1
|
Quaglio AEV, Magro DO, Imbrizi M, De Oliveira ECS, Di Stasi LC, Sassaki LY. Creeping fat and gut microbiota in Crohn's disease. World J Gastroenterol 2025; 31:102042. [PMID: 39777251 PMCID: PMC11684179 DOI: 10.3748/wjg.v31.i1.102042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024] Open
Abstract
In this article, we explored the role of adipose tissue, especially mesenteric adipose tissue and creeping fat, and its association with the gut microbiota in the pathophysiology and progression of Crohn's disease (CD). CD is a form of inflammatory bowel disease characterized by chronic inflammation of the gastrointestinal tract, influenced by genetic predisposition, gut microbiota dysbiosis, and environmental factors. Gut microbiota plays a crucial role in modulating immune response and intestinal inflammation and is associated with the onset and progression of CD. Further, visceral adipose tissue, particularly creeping fat, a mesenteric adipose tissue characterized by hypertrophy and fibrosis, has been implicated in CD pathogenesis, inflammation, and fibrosis. The bacteria from the gut microbiota may translocate into mesenteric adipose tissue, contributing to the formation of creeping fat and influencing CD progression. Although creeping fat may be a protective barrier against bacterial invasion, its expansion can damage adjacent tissues, leading to complications. Modulating gut microbiota through interventions such as fecal microbiota transplantation, probiotics, and prebiotics has shown potential in managing CD. However, more research is needed to clarify the mechanisms linking gut dysbiosis, creeping fat, and CD progression and develop targeted therapies for microbiota modulation and fat-related complications in patients with CD.
Collapse
Affiliation(s)
- Ana EV Quaglio
- Verum Ingredients, Botucatu Technology Park, Botucatu 18605-525, São Paulo, Brazil
| | - Daniéla O Magro
- Department of Surgery, Faculty of Medical Sciences, State University of Campinas, Campinas 13083-970, São Paulo, Brazil
| | - Marcello Imbrizi
- Department of Gastroenterology, Faculty of Medical Sciences, University of Campinas, Campinas 13083-970, São Paulo, Brazil
| | - Ellen CS De Oliveira
- Department of Internal Medicine, Medical School, São Paulo State University, Botucatu 18618-686, São Paulo, Brazil
| | - Luiz C Di Stasi
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu 18618-689, São Paulo, Brazil
| | - Ligia Y Sassaki
- Department of Internal Medicine, Medical School, São Paulo State University, Botucatu 18618-686, São Paulo, Brazil
| |
Collapse
|
2
|
Deng ZH, Li X, Liu L, Zeng HM, Chen BF, Peng J. Role of gut microbiota and Helicobacter pylori in inflammatory bowel disease through immune-mediated synergistic actions. World J Gastroenterol 2024; 30:5097-5103. [PMID: 39713161 PMCID: PMC11612865 DOI: 10.3748/wjg.v30.i47.5097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
A recent study published in the World Journal of Gastroenterology, suggests that transplanting the gut microbiota from healthy donors can alleviate the pathological processes linked to inflammatory bowel disease (IBD), particularly Crohn's disease. In addition, that paper illustrates the effect of changes in the gut microbiota on IBD and points out that altered mesenteric adipose tissue caused by the gut microbiota and creeping fat lead to increased inflammation, which exacerbates IBD. Moreover, recent research has shown that the interaction between Helicobacter pylori (H. pylori) and the gut microbiota is mediated through immune mechanisms, resulting in a synergistic impact on IBD. Therefore, in this manuscript, we will focus on the role of the gut microbiota and H. pylori in the immune response to IBD, as well as the possible impact of H. pylori on the gut microbiota. We will also explore their individual and synergistic immune effects on IBD and look at future therapeutic perspectives for IBD.
Collapse
Affiliation(s)
- Zhi-Hao Deng
- The Second Clinical Medical College, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xin Li
- The First Clinical Medical College, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 310006, Jiangxi Province, China
| | - Li Liu
- The Second Clinical Medical College, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hai-Min Zeng
- The Second Clinical Medical College, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Bo-Fan Chen
- The Second Clinical Medical College, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jie Peng
- The Second Clinical Medical College, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
3
|
Zhang Q, Xiao W, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Ameliorative effects of
Lactobacillus fermentum isolated from individuals following vegan, omnivorous and high-meat diets on ulcerative colitis in mice. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:3181-3192. [DOI: 10.26599/fshw.2023.9250005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Bocchio F, Mancabelli L, Milani C, Lugli GA, Tarracchini C, Longhi G, Conto FD, Turroni F, Ventura M. Compendium of Bifidobacterium-based probiotics: characteristics and therapeutic impact on human diseases. MICROBIOME RESEARCH REPORTS 2024; 4:2. [PMID: 40207278 PMCID: PMC11977362 DOI: 10.20517/mrr.2024.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 04/11/2025]
Abstract
The human microbiota, a complex community of microorganisms residing in and on the human body, plays a crucial role in maintaining health and preventing disease. Bifidobacterium species have shown remarkable therapeutic potential across a range of health conditions, thus being considered optimal probiotic bacteria. This review provides insights into the concept of probiotics and explores the impact of bifidobacteria on human health, focusing on the gastrointestinal, respiratory, skeletal, muscular, and nervous systems. It also integrates information on the available genetic bases underlying the beneficial effects of each bifidobacterial probiotic species on different aspects of human physiology. Notably, Bifidobacterium-based probiotics have proven effective in managing gastrointestinal conditions such as constipation, antibiotic-associated diarrhea, irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and Helicobacter pylori infections. These benefits are achieved by modulating the intestinal microbiota, boosting immune responses, and strengthening the gut barrier. Moreover, Bifidobacterium species have been reported to reduce respiratory infections and asthma severity. Additionally, these probiotic bacteria offer benefits for skeletal and muscular health, as evidenced by Bifidobacterium adolescentis and Bifidobacterium breve, which have shown anti-inflammatory effects and symptom relief in arthritis models, suggesting potential in treating conditions like rheumatoid arthritis. Furthermore, probiotic therapies based on bifidobacterial species have shown promising effects in alleviating anxiety and depression, reducing stress, and enhancing cognitive function. Overall, this review integrates the extensive scientific literature now available that supports the health-promoting applications of probiotic Bifidobacterium species and underscores the need for further research to confirm their clinical efficacy across different body systems.
Collapse
Affiliation(s)
- Fabiana Bocchio
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Authors contributed equally
| | - Christian Milani
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Gabriele Andrea Lugli
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Flora De Conto
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
| | - Francesca Turroni
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Marco Ventura
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, Parma 43124, Italy
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| |
Collapse
|
5
|
Ottria R, Xynomilakis O, Casati S, Ciuffreda P. Pre- to Postbiotics: The Beneficial Roles of Pediatric Dysbiosis Associated with Inflammatory Bowel Diseases. Microorganisms 2024; 12:1582. [PMID: 39203424 PMCID: PMC11356122 DOI: 10.3390/microorganisms12081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Probiotics are "live microorganisms which, when administered in adequate amount, confer health benefits on the host". They can be found in certain foods like yogurt and kefir and in dietary supplements. The introduction of bacterial derivatives has not only contributed to disease control but has also exhibited promising outcomes, such as improved survival rates, immune enhancement, and growth promotion effects. It is interesting to note that the efficacy of probiotics goes beyond the viability of the bacteria, giving rise to concepts like paraprobiotics, non-viable forms of probiotics, and postbiotics. Paraprobiotics offer various health benefits in children with intestinal dysbiosis, contributing to improved digestive health, immune function, and overall well-being. In this review, the potential of these therapeutic applications as alternatives to pharmacological agents for treating pediatric intestinal dysbiosis will be thoroughly evaluated. This includes an analysis of their efficacy, safety, long-term benefits, and their ability to restore gut microbiota balance, improve digestive health, enhance immune function, and reduce inflammation. The aim is to determine if these non-pharmacological interventions can effectively and safely manage intestinal dysbiosis in children, reducing the need for conventional medications and their side effects.
