1
|
Guo C, Rizkalla AS, Hamilton DW. FGF and TGF-β growth factor isoform modulation of human gingival and periodontal ligament fibroblast wound healing phenotype. Matrix Biol 2025; 136:9-21. [PMID: 39756500 DOI: 10.1016/j.matbio.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/18/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Release of growth factors in the tissue microenvironment is a critical process in the repair and regeneration of periodontal tissues, regulating fibroblast behavior and phenotype. As a result of the complex architecture of the periodontium, distinct fibroblast populations in the periodontal ligament and gingival connective tissue exist in close proximity. Growth factor therapies for periodontal regeneration have gained traction, but quantification of their effects on multiple different fibroblast populations that are required for repair has been poorly investigated. In this study, we examined the effects of TGF-β1, TGF-β3, FGF-2, and FGF-9 on human gingival fibroblasts (hGF) and human periodontal ligament cells (hPDL), as well as the combined effects of TGF-β3 and FGF-2. We show that FGF-2 enhances cell migration while TGF-β1 and TGF-β3 promotes matrix production, and TGF-β1 promotes fibroblast to myofibroblast transition. Interestingly, the combination of TGF-β3 and FGF-2, acting through both p-SMAD3 and p-ERK pathways, mitigates the inhibitory effects of TGF-β3 on migration in hPDL cells, suggesting synergistic and complimentary effects of FGF-2 and TGF-β3. Additionally, fibronectin production in hGF increased when treated with the combined TGF-β3+FGF-2 compared to FGF-2 alone, indicating that the effects of TGF-β3 in promoting extracellular matrix production are still active in the combined treatment condition. Finally, our study highlights that FGF-9 did not influence migration, α-SMA expression, or extracellular matrix production in either cell type, emphasizing the unique roles of specific growth factors in cellular responses. The synergistic effects observed with combined TGF-β3 and FGF-2 treatments present promising avenues for further research and clinical advancements in regenerative medicine.
Collapse
Affiliation(s)
- Chengyu Guo
- Department of Anatomy and Cell Biology, Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada; Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada
| | - Amin S Rizkalla
- Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada; Department of Chemical and Biochemical, Thompson Engineering Building, Western University, London, Ontario, N6A 5B9, Canada
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada; Dentistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, N6A 3K7, Canada.
| |
Collapse
|
2
|
Drozdova M, Makhonina A, Gladkikh D, Artyukhov A, Bryukhanov L, Mezhuev Y, Lozinsky V, Markvicheva E. Hydroxyapatite-loaded macroporous calcium alginate hydrogels: Preparation, characterization, and in vitro evaluation. Biopolymers 2024; 115:e23583. [PMID: 38661371 DOI: 10.1002/bip.23583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Hydrogels from natural polysaccharides are of great interest for tissue engineering. This study aims (1) to prepare hydroxyapatite-loaded macroporous calcium alginate hydrogels by novel one-step technique using internal gelation in water-frozen solutions; (2) to evaluate their physicochemical properties; (3) to estimate their ability to support cell growth and proliferation in vitro. The structure of the hydrogel samples in a swollen state was studied by confocal laser scanning microscopy and was shown to represent a system of interconnected macropores with sizes of tens micron. The swelling behavior of the hydrogels, their mechanical properties (Young's moduli) in function of a hydroxyapatite content (5-30 mass%) were studied. All hydrogel samples loaded with hydroxyapatite were found to support growth and proliferation of mouse fibroblasts (L929) at long-term cultivation for 7 days. The obtained macroporous composite Ca-Alg-HA hydrogels could be promising for tissue engineering.
