1
|
Glass MR, Waxman EA, Yamashita S, Lafferty M, Beltran AA, Farah T, Patel NK, Singla R, Matoba N, Ahmed S, Srivastava M, Drake E, Davis LT, Yeturi M, Sun K, Love MI, Hashimoto-Torii K, French DL, Stein JL. Cross-site reproducibility of human cortical organoids reveals consistent cell type composition and architecture. Stem Cell Reports 2024; 19:1351-1367. [PMID: 39178845 PMCID: PMC11411306 DOI: 10.1016/j.stemcr.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024] Open
Abstract
While guided human cortical organoid (hCO) protocols reproducibly generate cortical cell types at one site, variability in hCO phenotypes across sites using a harmonized protocol has not yet been evaluated. To determine the cross-site reproducibility of hCO differentiation, three independent research groups assayed hCOs in multiple differentiation replicates from one induced pluripotent stem cell (iPSC) line using a harmonized miniaturized spinning bioreactor protocol across 3 months. hCOs were mostly cortical progenitor and neuronal cell types in reproducible proportions that were consistently organized in cortical wall-like buds. Cross-site differences were detected in hCO size and expression of metabolism and cellular stress genes. Variability in hCO phenotypes correlated with stem cell gene expression prior to differentiation and technical factors associated with seeding, suggesting iPSC quality and treatment are important for differentiation outcomes. Cross-site reproducibility of hCO cell type proportions and organization encourages future prospective meta-analytic studies modeling neurodevelopmental disorders in hCOs.
Collapse
Affiliation(s)
- Madison R Glass
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elisa A Waxman
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Satoshi Yamashita
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Michael Lafferty
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alvaro A Beltran
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tala Farah
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Niyanta K Patel
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rubal Singla
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nana Matoba
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sara Ahmed
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mary Srivastava
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emma Drake
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liam T Davis
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meghana Yeturi
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kexin Sun
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA; Departments of Pediatrics, and Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason L Stein
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Burnight ER, Fenner BJ, Han IC, DeLuca AP, Whitmore SS, Bohrer LR, Andorf JL, Sohn EH, Mullins RF, Tucker BA, Stone EM. Demonstration of the pathogenicity of a common non-exomic mutation in ABCA4 using iPSC-derived retinal organoids and retrospective clinical data. Hum Mol Genet 2024; 33:1379-1390. [PMID: 37930186 PMCID: PMC11305681 DOI: 10.1093/hmg/ddad176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Mutations in ABCA4 are the most common cause of Mendelian retinal disease. Clinical evaluation of this gene is challenging because of its extreme allelic diversity, the large fraction of non-exomic mutations, and the wide range of associated disease. We used patient-derived retinal organoids as well as DNA samples and clinical data from a large cohort of patients with ABCA4-associated retinal disease to investigate the pathogenicity of a variant in ABCA4 (IVS30 + 1321 A>G) that occurs heterozygously in 2% of Europeans. We found that this variant causes mis-splicing of the gene in photoreceptor cells such that the resulting protein contains 36 incorrect amino acids followed by a premature stop. We also investigated the phenotype of 10 patients with compound genotypes that included this mutation. Their median age of first vision loss was 39 years, which is in the mildest quintile of a large cohort of patients with ABCA4 disease. We conclude that the IVS30 + 1321 A>G variant can cause disease when paired with a sufficiently deleterious opposing allele in a sufficiently permissive genetic background.
Collapse
Affiliation(s)
- Erin R Burnight
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, United States
| | - Beau J Fenner
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, United States
| | - Ian C Han
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, United States
| | - Adam P DeLuca
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, United States
| | - S Scott Whitmore
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, United States
| | - Laura R Bohrer
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, United States
| | - Jeaneen L Andorf
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, United States
| | - Elliott H Sohn
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, United States
| | - Robert F Mullins
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, United States
| | - Budd A Tucker
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, United States
| | - Edwin M Stone
- Institute for Vision Research, Carver College of Medicine, University of Iowa, 375 Newton Road, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, United States
| |
Collapse
|
3
|
Florido MHC, Ziats NP. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A 2024; 112:1286-1304. [PMID: 38230548 DOI: 10.1002/jbm.a.37669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Cardiovascular disease (CVD) remains to be the leading cause of death globally today and therefore the need for the development of novel therapies has become increasingly important in the cardiovascular field. The mechanism(s) behind the pathophysiology of CVD have been laboriously investigated in both stem cell and bioengineering laboratories. Scientific breakthroughs have paved the way to better mimic cell types of interest in recent years, with the ability to generate any cell type from reprogrammed human pluripotent stem cells. Mimicking the native extracellular matrix using both organic and inorganic biomaterials has allowed full organs to be recapitulated in vitro. In this paper, we will review techniques from both stem cell biology and bioengineering which have been fruitfully combined and have fueled advances in the cardiovascular disease field. We will provide a brief introduction to CVD, reviewing some of the recent studies as related to the role of endothelial cells and endothelial cell dysfunction. Recent advances and the techniques widely used in both bioengineering and stem cell biology will be discussed, providing a broad overview of the collaboration between these two fields and their overall impact on tissue engineering in the cardiovascular devices and implications for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mary H C Florido
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Biomedical Engineering and Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Battaglia RA, Faridounnia M, Beltran A, Robinson J, Kinghorn K, Ezzell JA, Bharucha-Goebel D, Bönnemann CG, Hooper JE, Opal P, Bouldin TW, Armao D, Snider NT. Intermediate filament dysregulation in astrocytes in the human disease model of KLHL16 mutation in giant axonal neuropathy (GAN). Mol Biol Cell 2023; 34:mbcE23030094. [PMID: 37672338 PMCID: PMC10846626 DOI: 10.1091/mbc.e23-03-0094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Giant Axonal Neuropathy (GAN) is a pediatric neurodegenerative disease caused by KLHL16 mutations. KLHL16 encodes gigaxonin, which regulates intermediate filament (IF) turnover. Previous neuropathological studies and examination of postmortem brain tissue in the current study revealed involvement of astrocytes in GAN. To develop a clinically-relevant model, we reprogrammed skin fibroblasts from seven GAN patients to pluripotent stem cells (iPSCs), which were used to generate neural progenitor cells (NPCs), astrocytes, and brain organoids. Multiple isogenic control clones were derived via CRISPR/Cas9 gene editing of one patient line carrying the G332R gigaxonin mutation. All GAN iPSCs were deficient for gigaxonin and displayed patient-specific increased vimentin expression. GAN NPCs had lower nestin expression and fewer nestin-positive cells compared to isogenic controls, but nestin morphology was unaffected. GAN brain organoids were marked by the presence of neurofilament and GFAP aggregates. GAN iPSC-astrocytes displayed striking dense perinuclear vimentin and GFAP accumulations and abnormal nuclear morphology. In over-expression systems, GFAP oligomerization and perinuclear aggregation were augmented in the presence of vimentin. GAN patient cells with large perinuclear vimentin aggregates accumulated significantly more nuclear KLHL16 mRNA compared to cells without vimentin aggregates. As an early effector of KLHL16 mutations, vimentin may be a potential target in GAN.
