1
|
Prado DS, Cattley RT, Sonego AB, Sutariya P, Wu S, Lee M, Boggess WC, Shlomchik MJ, Hawse WF. The phospholipid kinase PIKFYVE is essential for Th17 differentiation. J Exp Med 2025; 222:e20240625. [PMID: 39738812 DOI: 10.1084/jem.20240625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
T helper 17 (Th17) cells are effector cells that mediate inflammatory responses to bacterial and fungal pathogens. While the cytokine signaling inputs required to generate Th17s are established, less is known about intracellular pathways that drive Th17 differentiation. Our previously published phosphoproteomic screen identifies that PIKFYVE, a lipid kinase that generates the phosphatidylinositol PtdIns(3,5)P2, is activated during Th17 differentiation. Herein, we discovered that PIKFYVE regulates kinase and transcription factor networks to promote Th17 differentiation. As a specific example, PtdIns(3,5)P2 directly stimulates mTORC1 kinase activity to promote cell division and differentiation pathways. Furthermore, PIKFYVE promotes STAT3 phosphorylation, which is required for Th17 differentiation. Chemical inhibition or CD4-specific deletion of PIKFYVE reduces Th17 differentiation and autoimmune pathology in the experimental autoimmune encephalomyelitis murine model of multiple sclerosis. Our findings identify molecular mechanisms by which PIKFYVE promotes Th17 differentiation and suggest that PIKFYVE is a potential therapeutic target in Th17-driven autoimmune diseases.
Collapse
Affiliation(s)
- Douglas S Prado
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh , Pittsburgh, PA, USA
| | - Richard T Cattley
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh , Pittsburgh, PA, USA
| | - Andreza B Sonego
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh , Pittsburgh, PA, USA
| | - Parth Sutariya
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh , Pittsburgh, PA, USA
| | - Shuxian Wu
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - William C Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - William F Hawse
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh , Pittsburgh, PA, USA
| |
Collapse
|
2
|
Werlen G, Hernandez T, Jacinto E. Food for thought: Nutrient metabolism controlling early T cell development. Bioessays 2025; 47:e2400179. [PMID: 39504233 DOI: 10.1002/bies.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
T cells develop in the thymus by expressing a diverse repertoire of either αβ- or γδ-T cell receptors (TCR). While many studies have elucidated how TCR signaling and gene expression control T cell ontogeny, the role of nutrient metabolism is just emerging. Here, we discuss how metabolic reprogramming and nutrient availability impact the fate of developing thymic T cells. We focus on how the PI3K/mTOR signaling mediates various extracellular inputs and how this signaling pathway controls metabolic rewiring during highly proliferative and anabolic developmental stages. We highlight the role of the hexosamine biosynthetic pathway that generates metabolites that are utilized for N- and O-linked glycosylation of proteins and how it impacts TCR expression during T cell ontogeny. We consider the dichotomy in metabolic needs during αβ- versus γδ-T cell lineage commitment as well as how metabolism is also coupled to molecular signaling that controls cell fate.
Collapse
Affiliation(s)
- Guy Werlen
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Tatiana Hernandez
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
3
|
Cheng Y, Liu L, Ye Y, He Y, Hu W, Ke H, Guo ZY, Shao G. Roles of macrophages in lupus nephritis. Front Pharmacol 2024; 15:1477708. [PMID: 39611168 PMCID: PMC11602334 DOI: 10.3389/fphar.2024.1477708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
LN is a serious complication of systemic lupus erythematosus (SLE), affecting up to 60% of patients with SLE and may lead to end-stage renal disease (ESRD). Macrophages play multifaceted roles in the pathogenesis of LN, including clearance of immune complexes, antigen presentation, regulation of inflammation, and tissue repair. Macrophages are abundant in the glomeruli and tubulointerstitium of LN patients and are positively correlated with serum creatinine levels and the severity of renal pathology. It has been shown that the infiltration of macrophages is closely associated with several clinical indicators, such as serum creatinine and complement C3 levels, anti-dsDNA antibody titers, Austin score, interstitial fibrosis and renal tubular atrophy. Moreover, cytokines expressed by macrophages were upregulated at LN onset and downregulated after remission, suggesting that macrophages may serve as markers of LN pathogenesis and remission. Therapies targeting macrophages have been shown to alleviate LN. There are two main types of macrophages in the kidney: kidney-resident macrophages (KRMs) and monocyte-derived macrophages (MDMs). KRMs and MDMs play different pathological roles in LN, with KRMs promoting leukocyte recruitment at sites of inflammation by expressing monocyte chemokines, while MDMs may exacerbate autoimmune responses by presenting immune complex antigens. Macrophages exhibit high plasticity and can differentiate into various phenotypes in response to distinct environmental stimuli. M1 (proinflammatory) macrophages are linked to the progression of active SLE, whereas the M2 (anti-inflammatory) phenotype is observed during the remission phase of LN. The polarization of macrophages in LN can be manipulated through multiple pathways, such as the modulation of signaling cascades including TLR 2/1, S1P, ERS, metabolic reprogramming, and HMGB1. This paper provides a comprehensive overview of the role of macrophages in the progression of lupus nephritis (LN), and elucidates how these cells and their secretory products function as indicators and therapeutic targets for the disease in the context of diagnosis and treatment of LN.