Collapse
Affiliation(s)
- Maria Drozdova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alika Makhonina
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Daria Gladkikh
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Alexander Artyukhov
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, Moscow, Russia
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Leonid Bryukhanov
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Yaroslav Mezhuev
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, Moscow, Russia
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Lozinsky
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Elena Markvicheva
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Zong Y, Liang G, Li Y, Li M, Song Y, Liao Y, Yang Y, Zhu Y. Fabrication of antimicrobial and high-toughness poly (lactic acid) composite films using tung oil derivatives. Int J Biol Macromol 2024; 254:127792. [PMID: 37923033 DOI: 10.1016/j.ijbiomac.2023.127792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Tung oil derivatives are promising alternatives to traditional toxic plasticizers for improving the toughness of poly (lactic acid) (PLA) films. In this study, a tung oil-based quaternary ammonium salt (Q-ETO) was synthesized using a multi-step process involving epoxidation, ring opening, and substitution reactions. PLA based composite films with various amounts of Q-ETO were prepared by solvent casting. The impact of various amount of Q-ETO on PLA/Q-ETO composite films were evaluated with regard to their mechanical properties, hydrophilicity, water vapor permeability, optical properties, thermal stability, antibacterial properties, and leaching properties. The PLA/5%Q-ETO composite film yielded the highest elongation at break (82.52 ± 9.53 %), which was 153.67 % higher than that of pure PLA. All PLA composite films showed an antibacterial efficiency exceeding 90 % against both S. aureus and E. coli. Moreover, the PLA/Q-ETO composite film blocked the transmission of both ultraviolet and visible light while preventing the permeation of water vapor. The addition of Q-ETO only weakly affected the color and thermal stability of the PLA/Q-ETO composite film. Given the numerous advantages of the PLA composite film, it has significant potential for application as a food packaging material.
Collapse
Affiliation(s)
- Yijun Zong
- College of Material and Science, Central South University of Forestry and Technology, Changsha 410000, China
| | - Ganbo Liang
- College of Material and Science, Central South University of Forestry and Technology, Changsha 410000, China
| | - Yuhang Li
- College of Material and Science, Central South University of Forestry and Technology, Changsha 410000, China
| | - Min Li
- College of Material and Science, Central South University of Forestry and Technology, Changsha 410000, China
| | - Yuwei Song
- College of Material and Science, Central South University of Forestry and Technology, Changsha 410000, China
| | - Youwei Liao
- College of Material and Science, Central South University of Forestry and Technology, Changsha 410000, China
| | - Yan Yang
- College of Material and Science, Central South University of Forestry and Technology, Changsha 410000, China.
| | - Yuan Zhu
- College of Material and Science, Central South University of Forestry and Technology, Changsha 410000, China
| |
Collapse
|
4
|
Alsharif SA, Badran MI, Moustafa MH, Meshref RA, Mohamed EI. Hydrothermal extraction and physicochemical characterization of biogenic hydroxyapatite nanoparticles from buffalo waste bones for in vivo xenograft in experimental rats. Sci Rep 2023; 13:17490. [PMID: 37840064 PMCID: PMC10577150 DOI: 10.1038/s41598-023-43989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023] Open
Abstract
Hydroxyapatite (HA) can be used in odontology and orthopedic grafts to restore damaged bone due to its stable chemical characteristics, composition, and crystal structural affinity for human bone. A three-step hydrothermal method was used for the extraction of biogenic calcined HA from the buffalo waste bones at 700 °C (HA-700) and 1000 °C (HA-1000). Extracts were analyzed by thermogravimetric analysis, differential scanning calorimetry, X-ray fluorescence, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and in vivo examination of HA xenografts for femoral lesions in experimental rats. Crystallinity, purity, and morphology patterns showed that the HA main phase purity was 84.68% for HA-700 and 88.99% for HA-1000. Spherical HA nanoparticles were present for calcined HA-700 samples in the range 57-423 nm. Rats with critical bone lesions of 3 mm in diameter in the left femur treated with calcined HA-700 nanoparticles healed significantly (p < 0.001) faster than rats treated with HA-1000 or negative controls. These findings showed that spherical biogenic HA-700 NPs with a bud-like structure have the potential to stimulate both osteoconduction and bone remodeling, leading to greater bone formation potential in vivo. Thus, the calcined biogenic HA generated from buffalo waste bones may be a practical tool for biomedical applications.
