- grid.23856.3a0000 0004 1936 8390Department of Surgery, Faculty of Medicine, Laval University, Québec, QC Canada ,grid.23856.3a0000 0004 1936 8390Division of Regenerative Medicine, Laval University Experimental Organogenesis Research Center/LOEX, CHU de Québec Research Center – Enfant-Jésus Hospital, Québec, QC Canada
| | - Lydia Touzel Deschênes
- grid.23856.3a0000 0004 1936 8390Department of Surgery, Faculty of Medicine, Laval University, Québec, QC Canada ,grid.23856.3a0000 0004 1936 8390Division of Regenerative Medicine, Laval University Experimental Organogenesis Research Center/LOEX, CHU de Québec Research Center – Enfant-Jésus Hospital, Québec, QC Canada
| | - François Berthod
- grid.23856.3a0000 0004 1936 8390Department of Surgery, Faculty of Medicine, Laval University, Québec, QC Canada ,grid.23856.3a0000 0004 1936 8390Division of Regenerative Medicine, Laval University Experimental Organogenesis Research Center/LOEX, CHU de Québec Research Center – Enfant-Jésus Hospital, Québec, QC Canada
| | - Stéphane Bolduc
- grid.23856.3a0000 0004 1936 8390Department of Surgery, Faculty of Medicine, Laval University, Québec, QC Canada ,grid.23856.3a0000 0004 1936 8390Division of Regenerative Medicine, Laval University Experimental Organogenesis Research Center/LOEX, CHU de Québec Research Center – Enfant-Jésus Hospital, Québec, QC Canada
| | - François Gros-Louis
- grid.23856.3a0000 0004 1936 8390Department of Surgery, Faculty of Medicine, Laval University, Québec, QC Canada ,grid.23856.3a0000 0004 1936 8390Division of Regenerative Medicine, Laval University Experimental Organogenesis Research Center/LOEX, CHU de Québec Research Center – Enfant-Jésus Hospital, Québec, QC Canada
| |
Collapse
|
18
|
Azaryan E, Karbasi S, Zarban A, Naseri M. Cell-free therapy based on stem cell-derived exosomes: A promising approach for wound healing. Wound Repair Regen 2022; 30:585-594. [PMID: 35927607 DOI: 10.1111/wrr.13043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
There are several successive and overlapping phases in wound healing as a complex process. By the disruption of each of these phases, chronic non-healing wounds are resultant. Despite the present soothing surgeries, standard wound dressings and topical gels, the wound is often not completely closed. Today, stem cells have attracted a huge deal of attention therapeutically and pharmaceutically considering their unique features. However, they have some restrictions. Moreover, it is hoped to eliminate the limitations of cellular therapies based on their derivatives known as exosomes. Exosomes are extracellular vesicles secreted from cells. They have a diameter of almost 30-150 nm and miRNAs, mRNAs, and proteins that are possibly different from the source cell are included in exosomal contents. Such nanovesicles have a key role in the intercellular communication of pathological and physiological procedures. Exosome-based therapy is a new significant method for wound healing. By exosomes effects, wound management may be improved and a new therapeutic model may be highlighted for cell-free therapies with reduced side effects for the wound repair.
Collapse
Affiliation(s)
- Ehsaneh Azaryan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Samira Karbasi
- Department of Molecular Medicine, School of Medicine, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Asghar Zarban
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Clinical Biochemistry Department, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
19
|
Lv H, Liu H, Sun T, Wang H, Zhang X, Xu W. Exosome derived from stem cell: A promising therapeutics for wound healing. Front Pharmacol 2022; 13:957771. [PMID: 36003496 PMCID: PMC9395204 DOI: 10.3389/fphar.2022.957771] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
A wound occurs when the epidermis and dermis of the skin are damaged internally and externally. The traditional wound healing method is unsatisfactory, which will prolong the treatment time and increase the treatment cost, which brings economic and psychological burdens to patients. Therefore, there is an urgent need for a new method to accelerate wound healing. As a cell-free therapy, exosome derived from stem cell (EdSC) offers new possibilities for wound healing. EdSC is the smallest extracellular vesicle secreted by stem cells with diameters of 30-150 nm and a lipid bilayer structure. Previous studies have found that EdSC can participate in and promote almost all stages of wound healing, including regulating inflammatory cells; improving activation of fibroblasts, keratinocytes, and endothelial cells; and adjusting the ratio of collagen Ⅰ and Ⅲ. We reviewed the relevant knowledge of wounds; summarized the biogenesis, isolation, and identification of exosomes; and clarified the pharmacological role of exosomes in promoting wound healing. This review provides knowledge support for the pharmacological study of exosomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Xu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
20
|
Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells 2022; 11:cells11152439. [PMID: 35954282 PMCID: PMC9367945 DOI: 10.3390/cells11152439] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Wound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients’ quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management. The clinical assessment and management of chronic wounds remains challenging despite the development of various therapeutic regimens owing to its painstakingly long-term treatment requirement and complex wound healing mechanism. Various conventional approaches such as cell therapy, gene therapy, growth factor delivery, wound dressings, and skin grafts etc., are being utilized for promoting wound healing in different types of wounds. However, all these abovementioned therapies are not satisfactory for all wound types, therefore, there is an urgent demand for the development of competitive therapies. Therefore, there is a pertinent requirement to develop newer and innovative treatment modalities for multipart therapeutic regimens for chronic wounds. Recent developments in advanced wound care technology includes nanotherapeutics, stem cells therapy, bioengineered skin grafts, and 3D bioprinting-based strategies for improving therapeutic outcomes with a focus on skin regeneration with minimal side effects. The main objective of this review is to provide an updated overview of progress in therapeutic options in chronic wounds healing and management over the years using next generation innovative approaches. Herein, we have discussed the skin function and anatomy, wounds and wound healing processes, followed by conventional treatment modalities for wound healing and skin regeneration. Furthermore, various emerging and innovative strategies for promoting quality wound healing such as nanotherapeutics, stem cells therapy, 3D bioprinted skin, extracellular matrix-based approaches, platelet-rich plasma-based approaches, and cold plasma treatment therapy have been discussed with their benefits and shortcomings. Finally, challenges of these innovative strategies are reviewed with a note on future prospects.
Collapse
|
21
|
Exosomes from human adipose-derived mesenchymal stromal/stem cells accelerate angiogenesis in wound healing: implication of the EGR-1/lncRNA-SENCR/DKC1/VEGF-A axis. Hum Cell 2022; 35:1375-1390. [PMID: 35751795 DOI: 10.1007/s13577-022-00732-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/30/2022] [Indexed: 11/04/2022]
Abstract
Exosomes (Exos) extracted from human adipose mesenchymal stromal/stem cells (hAD-MSCs) have been reported as therapeutic tools for tissue repair, but how they regulate angiogenesis of endothelial cells remains unknown. In this study, hAD-MSCs were isolated, and early growth response factor-1, Smooth muscle and endothelial cell enriched migration/differentiation-associated long-noncoding RNA (lncRNA-SENCR), and vascular endothelial growth factor-A (VEGF-A) overexpression or knockdown was achieved. Exos extracted from hAD-MSCs (hADSC-Exos) were co-cultured with human umbilical vein endothelial cells (HUVECs) to detect the effects of EGR-1, lncRNA-SENCR, and VEGF-A on angiogenesis and the relationships between EGR-1, lncRNA-SENCR, Dyskerin pseudouridine synthase 1 (DKC1), and VEGF-A. An in vivo experiment verified the effect of hADSC-Exos on the wound healing process. hADSC-Exos substantially promoted the proliferation, migration, and angiogenesis of HUVECs, which could be reversed by short-hairpin RNA SENCR (shSENCR) transfection. hADSC-Exos had elevated expression of EGR-1, which bound to the lncRNA-SENCR promoter. The suppressive effect of Exo-shEGR1 on HUVECs was counteracted by SENCR overexpression. LncRNA-SENCR was shown to interact with DKC1. Overexpression of DKC1 or lncRNA-SENCR maintained stable VEGF-A expression. Overexpression of VEGF-A reversed the suppressive effect of shSENCR on HUVECs. Consistent results were obtained in mice in vivo. Overall, hADSC-Exo EGR-1 upregulates lncRNA-SENCR expression to activate the DKC1/VEGF-A axis, facilitating the wound-healing process by increasing angiogenesis.
