1
|
Liu Q, Ba X, Han L, Yan J, Chen Z, Qin K, Tu S, Shen P. Dahuang-Wumei decoction protects against hepatic encephalopathy in mice: Behavioural, biochemical, and molecular evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155419. [PMID: 38522314 DOI: 10.1016/j.phymed.2024.155419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/17/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Disturbance of the blood‒brain barrier (BBB) and associated inflammatory responses are observed in patients with hepatic encephalopathy (HE) and can cause long-term complications. Dahuang-Wumei decoction (DWD) is a renowned traditional Chinese herbal medicine with a long history of clinical use and has been widely employed as an effective treatment for hepatic encephalopathy (HE). Despite its established efficacy, the precise mechanisms underlying the therapeutic effects of DWD have not been fully elucidated. PURPOSE The present study aimed to comprehensively explore the potential effects and underlying molecular mechanisms of DWD on HE through an integrated investigation that included both in vivo and in vitro experiments. METHODS In the present study, carbon tetrachloride (CCl4) and thioacetamide (TAA) were used to establish an HE model in mice. The therapeutic effects of DWD on liver injury, fibrosis, brain injury, behaviour, and consciousness disorders were evaluated in vivo. C8-D1A and bEnd.3 cells were used to construct a BBB model in vitro. The effects of DWD on proinflammatory factor expression, BBB damage and the Wnt/β-catenin pathway were detected in vivo and in vitro. RESULTS Our results showed that DWD can improve liver injury and fibrosis and brain damage and inhibit neurofunctional and behavioural disorders in mice with HE. Afterwards, we found that DWD decreased the levels of proinflammatory factors and suppressed BBB disruption by increasing the levels of junction proteins in vivo and vitro. Further studies verified that the Wnt/β-catenin pathway may play a pivotal role in mediating the inhibitory effect of DWD on HE. CONCLUSION These results demonstrated that DWD can treat HE by preventing BBB disruption, and the underlying mechanisms involved were associated with the activation of the Wnt/β-catenin pathway and the inhibition of inflammatory responses.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan 430030, China
| | - Xin Ba
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan 430030, China
| | - Liang Han
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan 430030, China
| | - Jiahui Yan
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan 430030, China
| | - Zhe Chen
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan 430030, China
| | - Kai Qin
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan 430030, China
| | - Shenghao Tu
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan 430030, China
| | - Pan Shen
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan 430030, China; Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, China.
| |
Collapse
|
2
|
Kibet S, Kimani NM, Mwanza SS, Mudalungu CM, Santos CBR, Tanga CM. Unveiling the Potential of Ent-Kaurane Diterpenoids: Multifaceted Natural Products for Drug Discovery. Pharmaceuticals (Basel) 2024; 17:510. [PMID: 38675469 PMCID: PMC11054903 DOI: 10.3390/ph17040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Natural products hold immense potential for drug discovery, yet many remain unexplored in vast libraries and databases. In an attempt to fill this gap and meet the growing demand for effective drugs, this study delves into the promising world of ent-kaurane diterpenoids, a class of natural products with huge therapeutic potential. With a dataset of 570 ent-kaurane diterpenoids obtained from the literature, we conducted an in silico analysis, evaluating their physicochemical, pharmacokinetic, and toxicological properties with a focus on their therapeutic implications. Notably, these natural compounds exhibit drug-like properties, aligning closely with those of FDA-approved drugs, indicating a high potential for drug development. The ranges of the physicochemical parameters were as follows: molecular weights-288.47 to 626.82 g/mol; number of heavy atoms-21 to 44; the number of hydrogen bond donors and acceptors-0 to 8 and 1 to 11, respectively; the number of rotatable bonds-0 to 11; fraction Csp3-0.65 to 1; and TPSA-20.23 to 189.53 Ų. Additionally, the majority of these molecules display favorable safety profiles, with only 0.70%, 1.40%, 0.70%, and 46.49% exhibiting mutagenic, tumorigenic, reproduction-enhancing, and irritant properties, respectively. Importantly, ent-kaurane diterpenoids exhibit promising biopharmaceutical properties. Their average lipophilicity is optimal for drug absorption, while over 99% are water-soluble, facilitating delivery. Further, 96.5% and 28.20% of these molecules exhibited intestinal and brain bioavailability, expanding their therapeutic reach. The predicted pharmacological activities of these compounds encompass a diverse range, including anticancer, immunosuppressant, chemoprotective, anti-hepatic, hepatoprotectant, anti-inflammation, antihyperthyroidism, and anti-hepatitis activities. This multi-targeted profile highlights ent-kaurane diterpenoids as highly promising candidates for further drug discovery endeavors.