Collapse
Affiliation(s)
- Yaqian Cheng
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Lulu Liu
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yufei Ye
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yingxue He
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Wenwen Hu
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Haiyan Ke
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Zhi-Yong Guo
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guojian Shao
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
4
|
Cristofoletti C, Bresin A, Fioretti M, Russo G, Narducci MG. Combined High-Throughput Approaches Reveal the Signals Driven by Skin and Blood Environments and Define the Tumor Heterogeneity in Sézary Syndrome. Cancers (Basel) 2022; 14:cancers14122847. [PMID: 35740513 PMCID: PMC9221051 DOI: 10.3390/cancers14122847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Sézary syndrome (SS) is a leukemic and incurable variant of cutaneous T-cell lymphoma characterized by the accumulation of neoplastic CD4+ lymphocytes in the blood, lymph nodes, and skin. With the exception of allogenic transplantation, no curative chance is available to treat SS, and it is a priority to find new therapies that target SS cells within all disease compartments. This review aims to summarize the more recent analyses conducted on skin- and blood-derived SS cells concurrently obtained from the same SS patients. The results highlighted that skin-SS cells were more active/proliferating with respect to matched blood SS cells that instead appeared quiescent. These data shed the light on the possibility to treat blood and skin SS cells with different compounds, respectively. Moreover, this review recaps the more recent findings on the heterogeneity of circulating SS cells that presented a series of novel markers that could improve diagnosis, prognosis and therapy of this lymphoma. Abstract Sézary syndrome (SS) is an aggressive variant of cutaneous t-cell lymphoma characterized by the accumulation of neoplastic CD4+ lymphocytes—the SS cells—mainly in blood, lymph nodes, and skin. The tumor spread pattern of SS makes this lymphoma a unique model of disease that allows a concurrent blood and skin sampling for analysis. This review summarizes the recent studies highlighting the transcriptional programs triggered by the crosstalk between SS cells and blood–skin microenvironments. Emerging data proved that skin-derived SS cells show consistently higher activation/proliferation rates, mainly driven by T-cell receptor signaling with respect to matched blood SS cells that instead appear quiescent. Biochemical analyses also demonstrated an hyperactivation of PI3K/AKT/mTOR, a targetable pathway by multiple inhibitors currently in clinical trials, in skin SS cells compared with a paired blood counterpart. These results indicated that active and quiescent SS cells coexist in this lymphoma, and that they could be respectively treated with different therapeutics. Finally, this review underlines the more recent discoveries into the heterogeneity of circulating SS cells, highlighting a series of novel markers that could improve the diagnosis and that represent novel therapeutic targets (GPR15, PTPN13, KLRB1, and ITGB1) as well as new genetic markers (PD-1 and CD39) able to stratify SS patients for disease aggressiveness.
Collapse
|
5
|
Boothby MR, Brookens SK, Raybuck AL, Cho SH. Supplying the trip to antibody production-nutrients, signaling, and the programming of cellular metabolism in the mature B lineage. Cell Mol Immunol 2022; 19:352-369. [PMID: 34782762 PMCID: PMC8591438 DOI: 10.1038/s41423-021-00782-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
The COVID pandemic has refreshed and expanded recognition of the vital role that sustained antibody (Ab) secretion plays in our immune defenses against microbes and of the importance of vaccines that elicit Ab protection against infection. With this backdrop, it is especially timely to review aspects of the molecular programming that govern how the cells that secrete Abs arise, persist, and meet the challenge of secreting vast amounts of these glycoproteins. Whereas plasmablasts and plasma cells (PCs) are the primary sources of secreted Abs, the process leading to the existence of these cell types starts with naive B lymphocytes that proliferate and differentiate toward several potential fates. At each step, cells reside in specific microenvironments in which they not only receive signals from cytokines and other cell surface receptors but also draw on the interstitium for nutrients. Nutrients in turn influence flux through intermediary metabolism and sensor enzymes that regulate gene transcription, translation, and metabolism. This review will focus on nutrient supply and how sensor mechanisms influence distinct cellular stages that lead to PCs and their adaptations as factories dedicated to Ab secretion. Salient findings of this group and others, sometimes exhibiting differences, will be summarized with regard to the journey to a distinctive metabolic program in PCs.