Collapse
Affiliation(s)
- Rachel A. Battaglia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Maryam Faridounnia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Adriana Beltran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jasmine Robinson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Karina Kinghorn
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - J. Ashley Ezzell
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | | | | | - Jody E. Hooper
- Department of Pathology, Stanford University, Palo Alto, CA 94305
| | - Puneet Opal
- Departments of Neurology and Cell and Developmental Biology, Northwestern University, Chicago, IL 60611
| | - Thomas W. Bouldin
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Diane Armao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Natasha T. Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
5
|
Patlolla N, Ponnachan P, Jamora C, Abbey D. Generation of control human iPSC line INSTEMi001-A from PBMCs of a healthy Indian donor. Stem Cell Res 2023; 69:103112. [PMID: 37236122 DOI: 10.1016/j.scr.2023.103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/29/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
Human pluripotent stem cells serve as a robust model system to study disease pathogenesis in a dish and search for various targeted therapeutics. Collection of control lines from healthy individuals are essential for any study. Therefore, we have generated hiPSC line from a healthy male donor after episomal reprogramming of PBMCs. The generated line is pluripotent, had normal karyotype and has a potential of tri-lineage differentiation. The generated line would serve as control line of Asian origin from Indian population.
Collapse
Affiliation(s)
- Niharika Patlolla
- Institute for Stem Cell Science and Regenerative Medicine, (inStem), Bangalore, India; Current affiliation: Eyestem Research, Centre for Cellular and Molecular Platforms (C-CAMP), Bengaluru, India
| | - Pretty Ponnachan
- Institute for Stem Cell Science and Regenerative Medicine, (inStem), Bangalore, India
| | - Colin Jamora
- Institute for Stem Cell Science and Regenerative Medicine, (inStem), Bangalore, India
| | - Deepti Abbey
- Institute for Stem Cell Science and Regenerative Medicine, (inStem), Bangalore, India; Current affiliation: Indian Institute of Technology-Delhi, Hauz Khas, Delhi 110016, India.
| |
Collapse
|
6
|
Cohen C, Flouret V, Herlyn M, Fukunaga-Kalabis M, Li L, Bernerd F. Induced pluripotent stem cells reprogramming overcomes technical limitations for highly pigmented adult melanocyte amplification and integration in 3D skin model. Pigment Cell Melanoma Res 2023; 36:232-245. [PMID: 36478412 PMCID: PMC10731472 DOI: 10.1111/pcmr.13077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Understanding pigmentation regulations taking into account the original skin color type is important to address pigmentary disorders. Biological models including adult melanocytes from different phenotypes allow to perform fine-tuned explorative studies and support discovery of treatments adapted to populations' skin color. However, technical challenges arise when trying to not only isolate but also amplify melanocytes from highly pigmented adult skin. To bypass the initial isolation and growth of cutaneous melanocytes, we harvested and expanded fibroblasts from light and dark skin donors and reprogrammed them into iPSC, which were then differentiated into melanocytes. The resulting melanocyte populations displayed high purity, genomic stability, and strong proliferative capacity, the latter being a critical parameter for dark skin cells. The iPSC-derived melanocyte strains expressed lineage-specific markers and could be successfully integrated into reconstructed skin equivalent models, revealing pigmentation status according to the native phenotype. In both monolayer cultures and 3D skin models, the induced melanocytes demonstrated responsiveness to promelanogenic stimuli. The data demonstrate that the iPSC-derived melanocytes with high proliferative capacity maintain their pigmentation genotype and phenotypic properties up to a proper integration into 3D skin equivalents, even for highly pigmented cells.
Collapse
Affiliation(s)
| | | | | | | | - Ling Li
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
7
|
Bchetnia M, Martineau L, Racine V, Powell J, McCuaig C, Morin C, Dupérée A, Gros-Louis F, Laprise C. Generation of three induced pluripotent stem cell lines (UQACi003-A, UQACi004-A, and UQACi006-A) from three patients with KRT5 epidermolysis bullosa simplex mutations. Stem Cell Res 2022; 60:102726. [PMID: 35247839 DOI: 10.1016/j.scr.2022.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/28/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Heterozygous mutations within Keratin 5 (KRT5) are common genetic causes of epidermolysis bullosa simplex (EBS), a skin fragility disorder characterized by blisters, which appear after minor trauma. Using CytoTune®Sendai virus, we generated three human induced pluripotent stem cell (iPSC) lines from three EBS patients carrying respectively the single heterozygous mutations in KRT5, c.449 T > C, c.980 T > C, and c.608 T > C. All lines display normal karyotype, expressed high levels of pluripotent markers, and can differentiate into derivatives of the three germ layers. These iPSCs are helpful for a better understanding of the EBS pathogenesis and developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Mbarka Bchetnia
- Université du Québec à Chicoutimi, Département des sciences fondamentales, Saguenay, QC, Canada
| | - Laurie Martineau
- Centrer hospitalier universitaire (CHU) de Québec, Université Laval, Québec, QC, Canada
| | - Véronique Racine
- Centrer hospitalier universitaire (CHU) de Québec, Université Laval, Québec, QC, Canada
| | - Julie Powell
- CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | | | - Charles Morin
- Université du Québec à Chicoutimi, Département des sciences fondamentales, Saguenay, QC, Canada; Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-Saint-Jean, Saguenay, QC, Canada
| | - Audrey Dupérée
- Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-Saint-Jean, Saguenay, QC, Canada
| | - François Gros-Louis
- Centrer hospitalier universitaire (CHU) de Québec, Université Laval, Québec, QC, Canada
| | - Catherine Laprise
- Université du Québec à Chicoutimi, Département des sciences fondamentales, Saguenay, QC, Canada; Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-Saint-Jean, Saguenay, QC, Canada.