Collapse
Affiliation(s)
- Shada A Alsharif
- University College in Umluj, Tabuk University, Tabuk, Kingdom of Saudi Arabia
| | - Mahmoud I Badran
- Medical Biophysics Department, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, Alexandria, 21561, Egypt
| | - Moustafa H Moustafa
- Medical Biophysics Department, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, Alexandria, 21561, Egypt
| | - Radwa A Meshref
- Medical Equipment Technology Department, Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | - Ehab I Mohamed
- Medical Biophysics Department, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, Alexandria, 21561, Egypt.
| |
Collapse
|
5
|
da Silva Nunes Barreto R, da Silva Júnior LN, Henrique Doná Rodrigues Almeida G, de Oliveira Horvath-Pereira B, da Silva TS, Garcia JM, Smith LC, Carreira ACO, Miglino MA. Placental scaffolds as a potential biological platform for embryonic stem cells differentiation into hepatic-like cells lineage: A pilot study. Tissue Cell 2023; 84:102181. [PMID: 37515966 DOI: 10.1016/j.tice.2023.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Hepatic microenvironment plays an essential role in liver regeneration, providing the necessary conditions for cell proliferation, differentiation and tissue rearrangement. One of the key factors for hepatic tissue reconstruction is the extracellular matrix (ECM), which through collagenous and non-collagenous proteins provide a three-dimensional structure that confers support for cell adhesion and assists on their survival and maintenance. In this scenario, placental ECM may be eligible for hepatic tissue reconstruction, once these scaffolds hold the major components required for cell support. Therefore, this preliminary study aimed to access the possibility of mouse embryonic stem cells differentiation into hepatocyte-like cells on placental scaffolds in a three-dimensional dynamic system using a Rotary Cell Culture System. Following a four-phase differentiation protocol that simulates liver embryonic development events, the preliminary results showed that a significant quantity of cells adhered and interacted with the scaffold through outer and inner surfaces. Positive immunolabelling for alpha fetus protein and CK7 suggest presence of hepatoblast phenotype cells, and CK18 and Albumin positive immunolabelling suggest the presence of hepatocyte-like phenotype cells, demonstrating the presence of a heterogeneous population into the recellularized scaffolds. Periodic Acid Schiff-Diastase staining confirmed the presence of glycogen storage, indicating that differentiate cells acquired a hepatic-like phenotype. In conclusion, these preliminary results suggested that mouse placental scaffolds might be used as a biological platform for stem cells differentiation into hepatic-like cells and their establishment, which may be a promissing biomaterial for hepatic tissue reconstruction.
Collapse
Affiliation(s)
| | | | | | | | - Thamires Santos da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Joaquim Mansano Garcia
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Veterinary Sciences, State University of São Paulo, Jaboticabal, SP, Brazil
| | - Lawrence Charles Smith
- Centre de Recherche en Reproduction et Fertilité, University of Montreal, Montreal, QC, Canada
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil; Centre of Human and Natural Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Oleksy M, Dynarowicz K, Aebisher D. Advances in Biodegradable Polymers and Biomaterials for Medical Applications-A Review. Molecules 2023; 28:6213. [PMID: 37687042 PMCID: PMC10488517 DOI: 10.3390/molecules28176213] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
The introduction of new materials for the production of various types of constructs that can connect directly to tissues has enabled the development of such fields of science as medicine, tissue, and regenerative engineering. The implementation of these types of materials, called biomaterials, has contributed to a significant improvement in the quality of human life in terms of health. This is due to the constantly growing availability of new implants, prostheses, tools, and surgical equipment, which, thanks to their specific features such as biocompatibility, appropriate mechanical properties, ease of sterilization, and high porosity, ensure an improvement of living. Biodegradation ensures, among other things, the ideal rate of development for regenerated tissue. Current tissue engineering and regenerative medicine strategies aim to restore the function of damaged tissues. The current gold standard is autografts (using the patient's tissue to accelerate healing), but limitations such as limited procurement of certain tissues, long operative time, and donor site morbidity have warranted the search for alternative options. The use of biomaterials for this purpose is an attractive option and the number of biomaterials being developed and tested is growing rapidly.