Collapse
|
22
|
Knight R, Board-Davies E, Brown H, Clayton A, Davis T, Karatas B, Burston J, Tabi Z, Falcon-Perez JM, Paisey S, Stephens P. Oral Progenitor Cell Line-Derived Small Extracellular Vesicles as a Treatment for Preferential Wound Healing Outcome. Stem Cells Transl Med 2022; 11:861-875. [PMID: 35716044 PMCID: PMC9397654 DOI: 10.1093/stcltm/szac037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/28/2022] [Indexed: 12/11/2022] Open
Abstract
Scar formation during wound repair can be devastating for affected individuals. Our group previously documented the therapeutic potential of novel progenitor cell populations from the non-scarring buccal mucosa. These Oral Mucosa Lamina Propria-Progenitor Cells (OMLP-PCs) are multipotent, immunosuppressive, and antibacterial. Small extracellular vesicles (sEVs) may play important roles in stem cell-mediated repair in varied settings; hence, we investigated sEVs from this source for wound repair. We created an hTERT immortalized OMLP-PC line (OMLP-PCL) and confirmed retention of morphology, lineage plasticity, surface markers, and functional properties. sEVs isolated from OMLP-PCL were analyzed by nanoparticle tracking analysis, Cryo-EM and flow cytometry. Compared to bone marrow-derived mesenchymal stromal cells (BM-MSC) sEVs, OMLP-PCL sEVs were more potent at driving wound healing functions, including cell proliferation and wound repopulation and downregulated myofibroblast formation. A reduced scarring potential was further demonstrated in a preclinical in vivo model. Manipulation of OMLP-PCL sEVs may provide novel options for non-scarring wound healing in clinical settings.
Collapse
Affiliation(s)
- Rob Knight
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK,Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,PETIC, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Emma Board-Davies
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK,Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK
| | - Helen Brown
- Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK,Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK
| | - Aled Clayton
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Terence Davis
- PETIC, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Ben Karatas
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - James Burston
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK,Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Zsuzsanna Tabi
- PETIC, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Juan M Falcon-Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain,Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain,IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Stephen Paisey
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, Wales, UK,PETIC, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Phil Stephens
- Corresponding author: Phil Stephens, Regenerative Biology Group, Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, CF14 4XY, Wales, UK.
| |
Collapse
|
23
|
HucMSC-derived exosomes delivered BECN1 induces ferroptosis of hepatic stellate cells via regulating the xCT/GPX4 axis. Cell Death Dis 2022; 13:319. [PMID: 35395830 PMCID: PMC8993870 DOI: 10.1038/s41419-022-04764-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
Activated hepatic stellate cells (HSCs) are significant in liver fibrosis. Our past investigations have shown that human umbilical cord mesenchymal stem cells (hucMSCs) and their secreted exosomes (MSC-ex) could alleviate liver fibrosis via restraining HSCs activation. However, the mechanisms underlying the efficacy were not clear. Ferroptosis is a regulatory cell death caused by excessive lipid peroxidation, and it plays a vital role in the occurrence and development of liver fibrosis. In the present study, we aimed to study the proferroptosis effect and mechanism of MSC-ex in HSCs. MSC-ex were collected and purified from human umbilical cord MSCs. Proferroptosis effect of MSC-ex was examined in HSCs line LX-2 and CCl4 induced liver fibrosis in mice. Gene knockdown or overexpression approaches were used to investigate the biofactors in MSC-ex-mediated ferroptosis regulation. Results: MSC-ex could trigger HSCs ferroptosis by promoting ferroptosis-like cell death, ROS formation, mitochondrial dysfunction, Fe2+ release, and lipid peroxidation in human HSCs line LX-2. Glutathione peroxidase 4 (GPX4) is a crucial regulator of ferroptosis. We found that intravenous injection of MSC-ex significantly decreased glutathione peroxidase 4 (GPX4) expression in activated HSCs and collagen deposition in experimental mouse fibrotic livers. Mechanistically, MSC-ex derived BECN1 promoted HSCs ferroptosis by suppressing xCT-driven GPX4 expression. In addition, ferritinophagy and necroptosis might also play a role in MSC-ex-promoted LX-2 cell death. Knockdown of BECN1 in MSC diminished proferroptosis and anti-fibrosis effects of MSC-ex in LX-2 and fibrotic livers. MSC-ex may promote xCT/GPX4 mediated HSCs ferroptosis through the delivery of BECN1 and highlights BECN1 as a potential biofactor for alleviating liver fibrosis.
Collapse
|
24
|
Wan R, Hussain A, Behfar A, Moran SL, Zhao C. The Therapeutic Potential of Exosomes in Soft Tissue Repair and Regeneration. Int J Mol Sci 2022; 23:ijms23073869. [PMID: 35409228 PMCID: PMC8998690 DOI: 10.3390/ijms23073869] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Soft tissue defects are common following trauma and tumor extirpation. These injuries can result in poor functional recovery and lead to a diminished quality of life. The healing of skin and muscle is a complex process that, at present, leads to incomplete recovery and scarring. Regenerative medicine may offer the opportunity to improve the healing process and functional outcomes. Barriers to regenerative strategies have included cost, regulatory hurdles, and the need for cell-based therapies. In recent years, exosomes, or extracellular vesicles, have gained tremendous attention in the field of soft tissue repair and regeneration. These nanosized extracellular particles (30-140 nm) can break the cellular boundaries, as well as facilitate intracellular signal delivery in various regenerative physiologic and pathologic processes. Existing studies have established the potential of exosomes in regenerating tendons, skeletal muscles, and peripheral nerves through different mechanisms, including promoting myogenesis, increasing tenocyte differentiation and enhancing neurite outgrowth, and the proliferation of Schwann cells. These exosomes can be stored for immediate use in the operating room, and can be produced cost efficiently. In this article, we critically review the current advances of exosomes in soft tissue (tendons, skeletal muscles, and peripheral nerves) healing. Additionally, new directions for clinical applications in the future will be discussed.
Collapse
Affiliation(s)
- Rou Wan
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Arif Hussain
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven L. Moran
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (R.W.); (A.H.); (S.L.M.)
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| |
Collapse
|
25
|
Wang P, Theocharidis G, Vlachos IS, Kounas K, Lobao A, Shu B, Wu B, Xie J, Hu Z, Qi S, Tang B, Zhu J, Veves A. Exosomes Derived from Epidermal Stem Cells Improve Diabetic Wound Healing. J Invest Dermatol 2022; 142:2508-2517.e13. [PMID: 35181300 DOI: 10.1016/j.jid.2022.01.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
Diabetic foot ulceration is a major diabetic complication with unmet needs. We investigated the efficacy of epidermal stem cells (ESCs) and ESCs-derived exosomes (ESCs-Exo) in improving impaired diabetic wound healing and their mechanisms of action. In vitro experiments showed that ESCs-Exo enhanced the proliferation and migration of diabetic fibroblasts and macrophages (Mφ), and promoted alternative or M2 Mφ polarization. In wounds of db/db mice, treatment with both ESCs and ESCs-Exo, when compared to fibroblast exosomes (FB-Exo) and PBS control, accelerated wound healing by decreasing inflammation, augmenting wound cell proliferation, stimulating angiogenesis and inducing M2 Mφ polarization. Multiplex protein quantification of wound lysates revealed TGFβ signaling influenced by ESCs-Exo. High-throughput sequencing of small RNAs contained in the ESCs-Exo showed higher proportions of miRNAs when compared to FB-Exo. In silico functional analysis demonstrated that the ESCs-Exo-miRNAs target genes were primarily involved in homeostatic processes and cell differentiation and highlighted regulatory control of PI3K/AKT and TGFβ signaling pathways. This was also validated in vitro. Collectively, our results indicate that ESCs and ESCs-Exo are equally effective in promoting impaired diabetic wound healing and that ESCs-Exo treatment may be a promising and technically advantageous alternative to stem cell therapies.