Collapse
Affiliation(s)
- Shadrack Kibet
- Department of Physical Sciences, University of Embu, Embu P.O. Box 6-60100, Kenya; (S.K.); (S.S.M.)
- International Centre of Insects Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
| | - Njogu M. Kimani
- Department of Physical Sciences, University of Embu, Embu P.O. Box 6-60100, Kenya; (S.K.); (S.S.M.)
- Natural Product Chemistry and Computational Drug Discovery Laboratory, Embu P.O. Box 6-60100, Kenya
| | - Syombua S. Mwanza
- Department of Physical Sciences, University of Embu, Embu P.O. Box 6-60100, Kenya; (S.K.); (S.S.M.)
- International Centre of Insects Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
| | - Cynthia M. Mudalungu
- International Centre of Insects Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
- School of Chemistry and Material Science, The Technical University of Kenya, Nairobi P.O. Box 52428-00200, Kenya
| | - Cleydson B. R. Santos
- Graduate Program in Medicinal Chemistry and Molecular Modelling, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil;
- Laboratory of Modelling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil
| | - Chrysantus M. Tanga
- International Centre of Insects Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
| |
Collapse
|
3
|
Korszun-Karbowniczak J, Krysiak ZJ, Saluk J, Niemcewicz M, Zdanowski R. The Progress in Molecular Transport and Therapeutic Development in Human Blood-Brain Barrier Models in Neurological Disorders. Cell Mol Neurobiol 2024; 44:34. [PMID: 38627312 PMCID: PMC11021242 DOI: 10.1007/s10571-024-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
The blood-brain barrier (BBB) is responsible for maintaining homeostasis within the central nervous system (CNS). Depending on its permeability, certain substances can penetrate the brain, while others are restricted in their passage. Therefore, the knowledge about BBB structure and function is essential for understanding physiological and pathological brain processes. Consequently, the functional models can serve as a key to help reveal this unknown. There are many in vitro models available to study molecular mechanisms that occur in the barrier. Brain endothelial cells grown in culture are commonly used to modeling the BBB. Current BBB platforms include: monolayer platforms, transwell, matrigel, spheroidal, and tissue-on-chip models. In this paper, the BBB structure, molecular characteristic, as well as its dysfunctions as a consequence of aging, neurodegeneration, or under hypoxia and neurotoxic conditions are presented. Furthermore, the current modelling strategies that can be used to study BBB for the purpose of further drugs development that may reach CNS are also described.
Collapse
Affiliation(s)
- Joanna Korszun-Karbowniczak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 21/23 Matejki Street, 90-237, Lodz, Poland
| | - Zuzanna Joanna Krysiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland.
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, Institute of Biochemistry, University of Lodz, 68 Narutowicza Street, 90-136, Lodz, Poland
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 68 Narutowicza Street, 90-136, Lodz, Poland
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland
| |
Collapse
|
4
|
Lan X, Qin S, Liu H, Guo M, Zhang Y, Jin X, Duan X, Sun M, Liu Z, Wang W, Zheng Q, Liao X, Chen J, Kang Y, Xie Y, Song X. Dual-targeting tigecycline nanoparticles for treating intracranial infections caused by multidrug-resistant Acinetobacter baumannii. J Nanobiotechnology 2024; 22:138. [PMID: 38555444 PMCID: PMC10981309 DOI: 10.1186/s12951-024-02373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is a formidable pathogen responsible for severe intracranial infections post-craniotomy, exhibiting a mortality rate as high as 71%. Tigecycline (TGC), a broad-spectrum antibiotic, emerged as a potential therapeutic agent for MDR A. baumannii infections. Nonetheless, its clinical application was hindered by a short in vivo half-life and limited permeability through the blood-brain barrier (BBB). In this study, we prepared a novel core-shell nanoparticle encapsulating water-soluble tigecycline using a blend of mPEG-PLGA and PLGA materials. This nanoparticle, modified with a dual-targeting peptide Aβ11 and Tween 80 (Aβ11/T80@CSs), was specifically designed to enhance the delivery of tigecycline to the brain for treating A. baumannii-induced intracranial infections. Our findings demonstrated that Aβ11/T80@CSs nanocarriers successfully traversed the BBB and effectively delivered TGC into the cerebrospinal fluid (CSF), leading to a significant therapeutic response in a model of MDR A. baumannii intracranial infection. This study offers initial evidence and a platform for the application of brain-targeted nanocarrier delivery systems, showcasing their potential in administering water-soluble anti-infection drugs for intracranial infection treatments, and suggesting promising avenues for clinical translation.