Collapse
Affiliation(s)
- Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milan, Italy; (O.X.); (S.C.); (P.C.)
| | | | | | | |
Collapse
|
6
|
De Simone C. Clarifying correct attributions in scientific literature: The case of the De Simone Formulation and the VSL#3®. Clin Nutr 2024; 43:1759. [PMID: 38850997 DOI: 10.1016/j.clnu.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 06/10/2024]
Affiliation(s)
- Claudio De Simone
- Retired Professor of Infectious Diseases at the University of L'Aquila, Palazzo Camponeschi, Piazza Santa Margherita, 2, 67100 L'Aquila, Italy.
| |
Collapse
|
7
|
Tang M, Wang C, Xia Y, Tang J, Wang J, Shen L. Clostridioides difficile infection in inflammatory bowel disease: a clinical review. Expert Rev Anti Infect Ther 2024; 22:297-306. [PMID: 38676422 DOI: 10.1080/14787210.2024.2347955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Strong clinical data demonstrate that inflammatory bowel disease (IBD) is an independent risk factor for Clostridiodes difficile infection (CDI) and suggest a globally increased prevalence and severity of C. difficile coinfection in IBD patients (CDI-IBD). In addition to elderly individuals, children are also at higher risk of CDI-IBD. Rapid diagnosis is essential since the clinical manifestations of active IBD and CDI-IBD are indistinguishable. Antibiotics have been well established in the treatment of CDI-IBD, but they do not prevent recurrence. AREAS COVERED Herein, the authors focus on reviewing recent research advances on the new therapies of CDI-IBD. The novel therapies include gut microbiota restoration therapies (such as prebiotics, probiotics and FMT), immunotherapy (such as vaccines and monoclonal antibodies) and diet strategies (such as groningen anti-inflammatory diet and mediterranean diet). Future extensive prospective and placebo-controlled studies are required to evaluate their efficacy and long-term safety. EXPERT OPINION Available studies show that the prevalence of CDI-IBD is not optimistic. Currently, potential treatment options for CDI-IBD include a number of probiotics and novel antibiotics. This review updates the knowledge on the management of CDI in IBD patients, which is timely and important for GI doctors and scientists.
Collapse
Affiliation(s)
- Mengjun Tang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Chunhua Wang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ying Xia
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jian Tang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jiao Wang
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| | - Liang Shen
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Department of Clinical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
8
|
Naeem H, Hassan HU, Shahbaz M, Imran M, Memon AG, Hasnain A, Murtaza S, Alsagaby SA, Al Abdulmonem W, Hussain M, Abdelgawad MA, Ghoneim MM, Al Jbawi E. Role of Probiotics against Human Cancers, Inflammatory Diseases, and Other Complex Malignancies. J Food Biochem 2024; 2024:1-23. [DOI: 10.1155/2024/6632209] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Probiotics have growing medical importance as a result of their potential in the prevention and therapeutic support of several complex diseases, including different types of cancers. The anticarcinogenic properties of probiotics are attributed to various mechanisms, including alterations in the composition of the intestinal microbiota, suppression of cell proliferation, stimulation of apoptosis, inhibition of NF-kB, reduction in levels of H2AX, 8-hydroxy-deoxyguanosine, RIG-I, downregulation of IL-17, and TNF signaling pathway. Furthermore, probiotics have demonstrated significant advantages in the prevention and management of other complex diseases, including diabetes, obesity, and cardiovascular diseases. Probiotics had a considerable effect in reducing inflammatory infiltration and the occurrence of precancerous lesions. Additionally, the administration of probiotics led to a decrease in the appearance level of genes related to proinflammatory pathways, including NF-κB, IL-17, and TNF signaling pathways. However, further research studies are required to comprehend the processes via which probiotics exert their effects and to authenticate their potential as alternative therapeutic interventions.
Collapse
Affiliation(s)
- Hammad Naeem
- Department of Food Science and Technology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Hammad Ul Hassan
- Department of Food Science and Technology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Shahbaz
- Department of Food Science and Technology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal, Narowal, Pakistan
| | - Anjuman Gul Memon
- Department of Biochemistry, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Ammarah Hasnain
- Department of Biotechnology, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Shamas Murtaza
- Department of Food Science and Technology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11932, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Saudi Arabia
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Al Diriyah 13713, Saudi Arabia
| | | |
Collapse
|
9
|
Cufaro MC, Prete R, Di Marco F, Sabatini G, Corsetti A, Gonzalez NG, Del Boccio P, Battista N. A proteomic insight reveals the role of food-associated Lactiplantibacillus plantarum C9O4 in reverting intestinal inflammation. iScience 2023; 26:108481. [PMID: 38213792 PMCID: PMC10783612 DOI: 10.1016/j.isci.2023.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/06/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
Nowadays, Western diets and lifestyle lead to an increasing occurrence of chronic gut inflammation that represents an emerging health concern with still a lack of successful therapies. Fermented foods, and their associated lactic acid bacteria, have recently regained popularity for their probiotic potential including the maintenance of gut homeostasis by modulating the immune and inflammatory response. Our study aims to investigate the crosstalk between the food-borne strain Lactiplantibacillus plantarum C9O4 and intestinal epithelial cells in an in vitro inflammation model. Cytokines profile shows the ability of C9O4 to significantly reduce levels of IL-2, IL-5, IL-6, and IFN-γ. Proteomic functional analysis reveals an immunoregulatory role of C9O4, able to revert the detrimental effects of IFN-γ through the JAK/STAT pathway in inflamed intestinal cells. These results suggest a promising therapeutic role of fermented food-associated microbes for the management of gastrointestinal inflammatory diseases. Data are available via ProteomeXchange with identifier PXD042175.
Collapse
Affiliation(s)
- Maria Concetta Cufaro
- Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Roberta Prete
- Department of Bioscience for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Federica Di Marco
- Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giusi Sabatini
- Department of Bioscience for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Aldo Corsetti
- Department of Bioscience for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Natalia Garcia Gonzalez
- Department of Bioscience for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), 66100 Chieti, Italy
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Natalia Battista
- Department of Bioscience for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
10
|
Kim K, Kang M, Cho BK. Systems and synthetic biology-driven engineering of live bacterial therapeutics. Front Bioeng Biotechnol 2023; 11:1267378. [PMID: 37929193 PMCID: PMC10620806 DOI: 10.3389/fbioe.2023.1267378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
The past decade has seen growing interest in bacterial engineering for therapeutically relevant applications. While early efforts focused on repurposing genetically tractable model strains, such as Escherichia coli, engineering gut commensals is gaining traction owing to their innate capacity to survive and stably propagate in the intestine for an extended duration. Although limited genetic tractability has been a major roadblock, recent advances in systems and synthetic biology have unlocked our ability to effectively harness native gut commensals for therapeutic and diagnostic purposes, ranging from the rational design of synthetic microbial consortia to the construction of synthetic cells that execute "sense-and-respond" logic operations that allow real-time detection and therapeutic payload delivery in response to specific signals in the intestine. In this review, we outline the current progress and latest updates on microbial therapeutics, with particular emphasis on gut commensal engineering driven by synthetic biology and systems understanding of their molecular phenotypes. Finally, the challenges and prospects of engineering gut commensals for therapeutic applications are discussed.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Hajj Hussein I, Dosh L, Al Qassab M, Jurjus R, El Masri J, Abi Nader C, Rappa F, Leone A, Jurjus A. Highlights on two decades with microbiota and inflammatory bowel disease from etiology to therapy. Transpl Immunol 2023; 78:101835. [PMID: 37030558 DOI: 10.1016/j.trim.2023.101835] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Inflammatory Bowel diseases (IBDs) constitute a complex panel of disorders characterized with chronic inflammation affecting the alimentary canal along with extra intestinal manifestations. Its exact etiology is still unknown; however, it seems to be the result of uncharacterized environmental insults in the intestine and their immunological consequences along with dysbiosis, in genetically predisposed individuals. It was the main target of our team since 2002 to explore the etiology of IBD and the related role of bacteria. For almost two decades, our laboratory, among others, has been involved in the reciprocal interaction between the host gastrointestinal lining and the homing microbiota. In the first decade, the attention of scientists focused on the possible role of enteropathogenic E. coli and its relationship to the mechanistic pathways involved in IBD induced in both rats and mice by chemicals like Iodoacetamide, Dextran Sodium Sulfate, Trinitrobenzene, thus linking microbial alteration to IBD pathology. A thorough characterization of the various models was the focus of research in addition to exploring how to establish an active homeostatic composition of the commensal microbiota, including its wide diversity by restoration of gut microbiota by probiotics and moving from dysbiosis to eubiosis. In the last six years and in order to effectively translate such findings into clinical practice, it was critical to explore their relationship to colorectal cancer CRC both in solid tumors and chemically induced CRC. It was also critical to explore the degree of intestinal dysbiosis and linking to IBD, CRC and diabetes. Remarkably, the active mechanistic pathways were proposed as well as the role of microbiota or bacterial metabolites involved. This review covers two decades of investigations in our laboratory and sheds light on the different aspects of the relationship between microbiota and IBD with an emphasis on dysbiosis, probiotics and the multiple mechanistic pathways involved.