Collapse
Affiliation(s)
- Małgorzata Oleksy
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
7
|
Abuarqoub D, Theeb LS, Omari MB, Hamadneh YI, Alrawabdeh JA, Aslam N, Jafar H, Awidi A. The Osteogenic Role of Biomaterials Combined with Human-Derived Dental Stem Cells in Bone Tissue Regeneration. Tissue Eng Regen Med 2023; 20:251-270. [PMID: 36808303 PMCID: PMC10070593 DOI: 10.1007/s13770-022-00514-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 02/23/2023] Open
Abstract
The use of stem cells in regenerative medicine had great potential for clinical applications. However, cell delivery strategies have critical importance in stimulating the differentiation of stem cells and enhancing their potential to regenerate damaged tissues. Different strategies have been used to investigate the osteogenic potential of dental stem cells in conjunction with biomaterials through in vitro and in vivo studies. Osteogenesis has a broad implication in regenerative medicine, particularly for maxillofacial defects. This review summarizes some of the most recent developments in the field of tissue engineering using dental stem cells.
Collapse
Affiliation(s)
- Duaa Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
| | - Laith S Theeb
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mohammad B Omari
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Yazan I Hamadneh
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | | | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
- School of Medicine, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
8
|
Geevarghese R, Sajjadi SS, Hudecki A, Sajjadi S, Jalal NR, Madrakian T, Ahmadi M, Włodarczyk-Biegun MK, Ghavami S, Likus W, Siemianowicz K, Łos MJ. Biodegradable and Non-Biodegradable Biomaterials and Their Effect on Cell Differentiation. Int J Mol Sci 2022; 23:ijms232416185. [PMID: 36555829 PMCID: PMC9785373 DOI: 10.3390/ijms232416185] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Biomaterials for tissue scaffolds are key components in modern tissue engineering and regenerative medicine. Targeted reconstructive therapies require a proper choice of biomaterial and an adequate choice of cells to be seeded on it. The introduction of stem cells, and the transdifferentiation procedures, into regenerative medicine opened a new era and created new challenges for modern biomaterials. They must not only fulfill the mechanical functions of a scaffold for implanted cells and represent the expected mechanical strength of the artificial tissue, but furthermore, they should also assure their survival and, if possible, affect their desired way of differentiation. This paper aims to review how modern biomaterials, including synthetic (i.e., polylactic acid, polyurethane, polyvinyl alcohol, polyethylene terephthalate, ceramics) and natural (i.e., silk fibroin, decellularized scaffolds), both non-biodegradable and biodegradable, could influence (tissue) stem cells fate, regulate and direct their differentiation into desired target somatic cells.