| |
Collapse
|
8
|
Shibamiya A, Schulze E, Krauß D, Augustin C, Reinsch M, Schulze ML, Steuck S, Mearini G, Mannhardt I, Schulze T, Klampe B, Werner T, Saleem U, Knaust A, Laufer SD, Neuber C, Lemme M, Behrens CS, Loos M, Weinberger F, Fuchs S, Eschenhagen T, Hansen A, Ulmer BM. Cell Banking of hiPSCs: A Practical Guide to Cryopreservation and Quality Control in Basic Research. ACTA ACUST UNITED AC 2021; 55:e127. [PMID: 32956561 DOI: 10.1002/cpsc.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reproducibility of stem cell research relies on the constant availability of quality-controlled cells. As the quality of human induced pluripotent stem cells (hiPSCs) can deteriorate in the course of a few passages, cell banking is key to achieve consistent results and low batch-to-batch variation. Here, we provide a cost-efficient route to generate master and working cell banks for basic research projects. In addition, we describe minimal protocols for quality assurance including tests for sterility, viability, pluripotency, and genetic integrity. © 2020 The Authors. Basic Protocol 1: Expansion of hiPSCs Basic Protocol 2: Cell banking of hiPSCs Support Protocol 1: Pluripotency assessment by flow cytometry Support Protocol 2: Thawing control: Viability and sterility Support Protocol 3: Potency, viral clearance, and pluripotency: Spontaneous differentiation and qRT-PCR Support Protocol 4: Identity: Short tandem repeat analysis.
Collapse
Affiliation(s)
- Aya Shibamiya
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Elisabeth Schulze
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Dana Krauß
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Current address: Institute of Cancer Research, Department of Medicine I, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria
| | - Christa Augustin
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Reinsch
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Mirja Loreen Schulze
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Simone Steuck
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Ingra Mannhardt
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Schulze
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Birgit Klampe
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Tessa Werner
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Umber Saleem
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Anika Knaust
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sandra D Laufer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Christiane Neuber
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Marta Lemme
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Charlotta Sophie Behrens
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Malte Loos
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sigrid Fuchs
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Bärbel Maria Ulmer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
9
|
Walker SJ, Wagoner AL, Leavitt D, Mack DL. A simplified approach for derivation of induced pluripotent stem cells from Epstein-Barr virus immortalized B-lymphoblastoid cell lines. Heliyon 2021; 7:e06617. [PMID: 33869861 PMCID: PMC8047170 DOI: 10.1016/j.heliyon.2021.e06617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 11/26/2022] Open
Abstract
Given the limited availability of tissue, especially brain tissue, for neurological diseases and disorders research, the development of alternative biological tools for investigations of underlying molecular and genetic mechanisms is imperative. One important resource for this task is the large repositories that bank immortalized blood cells (i.e. lymphoblastoid cell lines; LCLs) from affected individuals and their unaffected family members. These repositories document demographic, phenotypic, and, in some cases, genotypic information about the donors and thus provide a ready-made sample source for hypothesis testing. Importantly, patient-specific LCLs can be used to generate induced pluripotent stem cells (iPSC) that, in turn, can be used to create specific cell types for use in mechanistic studies. To investigate this concept further, LCLs from two males (proband and sibling) were obtained from one such repository, the Autism Genetics Resource Exchange (AGRE), and iPSCs were generated by transfection with Epi5 Episomal iPSC reprogramming plasmids. Characterization of the resultant cell lines by PCR, RT-PCR, immunocytochemistry, karyotyping, and the Taqman® human pluripotent stem cell Scorecard™ Panel, was used to provide evidence of endogenous pluripotency and then to evaluate the trilineage potential of four representative clones. Results indicated that all four iPSC lines were initially pluripotent and displayed the trilineage potential predictive for successful differentiation to mesoderm, endoderm, or ectoderm-derived cell types. Compared to other published protocols, this study details a somewhat simplified approach, used here specifically for the generation and characterization of induced pluripotent stem cells from well-characterized and banked LCLs.
Collapse
Affiliation(s)
- Stephen J. Walker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston Salem, NC 27156, USA
| | - Ashley L. Wagoner
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston Salem, NC 27156, USA
| | - Dana Leavitt
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston Salem, NC 27156, USA
| | - David L. Mack
- Department of Rehabilitation Medicine and the Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
10
|
Vasylovska S, Schuster J, Brboric A, Carlsson PO, Dahl N, Lau J. Generation of human induced pluripotent stem cell (iPSC) lines (UUMCBi001-A, UUMCBi002-A) from two healthy donors. Stem Cell Res 2020; 50:102114. [PMID: 33340796 DOI: 10.1016/j.scr.2020.102114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/02/2020] [Indexed: 11/20/2022] Open
Abstract
Availability of numerous high-quality iPSC lines is needed to overcome donor-associated variability caused by genetic background effects. We generated two human iPSC lines from dermal fibroblasts of two healthy females using Sendai virus reprogramming. Quality assessment of the iPSC lines confirmed the expression of pluripotency markers, trilineage differentiation capacity and absence of exogenous expression of reprogramming factors. Both iPSC lines were genetically stable with a genotype that matched the fibroblast lines of donors. These iPSC lines add to available reference lines as a resource for disease modeling of polygenic and multifactorial diseases, for evaluation of differentiation protocols and toxicology screening.