Collapse
Affiliation(s)
- Xing Lan
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, People's Republic of China
| | - Shugang Qin
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Mengran Guo
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Yupei Zhang
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyang Jin
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Shihezi University, Xinjiang, China
| | - Xing Duan
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Min Sun
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Shihezi University, Xinjiang, China
| | - Zhenjun Liu
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyan Wang
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelian Liao
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Jinpeng Chen
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, 300301, People's Republic of China
| | - Yan Kang
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China.
| | - Yongmei Xie
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiangrong Song
- Department of Critical Care Medicine, Department of Clinical Pharmacy, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Hasan I, Roy S, Ehexige E, Wu R, Chen Y, Gao Z, Guo B, Chang C. A state-of-the-art liposome technology for glioblastoma treatment. NANOSCALE 2023; 15:18108-18138. [PMID: 37937394 DOI: 10.1039/d3nr04241c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Glioblastoma (GBM) is a challenging problem due to the poor BBB permeability of cancer drugs, its recurrence after the treatment, and high malignancy and is difficult to treat with the currently available therapeutic strategies. Furthermore, the prognosis and survival rate of GBM are still poor after surgical removal via conventional combination therapy. Owing to the existence of the formidable blood-brain barrier (BBB) and the aggressive, infiltrating nature of GBM growth, the diagnosis and treatment of GBM are quite challenging. Recently, liposomes and their derivatives have emerged as super cargos for the delivery of both hydrophobic and hydrophilic drugs for the treatment of glioblastoma because of their advantages, such as biocompatibility, long circulation, and ease of physical and chemical modification, which facilitate the capability of targeting specific sites, circumvention of BBB transport restrictions, and amplification of the therapeutic efficacy. Herein, we provide a timely update on the burgeoning liposome-based drug delivery systems and potential challenges in these fields for the diagnosis and treatment of brain tumors. Furthermore, we focus on the most recent liposome-based drug delivery cargos, including pH-sensitive, temperature-sensitive, and biomimetic liposomes, to enhance the multimodality in imaging and therapeutics of glioblastoma. Furthermore, we highlight the future difficulties and directions for the research and clinical translation of liposome-based drug delivery. Hopefully, this review will trigger the interest of researchers to expedite the development of liposome cargos and even their clinical translation for improving the prognosis of glioblastoma.
Collapse
Affiliation(s)
- Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Shubham Roy
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ehexige Ehexige
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Runling Wu
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Yu Chen
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhengyuan Gao
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Bing Guo
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chunqi Chang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
6
|
Haferkamp U, Hartmann C, Abid CL, Brachner A, Höchner A, Gerhartl A, Harwardt B, Leckzik S, Leu J, Metzger M, Nastainczyk-Wulf M, Neuhaus W, Oerter S, Pless O, Rujescu D, Jung M, Appelt-Menzel A. Human isogenic cells of the neurovascular unit exert transcriptomic cell type-specific effects on a blood-brain barrier in vitro model of late-onset Alzheimer disease. Fluids Barriers CNS 2023; 20:78. [PMID: 37907966 PMCID: PMC10617216 DOI: 10.1186/s12987-023-00471-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/01/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The function of the blood-brain barrier (BBB) is impaired in late-onset Alzheimer disease (LOAD), but the associated molecular mechanisms, particularly with respect to the high-risk APOE4/4 genotype, are not well understood. For this purpose, we developed a multicellular isogenic model of the neurovascular unit (NVU) based on human induced pluripotent stem cells. METHODS The human NVU was modeled in vitro using isogenic co-cultures of astrocytes, brain capillary endothelial-like cells (BCECs), microglia-like cells, neural stem cells (NSCs), and pericytes. Physiological and pathophysiological properties were investigated as well as the influence of each single cell type on the characteristics and function of BCECs. The barriers established by BCECs were analyzed for specific gene transcription using high-throughput quantitative PCR. RESULTS Co-cultures were found to tighten the barrier of BCECs and alter its transcriptomic profile under both healthy and disease conditions. In vitro differentiation of brain cell types that constitute the NVU was not affected by the LOAD background. The supportive effect of NSCs on the barrier established by BCECs was diminished under LOAD conditions. Transcriptomes of LOAD BCECs were modulated by different brain cell types. NSCs were found to have the strongest effect on BCEC gene regulation and maintenance of the BBB. Co-cultures showed cell type-specific functional contributions to BBB integrity under healthy and LOAD conditions. CONCLUSIONS Cell type-dependent transcriptional effects on LOAD BCECs were identified. Our study suggests that different brain cell types of the NVU have unique roles in maintaining barrier integrity that vary under healthy and LOAD conditions. .