Collapse
Affiliation(s)
- Rency Geevarghese
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Seyedeh Sara Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | - Andrzej Hudecki
- Łukasiewicz Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland
| | - Samad Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | | | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Małgorzata K. Włodarczyk-Biegun
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Saeid Ghavami
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
| | - Wirginia Likus
- Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Krzysztof Siemianowicz
- Department of Biochemistry, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| |
Collapse
|
9
|
Santana TF, Oliveira RHDM, dos Santos LE, Lima EPN, Faria SDS, Fonseca MAM, da Silva JR, Tatmatsu-Rocha JC, Gomes MMF, Fleury Rosa MF, Fleury Rosa SDSR, Carneiro MLB. Effect of exposure to a light-emitting diode (LED) on the physicochemical characteristics of natural latex biomembranes used to treat diabetic ulcers. RESEARCH ON BIOMEDICAL ENGINEERING 2022; 38:901-911. [DOI: 10.1007/s42600-022-00226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/07/2022] [Indexed: 09/05/2024]
|
10
|
Moore EM, Maestas DR, Cherry CC, Garcia JA, Comeau HY, Davenport Huyer L, Kelly SH, Peña AN, Blosser RL, Rosson GD, Elisseeff JH. Biomaterials direct functional B cell response in a material-specific manner. SCIENCE ADVANCES 2021; 7:eabj5830. [PMID: 34851674 PMCID: PMC8635437 DOI: 10.1126/sciadv.abj5830] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/13/2021] [Indexed: 05/13/2023]
Abstract
B cells are an adaptive immune target of biomaterials development in vaccine research but, despite their role in wound healing, have not been extensively studied in regenerative medicine. To probe the role of B cells in biomaterial scaffold response, we evaluated the B cell response to biomaterial materials implanted in a muscle wound using a biological extracellular matrix (ECM), as a reference for a naturally derived material, and synthetic polyester polycaprolactone (PCL), as a reference for a synthetic material. In the local muscle tissue, small numbers of B cells are present in response to tissue injury and biomaterial implantation. The ECM materials induced mature B cells in lymph nodes and antigen presentation in the spleen. The synthetic PCL implants resulted in prolonged B cell presence in the wound and induced an antigen-presenting phenotype. In summary, the adaptive B cell immune response to biomaterial induces local, regional, and systemic immunological changes.
Collapse
Affiliation(s)
- Erika M. Moore
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David R. Maestas
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chris C. Cherry
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan A. Garcia
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hannah Y. Comeau
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Locke Davenport Huyer
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sean H. Kelly
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alexis N. Peña
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Richard L. Blosser
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gedge D. Rosson
- Division of Plastic Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Cheah CW, Al-Namnam NM, Lau MN, Lim GS, Raman R, Fairbairn P, Ngeow WC. Synthetic Material for Bone, Periodontal, and Dental Tissue Regeneration: Where Are We Now, and Where Are We Heading Next? MATERIALS 2021; 14:ma14206123. [PMID: 34683712 PMCID: PMC8537464 DOI: 10.3390/ma14206123] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 01/21/2023]
Abstract
Alloplasts are synthetic, inorganic, biocompatible bone substitutes that function as defect fillers to repair skeletal defects. The acceptance of these substitutes by host tissues is determined by the pore diameter and the porosity and inter-connectivity. This narrative review appraises recent developments, characterization, and biological performance of different synthetic materials for bone, periodontal, and dental tissue regeneration. They include calcium phosphate cements and their variants β-tricalcium phosphate (β-TCP) ceramics and biphasic calcium phosphates (hydroxyapatite (HA) and β-TCP ceramics), calcium sulfate, bioactive glasses and polymer-based bone substitutes which include variants of polycaprolactone. In summary, the search for synthetic bone substitutes remains elusive with calcium compounds providing the best synthetic substitute. The combination of calcium sulphate and β-TCP provides improved handling of the materials, dispensing with the need for a traditional membrane in guided bone regeneration. Evidence is supportive of improved angiogenesis at the recipient sites. One such product, (EthOss® Regeneration, Silesden, UK) has won numerous awards internationally as a commercial success. Bioglasses and polymers, which have been used as medical devices, are still in the experimental stage for dental application. Polycaprolactone-TCP, one of the products in this category is currently undergoing further randomized clinical trials as a 3D socket preservation filler. These aforementioned products may have vast potential for substituting human/animal-based bone grafts.
Collapse
Affiliation(s)
- Chia Wei Cheah
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.W.C.); (M.N.L.); (G.S.L.)
| | - Nisreen Mohammed Al-Namnam
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4BW, UK;
| | - May Nak Lau
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.W.C.); (M.N.L.); (G.S.L.)
| | - Ghee Seong Lim
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.W.C.); (M.N.L.); (G.S.L.)
| | - Renukanth Raman
- Oral Health Division, Ministry of Health Malaysia, Putrajaya 62590, Malaysia;
| | - Peter Fairbairn
- Department of Periodontology and Implant Dentistry, School of Dentistry, University of Detroit Mercy, 2700 Martin Luther King, Jr. Boulevard, Detroit, MI 48208, USA;
| | - Wei Cheong Ngeow
- Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia; (C.W.C.); (M.N.L.); (G.S.L.)