Collapse
Affiliation(s)
- Peng Wang
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics; Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics
| | - Ioannis S Vlachos
- Cancer Research Institute
- HMS Initiative for RNA Medicine
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Konstantinos Kounas
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics
| | - Antonio Lobao
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics
| | - Bin Shu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Biaoliang Wu
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics
| | - Julin Xie
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhicheng Hu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaohai Qi
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bing Tang
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiayuan Zhu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics.
| |
Collapse
|
26
|
Han G, Kim H, Kim DE, Ahn Y, Kim J, Jang YJ, Kim K, Yang Y, Kim SH. The Potential of Bovine Colostrum-Derived Exosomes to Repair Aged and Damaged Skin Cells. Pharmaceutics 2022; 14:pharmaceutics14020307. [PMID: 35214040 PMCID: PMC8877896 DOI: 10.3390/pharmaceutics14020307] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, we examined the potentially beneficial effects of bovine colostrum-derived exosomes on UV-induced aging and damage in three major resident skin cells including keratinocytes, melanocytes, and fibroblasts. The treatment with colostrum exosomes prevented the UV-induced generation of intracellular reactive oxygen species in epidermal keratinocytes. In UV-stimulated melanocytes, colostrum exosomes could also significantly reduce the production of the protective skin-darkening pigment melanin, which may help to reduce the risk of excessive melanin formation causing skin hyperpigmentation disorders. In the human dermal fibroblasts treated with colostrum exosomes, the expression of matrix metalloproteinases was suppressed, whereas increased cell proliferation was accompanied by enhanced production of collagen, a major extracellular matrix component of skin. Taken together, our findings indicate that bovine colostrum-derived exosomes having excellent structural and functional stability offer great potential as natural therapeutic agents to repair UV-irradiated skin aging and damage.
Collapse
Affiliation(s)
- Geonhee Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seoul 02841, Korea; (G.H.); (K.K.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seoul 02792, Korea; (H.K.); (D.E.K.)
| | - Hyosuk Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seoul 02792, Korea; (H.K.); (D.E.K.)
| | - Da Eun Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seoul 02792, Korea; (H.K.); (D.E.K.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Yeonjoo Ahn
- Dayone Clinic, Seoul 06612, Korea; (Y.A.); (J.K.)
| | - Joongsoo Kim
- Dayone Clinic, Seoul 06612, Korea; (Y.A.); (J.K.)
| | | | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seoul 02841, Korea; (G.H.); (K.K.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seoul 02792, Korea; (H.K.); (D.E.K.)
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seoul 02792, Korea; (H.K.); (D.E.K.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Correspondence: (Y.Y.); (S.H.K.); Tel.: +82-2-958-6639 (S.H.K.); Fax: +82-2-958-5909 (S.H.K.)
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seoul 02792, Korea; (H.K.); (D.E.K.)
- Correspondence: (Y.Y.); (S.H.K.); Tel.: +82-2-958-6639 (S.H.K.); Fax: +82-2-958-5909 (S.H.K.)
| |
Collapse
|
27
|
Golchin A, Shams F, Basiri A, Ranjbarvan P, Kiani S, Sarkhosh-Inanlou R, Ardeshirylajimi A, Gholizadeh-Ghaleh Aziz S, Sadigh S, Rasmi Y. Combination Therapy of Stem Cell-derived Exosomes and Biomaterials in the Wound Healing. Stem Cell Rev Rep 2022; 18:1892-1911. [PMID: 35080745 DOI: 10.1007/s12015-021-10309-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
Wound healing is a serious obstacle due to the complexity of evaluation and management. While novel approaches to promoting chronic wound healing are of critical interest at the moment, several studies have demonstrated that combination therapy is critical for the treatment of a variety of diseases, particularly chronic wounds. Among the various approaches that have been proposed for wound care, regenerative medicine-based methods have garnered the most attention. As is well known, regenerative medicine's three primary tools are gene/cell therapy, biomaterials, and tissue engineering. Multifunctional biomaterials composed of synthetic and natural components are highly advantageous for exosome carriers, which utilizing them is an exciting wound healing method. Recently, stem cell-secreted exosomes and certain biomaterials have been identified as critical components of the wound healing process, and their combination therapy appears to produce significant results. This paper presents a review of literature and perspectives on the use of stem cell-derived exosomes and biomaterials in wound healing, particularly chronic wounds, and discusses the possibility of future clinical applications.
Collapse
Affiliation(s)
- Ali Golchin
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in MedicineShahid, Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arefeh Basiri
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parviz Ranjbarvan
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Roya Sarkhosh-Inanlou
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Shiva Gholizadeh-Ghaleh Aziz
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sanaz Sadigh
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
28
|
The Fingerprints of Biomedical Science in Internal Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:173-189. [DOI: 10.1007/5584_2022_729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Shen C, Tao C, Zhang A, Li X, Guo Y, Wei H, Yin Q, Li Q, Jin P. Exosomal microRNA⁃93⁃3p secreted by bone marrow mesenchymal stem cells downregulates apoptotic peptidase activating factor 1 to promote wound healing. Bioengineered 2021; 13:27-37. [PMID: 34898374 PMCID: PMC8805970 DOI: 10.1080/21655979.2021.1997077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Wounds are soft tissue injuries, which are difficult to heal and can easily lead to other skin diseases. Bone marrow mesenchymal stem cells (BMSCs) and the secreted exosomes play a key role in skin wound healing. This study aims to clarify the effects and mechanisms of exosomes derived from BMSCs in wound healing. Exosomes were extracted from the supernatant of the BMSCs. The expression of the micro-RNA miR-93-3p was determined by qRT-PCR analysis. HaCaT cells were exposed to hydrogen peroxide (H2O2) to establish a skin lesion model. MTT, flow cytometry, and transwell assays were conducted to determine cellular functions. The binding relationship between miR-93-3p and apoptotic peptidase activating factor 1 (APAF1) was measured using a dual luciferase reporter gene assay. The results showed that BMSC-derived exosomes or BMSC-exos promoted proliferation and migration and suppressed apoptosis in HaCaT cells damaged by H2O2. However, the depletion of miR-93-3p in BMSC-exos antagonized the effects of BMSC-exos on HaCaT cells. In addition, APAF1 was identified as a target of miR-93-3p. Overexpression of APAF1 induced the dysfunction of HaCaT cells. Collectively, the results indicate that BMSC-derived exosomes promote skin wound healing via the miR-93-3p/APAF1 axis. This finding may help establish a new therapeutic strategy for skin wound healing.