Collapse
Affiliation(s)
| | - Jens Schuster
- Uppsala University, Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala, Sweden
| | - Anja Brboric
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden
| | - Per-Ola Carlsson
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden
| | - Niklas Dahl
- Uppsala University, Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala, Sweden
| | - Joey Lau
- Uppsala University, Department of Medical Cell Biology, Uppsala, Sweden.
| |
Collapse
|
11
|
Martin RM, Ikeda K, Cromer MK, Uchida N, Nishimura T, Romano R, Tong AJ, Lemgart VT, Camarena J, Pavel-Dinu M, Sindhu C, Wiebking V, Vaidyanathan S, Dever DP, Bak RO, Laustsen A, Lesch BJ, Jakobsen MR, Sebastiano V, Nakauchi H, Porteus MH. Highly Efficient and Marker-free Genome Editing of Human Pluripotent Stem Cells by CRISPR-Cas9 RNP and AAV6 Donor-Mediated Homologous Recombination. Cell Stem Cell 2020; 24:821-828.e5. [PMID: 31051134 DOI: 10.1016/j.stem.2019.04.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/08/2018] [Accepted: 03/29/2019] [Indexed: 11/25/2022]
Abstract
Genome editing of human pluripotent stem cells (hPSCs) provides powerful opportunities for in vitro disease modeling, drug discovery, and personalized stem cell-based therapeutics. Currently, only small edits can be engineered with high frequency, while larger modifications suffer from low efficiency and a resultant need for selection markers. Here, we describe marker-free genome editing in hPSCs using Cas9 ribonucleoproteins (RNPs) in combination with AAV6-mediated DNA repair template delivery. We report highly efficient and bi-allelic integration frequencies across multiple loci and hPSC lines, achieving mono-allelic editing frequencies of up to 94% at the HBB locus. Using this method, we show robust bi-allelic correction of homozygous sickle cell mutations in a patient-derived induced PSC (iPSC) line. Thus, this strategy shows significant utility for generating hPSCs with large gene integrations and/or single-nucleotide changes at high frequency and without the need for introducing selection genes, enhancing the applicability of hPSC editing for research and translational uses.
Collapse
Affiliation(s)
- Renata M Martin
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Kazuya Ikeda
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - M Kyle Cromer
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Nobuko Uchida
- ReGen Med Division, BOCO Silicon Valley, Palo Alto, CA 94303, USA
| | | | - Rosa Romano
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Andrew J Tong
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Viktor T Lemgart
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Mara Pavel-Dinu
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Camille Sindhu
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Volker Wiebking
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Rasmus O Bak
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Anders Laustsen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark; Aarhus Research Centre of Innate Immunology, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark
| | - Benjamin J Lesch
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Martin R Jakobsen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark; Aarhus Research Centre of Innate Immunology, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark
| | - Vittorio Sebastiano
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA 94305, USA
| | | | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Kwon JH, Kim HK, Ha TW, Im JS, Song BH, Hong KS, Oh JS, Han J, Lee MR. Hyperthermia Disturbs and Delays Spontaneous Differentiation of Human Embryoid Bodies. Biomedicines 2020; 8:biomedicines8060176. [PMID: 32604871 PMCID: PMC7345654 DOI: 10.3390/biomedicines8060176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Various types of stress stimuli have been shown to threaten the normal development of embryos during embryogenesis. Prolonged heat exposure is the most common stressor that poses a threat to embryo development. Despite the extensive investigation of heat stress control mechanisms in the cytosol, the endoplasmic reticulum (ER) heat stress response remains unclear. In this study, we used human embryonic stem cells (hESCs) to examine the effect of heat stress on early embryonic development, specifically alterations in the ER stress response. In a hyperthermic (42 °C) culture, ER stress response genes involved in hESC differentiation were induced within 1 h of exposure, which resulted in disturbed and delayed differentiation. In addition, hyperthermia increased the expression levels of activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) genes, which are associated with the protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway. Furthermore, we demonstrated that tauroursodeoxycholic acid, a chemical chaperone, mitigated the delayed differentiation under hyperthermia. Our study identified novel gene markers in response to hyperthermia-induced ER stress on hESCs, thereby providing further insight into the mechanisms that regulate human embryogenesis.
Collapse
Affiliation(s)
- Ji Hyun Kwon
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea; (J.H.K.); (H.K.K.); (T.W.H.); (J.S.I.); (B.H.S.)
| | - Hyun Kyu Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea; (J.H.K.); (H.K.K.); (T.W.H.); (J.S.I.); (B.H.S.)
| | - Tae Won Ha
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea; (J.H.K.); (H.K.K.); (T.W.H.); (J.S.I.); (B.H.S.)
| | - Jeong Suk Im
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea; (J.H.K.); (H.K.K.); (T.W.H.); (J.S.I.); (B.H.S.)
| | - Byung Hoo Song
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea; (J.H.K.); (H.K.K.); (T.W.H.); (J.S.I.); (B.H.S.)
| | - Ki Sung Hong
- Department of Medicine, Konkuk University School of Medicine and Mirae Cell Bio Co. LTD., Seoul 05029, Korea;
| | - Jae Sang Oh
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
- Correspondence: (J.S.O.); (J.H.); (M.R.L.); Tel.: +82-41-413-5027 (J.H.); +82-10-2918-3903 (J.S.O); +82-41-413-5013 (M.R.L.)
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea; (J.H.K.); (H.K.K.); (T.W.H.); (J.S.I.); (B.H.S.)
- Correspondence: (J.S.O.); (J.H.); (M.R.L.); Tel.: +82-41-413-5027 (J.H.); +82-10-2918-3903 (J.S.O); +82-41-413-5013 (M.R.L.)
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea; (J.H.K.); (H.K.K.); (T.W.H.); (J.S.I.); (B.H.S.)