Collapse
Affiliation(s)
- Inaya Hajj Hussein
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Laura Dosh
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Mohamad Al Qassab
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jad El Masri
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Celine Abi Nader
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Francesca Rappa
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Abdo Jurjus
- Department of Anatomy, Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
12
|
Roy S, Dhaneshwar S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World J Gastroenterol 2023; 29:2078-2100. [PMID: 37122604 PMCID: PMC10130969 DOI: 10.3748/wjg.v29.i14.2078] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
Experimental evidence supports the fact that changes in the bowel microflora due to environmental or dietary factors have been investigated as implicating factors in the etiopathogenesis of inflammatory bowel disease (IBD). The amassing knowledge that the inhabited microbiome regulates the gut physiology and immune functions in IBD, has led researchers to explore the effectiveness of prebiotics, probiotics, and synbiotics in treating IBD. This therapeutic approach focuses on restoring the dynamic balance between the microflora and host defense mechanisms in the intestinal mucosa to prevent the onset and persistence of intestinal inflammation. Numerous microbial strains and carbohydrate blends, along with their combinations have been examined in experimental colitis models and clinical trials, and the results indicated that it can be an attractive therapeutic strategy for the suppression of inflammation, remission induction, and relapse prevention in IBD with minimal side effects. Several mechanisms of action of probiotics (for e.g., Lactobacillus species, and Bifidobacterium species) have been reported such as suppression of pathogen growth by releasing certain antimicrobial mediators (lactic and hydrogen peroxide, acetic acid, and bacteriocins), immunomodulation and initiation of an immune response, enhancement of barrier activity, and suppression of human T-cell proliferation. Prebiotics such as lactulose, lactosucrose, oligofructose, and inulin have been found to induce the growth of certain types of host microflora, resulting in an enriched enteric function. These non-digestible food dietary components have been reported to exert anti-inflammatory effects by inhibiting the expression of tumor necrosis factor-α-related cytokines while augmenting interleukin-10 levels. Although pro-and prebiotics has established their efficacy in healthy subjects, a better understanding of the luminal ecosystem is required to determine which specific bacterial strain or combination of probiotics and prebiotics would prove to be the ideal treatment for IBD. Clinical trials, however, have given some conflicting results, requiring the necessity to cite the more profound clinical effect of these treatments on IBD remission and prevention. The purpose of this review article is to provide the most comprehensive and updated review on the utility of prebiotics, probiotics, and synbiotics in the management of active Crohn's disease and ulcerative colitis/pouchitis.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida 201313, Uttar Pradesh, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| |
Collapse
|
13
|
Han H, Liu L, Zhang J, Zhang M, Chen X, Huang Y, Ma W, Qin H, Shen L, Zhang J, Yang W. New Lactobacillus plantarum membrane proteins (LpMPs) towards oral anti-inflammatory agents against dextran sulfate sodium-induced colitis. Int Immunopharmacol 2022; 113:109416. [DOI: 10.1016/j.intimp.2022.109416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/10/2022]
|
14
|
McFarlin BK, Tanner EA, Hill DW, Vingren JL. Prebiotic/probiotic supplementation resulted in reduced visceral fat and mRNA expression associated with adipose tissue inflammation, systemic inflammation, and chronic disease risk. GENES & NUTRITION 2022; 17:15. [PMID: 36437471 PMCID: PMC9703693 DOI: 10.1186/s12263-022-00718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Prebiotic/probiotic supplementation represents a viable option for addressing elevated systemic inflammation and chronic disease risk in overweight individuals. The purpose of this study was to determine if 90 days of prebiotic/probiotic supplementation could alter mRNA responsible for inflammation and chronic disease risk in weight-stable overweight adults. Nanostring mRNA analysis (574 plex) was used to survey targets associated with adipose tissue inflammation, systemic inflammation, and chronic disease risk. All protocols were approved by the University IRB, and participants gave written informed consent. Participants were randomly assigned to either placebo (N = 7; rice flour) or combined (N = 8) prebiotic (PreticX® Xylooligosaccharide; 0.8 g/day; ADIP) and probiotic (MegaDuo® Bacillus subtilis HU58 and Bacillus coagulans SC-208; billion CFU/day) supplementation. Participants were diverse population of healthy individuals with the exception of excess body weight. Measurements were made at baseline, 30, 60, and 90 days. Whole-body DXA scans (GE iDXA®; body composition) and blood 574-plex mRNA analysis (Nanostring®) were used to generate primary outcomes. Significance was set to p < 0.05 and adjusted for multiple comparisons where necessary. RESULTS Compared to placebo, prebiotic/probiotic supplementation was associated with a 35% reduction in visceral adipose tissue (VAT; p = 0.002) but no change in body weight or overall percent body fat. Prebiotic/probiotic supplementation resulted in significant (p < 0.05), differential expression of 15 mRNA associated with adipose tissue inflammation (GATA3, TNFAIP6, ST2, CMKLR1, and CD9), systemic inflammation (LTF, SOCS1, and SERPING1), and/or chronic disease risk (ARG1, IL-18, CCL4, CEACAM6, ATM, CD80, and LAMP3). We also found 6 additional mRNA that had no obvious relationship to three previous biological functions (CSF1, SRC, ICAM4CD24, CD274, and CLEC6A). CONCLUSION The key findings support that 90-day prebiotic/probiotic supplementation may be associated with reduced adipose tissue inflammation, reduced systemic inflammation, and reduced chronic disease risk. Combined with the unexpected finding of reduced VAT, this intervention may have resulted in improved overall health and reduced chronic disease risk.