Collapse
Affiliation(s)
- Caiqi Shen
- Plastic Surgery Department, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Changbo Tao
- Plastic Surgery Department, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Aijun Zhang
- Plastic Surgery Department, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Xueyang Li
- Plastic Surgery Department, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Yanping Guo
- Plastic Surgery Department, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Hanxiao Wei
- Plastic Surgery Department, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Qichuan Yin
- Plastic Surgery Department, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| | - Qiang Li
- Plastic Surgery Department, Affiliated Hospital of Xuzhou Medical University, Huaihai Xi Lu, Quanshan District, Xuzhou, Jiangsu Province, China
| | - Peisheng Jin
- Plastic Surgery Department, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, China
| |
Collapse
|
30
|
Shimizu Y, Takeda-Kawaguchi T, Kuroda I, Hotta Y, Kawasaki H, Hariyama T, Shibata T, Akao Y, Kunisada T, Tatsumi J, Tezuka KI. Exosomes from dental pulp cells attenuate bone loss in mouse experimental periodontitis. J Periodontal Res 2021; 57:162-172. [PMID: 34826339 DOI: 10.1111/jre.12949] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Exosomes are small vesicles secreted from many cell types. Their biological effects largely depend on their cellular origin and the physiological state of the originating cells. Exosomes secreted by mesenchymal stem cells exert therapeutic effects against multiple diseases and may serve as potential alternatives to stem cell therapies. We previously established and characterized human leukocyte antigen (HLA) haplotype homo (HHH) dental pulp cell (DPC) lines from human wisdom teeth. In this study, we aimed to investigate the effect of local administration of HHH-DPC exosomes in a mouse model of periodontitis. METHODS Exosomes purified from HHH-DPCs were subjected to particle size analysis, and expression of exosome markers was confirmed by western blotting. We also confirmed the effect of exosomes on the migration of both HHH-DPCs and mouse osteoblastic MC3T3-E1 cells. A mouse experimental periodontitis model was used to evaluate the effect of exosomes in vivo. The morphology of alveolar bone was assessed by micro-computed tomography (μCT) and histological analysis. The effect of exosomes on osteoclastogenesis was evaluated using a co-culture system. RESULTS The exosomes purified from HHH-DPCs were homogeneous and had a spherical membrane structure. HHH-DPC exosomes promoted the migration of both human DPCs and mouse osteoblastic cells. The MTT assay showed a positive effect on the proliferation of human DPCs, but not on mouse osteoblastic cells. Treatment with HHH-DPC exosomes did not alter the differentiation of osteoblastic cells. Imaging with µCT revealed that the exosomes suppressed alveolar bone resorption in the mouse model of periodontitis. Although no change was apparent in the dominance of TRAP-positive osteoclast-like cells in decalcified tissue sections upon exosome treatment, HHH-DPC exosomes significantly suppressed osteoclast formation in vitro. CONCLUSIONS HHH-DPC exosomes stimulated the migration of human DPCs and mouse osteoblastic cells and effectively attenuated bone loss due to periodontitis.
Collapse
Affiliation(s)
- Yuta Shimizu
- Division of Oral Infections and Health Sciences, Department of Periodontology, Asahi University School of Dentistry, Gifu, Japan
| | - Tomoko Takeda-Kawaguchi
- Department of Oral Maxillofacial Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Izumi Kuroda
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yasuaki Hotta
- Central Research Institute of Oral Science, Asahi University School of Dentistry, Gifu, Japan
| | - Hideya Kawasaki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Toshiyuki Shibata
- Department of Oral Maxillofacial Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Takahiro Kunisada
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junichi Tatsumi
- Division of Oral Infections and Health Sciences, Department of Periodontology, Asahi University School of Dentistry, Gifu, Japan
| | - Ken-Ichi Tezuka
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu, Japan
| |
Collapse
|
31
|
Wang Y, Xu X, Chen X, Li J. Multifunctional Biomedical Materials Derived from Biological Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107406. [PMID: 34739155 DOI: 10.1002/adma.202107406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/24/2021] [Indexed: 02/06/2023]
Abstract
The delicate structure and fantastic functions of biological membranes are the successful evolutionary results of a long-term natural selection process. Their excellent biocompatibility and biofunctionality are widely utilized to construct multifunctional biomedical materials mainly by directly camouflaging materials with single or mixed biological membranes, decorating or incorporating materials with membrane-derived vesicles (e.g., exosomes), and designing multifunctional materials with the structure/functions of biological membranes. Here, the structure-function relationship of some important biological membranes and biomimetic membranes are discussed, such as various cell membranes, extracellular vesicles, and membranes from bacteria and organelles. Selected literature examples of multifunctional biomaterials derived from biological membranes for biomedical applications, such as drug- and gene-delivery systems, tissue-repair scaffolds, bioimaging, biosensors, and biological detection, are also highlighted. These designed materials show excellent properties, such as long circulation time, disease-targeted therapy, excellent biocompatibility, and selective recognition. Finally, perspectives and challenges associated with the clinical applications of biological-membrane-derived materials are discussed.
Collapse
Affiliation(s)
- Yuemin Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Xinyuan Xu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Xingyu Chen
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
- College of Medicine Southwest Jiaotong University Chengdu 610003 China
| | - Jianshu Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Med‐X Center for Materials Sichuan University Chengdu 610041 China
| |
Collapse
|
32
|
Potential for Stem Cell-Based Therapy in the Road of Treatment for Neurological Disorders Secondary to COVID-19. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021; 8:355-369. [PMID: 34746370 PMCID: PMC8555723 DOI: 10.1007/s40883-021-00234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022]
Abstract
Abstract
The severe acute respiratory syndrome coronavirus 2 has led to the worldwide pandemic named coronavirus disease 2019 (COVID-19). It has caused a significant increase in the number of cases and mortalities since its first diagnosis in December 2019. Although COVID-19 primarily affects the respiratory system, neurological involvement of the central and peripheral nervous system has been also reported. Herein, the higher risk of neurodegenerative diseases in COVID-19 patients in future is also imaginable. Neurological complications of COVID-19 infection are more commonly seen in severely ill individuals; but, earlier diagnosis and treatment can lead to better long-lasting results. In this respect, stem cell biotechnologies with considerable self-renewal and differentiation capacities have experienced great progress in the field of neurological disorders whether in finding out their underlying processes or proving them promising therapeutic approaches. Herein, many neurological disorders have been found to benefit from stem cell medicine strategies. Accordingly, in the present review, the authors are trying to discuss stem cell-based biotechnologies as promising therapeutic options for neurological disorders secondary to COVID-19 infection through reviewing neurological manifestations of COVID-19 and current stem cell-based biotechnologies for neurological disorders. Lay Summary Due to the substantial burden of neurological disorders in the health, economic, and social system of society, the emergence of neurological manifestations following COVID-19 (as a life-threatening pandemic) creates the need to use efficient and modern methods of treatment. Since stem cell-based methods have been efficient for a large number of neurological diseases, it seems that the use of mentioned methods is also effective in the process of improving neurological disorders caused by COVID-19. Hereupon, the current review aims to address stem cell-based approaches as treatments showing promise to neurological disorders related to COVID-19.
Collapse
|
33
|
Patel N, Kommineni N, Surapaneni SK, Kalvala A, Yaun X, Gebeyehu A, Arthur P, Duke LC, York SB, Bagde A, Meckes DG, Singh M. Cannabidiol loaded extracellular vesicles sensitize triple-negative breast cancer to doxorubicin in both in-vitro and in vivo models. Int J Pharm 2021; 607:120943. [PMID: 34324983 PMCID: PMC8528640 DOI: 10.1016/j.ijpharm.2021.120943] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022]
Abstract
Extracellular Vesicles (EVs) were isolated from human umbilical cord mesenchymal stem cells (hUCMSCs) and were further encapsulated with cannabidiol (CBD) through sonication method (CBD EVs). CBD EVs displayed an average particle size of 114.1 ± 1.02 nm, zeta potential of -30.26 ± 0.12 mV, entrapment efficiency of 92.3 ± 2.21% and stability for several months at 4 °C. CBD release from the EVs was observed as 50.74 ± 2.44% and 53.99 ± 1.4% at pH 6.8 and pH 7.4, respectively after 48 h. Our in-vitro studies demonstrated that CBD either alone or in EVs form significantly sensitized MDA-MB-231 cells to doxorubicin (DOX) (*P < 0.05). Flow cytometry and migration studies revealed that CBD EVs either alone or in combination with DOX induced G1 phase cell cycle arrest and decreased migration of MDA-MB-231 cells, respectively. CBD EVs and DOX combination significantly reduced tumor burden (***P < 0.001) in MDA-MB-231 xenograft tumor model. Western blotting and immunocytochemical analysis demonstrated that CBD EVs and DOX combination decreased the expression of proteins involved in inflammation, metastasis and increased the expression of proteins involved in apoptosis. CBD EVs and DOX combination will have profound clinical significance in not only decreasing the side effects but also increasing the therapeutic efficacy of DOX in TNBC.