- Correspondence: ; Tel.: +60-3-79674962; Fax: +60-3-79674534
| |
Collapse
|
12
|
Pinho TS, Cunha CB, Lanceros-Méndez S, Salgado AJ. Electroactive Smart Materials for Neural Tissue Regeneration. ACS APPLIED BIO MATERIALS 2021; 4:6604-6618. [PMID: 35006964 DOI: 10.1021/acsabm.1c00567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Repair in the human nervous system is a complex and intertwined process that offers significant challenges to its study and comprehension. Taking advantage of the progress in fields such as tissue engineering and regenerative medicine, the scientific community has witnessed a strong increase of biomaterial-based approaches for neural tissue regenerative therapies. Electroactive materials, increasingly being used as sensors and actuators, also find application in neurosciences due to their ability to deliver electrical signals to the cells and tissues. The use of electrical signals for repairing impaired neural tissue therefore presents an interesting and innovative approach to bridge the gap between fundamental research and clinical applications in the next few years. In this review, first a general overview of electroactive materials, their historical origin, and characteristics are presented. Then a comprehensive view of the applications of electroactive smart materials for neural tissue regeneration is presented, with particular focus on the context of spinal cord injury and brain repair. Finally, the major challenges of the field are discussed and the main challenges for the near future presented. Overall, it is concluded that electroactive smart materials play an ever-increasing role in neural tissue regeneration, appearing as potentially valuable biomaterials for regenerative purposes.
Collapse
Affiliation(s)
- Tiffany S Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal.,Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Cristiana B Cunha
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Senentxu Lanceros-Méndez
- Center of Physics, University of Minho, 4710-058 Braga, Portugal.,BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
13
|
Chemerovskiy VO, Rublenko MV, Rublenko SV, Ulanchych NV, Firstov SO, Kolomiiets VV. Effect of implants of hydroxyapatite with tricalcium phosphates alloyed with Si on histomorphological and biochemical parameters in cases of bone defects of rabbits. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Complex comminuted fractures are accompanied by development of bone defects and loss of reparative potential of the bone tissue in the region of the trauma. This brings the necessity of using implants with optimum osteoconductive and osteointegration properties. The objective of the study was determining the condition of biochemical bone markers and peculiarities of histomorphological changes under the influence of ceramic hydroxyapatite (HA) implants with various physical-chemical properties in the conditions of diaphyseal bone defects in rabbits. We composed control and experimental groups of rabbits with 10 individuals in each with diaphyseal bone defects (3 mm) of the radial bones formed under general anesthesia. In one experimental group, they were filled with granules of hydroxyapatite with α-tricalcium phosphate, and in the second group – with β-tricalcium phosphate, alloyed with Si. In the control rabbits, the defects healed under a blood clot. Blood was analyzed on the 3rd, 7th, 14th, 21st and 42nd days, and as reference we used biochemical parameters of blood of clinically healthy rabbits (n = 10). Bone biopsied materials were taken on days 21–42 under general anesthesia. When using hydroxyapatite with β-tricalcium phosphate, alloyed with Si, we determined early intensification of the levels of nitrogen oxide, angiogenesis and development of bone regenerate in conditions of shortening of inflammatory resorption phase, which was verified according to the level of tartrate-resistant acid phosphatase. According to the level of bone isoenzyme of alkaline phosphatase in the blood serum of animals of the control group, the reparative osteogenesis developed slowly and peaked on day 42, whereas in animals implanted with α-tricalcium phosphate, its development peaked peaked on days 14–42, and when using Si-alloy – on days 7–14. Histomorphologically, on the 21st day, in the case of replacement of bone defect with hydroxyapatite with α-tricalcium phosphate, coarse-fibered type of bone regenerate developed with no dense contact with the elements of the regenerate, while spongy bone trabeculae occurred when hydroxyapatite was applied with β-tricalcium phosphate alloyed with Si, and the control rabbits were observed to be in the stage of cartilaginous callus. On the 42nd day, under the influence of implants of hydroxyapatite with α-tricalcium phosphate, the spongy bone tissue transformed into compact tissue with further mineralization. With implants alloyed with Si, there occurred compact bone tissue, and bone regenerates of the control animals were regions of coarse-fibered and spongy bone tissue without dense contact with the parent bone. This study revealed that hydroxyapatite with β-tricalcium phosphate alloyed with Si had notable osteoinductive and osteointegrating properties, as indicated by early angiogenesis and osteoblast reaction, positive dynamics of the marker biochemical parameters with faster and better development of bone regenerate as spongy bone trabeculae.