Collapse
Affiliation(s)
- Brian K McFarlin
- Applied Physiology Laboratory, University of North Texas, Denton, TX, 76203, USA. .,Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA.
| | - Elizabeth A Tanner
- Applied Physiology Laboratory, University of North Texas, Denton, TX, 76203, USA.,Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - David W Hill
- Applied Physiology Laboratory, University of North Texas, Denton, TX, 76203, USA
| | - Jakob L Vingren
- Applied Physiology Laboratory, University of North Texas, Denton, TX, 76203, USA.,Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
15
|
Exopolysaccharides of Bacillus amyloliquefaciens Amy-1 Mitigate Inflammation by Inhibiting ERK1/2 and NF-κB Pathways and Activating p38/Nrf2 Pathway. Int J Mol Sci 2022; 23:ijms231810237. [PMID: 36142159 PMCID: PMC9499622 DOI: 10.3390/ijms231810237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
Bacillus amyloliquefaciens is a probiotic for animals. Evidence suggests that diets supplemented with B. amyloliquefaciens can reduce inflammation; however, the underlying mechanism is unclear and requires further exploration. The exopolysaccharides of B. amyloliquefaciens amy-1 displayed hypoglycemic activity previously, suggesting that they are bioactive molecules. In addition, they counteracted the effect of lipopolysaccharide (LPS) on inducing cellular insulin resistance in exploratory tests. Therefore, this study aimed to explore the anti-inflammatory effect and molecular mechanisms of the exopolysaccharide preparation of amy-1 (EPS). Consequently, EPS reduced the expression of proinflammatory factors, the phagocytic activity and oxidative stress of LPS-stimulated THP-1 cells. In animal tests, EPS effectively ameliorated ear inflammation of mice. These data suggested that EPS possess anti-inflammatory activity. A mechanism study revealed that EPS inhibited the nuclear factor-κB pathway, activated the mitogen-activated protein kinase (MAPK) p38, and prohibited the extracellular signal-regulated kinase 1/2, but had no effect on the c-Jun-N-terminal kinase 2 (JNK). EPS also activated the anti-oxidative nuclear factor erythroid 2–related factor 2 (Nrf2) pathway. Evidence suggested that p38, but not JNK, was involved in activating the Nrf2 pathway. Together, these mechanisms reduced the severity of inflammation. These findings support the proposal that exopolysaccharides may play important roles in the anti-inflammatory functions of probiotics.
Collapse
|
16
|
Lacticaseibacillus rhamnosus Fmb14 prevents purine induced hyperuricemia and alleviate renal fibrosis through gut-kidney axis. Pharmacol Res 2022; 182:106350. [PMID: 35843568 DOI: 10.1016/j.phrs.2022.106350] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
Hyperuricemia is a critical threat to human health, and conventional medical treatment only aims to treat acute gouty arthritis. Purine diet-mediated chronic hyperuricemia and related syndromes are neglected in clinical therapeutics. In this study, the prevention ability of Lacticaseibacillus rhamnosus Fmb14, screened from Chinese yogurt, was evaluated in chronic purine-induced hyperuricemia (CPH) mice. After 12 weeks of Fmb14 administration, serum uric acid (SUA) in CPH mice decreased by 36.8 %, from 179.1 to 113.2 µmol/L, and the mortality rate decreased from 30 % to 10 %. The prevention role of Fmb14 in CPH was further investigated, and the reduction of uric acid by Fmb14 was attributed to the reduction of XOD (xanthine oxidase) in the liver and URAT1 in the kidney, as well the promotion of ABCG2 in the colon. Fmb14 administration Increased ZO-1 and Occludin expression in the colon and decreased fibrosis degree in the kidney indicated that Fmb14 administration had preventive effects through the gut-kidney axis in CPH. In specific, Fmb14 administration upregulated the diversity of gut microbiota, increased short-chain fatty acids (SCFA) by 35 % in colon materials and alleviated the inflammatory response by reducing biomarkers levels of IL-1β, IL-18 and TNF-α at 11.6 %, 21.7 % and 26.5 % in serum, compared to CPH group, respectively. Additionally, 16 S rRNA sequencing showed 31.5 % upregulation of Prevotella, 20.5 % and 21.6 % downregulation of Ruminococcus and Suterella at the genus level, which may be a new gut microbial marker in hyperuricemia. In conclusion, Fmb14 ameliorated CPH through the gut-kidney axis, suggesting a new strategy to prevent hyperuricemia.
Collapse
|
17
|
Zhang S, Wang Y, Lu F, Mohammed SAD, Liu H, Ding S, Liu SM. Mechanism of Action of Shenerjiangzhi Formulation on Hyperlipidemia Induced by Consumption of a High-Fat Diet in Rats Using Network Pharmacology and Analyses of the Gut Microbiota. Front Pharmacol 2022; 13:745074. [PMID: 35450051 PMCID: PMC9016632 DOI: 10.3389/fphar.2022.745074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Shenerjiangzhi formulation (SEJZ) is a new traditional Chinese medicine formulation (patent number: CN110680850A). SEJZ contains Eleutherococcus senticosus (Rupr. and Maxim.), Maxim (Araliaceae; E. senticosus radix and rhizome), Lonicera japonica Thunb (Caprifoliaceae; Lonicera japonica branch, stem), Crataegus pinnatifida Bunge (Rosaceae; Crataegus pinnatifida fruit), and Auricularia auricula. SEJZ has been designed to treat hyperlipidemia. Despite the therapeutic benefits of SEJZ, its underlying mechanism of action is not known. We explored the efficacy of SEJZ against hyperlipidemia by integrating network pharmacology and 16S rRNA gene sequencing and elucidated its mechanism of action. First, SEJZ targets were found through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and from the literature. Hyperlipidemia-related therapeutic targets were obtained from GeneCards, Online Mendelian Inheritance in Man, and DrugBank databases. Then, Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape were applied for the analyses and construction of a protein–protein interaction (PPI) network. The Kyoto Encyclopedia of Genes and Genomes database was employed to identify signaling pathways that were enriched. Second, the therapeutic effects of SEJZ against hyperlipidemia induced by consumption of a high-fat diet in rats were evaluated by measuring body weight changes and biochemical tests. SEJZ treatment was found to alleviate obesity and hyperlipidemia in rats. Finally, 16S rRNA gene sequencing showed that SEJZ could significantly increase the abundance of short-chain fatty acid-producing bacteria, restore the intestinal barrier, and maintain intestinal-flora homeostasis. Using PICRUSt2, six metabolic pathways were found to be consistent with the results of network pharmacology: “African trypanosomiasis”, “amoebiasis”, “arginine and proline metabolism”, “calcium signaling pathway”, “NOD-like receptor signaling pathway”, and “tryptophan metabolism”. These pathways might represent how SEJZ works against hyperlipidemia. Moreover, the “African trypanosomiasis pathway” had the highest association with core genes. These results aid understanding of how SEJZ works against dyslipidemia and provide a reference for further studies.
Collapse
Affiliation(s)
- Shuang Zhang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shadi A D Mohammed
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hanxing Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Song Ding
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shu-Min Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
18
|
Advances in the colon-targeted chitosan based drug delivery systems for the treatment of inflammatory bowel disease. Carbohydr Polym 2022; 288:119351. [DOI: 10.1016/j.carbpol.2022.119351] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022]
|
19
|
Murphy EA, Velázquez KT. The role of diet and physical activity in influencing the microbiota/microbiome. DIET, INFLAMMATION, AND HEALTH 2022:693-745. [DOI: 10.1016/b978-0-12-822130-3.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Agraib LM, Yamani MI, Rayyan YM, Abu-Sneineh AT, Tamimi TA, Tayyem RF. The probiotic supplementation role in improving the immune system among people with ulcerative colitis: a narrative review. Drug Metab Pers Ther 2021; 37:7-19. [PMID: 35385892 DOI: 10.1515/dmpt-2021-0150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/23/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES The purpose of this paper is to summarize the current evidence on probiotics' uses as an adjuvant for ulcerative colitis (UC) and provide an understanding of the effect of probiotics supplement on the immune system and inflammatory responses among UC patients and subsequent therapeutic benefits. CONTENT A narrative review of all the relevant published papers known to the author was conducted. SUMMARY UC is a chronic inflammatory bowel disease (IBD) that results in inflammation and ulceration of the colon and rectum. The primary symptoms of active disease are diarrhea, abdominal pain, and rectal bleeding. About 70% of the human immune system (mucosal-associated lymphoid tissue) originates in the intestine. Probiotics are live microorganisms that help in stabilizing the gut microbiota (nonimmunologic gut defense), restores normal flora, and enhance the humoral immune system. Probiotics especially Bifidobacterium, Saccharomyces boulardii, and lactic acid-producing bacteria have been used as an adjunct therapy for treating UC to ameliorate disease-related symptoms and reduce relapse rate. Probiotics, in general, modulate the immune system through their ability to enhance the mucosal barrier function, or through their interaction with the local immune system to enhance regulatory T cell responses, decrease the pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin 1 beta and increase anti-inflammatory factor interleukin 10. OUTLOOK More studies are needed to explore the properties of the various probiotic bacterial strains, their different uses, as well as the dosage of probiotics and duration for treating different disorders. Further clinical investigations on mechanisms of action and how probiotics modulate the immune system may lead to further advances in managing IBD.