- Correspondence: (J.S.O.); (J.H.); (M.R.L.); Tel.: +82-41-413-5027 (J.H.); +82-10-2918-3903 (J.S.O); +82-41-413-5013 (M.R.L.)
| |
Collapse
|
13
|
Bchetnia M, Martineau L, Racine V, Powell J, McCuaig C, Puymirat J, Laprise C. Generation of a human induced pluripotent stem cell line (UQACi001-A) from a severe epidermolysis bullosa simplex patient with the heterozygous mutation p.R125S in the KRT14 gene. Stem Cell Res 2020; 44:101748. [PMID: 32179493 DOI: 10.1016/j.scr.2020.101748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 11/18/2022] Open
Abstract
We have generated UQACi001-A, a new induced pluripotent stem cell (iPSC) line derived from skin fibroblasts of a male patient with the generalized severe epidermolysis bullosa simplex phenotype (EBS-gen sev) and carrying the keratin 14 (K14) R125S mutation. Fibroblasts were reprogrammed using non-integrating Sendai virus vectors. The iPSC line displayed normal molecular karyotype, expressed pluripotency markers, is capable of differentiating into three embryonic germ layers and is genetically identical to the originating parental fibroblasts. The established iPSC model provides a valuable resource for studying the rare disease of epidermolysis bullosa simplex and developing new therapies as DNA editing by CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mbarka Bchetnia
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC G7H 2B1, Canada
| | - Laurie Martineau
- CHU de Québec-Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
| | - Véronique Racine
- CHU de Québec-Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
| | - Julie Powell
- Hôpital Ste-Justine, Montréal, QC H3T 1C5, Canada
| | | | - Jack Puymirat
- CHU de Québec-Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC G7H 2B1, Canada.
| |
Collapse
|
14
|
Liu W, Deng C, Godoy-Parejo C, Zhang Y, Chen G. Developments in cell culture systems for human pluripotent stem cells. World J Stem Cells 2019; 11:968-981. [PMID: 31768223 PMCID: PMC6851012 DOI: 10.4252/wjsc.v11.i11.968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are important resources for cell-based therapies and pharmaceutical applications. In order to realize the potential of hPSCs, it is critical to develop suitable technologies required for specific applications. Most hPSC technologies depend on cell culture, and are critically influenced by culture medium composition, extracellular matrices, handling methods, and culture platforms. This review summarizes the major technological advances in hPSC culture, and highlights the opportunities and challenges in future therapeutic applications.
Collapse
Affiliation(s)
- Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Carlos Godoy-Parejo
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
15
|
Schuster J, Fatima A, Sobol M, Norradin FH, Laan L, Dahl N. Generation of three human induced pluripotent stem cell (iPSC) lines from three patients with Dravet syndrome carrying distinct SCN1A gene mutations. Stem Cell Res 2019; 39:101523. [PMID: 31400703 DOI: 10.1016/j.scr.2019.101523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 11/19/2022] Open
Abstract
Dravet syndrome (DS) is a childhood epilepsy syndrome caused by heterozygous mutations in the SCN1A gene encoding voltage-gated sodium channel Nav1.1. We generated iPSCs from fibroblasts of three DS patients carrying distinct SCN1A mutations (c.5502-5509dupGCTTGAAC, c.2965G>C and c.651C>G). The iPSC lines were genetically stable and each line retained the SCN1A gene mutation of the donor fibroblasts. Characterization of the iPSC lines confirmed expression of pluripotency markers, absence of exogenous vector expression and trilineage differentiation potential. These iPSC lines offer a useful resource to investigate the molecular mechanisms underlying Nav1.1 haploinsufficiency and for drug development to improve treatment of DS patients.
Collapse
Affiliation(s)
- Jens Schuster
- Uppsala University, Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala, Sweden.
| | - Ambrin Fatima
- Uppsala University, Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala, Sweden
| | - Maria Sobol
- Uppsala University, Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala, Sweden
| | - Feria Hikmet Norradin
- Uppsala University, Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala, Sweden
| | - Loora Laan
- Uppsala University, Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala, Sweden
| | - Niklas Dahl
- Uppsala University, Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala, Sweden
| |
Collapse
|
16
|
Schuster J, Sobol M, Fatima A, Khalfallah A, Laan L, Anderlid BM, Nordgren A, Dahl N. Mowat-Wilson syndrome: Generation of two human iPS cell lines (UUIGPi004A and UUIGPi005A) from siblings with a truncating ZEB2 gene variant. Stem Cell Res 2019; 39:101518. [PMID: 31376723 DOI: 10.1016/j.scr.2019.101518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/27/2022] Open
Abstract
Mowat-Wilson syndrome (MWS) is a complex developmental syndrome caused by heterozygous mutations in the Zinc finger E-box-binding homeobox 2 gene (ZEB2). We generated the first human iPSC lines from primary fibroblasts of two siblings with MWS carrying a heterozygous ZEB2 stop mutation (c.1027C > T; p.Arg343*) using the Sendai virus reprogramming system. Both iPSC lines were free from reprogramming vector genes, expressed pluripotency markers and showed potential to differentiate into the three germ layers. Genetic analysis confirmed normal karyotypes and a preserved stop mutation. These iPSC lines will provide a useful resource to study altered neural lineage fate and neuropathophysiology in MWS.
Collapse
Affiliation(s)
- Jens Schuster
- Uppsala University, Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala, Sweden.
| | - Maria Sobol
- Uppsala University, Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala, Sweden
| | - Ambrin Fatima
- Uppsala University, Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala, Sweden
| | - Ayda Khalfallah
- Uppsala University, Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala, Sweden
| | - Loora Laan
- Uppsala University, Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas Dahl
- Uppsala University, Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala, Sweden.
| |
Collapse
|
17
|
Generation of human induced pluripotent stem cell (iPSC) lines from three patients with von Hippel-Lindau syndrome carrying distinct VHL gene mutations. Stem Cell Res 2019; 38:101474. [PMID: 31176917 DOI: 10.1016/j.scr.2019.101474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/11/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022] Open
Abstract
Von Hippel-Lindau (VHL) syndrome is a familial cancer syndrome caused by mutations in the tumor suppressor gene VHL. We generated human iPSC lines from primary dermal fibroblasts of three VHL syndrome patients carrying distinct VHL germ line mutations (c.194C>G, c.194C>T and nt440delTCT, respectively). Characterization of the iPSC lines confirmed expression of pluripotency markers, trilineage differentiation potential and absence of exogenous vector expression. The three hiPSC lines were genetically stable and retained the VHL mutation of each donor. These iPSC lines, the first derived from VHL syndrome patients, offer a useful resource to study disease pathophysiology and for anti-cancer drug development.