Collapse
|
14
|
Oral Bone Tissue Regeneration: Mesenchymal Stem Cells, Secretome, and Biomaterials. Int J Mol Sci 2021; 22:ijms22105236. [PMID: 34063438 PMCID: PMC8156243 DOI: 10.3390/ijms22105236] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
In the last few decades, tissue engineering has become one of the most studied medical fields. Even if bone shows self-remodeling properties, in some cases, due to injuries or anomalies, bone regeneration can be required. In particular, oral bone regeneration is needed in the dentistry field, where the functional restoration of tissues near the tooth represents a limit for many dental implants. In this context, the application of biomaterials and mesenchymal stem cells (MSCs) appears promising for bone regeneration. This review focused on in vivo studies that evaluated bone regeneration using biomaterials with MSCs. Different biocompatible biomaterials were enriched with MSCs from different sources. These constructs showed an enhanced bone regenerative power in in vivo models. However, we discussed also a future perspective in tissue engineering using the MSC secretome, namely the conditioned medium and extracellular vesicles. This new approach has already shown promising results for bone tissue regeneration in experimental models.
Collapse
|
15
|
Zhang Y, Pham HM, Munguia-Lopez JG, Kinsella JM, Tran SD. The Optimization of a Novel Hydrogel-Egg White-Alginate for 2.5D Tissue Engineering of Salivary Spheroid-Like Structure. Molecules 2020; 25:E5751. [PMID: 33291221 PMCID: PMC7730374 DOI: 10.3390/molecules25235751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/24/2022] Open
Abstract
Hydrogels have been used for a variety of biomedical applications; in tissue engineering, they are commonly used as scaffolds to cultivate cells in a three-dimensional (3D) environment allowing the formation of organoids or cellular spheroids. Egg white-alginate (EWA) is a novel hydrogel which combines the advantages of both egg white and alginate; the egg white material provides extracellular matrix (ECM)-like proteins that can mimic the ECM microenvironment, while alginate can be tuned mechanically through its ionic crosslinking property to modify the scaffold's porosity, strength, and stiffness. In this study, a frozen calcium chloride (CaCl2) disk technique to homogenously crosslink alginate and egg white hydrogel is presented for 2.5D culture of human salivary cells. Different EWA formulations were prepared and biologically evaluated as a spheroid-like structure platform. Although all five EWA hydrogels showed biocompatibility, the EWA with 1.5% alginate presented the highest cell viability, while EWA with 3% alginate promoted the formation of larger size salivary spheroid-like structures. Our EWA hydrogel has the potential to be an alternative 3D culture scaffold that can be used for studies on drug-screening, cell migration, or as an in vitro disease model. In addition, EWA can be used as a potential source for cell transplantation (i.e., using this platform as an ex vivo environment for cell expansion). The low cost of producing EWA is an added advantage.
Collapse
Affiliation(s)
- Yuli Zhang
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.); (J.G.M.-L.)
| | - Hieu M. Pham
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.); (J.G.M.-L.)
| | - Jose G. Munguia-Lopez
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.); (J.G.M.-L.)