Collapse
Affiliation(s)
- Lana M Agraib
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Mohammed I Yamani
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Yaser Mohammed Rayyan
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Awni Taleb Abu-Sneineh
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Tarek A Tamimi
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Reema Fayez Tayyem
- Department of Human Nutrition, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
21
|
Agraib LM, Yamani MI, Rayyan YM, Abu-Sneineh AT, Tamimi TA, Tayyem RF. The probiotic supplementation role in improving the immune system among people with ulcerative colitis: a narrative review. Drug Metab Pers Ther 2021; 0:dmdi-2021-0150. [PMID: 34428363 DOI: 10.1515/dmdi-2021-0150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The purpose of this paper is to summarize the current evidence on probiotics' uses as an adjuvant for ulcerative colitis (UC) and provide an understanding of the effect of probiotics supplement on the immune system and inflammatory responses among UC patients and subsequent therapeutic benefits. CONTENT A narrative review of all the relevant published papers known to the author was conducted. SUMMARY UC is a chronic inflammatory bowel disease (IBD) that results in inflammation and ulceration of the colon and rectum. The primary symptoms of active disease are diarrhea, abdominal pain, and rectal bleeding. About 70% of the human immune system (mucosal-associated lymphoid tissue) originates in the intestine. Probiotics are live microorganisms that help in stabilizing the gut microbiota (nonimmunologic gut defense), restores normal flora, and enhance the humoral immune system. Probiotics especially Bifidobacterium, Saccharomyces boulardii, and lactic acid-producing bacteria have been used as an adjunct therapy for treating UC to ameliorate disease-related symptoms and reduce relapse rate. Probiotics, in general, modulate the immune system through their ability to enhance the mucosal barrier function, or through their interaction with the local immune system to enhance regulatory T cell responses, decrease the pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin 1 beta and increase anti-inflammatory factor interleukin 10. OUTLOOK More studies are needed to explore the properties of the various probiotic bacterial strains, their different uses, as well as the dosage of probiotics and duration for treating different disorders. Further clinical investigations on mechanisms of action and how probiotics modulate the immune system may lead to further advances in managing IBD.
Collapse
Affiliation(s)
- Lana M Agraib
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Mohammed I Yamani
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Yaser Mohammed Rayyan
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Awni Taleb Abu-Sneineh
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Tarek A Tamimi
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Reema Fayez Tayyem
- Department of Human Nutrition, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
22
|
Akutko K, Stawarski A. Probiotics, Prebiotics and Synbiotics in Inflammatory Bowel Diseases. J Clin Med 2021; 10:2466. [PMID: 34199428 PMCID: PMC8199601 DOI: 10.3390/jcm10112466] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease (CD) and ulcerative colitis (UC), are chronic inflammatory diseases of the digestive tract with periods of remission and relapses. The etiopathogenesis of IBD is multifactorial and has not been fully understood. Hence, only symptomatic treatment of these diseases is possible. The current pharmacological treatment has variable efficacy and is associated with the risk of significant side effects. Therefore, there is a constant need to search for new types of therapies with a high safety profile. Considering that the qualitative and quantitative profile of the gastrointestinal microbiome is often different in patients with IBD than in healthy individuals, there is a need for looking for therapies aimed at restoring intestinal microbiome homeostasis. Thus, the use of strictly defined probiotics, prebiotics and synbiotics may become an alternative form of IBD therapy. There is evidence that treatment with certain probiotic strains, e.g., VSL#3 and Escherischia coli Nissle 1917, is an effective form of therapy to induce remission in patients with mild to moderate UC. So far, the effectiveness of the use of probiotics, prebiotics and synbiotics in inducing or maintaining remission in patients with CD has not been confirmed. There are also reports of possible beneficial effects of fecal microbiota transplantation (FMT) on the course of IBD, especially UC. Further, well-planned studies on a large group of patients are needed to determine the role of specific probiotic strains, prebiotics, synbiotics and FMT in the treatment of IBD in adults and in children.
Collapse
Affiliation(s)
- Katarzyna Akutko
- 2nd Department and Clinic of Paediatrics, Gastroenterology and Nutrition, Medical University of Wroclaw, M. Curie-Skłodowskiej St. 50/52, 50-369 Wrocław, Poland;
| | | |
Collapse
|
23
|
Evaluation of E. coli Nissle1917 derived metabolites in modulating key mediator genes of the TLR signaling pathway. BMC Res Notes 2021; 14:156. [PMID: 33902702 PMCID: PMC8077910 DOI: 10.1186/s13104-021-05568-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Objective Gut-microbiota plays key roles in many aspects like the health and illness of humans. It's well proved that modification of gut microbiota by probiotics is useful for improving inflammatory bowel disease (IBD) conditions. According to recent studies, different types of bacterial metabolites can affect immune cells and inflammation conditions. The present study aimed to evaluate the anti-inflammatory effects of metabolites of E. coli Nissle1917. Results The cell-free supernatant could modulate TNF-α production and affected many crucial mediators in the Toll-like receptor (TLR) signaling pathway. Also, supernatant showed significant dose-dependent properties in this regard. In this study, the TLR signaling pathway was found among probable mechanisms by which probiotics can affect inflammatory situations. These findings provide additional evidence on the use of probiotic metabolites for inhibiting and down-regulating numerous key mediator factors in the TLR signaling pathway. Aberrant or dysfunctional TLR signaling contributes to the development of acute and chronic intestinal inflammatory pathways in IBD. Therefore, finding a component that can affect this process might be considered for therapeutic targets in IBD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05568-x.
Collapse
|
24
|
Chi T, Zhao Q, Wang P. Fecal 16S rRNA Gene Sequencing Analysis of Changes in the Gut Microbiota of Rats with Low-Dose Aspirin-Related Intestinal Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8848686. [PMID: 33954200 PMCID: PMC8060078 DOI: 10.1155/2021/8848686] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The incidence of small intestinal injury caused by low-dose aspirin (LDA) is high, but the pathogenesis and intervention measures of it have not been elucidated. Recent studies have found gut microbiota to be closely associated with onset and development of NSAID-induced intestinal injury. However, studies of the changes in the gut microbiota of rats with LDA-related intestinal injury have been lacking recently. In this study, we investigated fecal 16S rRNA gene sequencing analysis of changes in the gut microbiota of rats with LDA-related intestinal injury. METHODS Sprague-Dawley (SD) rat models of small intestinal injury were established by intragastric administration of LDA. The small intestinal tissues and the fecal samples were harvested. The fecal samples were then analyzed using high-throughput sequencing of 16S rRNA V3-V4 amplicons. The gut microbiota composition and diversity were analyzed and compared using principal coordinate analysis (PCoA), nonmetric multidimensional scaling (NMDS) analysis, the unweighted pair-group method with arithmetic mean (UPGMA) clustering analysis, multivariate statistical analysis (ANOSIM, MetaStats, and LEfSe), and spatial statistics. RESULTS The LDA rat model was successfully established. Decreased Firmicutes and increased Bacteroidetes abundances in rats with LDA-induced small intestinal injury were revealed. MetaStats analysis between the before administration of LDA (CG) and after administration of LDA (APC) groups showed that the intestinal floras exhibiting significant differences (P < 0.05, q < 0.1) were Firmicutes, Bacteroides, Cyanobacteria, Melainabacteria, Coriobacteriia, Bacteroidia, Bacteroidales, Eubacteriaceae, and Streptococcaceae. In addition, the bacterial taxa showing significant differences between the control (NS) and APC groups were Firmicutes, Bacteroides, Verrucomicrobiaceae and Peptococcaceae. CONCLUSIONS The alterations in the gut microbiota composition and diversity of rats with LDA-related intestinal injury were found in the present study. The change of gut microbiota in LDA-related intestinal injury will lay the foundation for further research on the function and signaling pathways of the intestinal flora and promote the use of intestinal flora as drug targets to treat LDA-induced small intestinal injury.