Collapse
Affiliation(s)
- Nilkumar Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Anil Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Xuegang Yaun
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, USA; The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Aragaw Gebeyehu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Leanne C Duke
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, USA
| | - Sara B York
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, USA
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA.
| |
Collapse
|
34
|
Looking at time dependent differentiation of mesenchymal stem cells by culture media using MALDI-TOF-MS. Cell Tissue Bank 2021; 23:653-668. [PMID: 34545506 DOI: 10.1007/s10561-021-09963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells which are popular in human regenerative medicine. These cells can renew themselves and differentiate into several specialized cell types including osteoblasts, adipocytes, and chondrocytes under physiological and experimental conditions. MSCs can secret a lot of components including proteins and metabolites. These components have significant effects on their surrounding cells and also can be used to characterize them. This characterization of multipotent MSCs plays a critical role in their therapeutic potential. The metabolic profile of culture media verified by applying matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS) techniques. Also, the differentiation and development of MSCs have monitored through culture media metabolome or secretome (secreted metabolites). Totally, 24 potential metabolites were identified. Between them 12 metabolites are unique to BM-MSCs and 5 metabolites are unique to AD-MSCs. Trilineage differentiation including chondrocytes, osteoblasts, and adipocytes, as well as metabolites that are being differentiated, have been shown in different weeks. In the present study, the therapeutic effects of MSCs analyzed by decoding the metabolome for MSCs secretome via metabolic profiling using MALDI-TOF-MS techniques.
Collapse
|
35
|
Opportunities and Challenges in Stem Cell Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1341:143-175. [PMID: 33748933 DOI: 10.1007/5584_2021_624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Studying aging, as a physiological process that can cause various pathological phenotypes, has attracted lots of attention due to its increasing burden and prevalence. Therefore, understanding its mechanism to find novel therapeutic alternatives for age-related disorders such as neurodegenerative and cardiovascular diseases is essential. Stem cell senescence plays an important role in aging. In the context of the underlying pathways, mitochondrial dysfunction, epigenetic and genetic alterations, and other mechanisms have been studied and as a consequence, several rejuvenation strategies targeting these mechanisms like pharmaceutical interventions, genetic modification, and cellular reprogramming have been proposed. On the other hand, since stem cells have great potential for disease modeling, they have been useful for representing aging and its associated disorders. Accordingly, the main mechanisms of senescence in stem cells and promising ways of rejuvenation, along with some examples of stem cell models for aging are introduced and discussed. This review aims to prepare a comprehensive summary of the findings by focusing on the most recent ones to shine a light on this area of research.
Collapse
|
36
|
Wu SC, Kuo PJ, Rau CS, Huang LH, Lin CW, Wu YC, Wu CJ, Tsai CW, Hsieh TM, Liu HT, Huang CY, Hsieh CH. Increased Angiogenesis by Exosomes Secreted by Adipose-Derived Stem Cells upon Lipopolysaccharide Stimulation. Int J Mol Sci 2021; 22:8877. [PMID: 34445582 PMCID: PMC8396299 DOI: 10.3390/ijms22168877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Exosomes secreted by adipose-derived stem cells (ADSCs) enhance angiogenesis and wound healing. However, in clinical settings, wounds may be infected by various bacteria or pathogens. We investigated whether human ADSCs stimulated with lipopolysaccharide (LPS) secrete exosomes (ADSC-LPS-exo) that augment the angiogenesis of human umbilical vein endothelial cells (HUVECs). ExoQuick-TC exosome precipitation solution was used to purify exosomes from human ADSC culture media in the presence or absence of 1 µg/mL LPS treatment for 24 h. The uptake of ADSC-LPS-exo significantly induced the activation of cAMP response element binding protein (CREB), activating protein 1 (AP-1), and nuclear factor-κB (NF-κB) signaling pathways and increased the migration of and tube formation in HUVECs. RNA interference with CREB, AP-1, or NF-κB1 significantly reduced the migration of and tube formation in HUVECs treated with ADSC-LPS-exo. An experiment with an antibody array for 25 angiogenesis-related proteins revealed that only interleukin-8 expression was significantly upregulated in HUVECs treated with ADSC-LPS-exo. In addition, proteomic analysis revealed that eukaryotic translation initiation factor 4E, amyloid beta A4 protein, integrin beta-1, and ras-related C3 botulinum toxin substrate 1 may be potential candidates involved in ADSC-LPS-exo-mediated enhanced angiogenesis.
Collapse
Affiliation(s)
- Shao-Chun Wu
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan;
| | - Pao-Jen Kuo
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (C.-S.R.); (L.-H.H.)
| | - Lien-Hung Huang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (C.-S.R.); (L.-H.H.)
| | - Chia-Wei Lin
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Yi-Chan Wu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Chia-Jung Wu
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Chia-Wen Tsai
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Ting-Min Hsieh
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (T.-M.H.); (H.-T.L.)
| | - Hang-Tsung Liu
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (T.-M.H.); (H.-T.L.)
| | - Chun-Ying Huang
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (T.-M.H.); (H.-T.L.)
| | - Ching-Hua Hsieh
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kahosiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
37
|
Extracellular Vesicles in Skin Wound Healing. Pharmaceuticals (Basel) 2021; 14:ph14080811. [PMID: 34451909 PMCID: PMC8400229 DOI: 10.3390/ph14080811] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Each year, millions of individuals suffer from a non-healing wound, abnormal scarring, or injuries accompanied by an infection. For these cases, scientists are searching for new therapeutic interventions, from which one of the most promising is the use of extracellular vesicles (EVs). Naturally, EV-based signaling takes part in all four wound healing phases: hemostasis, inflammation, proliferation, and remodeling. Such an extensive involvement of EVs suggests exploiting their action to modulate the impaired healing phase. Furthermore, next to their natural wound healing capacity, EVs can be engineered for better defined pharmaceutical purposes, such as carrying specific cargo or targeting specific destinations by labelling them with certain surface proteins. This review aims to promote scientific awareness in basic and translational research of EVs by summarizing the current knowledge about their natural role in each stage of skin repair and the most recent findings in application areas, such as wound healing, skin regeneration, and treatment of dermal diseases, including the stem cell-derived, plant-derived, and engineered EVs.
Collapse
|
38
|
Lim KM, Dayem AA, Choi Y, Lee Y, An J, Gil M, Lee S, Kwak HJ, Vellingirl B, Shin HJ, Cho SG. High Therapeutic and Esthetic Properties of Extracellular Vesicles Produced from the Stem Cells and Their Spheroids Cultured from Ocular Surgery-Derived Waste Orbicularis Oculi Muscle Tissues. Antioxidants (Basel) 2021; 10:antiox10081292. [PMID: 34439540 PMCID: PMC8389225 DOI: 10.3390/antiox10081292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are paracrine factors that mediate stem cell therapeutics. We aimed at evaluating the possible therapeutic and esthetic applications of EVs prepared from the waste human facial tissue-derived orbicularis oculi muscle stem cells (OOM-SCs). OOM-SCs were isolated from the ocular tissues (from elders and youngsters) after upper eyelid blepharoplasty or epiblepharon surgeries. EVs were prepared from the OOM-SCs (OOM-SC-EVs) and their three-dimensional spheroids. OOM-SCs showed a spindle-like morphology with trilineage differentiation capacity, positive expression of CD105, CD 90, and CD73, and negative expression of CD45 and CD34, and their stem cell properties were compared with other adult mesenchymal stem cells. OOM-SC-EVs showed a high inhibitory effect on melanin synthesis in B16F10 cells by blocking tyrosinase activity. OOM-SC-EVs treatment led to a significant attenuation of senescence-associated changes, a decrease in reactive oxygen species generation, and an upregulation of antioxidant genes. We demonstrated the regeneration activity of OOM-SC-EVs in in vitro wound healing of normal human dermal fibroblasts and upregulation of anti-wrinkle-related genes and confirmed the therapeutic potential of OOM-SC-EVs in the healing of the in vivo wound model. Our study provides promising therapeutic and esthetic applications of OOM-SC-EVs, which can be obtained from the ocular surgery-derived waste human facial tissues.