- Department of Bioengineering, McGill University, 3480 University Street, Montreal, QC H3A 0E9, Canada;
| | - Joseph M. Kinsella
- Department of Bioengineering, McGill University, 3480 University Street, Montreal, QC H3A 0E9, Canada;
| | - Simon D. Tran
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (Y.Z.); (H.M.P.); (J.G.M.-L.)
| |
Collapse
|
16
|
Silk Nanofibrous Electrospun Scaffold Amplifies Proliferation and Stemness Profile of Mouse Spermatogonial Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00189-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Mano SS, Uto K, Ebara M. Fluidity of Poly (ε-Caprolactone)-Based Material Induces Epithelial-to-Mesenchymal Transition. Int J Mol Sci 2020; 21:E1757. [PMID: 32143443 PMCID: PMC7084864 DOI: 10.3390/ijms21051757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND We propose the potential studies on material fluidity to induce epithelial to mesenchymal transition (EMT) in MCF-7 cells. In this study, we examined for the first time the effect of material fluidity on EMT using poly(ε-caprolactone-co-D,L-lactide) (P(CL-co-DLLA)) with tunable elasticity and fluidity. METHODS The fluidity was altered by chemically crosslinking the polymer networks. The crosslinked P(CL-co-DLLA) substrate showed a solid-like property with a stiffness of 261 kPa, while the non-crosslinked P(CL-co-DLLA) substrate of 100 units (high fluidity) and 500 units (low fluidity) existed in a quasi-liquid state with loss modulus of 33 kPa and 30.8 kPa, respectively, and storage modulus of 10.8 kPa and 20.1 kPa, respectively. RESULTS We observed that MCF-7 cells on low fluidic substrates decreased the expression of E-cadherin, an epithelial marker, and increased expression of vimentin, a mesenchymal marker. This showed that the cells lose their epithelial phenotype and gain a mesenchymal property. On the other hand, MCF-7 cells on high fluidic substrates maintained their epithelial phenotype, suggesting that the cells did not undergo EMT. CONCLUSION Considering these results as the fundamental information for material fluidity induced EMT, our system could be used to regulate the degree of EMT by turning the fluidity of the material.
Collapse
Affiliation(s)
- Sharmy Saimon Mano
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
| | - Koichiro Uto
- International Center for Young Scientist (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
| | - Mitsuhiro Ebara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Graduate School of Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
18
|
Covarrubias-Zambrano O, Yu J, Bossmann SH. Nano-Inspired Technologies for Peptide Delivery. Curr Protein Pept Sci 2019; 21:379-400. [PMID: 31793426 DOI: 10.2174/1389203720666191202112429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/26/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022]
Abstract
Nano-inspired technologies offer unique opportunities to treat numerous diseases by using therapeutic peptides. Therapeutic peptides have attractive pharmacological profiles and can be manufactured at relatively low costs. The major advantages of using a nanodelivery approach comprises significantly lower required dosages compared to systemic delivery, and thus reduced toxicity and immunogenicity. The combination of therapeutic peptides with delivery peptides and nanoparticles or small molecule drugs offers systemic treatment approaches, instead of aiming for single biological targets or pathways. This review article discusses exemplary state-of-the-art nanosized delivery systems for therapeutic peptides and antibodies, as well as their biochemical and biophysical foundations and emphasizes still remaining challenges. The competition between using different nanoplatforms, such as liposome-, hydrogel-, polymer-, silica nanosphere-, or nanosponge-based delivery systems is still "on" and no clear frontrunner has emerged to date.
Collapse
Affiliation(s)
| | - Jing Yu
- Department of Chemistry, Kansas State University, 419 CBC Building, Manhattan, KS 66506-0401, United States.,Johns Hopkins University, Department of Radiology, Baltimore, MD, United States
| | - Stefan H Bossmann
- Department of Chemistry, Kansas State University, 419 CBC Building, Manhattan, KS 66506-0401, United States
| |
Collapse
|