Collapse
Affiliation(s)
- Tianyu Chi
- Departments of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Quchuan Zhao
- Departments of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Peili Wang
- Cardiovascular Center, Xi Yuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Weng YJ, Jiang DX, Liang J, Ye SC, Tan WK, Yu CY, Zhou Y. Effects of Pretreatment with Bifidobacterium bifidum Using 16S Ribosomal RNA Gene Sequencing in a Mouse Model of Acute Colitis Induced by Dextran Sulfate Sodium. Med Sci Monit 2021; 27:e928478. [PMID: 33686049 PMCID: PMC7959103 DOI: 10.12659/msm.928478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Bifidobacterium is a potentially effective and safe treatment for patients with inflammatory bowel disease (IBD), including ulcerative colitis and Crohn’s disease. However, information on the influence of B. bifidum on gut microbial diversity of treated and pretreated IBD patients is limited. Material/Methods Our study investigated therapeutic and preventive effects of B. bifidum ATCC 29521 on C57BL/6 mice with dextran sulfate sodium (DSS)-induced acute colitis via 16S ribosomal ribonucleic acid (rRNA) gene sequencing. Results Treatment and pretreatment of mice with B. bifidum ATCC 29521 significantly alleviated the severity of acute colitis on the basis of clinical and pathologic indicators. 16S rRNA gene sequencing showed that administration of B. bifidum shifted composition of the gut microbiome in mice with DSS-induced colitis in both treated and pretreated groups. Mice pretreated with B. bifidum ATCC 29521 for 21 days exhibited a significant increase in diversity of the gut microbiome. Principal coordinate analysis showed that gut microbiota structure was shaped by different treatments and time points. On the basis of linear discriminant analysis of effect size, the abundance of the genus Escherichia-Shigella, belonging to the family Enterobacteriaceae, was reduced in the B. bifidum-treated group, indicating that pathogens were inhibited by the B. bifidum treatment. Furthermore, the genera Intestinimonas and Bacteroides were significantly associated with the B. bifidum-pretreated group. Conclusions 16S rRNA gene sequencing showed that pretreatment with B. bifidum ATCC 29521 reduced intestinal inflammation and altered the gut microbiota to favor the genera Intestinimonas and Bacteroides.
Collapse
Affiliation(s)
- Yi-Jie Weng
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Dan-Xian Jiang
- Department of Medical Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Jian Liang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Shi-Cai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Wen-Kai Tan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Cai-Yuan Yu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Yu Zhou
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| |
Collapse
|
26
|
Pizarroso NA, Fuciños P, Gonçalves C, Pastrana L, Amado IR. A Review on the Role of Food-Derived Bioactive Molecules and the Microbiota-Gut-Brain Axis in Satiety Regulation. Nutrients 2021; 13:632. [PMID: 33669189 PMCID: PMC7919798 DOI: 10.3390/nu13020632] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is a chronic disease resulting from an imbalance between energy intake and expenditure. The growing relevance of this metabolic disease lies in its association with other comorbidities. Obesity is a multifaceted disease where intestinal hormones such as cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), and peptide YY (PYY), produced by enteroendocrine cells (EECs), have a pivotal role as signaling systems. Receptors for these hormones have been identified in the gut and different brain regions, highlighting the interconnection between gut and brain in satiation mechanisms. The intestinal microbiota (IM), directly interacting with EECs, can be modulated by the diet by providing specific nutrients that induce environmental changes in the gut ecosystem. Therefore, macronutrients may trigger the microbiota-gut-brain axis (MGBA) through mechanisms including specific nutrient-sensing receptors in EECs, inducing the secretion of specific hormones that lead to decreased appetite or increased energy expenditure. Designing drugs/functional foods based in bioactive compounds exploiting these nutrient-sensing mechanisms may offer an alternative treatment for obesity and/or associated metabolic diseases. Organ-on-a-chip technology represents a suitable approach to model multi-organ communication that can provide a robust platform for studying the potential of these compounds as modulators of the MGBA.
Collapse
Affiliation(s)
| | | | | | | | - Isabel R. Amado
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/ n, 4715-330 Braga, Portugal; (N.A.P.); (P.F.); (C.G.); (L.P.)
| |
Collapse
|
27
|
Primec M, Škorjanc D, Langerholc T, Mičetić-Turk D, Gorenjak M. Specific Lactobacillus probiotic strains decrease transepithelial glucose transport through GLUT2 downregulation in intestinal epithelial cell models. Nutr Res 2021; 86:10-22. [DOI: 10.1016/j.nutres.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 12/19/2022]
|
28
|
Abstract
Mucosal surfaces are distinctive sites exposed to environmental, dietary, and microbial antigens. Particularly in the gut, the host continuously actively adapts via complex interactions between the microbiota and dietary compounds and immune and other tissue cells. Regulatory T cells (Tregs) are critical for tuning the intestinal immune response to self- and non-self-antigens in the intestine. Its importance in intestinal homeostasis is illustrated by the onset of overt inflammation caused by deficiency in Treg generation, function, or stability in the gut. A substantial imbalance in Tregs has been observed in intestinal tissue during pathogenic conditions, when a tightly regulated and equilibrated system becomes dysregulated and leads to unimpeded and chronic immune responses. In this chapter, we compile and critically discuss the current knowledge on the key factors that promote Treg-mediated tolerance in the gut, such as those involved in intestinal Treg differentiation, specificity and suppressive function, and their immunophenotype during health and disease. We also discuss the current state of knowledge on Treg dysregulation in human intestine during pathological states such as inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), graft-versus-host disease (GVHD), and colorectal cancer (CRC), and how that knowledge is guiding development of Treg-targeted therapies to treat or prevent intestinal disorders.
Collapse
|
29
|
Cococcioni L, Panelli S, Varotto-Boccazzi I, Carlo DD, Pistone D, Leccese G, Zuccotti GV, Comandatore F. IBDs and the pediatric age: Their peculiarities and the involvement of the microbiota. Dig Liver Dis 2021; 53:17-25. [PMID: 33189590 DOI: 10.1016/j.dld.2020.10.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
Inflammatory Bowel Diseases (IBDs) are gastrointestinal disorders characterized by chronic, relapsing inflammation, with growing incidence worldwide over the last decades and distinctive features in the pediatric age. An increasing body of evidence indicates that gut microbiota plays a major role in inflammatory disorders, including IBDs. In this review we will discuss the most recent evidences on dysbiotic changes associated with gut inflammation, as well as environmental and genetic factors contributing to IBD pathogenesis, with a focus on the peculiarities of the pediatric age.