Collapse
Affiliation(s)
- Kyung Min Lim
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Ahmed Abdal Dayem
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Yujin Choi
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Yoonjoo Lee
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Jongyub An
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Minchan Gil
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Soobin Lee
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Hee Jeong Kwak
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Balachandar Vellingirl
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641-046, India;
| | - Hyun Jin Shin
- Department of Ophthalmology, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
- Correspondence: (H.J.S.); (S.-G.C.)
| | - Ssang-Goo Cho
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
- Correspondence: (H.J.S.); (S.-G.C.)
| |
Collapse
|
39
|
Hade MD, Suire CN, Suo Z. Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021; 10:1959. [PMID: 34440728 PMCID: PMC8393426 DOI: 10.3390/cells10081959] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a type of extracellular vesicles, produced within multivesicular bodies, that are then released into the extracellular space through a merging of the multivesicular body with the plasma membrane. These vesicles are secreted by almost all cell types to aid in a vast array of cellular functions, including intercellular communication, cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. This ability to contribute to several distinct processes is due to the complexity of exosomes, as they carry a multitude of signaling moieties, including proteins, lipids, cell surface receptors, enzymes, cytokines, transcription factors, and nucleic acids. The favorable biological properties of exosomes including biocompatibility, stability, low toxicity, and proficient exchange of molecular cargos make exosomes prime candidates for tissue engineering and regenerative medicine. Exploring the functions and molecular payloads of exosomes can facilitate tissue regeneration therapies and provide mechanistic insight into paracrine modulation of cellular activities. In this review, we summarize the current knowledge of exosome biogenesis, composition, and isolation methods. We also discuss emerging healing properties of exosomes and exosomal cargos, such as microRNAs, in brain injuries, cardiovascular disease, and COVID-19 amongst others. Overall, this review highlights the burgeoning roles and potential applications of exosomes in regenerative medicine.
Collapse
Affiliation(s)
| | | | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA; (M.D.H.); (C.N.S.)
| |
Collapse
|
40
|
Mesenchymal Stem Cells Can Both Enhance and Inhibit the Cellular Response to DNA Immunization by Genes of Nonstructural Proteins of the Hepatitis C Virus. Int J Mol Sci 2021. [DOI: 10.3390/ijms22158121
expr 825321411 + 858242883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Despite extensive research, there is still no vaccine against the hepatitis C virus (HCV). The aim of this study was to investigate whether MSCs can exhibit adjuvant properties during DNA vaccination against hepatitis C. We used the pcNS3-NS5B plasmid encoding five nonstructural HCV proteins and MSCs derived from mice bone marrow. Five groups of DBA mice were immunized with the plasmid and/or MSCs in a different order. Group 1 was injected with the plasmid twice at intervals of 3 weeks; Group 2 with the plasmid, and after 24 h with MSCs; Group 3 with MSCs followed by the plasmid the next day; Group 4 with only MSCs; and Group 5 with saline. When the MSCs were injected prior to DNA immunization, the cell immune response to HCV proteins assessed by the level of IFN-γ synthesis was markedly increased compared to DNA alone. In contrast, MSCs injected after DNA suppressed the immune response. Apparently, the high level of proinflammatory cytokines detected after DNA injection promotes the conversion of MSCs introduced later into the immunosuppressive MSC2. The low level of cytokines in mice before MSC administration promotes the high immunostimulatory activity of MSC1 in response to a DNA vaccine. Thus, when administered before DNA, MSCs are capable of exhibiting promising adjuvant properties.
Collapse
|
41
|
Masalova OV, Lesnova EI, Klimova RR, Ivanov AV, Kushch AA. Mesenchymal Stem Cells Can Both Enhance and Inhibit the Cellular Response to DNA Immunization by Genes of Nonstructural Proteins of the Hepatitis C Virus. Int J Mol Sci 2021; 22:8121. [PMID: 34360889 PMCID: PMC8347804 DOI: 10.3390/ijms22158121&set/a 880446214+990577611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 03/16/2023] Open
Abstract
Despite extensive research, there is still no vaccine against the hepatitis C virus (HCV). The aim of this study was to investigate whether MSCs can exhibit adjuvant properties during DNA vaccination against hepatitis C. We used the pcNS3-NS5B plasmid encoding five nonstructural HCV proteins and MSCs derived from mice bone marrow. Five groups of DBA mice were immunized with the plasmid and/or MSCs in a different order. Group 1 was injected with the plasmid twice at intervals of 3 weeks; Group 2 with the plasmid, and after 24 h with MSCs; Group 3 with MSCs followed by the plasmid the next day; Group 4 with only MSCs; and Group 5 with saline. When the MSCs were injected prior to DNA immunization, the cell immune response to HCV proteins assessed by the level of IFN-γ synthesis was markedly increased compared to DNA alone. In contrast, MSCs injected after DNA suppressed the immune response. Apparently, the high level of proinflammatory cytokines detected after DNA injection promotes the conversion of MSCs introduced later into the immunosuppressive MSC2. The low level of cytokines in mice before MSC administration promotes the high immunostimulatory activity of MSC1 in response to a DNA vaccine. Thus, when administered before DNA, MSCs are capable of exhibiting promising adjuvant properties.
Collapse
Affiliation(s)
- Olga V. Masalova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| | - Ekaterina I. Lesnova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| | - Regina R. Klimova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alla A. Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| |
Collapse
|
42
|
Masalova OV, Lesnova EI, Klimova RR, Ivanov AV, Kushch AA. Mesenchymal Stem Cells Can Both Enhance and Inhibit the Cellular Response to DNA Immunization by Genes of Nonstructural Proteins of the Hepatitis C Virus. Int J Mol Sci 2021; 22:8121. [PMID: 34360889 PMCID: PMC8347804 DOI: 10.3390/ijms22158121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022] Open
Abstract
Despite extensive research, there is still no vaccine against the hepatitis C virus (HCV). The aim of this study was to investigate whether MSCs can exhibit adjuvant properties during DNA vaccination against hepatitis C. We used the pcNS3-NS5B plasmid encoding five nonstructural HCV proteins and MSCs derived from mice bone marrow. Five groups of DBA mice were immunized with the plasmid and/or MSCs in a different order. Group 1 was injected with the plasmid twice at intervals of 3 weeks; Group 2 with the plasmid, and after 24 h with MSCs; Group 3 with MSCs followed by the plasmid the next day; Group 4 with only MSCs; and Group 5 with saline. When the MSCs were injected prior to DNA immunization, the cell immune response to HCV proteins assessed by the level of IFN-γ synthesis was markedly increased compared to DNA alone. In contrast, MSCs injected after DNA suppressed the immune response. Apparently, the high level of proinflammatory cytokines detected after DNA injection promotes the conversion of MSCs introduced later into the immunosuppressive MSC2. The low level of cytokines in mice before MSC administration promotes the high immunostimulatory activity of MSC1 in response to a DNA vaccine. Thus, when administered before DNA, MSCs are capable of exhibiting promising adjuvant properties.