Collapse
|
18
|
MacArthur CC, Pradhan S, Wetton N, Zarrabi A, Dargitz C, Sridharan M, Jackson S, Pickle L, Lakshmipathy U. Generation and comprehensive characterization of induced pluripotent stem cells for translational research. Regen Med 2019; 14:505-524. [PMID: 31115261 DOI: 10.2217/rme-2018-0148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) hold immense potential in disease modeling, drug discovery and regenerative medicine. Despite advances in reprogramming methods, generation of clinical-grade iPSCs remains a challenge. Reported here is the first off-the-shelf reprogramming kit, CTS CytoTune-iPS 2.1, specifically designed for clinical and translational research. Workflow gaps were identified, and methods developed were used to consistently generate iPSC from multiple cell types. Resulting clones were subjected to characterization that included confirmation of pluripotency, preservation of genomic integrity and authentication of cell banks via an array of molecular methods including high resolution microarray and next-generation sequencing. Development of integrated xeno-free workflows combined with comprehensive characterization offers generation of high-quality iPSCs that are suited for clinical and translational research.
Collapse
Affiliation(s)
- Chad C MacArthur
- Cell Biology, Life Sciences Solutions, Thermo Fisher Scientific, Carlsbad, CA 92008, USA
| | - Suman Pradhan
- Cell Biology, Life Sciences Solutions, Thermo Fisher Scientific, Carlsbad, CA 92008, USA
| | - Nichole Wetton
- Cell Biology, Life Sciences Solutions, Thermo Fisher Scientific, Carlsbad, CA 92008, USA
| | - Aryan Zarrabi
- Cell Biology, Life Sciences Solutions, Thermo Fisher Scientific, Carlsbad, CA 92008, USA
| | - Carl Dargitz
- Cell Biology, Life Sciences Solutions, Thermo Fisher Scientific, Carlsbad, CA 92008, USA
| | - Mahalakshmi Sridharan
- Cell Biology, Life Sciences Solutions, Thermo Fisher Scientific, Carlsbad, CA 92008, USA
| | - Stephen Jackson
- Cell Biology, Life Sciences Solutions, Thermo Fisher Scientific, Carlsbad, CA 92008, USA
| | - Loni Pickle
- Cell Biology, Life Sciences Solutions, Thermo Fisher Scientific, Carlsbad, CA 92008, USA
| | - Uma Lakshmipathy
- Cell Biology, Life Sciences Solutions, Thermo Fisher Scientific, Carlsbad, CA 92008, USA
| |
Collapse
|
19
|
Ihnatovych I, Nayak TK, Ouf A, Sule N, Birkaya B, Chaves L, Auerbach A, Szigeti K. iPSC model of CHRFAM7A effect on α7 nicotinic acetylcholine receptor function in the human context. Transl Psychiatry 2019; 9:59. [PMID: 30710073 PMCID: PMC6358606 DOI: 10.1038/s41398-019-0375-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor (α7nAChR) has been a promising target for diseases affecting cognition and higher cortical functions; however, the effect observed in animal models failed to translate into human clinical trials identifying a translational gap. CHRFAM7A is a human-specific fusion gene with properties that enable incorporation into the α7nAChR and, being human specific, CHRFAM7A effect was not accounted for in preclinical studies. We hypothesized that CHRFAM7A may account for this translational gap and understanding its function may offer novel insights when exploring α7nAChR as a drug target. CHRFAM7A is present in different copy number variations (CNV) in the human genome with high frequency. To study the functional consequences of the presence of the CHRFAM7A, two induced pluripotent stem cell (iPSC) lines (0 copy and 1 copy direct) were developed. The 0 copy line was rescued with CHRFAM7A transfection to control for genetic heterogeneity. As readouts for genotype-phenotype correlation, α7nAChR synaptic transmission and amyloid beta 1-42 (Aβ1-42) uptake were tested. Synaptic transmission in the presence of CHRFAM7A demonstrated that PNU-modulated desensitization of α7nAChR currents increased as a function of CHRFAM7A dosage. CHRFAM7A mitigated the dose response of Aβ1-42 uptake suggesting a protective effect beyond physiological concentrations. Furthermore, in the presence of CHRFAM7A Aβ1-42 uptake activated neuronal interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) without activating the canonical inflammasome pathway. Lead optimization may identify more potent molecules when the screen has a model harboring CHRFAM7A. Incorporating pharmacogenetics into clinical trials may enhance signals in efficacy measures.