Collapse
Affiliation(s)
- Lucia Cococcioni
- Department of Pediatrics, Vittore Buzzi Children's Hospital, Università di Milano, Italy
| | - Simona Panelli
- "L. Sacco" Department of Biomedical and Clinical Sciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Università di Milano, Italy.
| | | | - Domenico Di Carlo
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Università di Milano, Italy
| | - Dario Pistone
- Department of Biomedical Sciences for Health, University di Milano, Italy
| | | | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, Università di Milano, Italy; "L. Sacco" Department of Biomedical and Clinical Sciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Università di Milano, Italy
| | - Francesco Comandatore
- "L. Sacco" Department of Biomedical and Clinical Sciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Università di Milano, Italy
| |
Collapse
|
30
|
A Clinic Trial Evaluating the Effects of Aloe Vera Fermentation Gel on Recurrent Aphthous Stomatitis. ACTA ACUST UNITED AC 2020; 2020:8867548. [PMID: 33354266 PMCID: PMC7735858 DOI: 10.1155/2020/8867548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
Recurrent aphthous stomatitis (RAS) is the most common disorder in the oral mucosa that affects the daily quality of life of patients, and there is currently no specific treatment. In the present study, we developed aloe vera fermentation gel under the action of probiotics on aloe vera. In total, 35 patients with the history of aphthous stomatitis were enrolled to explore the potential benefits of aloe vera fermentation gel to treat RAS, and the healing-promotion effects were recorded and compared; microbial compositions in different groups were tested by high-throughput sequencing. Our results indicated that the duration of healing time of the aloe group showed potentially better effects because of the higher proportion of 4-6 day healing time (35% vs. 20%) and lower proportion of 7-10 day healing time (65% vs. 80%) compared with that of the chitosan group. Also, the use of aloe vera fermentation gel could return oral bacteria to normal levels and reduce the abundance of harmful oral bacteria including Actinomyces, Granulicatella, and Peptostreptococcus. These results suggest that aloe vera fermentation gel has the ability to treat patients with RAS and has positive prospects in clinical applications.
Collapse
|
31
|
Goulart RDA, Barbalho SM, Rubira CJ, Araújo AC, Lima VM, Rogerio Leoni B, Guiguer EL. Curcumin therapy for ulcerative colitis remission: systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol 2020; 14:1171-1179. [PMID: 32772752 DOI: 10.1080/17474124.2020.1808460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Despite significant advances in the study of Ulcerative colitis (UC) management, up to a third of patients may be refractory to conventional therapy, and specialists have considered natural compounds such as curcumin. AREA COVERED The meta-analyzes found in the literature compare the effects of curcumin used in different administration routes or compare patients in remission with patients with active disease. Due to the biases in these studies, we performed a systematic review and meta-analysis of randomized clinical trials (RCTs) that investigated the efficacy of orally administrated curcumin in mild-to-moderate active UC. EXPERT OPINION Curcumin produces relevant anti-inflammatory and antioxidant effects that are crucial in inducing remission in UC patients. Unfortunately, in the treatment of UC, we have not observed studies with standardization of dose and routes of administration. Existing meta-analyses are biased because they compare studies using different administration routes and patients in different stages of the disease. Our meta-analysis is the only one that tried to make a comparison with a few of biases as possible and show that curcumin can help in the induction of remission in UC subjects.
Collapse
Affiliation(s)
- Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR) , Marília, São Paulo, Brazil
| | - Sandra M Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR) , Marília, São Paulo, Brazil
- School of Medicine, University of Marília (UNIMAR) , Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, Faculty of Food Technology of Marília , Marília, São Paulo, Brazil
| | - Cláudio José Rubira
- School of Medicine, University of Marília (UNIMAR) , Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR) , Marília, São Paulo, Brazil
- School of Medicine, University of Marília (UNIMAR) , Marília, São Paulo, Brazil
| | | | - Buchaim Rogerio Leoni
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR) , Marília, São Paulo, Brazil
- Department of Biological Sciences, University of São Paulo (FOB - USP) , Bauru, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR) , Marília, São Paulo, Brazil
- School of Medicine, University of Marília (UNIMAR) , Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, Faculty of Food Technology of Marília , Marília, São Paulo, Brazil
| |
Collapse
|
32
|
Chu F, Esworthy RS, Shen B, Doroshow JH. Role of the microbiota in ileitis of a mouse model of inflammatory bowel disease-Glutathione peroxide isoenzymes 1 and 2-double knockout mice on a C57BL background. Microbiologyopen 2020; 9:e1107. [PMID: 32810389 PMCID: PMC7568258 DOI: 10.1002/mbo3.1107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022] Open
Abstract
C57Bl6 (B6) mice devoid of glutathione peroxidases 1 and 2 (Gpx1/2-DKO) develop ileitis after weaning. We previously showed germ-free Gpx1/2-DKO mice of mixed B6.129 background did not develop ileocolitis. Here, we examine the composition of the ileitis provoking microbiota in B6 Gpx1/2-DKO mice. DNA was isolated from the ileum fecal stream and subjected to high-throughput sequencing of the V3 and V4 regions of the 16S rRNA gene to determine the abundance of operational taxonomic units (OTUs). We analyzed the role of bacteria by comparing the microbiomes of the DKO and pathology-free non-DKO mice. Mice were treated with metronidazole, streptomycin, and vancomycin to alter pathology and correlate the OTU abundances with pathology levels. Principal component analysis based on Jaccard distance of abundance showed 3 distinct outcomes relative to the source Gpx1/2-DKO microbiome. Association analyses of pathology and abundance of OTUs served to rule out 7-11 of 24 OTUs for involvement in the ileitis. Collections of OTUs were identified that appeared to be linked to ileitis in this animal model and would be classified as commensals. In Gpx1/2-DKO mice, host oxidant generation from NOX1 and DUOX2 in response to commensals may compromise the ileum epithelial barrier, a role generally ascribed to oxidants generated from mitochondria, NOX2 and endoplasmic reticulum stress in response to presumptive pathogens in IBD. Elevated oxidant levels may contribute to epithelial cell shedding, which is strongly associated with progress toward inflammation in Gpx1/2-DKO mice and predictive of relapse in IBD by allowing leakage of microbial components into the submucosa.
Collapse
Affiliation(s)
- Fong‐Fong Chu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital and College of Clinical Medicine of HenanUniversity of Science and TechnologyLuoyangChina
| | - R. Steven Esworthy
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of HopeDuarteCAUSA
| | - Binghui Shen
- Department of Cancer Genetics and EpigeneticsBeckman Research InstituteCity of HopeDuarteCAUSA
| | - James H. Doroshow
- Center for Cancer Research and Division of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMDUSA
| |
Collapse
|
33
|
Aponte M, Murru N, Shoukat M. Therapeutic, Prophylactic, and Functional Use of Probiotics: A Current Perspective. Front Microbiol 2020; 11:562048. [PMID: 33042069 PMCID: PMC7516994 DOI: 10.3389/fmicb.2020.562048] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Probiotics are considered as the twenty-first century panpharmacon due to their competent remedial power to cure from gastrointestinal dysbiosis, systematic metabolic diseases, and genetic impairments up to complicated neurodegenerative disorders. They paved the way for an innovative managing of various severe diseases through palatable food products. The probiotics' role as a "bio-therapy" increased their significance in food and medicine due to many competitive advantages over traditional treatment therapies. Their prophylactic and therapeutic potential has been assessed through hundreds of preclinical and clinical studies. In addition, the food industry employs probiotics as functional and nutraceutical ingredients to enhance the added value of food product in terms of increased health benefits. However, regardless of promising health-boosting effects, the probiotics' efficacy still needs an in-depth understanding of systematic mechanisms and factors supporting the healthy actions.