Collapse
Affiliation(s)
- Undine Haferkamp
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525, Hamburg, Germany
| | - Carla Hartmann
- Institute for Physiological Chemistry, Medical Faculty of the Martin, Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Chaudhry Luqman Abid
- Institute for Physiological Chemistry, Medical Faculty of the Martin, Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Andreas Brachner
- Center Health and Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Vienna, 1210, Austria
| | - Alevtina Höchner
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), 97070, Würzburg, Germany
| | - Anna Gerhartl
- Center Health and Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Vienna, 1210, Austria
| | - Bernadette Harwardt
- Institute for Physiological Chemistry, Medical Faculty of the Martin, Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Selin Leckzik
- Institute for Physiological Chemistry, Medical Faculty of the Martin, Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany
| | - Jennifer Leu
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525, Hamburg, Germany
| | - Marco Metzger
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), 97070, Würzburg, Germany
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070, Würzburg, Germany
| | | | - Winfried Neuhaus
- Center Health and Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Vienna, 1210, Austria
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, 3500, Austria
| | - Sabrina Oerter
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), 97070, Würzburg, Germany
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070, Würzburg, Germany
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525, Hamburg, Germany
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Vienna, 1090, Austria
| | - Matthias Jung
- Institute for Physiological Chemistry, Medical Faculty of the Martin, Luther University Halle-Wittenberg, Hollystrasse 1, 06114, Halle (Saale), Germany.
| | - Antje Appelt-Menzel
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), 97070, Würzburg, Germany.
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070, Würzburg, Germany.
| |
Collapse
|
7
|
Kong AHY, Wu AJ, Ho OKY, Leung MMK, Huang AS, Yu Y, Zhang G, Lyu A, Li M, Cheung KH. Exploring the Potential of Aptamers in Targeting Neuroinflammation and Neurodegenerative Disorders: Opportunities and Challenges. Int J Mol Sci 2023; 24:11780. [PMID: 37511539 PMCID: PMC10380291 DOI: 10.3390/ijms241411780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neuroinflammation is the precursor for several neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Targeting neuroinflammation has emerged as a promising strategy to address a wide range of CNS pathologies. These NDDs still present significant challenges in terms of limited and ineffective diagnosis and treatment options, driving the need to explore innovative and novel therapeutic alternatives. Aptamers are single-stranded nucleic acids that offer the potential for addressing these challenges through diagnostic and therapeutic applications. In this review, we summarize diagnostic and therapeutic aptamers for inflammatory biomolecules, as well as the inflammatory cells in NDDs. We also discussed the potential of short nucleotides for Aptamer-Based Targeted Brain Delivery through their unique features and modifications, as well as their ability to penetrate the blood-brain barrier. Moreover, the unprecedented opportunities and substantial challenges of using aptamers as therapeutic agents, such as drug efficacy, safety considerations, and pharmacokinetics, are also discussed. Taken together, this review assesses the potential of aptamers as a pioneering approach for target delivery to the CNS and the treatment of neuroinflammation and NDDs.