Collapse
Affiliation(s)
- Ivanna Ihnatovych
- Department of Neurology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Tapan K Nayak
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
- Kusuma School of Biological Sciences, IIT Delhi, Hauz Khas, New Delhi, 110016, India
| | - Aya Ouf
- Department of Neurology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Norbert Sule
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Barbara Birkaya
- Department of Neurology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lee Chaves
- Division of Nephrology, Department of Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kinga Szigeti
- Department of Neurology, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
20
|
Songstad AE, Worthington KS, Chirco KR, Giacalone JC, Whitmore SS, Anfinson KR, Ochoa D, Cranston CM, Riker MJ, Neiman M, Stone EM, Mullins RF, Tucker BA. Connective Tissue Growth Factor Promotes Efficient Generation of Human Induced Pluripotent Stem Cell-Derived Choroidal Endothelium. Stem Cells Transl Med 2017; 6:1533-1546. [PMID: 28474838 PMCID: PMC5689757 DOI: 10.1002/sctm.16-0399] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/20/2017] [Indexed: 12/24/2022] Open
Abstract
Age‐related macular degeneration (AMD) is a leading cause of irreversible blindness in the Western world. Although, the majority of stem cell research to date has focused on production of retinal pigment epithelial (RPE) and photoreceptor cells for the purpose of evaluating disease pathophysiology and cell replacement, there is strong evidence that the choroidal endothelial cells (CECs) that form the choriocapillaris vessels are the first to be lost in this disease. As such, to accurately evaluate disease pathophysiology and develop an effective treatment, production of patient‐specific, stem cell‐derived CECs will be required. In this study, we report for the first time a stepwise differentiation protocol suitable for generating human iPSC‐derived CEC‐like cells. RNA‐seq analysis of the monkey CEC line, RF/6A, combined with two statistical screens allowed us to develop media comprised of various protein combinations. In both screens, connective tissue growth factor (CTGF) was identified as the key component required for driving CEC development. A second factor tumor necrosis factor (TNF)‐related weak inducer of apoptosis receptor was also found to promote iPSC to CEC differentiation by inducing endogenous CTGF secretion. CTGF‐driven iPSC‐derived CEC‐like cells formed capillary tube‐like vascular networks, and expressed the EC‐specific markers CD31, ICAM1, PLVAP, vWF, and the CEC‐restricted marker CA4. In combination with RPE and photoreceptor cells, patient‐specific iPSC derived CEC‐like cells will enable scientists to accurately evaluate AMD pathophysiology and develop effective cell replacement therapies. Stem Cells Translational Medicine2017;6:1533–1546
Collapse
Affiliation(s)
- Allison E Songstad
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | | | - Kathleen R Chirco
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - Joseph C Giacalone
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - S Scott Whitmore
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - Kristin R Anfinson
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - Dalyz Ochoa
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - Cathryn M Cranston
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - Megan J Riker
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| | - Edwin M Stone
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - Robert F Mullins
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| | - Budd A Tucker
- Department of Ophthalmology and Visual Science, Wynn Institute for vision research
| |
Collapse
|
21
|
Sharma TP, Wiley LA, Whitmore SS, Anfinson KR, Cranston CM, Oppedal DJ, Daggett HT, Mullins RF, Tucker BA, Stone EM. Patient-specific induced pluripotent stem cells to evaluate the pathophysiology of TRNT1-associated Retinitis pigmentosa. Stem Cell Res 2017; 21:58-70. [PMID: 28390992 DOI: 10.1016/j.scr.2017.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 02/20/2017] [Accepted: 03/10/2017] [Indexed: 12/18/2022] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of monogenic disorders characterized by progressive death of the light-sensing photoreceptor cells of the outer neural retina. We recently identified novel hypomorphic mutations in the tRNA Nucleotidyl Transferase, CCA-Adding 1 (TRNT1) gene that cause early-onset RP. To model this disease in vitro, we generated patient-specific iPSCs and iPSC-derived retinal organoids from dermal fibroblasts of patients with molecularly confirmed TRNT1-associated RP. Pluripotency was confirmed using rt-PCR, immunocytochemistry, and a TaqMan Scorecard Assay. Mutations in TRNT1 caused reduced levels of full-length TRNT1 protein and expression of a truncated smaller protein in both patient-specific iPSCs and iPSC-derived retinal organoids. Patient-specific iPSCs and iPSC-derived retinal organoids exhibited a deficit in autophagy, as evidenced by aberrant accumulation of LC3-II and elevated levels of oxidative stress. Autologous stem cell-based disease modeling will provide a platform for testing multiple avenues of treatment in patients suffering from TRNT1-associated RP.
Collapse
Affiliation(s)
- Tasneem P Sharma
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Luke A Wiley
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - S Scott Whitmore
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Kristin R Anfinson
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Cathryn M Cranston
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Douglas J Oppedal
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Heather T Daggett
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Robert F Mullins
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Budd A Tucker
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Edwin M Stone
- Stephen A Wynn Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
22
|
Preferential Lineage-Specific Differentiation of Osteoblast-Derived Induced Pluripotent Stem Cells into Osteoprogenitors. Stem Cells Int 2017; 2017:1513281. [PMID: 28250775 PMCID: PMC5303871 DOI: 10.1155/2017/1513281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/18/2016] [Accepted: 12/04/2016] [Indexed: 12/20/2022] Open
Abstract
While induced pluripotent stem cells (iPSCs) hold great clinical promise, one hurdle that remains is the existence of a parental germ-layer memory in reprogrammed cells leading to preferential differentiation fates. While it is problematic for generating cells vastly different from the reprogrammed cells' origins, it could be advantageous for the reliable generation of germ-layer specific cell types for future therapeutic use. Here we use human osteoblast-derived iPSCs (hOB-iPSCs) to generate induced osteoprogenitors (iOPs). Osteoblasts were successfully reprogrammed and demonstrated by endogenous upregulation of Oct4, Sox2, Nanog, TRA-1-81, TRA-16-1, SSEA3, and confirmatory hPSC Scorecard Algorithmic Assessment. The hOB-iPSCs formed embryoid bodies with cells of ectoderm and mesoderm but have low capacity to form endodermal cells. Differentiation into osteoprogenitors occurred within only 2-6 days, with a population doubling rate of less than 24 hrs; however, hOB-iPSC derived osteoprogenitors were only able to form osteogenic and chondrogenic cells but not adipogenic cells. Consistent with this, hOB-iOPs were found to have higher methylation of PPARγ but similar levels of methylation on the RUNX2 promoter. These data demonstrate that iPSCs can be generated from human osteoblasts, but variant methylation patterns affect their differentiation capacities. Therefore, epigenetic memory can be exploited for efficient generation of clinically relevant quantities of osteoprogenitor cells.
Collapse
|
23
|
Wiley LA, Burnight ER, DeLuca AP, Anfinson KR, Cranston CM, Kaalberg EE, Penticoff JA, Affatigato LM, Mullins RF, Stone EM, Tucker BA. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness. Sci Rep 2016; 6:30742. [PMID: 27471043 PMCID: PMC4965859 DOI: 10.1038/srep30742] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans.