Collapse
Affiliation(s)
- Olga V. Masalova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| | - Ekaterina I. Lesnova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| | - Regina R. Klimova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alla A. Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| |
Collapse
|
43
|
Roudsari PP, Alavi-Moghadam S, Rezaei-Tavirani M, Goodarzi P, Tayanloo-Beik A, Sayahpour FA, Larijani B, Arjmand B. The Outcome of Stem Cell-Based Therapies on the Immune Responses in Rheumatoid Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1326:159-186. [PMID: 32926346 DOI: 10.1007/5584_2020_581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Rheumatoid arthritis as a common autoimmune inflammatory disorder with unknown etiology can affect 0.5-1% of adults in developed countries. It involves more than just the patient's joints and can be accompanied by several comorbidities and affect cardiovascular, pulmonary, and some other systems of the human body. Although cytokine-mediated pathways are mentioned to have a central role in RA pathogenesis, adaptive and innate immune systems and intracellular signaling pathways all have important roles in this process. Non-steroidal anti-inflammatory drugs, glucocorticoids, conventional disease-modifying anti-rheumatic drugs, and biological agents are some mentioned medications used for RA. They are accompanied by some adverse effects and treatment failures which elucidates the needing for novel and more powerful therapeutic approaches. Stem cell-based therapies and their beneficial effects on therapeutic processes of different diseases have been founded so far. They can be an alternative and promising therapeutic approach for RA, too; due to their effects on immune responses of the disease. This review, besides some explanations about RA characteristics, addresses the outcome of the stem cell-based therapies including mesenchymal stem cell transplantation and hematopoietic stem cell transplantation for RA and explains their effects on the disease improvement.
Collapse
Affiliation(s)
- Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Wszoła M, Nitarska D, Cywoniuk P, Gomółka M, Klak M. Stem Cells as a Source of Pancreatic Cells for Production of 3D Bioprinted Bionic Pancreas in the Treatment of Type 1 Diabetes. Cells 2021; 10:1544. [PMID: 34207441 PMCID: PMC8234129 DOI: 10.3390/cells10061544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is the third most common autoimmune disease which develops due to genetic and environmental risk factors. Often, intensive insulin therapy is insufficient, and patients require a pancreas or pancreatic islets transplant. However, both solutions are associated with many possible complications, including graft rejection. The best approach seems to be a donor-independent T1D treatment strategy based on human stem cells cultured in vitro and differentiated into insulin and glucagon-producing cells (β and α cells, respectively). Both types of cells can then be incorporated into the bio-ink used for 3D printing of the bionic pancreas, which can be transplanted into T1D patients to restore glucose homeostasis. The aim of this review is to summarize current knowledge about stem cells sources and their transformation into key pancreatic cells. Last, but not least, we comment on possible solutions of post-transplant immune response triggered stem cell-derived pancreatic cells and their potential control mechanisms.
Collapse
Affiliation(s)
- Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
- Polbionica Ltd., 01-793 Warsaw, Poland;
- Medispace Medical Centre, 01-044 Warsaw, Poland
| | | | - Piotr Cywoniuk
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
| | - Magdalena Gomółka
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
| | - Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.W.); (P.C.); (M.G.)
- Polbionica Ltd., 01-793 Warsaw, Poland;
| |
Collapse
|
45
|
Chu C, Zhao X, Rung S, Xiao W, Liu L, Qu Y, Man Y. Application of biomaterials in periodontal tissue repair and reconstruction in the presence of inflammation under periodontitis through the foreign body response: Recent progress and perspectives. J Biomed Mater Res B Appl Biomater 2021; 110:7-17. [PMID: 34142745 DOI: 10.1002/jbm.b.34891] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Periodontitis would cause dental tissue damage locally. Biomaterials substantially affect the surrounding immune microenvironment through treatment-oriented local inflammatory remodeling in dental periodontitis. This remodeling process is conducive to wound healing and periodontal tissue regeneration. Recent progress in understanding the foreign body response (FBR) and immune regulation, including cell heterogeneity, and cell-cell and cell-material interactions, has provided new insights into the design criteria for biomaterials applied in treatment of periodontitis. This review discusses recent progress and perspectives in the immune regulation effects of biomaterials to augment or reconstruct soft and hard tissue in an inflammatory microenvironment of periodontitis.
Collapse
Affiliation(s)
- Chenyu Chu
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiwen Zhao
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shengan Rung
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenlan Xiao
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Yili Qu
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Man
- Department of Oral Implantology & National Clinical Research Center for Oral Diseases & State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Arjmand B, Alavi-Moghadam S, Parhizkar Roudsari P, Rezaei-Tavirani M, Rahim F, Gilany K, Mohamadi-Jahani F, Adibi H, Larijani B. COVID-19 Pathology on Various Organs and Regenerative Medicine and Stem Cell-Based Interventions. Front Cell Dev Biol 2021; 9:675310. [PMID: 34195193 PMCID: PMC8238122 DOI: 10.3389/fcell.2021.675310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome-coronavirus 2, a novel betacoronavirus, has caused the global outbreak of a contagious infection named coronavirus disease-2019. Severely ill subjects have shown higher levels of pro-inflammatory cytokines. Cytokine storm is the term that can be used for a systemic inflammation leading to the production of inflammatory cytokines and activation of immune cells. In coronavirus disease-2019 infection, a cytokine storm contributes to the mortality rate of the disease and can lead to multiple-organ dysfunction syndrome through auto-destructive responses of systemic inflammation. Direct effects of the severe acute respiratory syndrome associated with infection as well as hyperinflammatory reactions are in association with disease complications. Besides acute respiratory distress syndrome, functional impairments of the cardiovascular system, central nervous system, kidneys, liver, and several others can be mentioned as the possible consequences. In addition to the current therapeutic approaches for coronavirus disease-2019, which are mostly supportive, stem cell-based therapies have shown the capacity for controlling the inflammation and attenuating the cytokine storm. Therefore, after a brief review of novel coronavirus characteristics, this review aims to explain the effects of coronavirus disease-2019 cytokine storm on different organs of the human body. The roles of stem cell-based therapies on attenuating cytokine release syndrome are also stated.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Gilany
- Reproductive Immunology Research Center, Avicenna Research Institute, The Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Blanco-Fernandez B, Castaño O, Mateos-Timoneda MÁ, Engel E, Pérez-Amodio S. Nanotechnology Approaches in Chronic Wound Healing. Adv Wound Care (New Rochelle) 2021; 10:234-256. [PMID: 32320364 PMCID: PMC8035922 DOI: 10.1089/wound.2019.1094] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/04/2020] [Indexed: 12/28/2022] Open
Abstract
Significance: The incidence of chronic wounds is increasing due to our aging population and the augment of people afflicted with diabetes. With the extended knowledge on the biological mechanisms underlying these diseases, there is a novel influx of medical technologies into the conventional wound care market. Recent Advances: Several nanotechnologies have been developed demonstrating unique characteristics that address specific problems related to wound repair mechanisms. In this review, we focus on the most recently developed nanotechnology-based therapeutic agents and evaluate the efficacy of each treatment in in vivo diabetic models of chronic wound healing. Critical Issues: Despite the development of potential biomaterials and nanotechnology-based applications for wound healing, this scientific knowledge is not translated into an increase of commercially available wound healing products containing nanomaterials. Future Directions: Further studies are critical to provide insights into how scientific evidences from nanotechnology-based therapies can be applied in the clinical setting.