Collapse
Affiliation(s)
- Anna Hau-Yee Kong
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aston Jiaxi Wu
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Olivia Ka-Yi Ho
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Maggie Ming-Ki Leung
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Alexis Shiying Huang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong SAR, China
| | - Min Li
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - King-Ho Cheung
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
8
|
Wu Y, Cheng H, Zhu M, Zhang L, Mao Z, Wang C, Liu Z. Monitoring Subtle Changes of Blood-Brain Barrier Permeability via Detection of MiRNA-155 in Brain Microvasculature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21893-21903. [PMID: 37115727 DOI: 10.1021/acsami.3c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The changes of blood-brain barrier (BBB) permeability need to be sensitively reported when purposefully regulating the BBB or during some brain diseases. Currently available techniques for assessment of BBB integrity all suffer from limited sensitivity and only report serious BBB damage. Here, a targeted activatable nanoprobe is created to monitor subtle changes of BBB permeability by detecting the expression levels of BBB permeability-related miRNA (miRNA-155) in brain microvessel endothelial cells (BMECs). The probe is fabricated by coating the BMEC membrane on calcium phosphate (CaP)-mineralized metal-organic framework (MOF) nanoparticles loaded with hybridization chain reaction (HCR) probes. The coating of the BMEC membrane endows the nanoprobe with homologous targeting ability to BBB, and HCR probes released and escaped from lysosomes can be specifically lightened by miRNA-155. The activatable nanoprobe is able to monitor BBB permeability in inflammatory and AD mice. This work provides a new idea for highly sensitive evaluation of the BBB permeability, which has guiding significance in regulating BBB and formulating targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yuting Wu
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Hemei Cheng
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Mengting Zhu
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Li Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, China
| | - Zhennan Mao
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Caixia Wang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhihong Liu
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Health Science and Engineering, Hubei University, Wuhan 430062, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, China
| |
Collapse
|
9
|
Lebedenko C, Murray ME, Goncalves BG, Perez DS, Lambo DJ, Banerjee IA. Interactions of Nanoscale Self-Assembled Peptide-Based Assemblies with Glioblastoma Cell Models and Spheroids. ACS OMEGA 2023; 8:12124-12143. [PMID: 37033803 PMCID: PMC10077566 DOI: 10.1021/acsomega.2c08049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Peptide nanoassemblies have garnered remarkable importance in the development of novel nanoscale biomaterials for drug delivery into tumor cells. Taking advantage of receptor mediated recognition of two known peptides, angiopep-2 (TFFYGGSRGKRNNFKTEEY) and A-COOP-K (ACGLSGLC10 VAK) that bind to the over-expressed receptors low density lipoprotein (LRP-1) and fatty acid binding protein (FABP3) respectively, we have developed new peptide conjugates by combining the anti-inflammatory, antitumor compound azelaic acid with angiopep-2, which efficiently self-assembled into nanofibers. Those nanofibers were then functionalized with the A-COOP-K sequence and formed supramolecular hierarchical structures that were found to entrap the chemotherapeutic drug doxorubicin efficaciously. Furthermore, the nanoassemblies were found to release the drug in a dose-dependent manner and showed a stepwise increase over a period of 2 weeks under acidic conditions. Two cell lines (U-87-MG and U-138-MG) were utilized as models for glioblastoma cells grown in the presence of serum and under serum-free conditions to mimic the growth conditions of natural tumors. The drug entrapped assemblies were found to inhibit the cell proliferation of both U-87 and U-138MG glioblastoma cells. Three dimensional spheroids of different sizes were grown to mimic the tumors and evaluate the efficacy of drug release and internalization. Our results indicated that the nanoassemblies were found to have higher internalization of DOX and were well-spread throughout the spheroids grown, particularly under serum-free conditions. The nanoassemblies also displayed blood-brain barrier penetration when tested with a multicellular in vitro model. Such self-assembled nanostructures with targeting ability may provide a suitable platform for the development of new peptide-based biomaterials that can provide more insights about the mechanistic approach for drug delivery for not only 2D cell cultures but also 3D tumoroids that mimic the tumor microenvironments.
Collapse
|
10
|
Neumaier F, Zlatopolskiy BD, Neumaier B. Drug Penetration into the Central Nervous System: Pharmacokinetic Concepts and In Vitro Model Systems. Pharmaceutics 2021; 13:1542. [PMID: 34683835 PMCID: PMC8538549 DOI: 10.3390/pharmaceutics13101542] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Delivery of most drugs into the central nervous system (CNS) is restricted by the blood-brain barrier (BBB), which remains a significant bottleneck for development of novel CNS-targeted therapeutics or molecular tracers for neuroimaging. Consistent failure to reliably predict drug efficiency based on single measures for the rate or extent of brain penetration has led to the emergence of a more holistic framework that integrates data from various in vivo, in situ and in vitro assays to obtain a comprehensive description of drug delivery to and distribution within the brain. Coupled with ongoing development of suitable in vitro BBB models, this integrated approach promises to reduce the incidence of costly late-stage failures in CNS drug development, and could help to overcome some of the technical, economic and ethical issues associated with in vivo studies in animal models. Here, we provide an overview of BBB structure and function in vivo, and a summary of the pharmacokinetic parameters that can be used to determine and predict the rate and extent of drug penetration into the brain. We also review different in vitro models with regard to their inherent shortcomings and potential usefulness for development of fast-acting drugs or neurotracers labeled with short-lived radionuclides. In this regard, a special focus has been set on those systems that are sufficiently well established to be used in laboratories without significant bioengineering expertise.
Collapse
Affiliation(s)
- Felix Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Boris D. Zlatopolskiy
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| |
Collapse
|