Collapse
Affiliation(s)
- Luke A Wiley
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Erin R Burnight
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adam P DeLuca
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kristin R Anfinson
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Cathryn M Cranston
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Emily E Kaalberg
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jessica A Penticoff
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Louisa M Affatigato
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert F Mullins
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- Stephen A. Wynn Institute for Vision Research, Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
24
|
Wiley LA, Burnight ER, Drack AV, Banach BB, Ochoa D, Cranston CM, Madumba RA, East JS, Mullins RF, Stone EM, Tucker BA. Using Patient-Specific Induced Pluripotent Stem Cells and Wild-Type Mice to Develop a Gene Augmentation-Based Strategy to Treat CLN3-Associated Retinal Degeneration. Hum Gene Ther 2016; 27:835-846. [PMID: 27400765 DOI: 10.1089/hum.2016.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is a childhood neurodegenerative disease with early-onset, severe central vision loss. Affected children develop seizures and CNS degeneration accompanied by severe motor and cognitive deficits. There is no cure for JNCL, and patients usually die during the second or third decade of life. In this study, independent lines of induced pluripotent stem cells (iPSCs) were generated from two patients with molecularly confirmed mutations in CLN3, the gene mutated in JNCL. Clinical-grade adeno-associated adenovirus serotype 2 (AAV2) carrying the full-length coding sequence of human CLN3 was generated in a U.S. Food and Drug Administration-registered cGMP facility. AAV2-CLN3 was efficacious in restoring full-length CLN3 transcript and protein in patient-specific fibroblasts and iPSC-derived retinal neurons. When injected into the subretinal space of wild-type mice, purified AAV2-CLN3 did not show any evidence of retinal toxicity. This study provides proof-of-principle for initiation of a clinical trial using AAV-mediated gene augmentation for the treatment of children with CLN3-associated retinal degeneration.
Collapse
Affiliation(s)
- Luke A Wiley
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Erin R Burnight
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Arlene V Drack
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Bailey B Banach
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Dalyz Ochoa
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Cathryn M Cranston
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Robert A Madumba
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Jade S East
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Robert F Mullins
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Edwin M Stone
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Budd A Tucker
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| |
Collapse
|
25
|
Asprer JST, Lakshmipathy U. Current methods and challenges in the comprehensive characterization of human pluripotent stem cells. Stem Cell Rev Rep 2016; 11:357-72. [PMID: 25504379 DOI: 10.1007/s12015-014-9580-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells (PSCs) are powerful tools for basic scientific research and promising agents for drug discovery and regenerative medicine. Technological advances have made it increasingly easy to generate PSCs but the various lines generated may differ in their characteristics based on their origin, derivation, number of passages, and culture conditions. In order to confirm the pluripotency, quality, identity, and safety of pluripotent cell lines as they are derived and maintained, it is critical to perform a panel of characterization assays. Functional pluripotency is determined using tests that rely on the expression of specific markers in the undifferentiated and differentiated states; tests for quality, identity and safety are less specialized. This article provides a comprehensive review of current practices in PSC characterization and explores challenges in the field, from the selection of markers to the development of simple and scalable methods. It also delves into emerging trends like the adoption of alternative assays that could be used to supplement or replace traditional methods, specifically the use of in silico assays for determining pluripotency.
Collapse
Affiliation(s)
- Joanna S T Asprer
- Cell Biology, Life Sciences Solutions, Thermo Fisher Scientific, 5781 Van Allen Way, Carlsbad, CA, 92008, USA
| | | |
Collapse
|
26
|
Lenz M, Goetzke R, Schenk A, Schubert C, Veeck J, Hemeda H, Koschmieder S, Zenke M, Schuppert A, Wagner W. Epigenetic biomarker to support classification into pluripotent and non-pluripotent cells. Sci Rep 2015; 5:8973. [PMID: 25754700 PMCID: PMC4354028 DOI: 10.1038/srep08973] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/11/2015] [Indexed: 12/12/2022] Open
Abstract
Quality control of human induced pluripotent stem cells (iPSCs) can be performed by several methods. These methods are usually relatively labor-intensive, difficult to standardize, or they do not facilitate reliable quantification. Here, we describe a biomarker to distinguish between pluripotent and non-pluripotent cells based on DNA methylation (DNAm) levels at only three specific CpG sites. Two of these CpG sites were selected by their discriminatory power in 258 DNAm profiles – they were either methylated in pluripotent or non-pluripotent cells. The difference between these two β-values provides an Epi-Pluri-Score that was validated on independent DNAm-datasets (264 pluripotent and 1,951 non-pluripotent samples) with 99.9% specificity and 98.9% sensitivity. This score was complemented by a third CpG within the gene POU5F1 (OCT4), which better demarcates early differentiation events. We established pyrosequencing assays for the three relevant CpG sites and thereby correctly classified DNA of 12 pluripotent cell lines and 31 non-pluripotent cell lines. Furthermore, DNAm changes at these three CpGs were tracked in the course of differentiation of iPSCs towards mesenchymal stromal cells. The Epi-Pluri-Score does not give information on lineage-specific differentiation potential, but it provides a simple, reliable, and robust biomarker to support high-throughput classification into either pluripotent or non-pluripotent cells.
Collapse
Affiliation(s)
- Michael Lenz
- 1] Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany [2] Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany [3] Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Roman Goetzke
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Arne Schenk
- 1] Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany [2] Bayer Technology Services GmbH, Leverkusen, Germany
| | - Claudia Schubert
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical School, Aachen, Germany
| | - Jürgen Veeck
- Institute of Pathology, RWTH Aachen University Medical School, Aachen, Germany
| | - Hatim Hemeda
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical School, Aachen, Germany
| | - Martin Zenke
- 1] Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany [2] Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Andreas Schuppert
- 1] Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany [2] Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany [3] Bayer Technology Services GmbH, Leverkusen, Germany
| | - Wolfgang Wagner
- 1] Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany [2] Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|