Collapse
Affiliation(s)
- Maria Aponte
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nicoletta Murru
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Mahtab Shoukat
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
34
|
Bilski J, Wojcik D, Danielak A, Mazur-Bialy A, Magierowski M, Tønnesen K, Brzozowski B, Surmiak M, Magierowska K, Pajdo R, Ptak-Belowska A, Brzozowski T. Alternative Therapy in the Prevention of Experimental and Clinical Inflammatory Bowel Disease. Impact of Regular Physical Activity, Intestinal Alkaline Phosphatase and Herbal Products. Curr Pharm Des 2020; 26:2936-2950. [PMID: 32338209 DOI: 10.2174/1381612826666200427090127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are multifactorial, chronic, disabling, and progressive diseases characterised by cyclical nature, alternating between active and quiescent states. While the aetiology of IBD is not fully understood, this complex of diseases involve a combination of factors including the genetic predisposition and changes in microbiome as well as environmental risk factors such as high-fat and low-fibre diets, reduced physical activity, air pollution and exposure to various toxins and drugs such as antibiotics. The prevalence of both IBD and obesity is increasing in parallel, undoubtedly proving the existing interactions between these risk factors common to both disorders to unravel poorly recognized cell signaling and molecular alterations leading to human IBD. Therefore, there is still a significant and unmet need for supportive and adjunctive therapy for IBD patients directed against the negative consequences of visceral obesity and bacterial dysbiosis. Among the alternative therapies, a moderate-intensity exercise can benefit the health and well-being of IBD patients and improve both the healing of human IBD and experimental animal colitis. Intestinal alkaline phosphatase (IAP) plays an essential role in the maintenance of intestinal homeostasis intestinal and the mechanism of mucosal defence. The administration of exogenous IAP could be recommended as a therapeutic strategy for the cure of diseases resulting from the intestinal barrier dysfunction such as IBD. Curcumin, a natural anti-inflammatory agent, which is capable of stimulating the synthesis of endogenous IAP, represents another alternative approach in the treatment of IBD. This review was designed to discuss potential “nonpharmacological” alternative and supplementary therapeutic approaches taking into account epidemiological and pathophysiological links between obesity and IBD, including changes in the functional parameters of the intestinal mucosa and alterations in the intestinal microbiome.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Dagmara Wojcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Aleksandra Danielak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agnieszka Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katherine Tønnesen
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Bartosz Brzozowski
- Gastroenterology and Hepatology Clinic, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Surmiak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Robert Pajdo
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agata Ptak-Belowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
35
|
Khare T, Palakurthi SS, Shah BM, Palakurthi S, Khare S. Natural Product-Based Nanomedicine in Treatment of Inflammatory Bowel Disease. Int J Mol Sci 2020; 21:E3956. [PMID: 32486445 PMCID: PMC7312938 DOI: 10.3390/ijms21113956] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
: Many synthetic drugs and monoclonal antibodies are currently in use to treat Inflammatory Bowel Disease (IBD). However, they all are implicated in causing severe side effects and long-term use results in many complications. Numerous in vitro and in vivo experiments demonstrate that phytochemicals and natural macromolecules from plants and animals reduce IBD-related complications with encouraging results. Additionally, many of them modify enzymatic activity, alleviate oxidative stress, and downregulate pro-inflammatory transcriptional factors and cytokine secretion. Translational significance of natural nanomedicine and strategies to investigate future natural product-based nanomedicine is discussed. Our focus in this review is to summarize the use of phytochemicals and macromolecules encapsulated in nanoparticles for the treatment of IBD and IBD-associated colorectal cancer.
Collapse
Affiliation(s)
- Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Sushesh Srivatsa Palakurthi
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (S.S.P.); (B.M.S.); (S.P.)
| | - Brijesh M. Shah
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (S.S.P.); (B.M.S.); (S.P.)
| | - Srinath Palakurthi
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (S.S.P.); (B.M.S.); (S.P.)
| | - Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Harry S. Truman Veterans Hospital, Columbia, MO 65201, USA
| |
Collapse
|
36
|
Sun Z, Li J, Dai Y, Wang W, Shi R, Wang Z, Ding P, Lu Q, Jiang H, Pei W, Zhao X, Guo Y, Liu J, Tan X, Mao T. Indigo Naturalis Alleviates Dextran Sulfate Sodium-Induced Colitis in Rats via Altering Gut Microbiota. Front Microbiol 2020; 11:731. [PMID: 32425906 PMCID: PMC7203728 DOI: 10.3389/fmicb.2020.00731] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/27/2020] [Indexed: 01/10/2023] Open
Abstract
Ulcerative colitis is a gastrointestinal disorder intricately associated with intestinal dysbiosis, but effective treatments are currently limited. Indigo naturalis, a traditional Chinese medicine derived from indigo plants, has been widely used in the treatment of ulcerative colitis. However, the specific mechanisms have not yet been identified. Accordingly, in this study, we evaluated the effects and mechanisms of indigo naturalis on dextran sulfate sodium (DSS)-induced colitis in rats. Our results showed that indigo naturalis potently alleviated DSS-induced colitis in rats, and reversed DSS-induced intestinal dysbiosis using bacterial 16S rRNA amplicon sequencing. The protective effects of indigo naturalis were gut microbiota dependent, as demonstrated by antibiotic treatments and fecal microbiota transplantation. Depletion of the gut microbiota through a combination of antibiotic treatments blocked the anti-inflammatory effect of indigo naturalis on the DSS-induced colitis, and the recipients of the gut microbiota from indigo naturalis-treated rats displayed a significantly attenuated intestinal inflammation, which was actively responsive to therapeutic interventions with indigo naturalis. Notably, supplement with indigo naturalis greatly increased the levels of feces butyrate, which was positively correlated with the relative abundances of Ruminococcus_1 and Butyricicoccus. We further showed that indigo naturalis-dependent attenuation of colitis was associated with elevated expression of short-chain fatty acid-associated receptors GPR41 and GPR43. Collectively, these results suggested that indigo naturalis alleviates DSS-induced colitis in rats through a mechanism of the microbiota-butyrate axis, particularly alterations in Ruminococcus_1 and Butyricicoccus abundances, and target-specific microbial species may have unique therapeutic promise for ulcerative colitis.
Collapse
Affiliation(s)
- Zhongmei Sun
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junxiang Li
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Dai
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Wenting Wang
- Department of Traditional Chinese Medicine, Beijing Yangfangdian Hospital, Beijing, China
| | - Rui Shi
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhibin Wang
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Panghua Ding
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qiongqiong Lu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Jiang
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Pei
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xingjie Zhao
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Guo
- Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiali Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Tan
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tangyou Mao
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
37
|
Triantafillidis JK, Tzouvala M, Triantafyllidi E. Enteral Nutrition Supplemented with Transforming Growth Factor-β, Colostrum, Probiotics, and Other Nutritional Compounds in the Treatment of Patients with Inflammatory Bowel Disease. Nutrients 2020; 12:1048. [PMID: 32290232 PMCID: PMC7230540 DOI: 10.3390/nu12041048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Enteral nutrition seems to play a significant role in the treatment of both adults and children with active Crohn's disease, and to a lesser degree in the treatment of patients with active ulcerative colitis. The inclusion of some special factors in the enteral nutrition formulas might increase the rate of the efficacy. Actually, enteral nutrition enriched in Transforming Growth Factor-β reduced the activity index and maintained remission in patients with Crohn's disease. In addition, a number of experimental animal studies have shown that colostrum exerts a significantly positive result. Probiotics of a special type and a certain dosage could also reduce the inflammatory process in patients with active ulcerative colitis. Therefore, the addition of these factors in an enteral nutrition formula might increase its effectiveness. Although the use of these formulas is not supported by large clinical trials, it could be argued that their administration in selected cases as an exclusive diet or in combination with the drugs used in patients with inflammatory bowel disease could benefit the patient. In this review, the authors provide an update on the role of enteral nutrition, supplemented with Transforming Growth Factor-β, colostrum, and probiotics in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Maria Tzouvala
- Department of Gastroenterology “St Panteleimon” General Hospital, ZC 18454 Nicea, Greece;
| | | |
Collapse
|