Collapse
Affiliation(s)
- Barbara Blanco-Fernandez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oscar Castaño
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Electronics and Biomedical Engineering, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Bioelectronics Unit and Nanobioengineering Lab, Institute for Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - Miguel Ángel Mateos-Timoneda
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Materials Science and Metallurgical Engineering, Polytechnic University of Catalonia (UPC), Barcelona, Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Materials Science and Metallurgical Engineering, Polytechnic University of Catalonia (UPC), Barcelona, Spain
| | - Soledad Pérez-Amodio
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Materials Science and Metallurgical Engineering, Polytechnic University of Catalonia (UPC), Barcelona, Spain
| |
Collapse
|
48
|
Dinç E, Ayaz L, Kurt AH, Dursun Ö, Yılmaz G, Vatansever M, Özer Ö, Yılmaz ŞN. Effects of Bone Marrow and Adipose-Derived Mesenchymal Stem Cells on microRNA Expressions in Acute Alkaline Corneal Burn. J Ocul Pharmacol Ther 2021; 37:200-208. [PMID: 33481657 DOI: 10.1089/jop.2020.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: The aim of this study was to investigate the microRNA (miRNA) expressions of the corneal tissue after an alkaline burn and to compare the efficiency of adipose- and bone marrow-derived mesenchymal stem cells (MSCs) on expressions. Methods: Thirty-two rats were divided into 4 groups. No intervention was made in the control group. A chemical burn was created by applying 4 μL NaOH soaked in 6 mm filter paper to the right eye of each animal in the other groups. Whereas only subconjunctival 0.1 mL phosphate-buffered saline (PBS) was injected to in the group 1, 2 × 106 adipose- or bone marrow-derived MSC in 0.1 mL PBS was injected subconjunctivally to the animals in the remaining groups (groups 2 and 3, respectively). Tissue samples were collected for miRNA analysis on the third day after the burn. Results: When group 1 was compared with the control group, the expression of 3 of 93 miRNAs increased significantly, whereas the expression of 50 miRNAs decreased significantly. Significant changes in miRNA expressions were observed when group 1 was compared with groups 2 and 3. Although a significant change was observed in the expression of 6 miRNAs in the adipose-derived MSC group, it was found that the expression of 65 miRNAs significantly changed in the bone marrow-derived MSC group. Conclusion: This study shows that there are significant changes in some miRNA expressions after corneal alkaline burn and these changes can be reversed with the subconjunctival injection of MSCs.
Collapse
Affiliation(s)
- Erdem Dinç
- Department of Ophthalmology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Lokman Ayaz
- Department of Biochemistry, Faculty of Pharmacy, Trakya University, Edirne, Turkey
| | - A Hakan Kurt
- Department of Pharmacology, Bolu İzzet Baysal University, Bolu, Turkey
| | - Özer Dursun
- Department of Ophthalmology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Gülsen Yılmaz
- Department of Histology & Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Mustafa Vatansever
- Department of Ophthalmology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ömer Özer
- Department of Ophthalmology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ş Necat Yılmaz
- Department of Histology & Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| |
Collapse
|
49
|
Shi A, Li J, Qiu X, Sabbah M, Boroumand S, Huang TCT, Zhao C, Terzic A, Behfar A, Moran SL. TGF-β loaded exosome enhances ischemic wound healing in vitro and in vivo. Theranostics 2021; 11:6616-6631. [PMID: 33995680 PMCID: PMC8120220 DOI: 10.7150/thno.57701] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Rationale: With over seven million infections and $25 billion treatment cost, chronic ischemic wounds are one of the most serious complications in the United States. The controlled release of bioactive factor enriched exosome from finbrin gel was a promising strategy to promote wound healing. Methods: To address this unsolved problem, we developed clinical-grade platelets exosome product (PEP), which was incorporate with injectable surgical fibrin sealant (TISSEEL), to promote chronic wound healing and complete skin regeneration. The PEP characterization stimulated cellular activities and in vivo rabbit ischemic wound healing capacity of TISSEEL-PEP were performed and analyzed. Results: PEP, enriched with transforming growth factor beta (TGF-β), possessed exosomal characteristics including exosome size, morphology, and typical markers including CD63, CD9, and ALG-2-interacting protein X (Alix). In vitro, PEP significantly promoted cell proliferation, migration, tube formation, as well as skin organoid formation. Topical treatment of ischemic wounds with TISSEEL-PEP promoted full-thickness healing with the reacquisition of hair follicles and sebaceous glands. Superior to untreated and TISSEEL-only treated controls, TISSEEL-PEP drove cutaneous healing associated with collagen synthesis and restoration of dermal architecture. Furthermore, PEP promoted epithelial and vascular cell activity enhancing angiogenesis to restore blood flow and mature skin function. Transcriptome deconvolution of TISSEEL-PEP versus TISSEEL-only treated wounds prioritized regenerative pathways encompassing neovascularization, matrix remodeling and tissue growth. Conclusion: This room-temperature stable, lyophilized exosome product is thus capable of delivering a bioactive transforming growth factor beta to drive regenerative events.
Collapse
Affiliation(s)
- Ao Shi
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Graduate School of Biomedical Science, Mayo Clinic, Rochester, MN, USA
| | - Jialun Li
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Plastic Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyuan Qiu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Michael Sabbah
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Soulmaz Boroumand
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre Terzic
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Atta Behfar
- Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Steven L Moran
- Division of Plastic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
50
|
Mesenchymal Stromal Cell-derived Extracellular Vesicles in Preclinical Animal Models of Tumor Growth: Systematic Review and Meta-analysis. Stem Cell Rev Rep 2021; 18:993-1006. [PMID: 33860455 DOI: 10.1007/s12015-021-10163-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mesenchymal stromal cell derived extracellular vesicles (MSC-EVs) have been implicated in the regulation of tumor growth. Studies remain preclinical with effects ranging from inhibition of tumor growth to cancer progression. A systematic review and meta-analysis is needed to clarify the effect of MSC-EVs on tumor growth to facilitate potential translation to clinical trials. METHODS A systematic search of the literature (MEDLINE, Embase, and BIOSIS databases to June 1, 2019) identified all pre-clinical controlled studies investigating the effect of MSC-EVs on tumor growth. Study selection and data extraction were performed in duplicate. Potential risk of bias was assessed using the SYRCLE tool. A random effects meta-analysis of reduction in tumor weight/volume (primary outcome) was performed. RESULTS We identified 29 articles and 22 reported data on tumor responses that were included for meta-analysis. Studies were associated with unclear risk of bias in a large proportion of domains in accordance with the SYRCLE tool for determining risk of bias in preclinical studies. A high risk of bias was not identified in any study. MSC-EVs had a mixed response on tumor progression with some studies reporting inhibition of tumor growth and others reporting tumor progression. Overall, MSC-EVs exerted a non-significant reduction in tumor growth compared to controls (standardized mean difference (SMD) -0.80, 95 % CI -1.64 to 0.03, p = 0.06, I2 = 87 %). Some studies reported increased tumor growth which aligned with their stated hypothesis and some interrogated mechanisms in cancer biology. EVs isolated from MSCs that overexpressed anti-tumor RNAs were associated with significant tumor reduction in meta-analysis (SMD - 2.40, 95 % CI -3.36 to -1.44, p < 0.001). Heterogeneity between studies was observed and included aspects of study design such as enrichment of MSC-EVs with specific anti-tumor molecules, tissue source of MSCs, method of EV isolation, characterization of MSCs and EVs, dosage and administration schedules, and tissue type and source of tumor cells studied. CONCLUSIONS MSC-EVs are associated with mixed effects on tumor growth in animal models of cancer. In studies where anti-tumor RNAs are packaged in EVs, a significant reduction in tumor growth was observed. Reducing heterogeneity in study design may accelerate our understanding of the potential effects of MSC-EVs on cancer. [274 words] Forest plot of MSC-EV effect on tumor growth accordinggenetic modification of EVs in animal studies identified from a systematicreview of the literature. All cohorts from studies with multiple interventiongroups are presented separately with control groups divided equally among thegroups. M, modified; H, hypoxia.
Collapse
|