Collapse
Affiliation(s)
- Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Medicine, Rheumatology & Immunology Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Cancer Biology Program, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Institute of Infection, Inflammation, and Immunology, Nashville, TN, 37232, USA.
| | - Shawna K Brookens
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Cancer Biology Program, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ariel L Raybuck
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sung Hoon Cho
- Department of Pathology, Microbiology & Immunology, Molecular Pathogenesis Division, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute of Infection, Inflammation, and Immunology, Nashville, TN, 37232, USA
| |
Collapse
|
6
|
Yin J, Ma J, Xia J, Cao Y, Li C. Activated PI3K δ syndrome 1 mimicking systemic lupus erythematosus and secondary Sjögren's syndrome-like phenotype without recurrent infections: A case report. Front Pediatr 2022; 10:1077324. [PMID: 36605759 PMCID: PMC9807900 DOI: 10.3389/fped.2022.1077324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Activated phosphoinositide 3-kinase-δ syndrome 1 (APDS1) is a combined immunodeficiency caused by a heterozygous gain-of-function mutation in PIK3CD, encoding the p110δ catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ). APDS1 is characterized by recurrent sinopulmonary infections, leading to airway damage, chronic herpes viremia, lymphoproliferation, and autoimmune and inflammatory diseases. Several cases of systemic lupus erythematosus (SLE) have been reported in APDS1; however, Sjögren's syndrome (SS) or an SS-like phenotype is rarely described in patients with APDS1. In this study, we report a 4-year-old girl with APDS1 who did not experience recurrent sinopulmonary infections and chronic viremia but presented with cytopenia, proteinuria, hypocomplementemia, and positive antinuclear antibodies that met the classification criteria for SLE. Additionally, the patient also mimicked a secondary SS-like phenotype based on recurrent parotitis and labial salivary gland biopsy. The patient achieved remission after treatment with sirolimus and immunosuppressive therapy. This case report enriches the clinical phenotype of APDS1 and provides a reference for the diagnosis and therapy of patients with APDS1.
Collapse
Affiliation(s)
- Jing Yin
- Department of Rheumatology & Immunology, Tianjin Children's Hospital, Tianjin University, Tianjin, China
| | - Jijun Ma
- Department of Rheumatology & Immunology, Tianjin Children's Hospital, Tianjin University, Tianjin, China
| | - Jingyue Xia
- Department of Rheumatology & Immunology, Tianjin Children's Hospital, Tianjin University, Tianjin, China
| | - Yang Cao
- Department of Rheumatology & Immunology, Tianjin Children's Hospital, Tianjin University, Tianjin, China
| | - Chongwei Li
- Department of Rheumatology & Immunology, Tianjin Children's Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Luff DH, Wojdyla K, Oxley D, Chessa T, Hudson K, Hawkins PT, Stephens LR, Barry ST, Okkenhaug K. PI3Kδ Forms Distinct Multiprotein Complexes at the TCR Signalosome in Naïve and Differentiated CD4 + T Cells. Front Immunol 2021; 12:631271. [PMID: 33763075 PMCID: PMC7982423 DOI: 10.3389/fimmu.2021.631271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/02/2021] [Indexed: 11/14/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) play a central role in adaptive immunity by transducing signals from the T cell antigen receptor (TCR) via production of PIP3. PI3Kδ is a heterodimer composed of a p110δ catalytic subunit associated with a p85α or p85β regulatory subunit and is preferentially engaged by the TCR upon T cell activation. The molecular mechanisms leading to PI3Kδ recruitment and activation at the TCR signalosome remain unclear. In this study, we have used quantitative mass spectrometry, biochemical approaches and CRISPR-Cas9 gene editing to uncover the p110δ interactome in primary CD4+ T cells. Moreover, we have determined how the PI3Kδ interactome changes upon the differentiation of small naïve T cells into T cell blasts expanded in the presence of IL-2. Our interactomic analyses identified multiple constitutive and inducible PI3Kδ-interacting proteins, some of which were common to naïve and previously-activated T cells. Our data reveals that PI3Kδ rapidly interacts with as many as seven adaptor proteins upon TCR engagement, including the Gab-family proteins, GAB2 and GAB3, a CD5-CBL signalosome and the transmembrane proteins ICOS and TRIM. Our results also suggest that PI3Kδ pre-forms complexes with the adaptors SH3KBP1 and CRKL in resting cells that could facilitate the localization and activation of p110δ at the plasma membrane by forming ternary complexes during early TCR signalling. Furthermore, we identify interactions that were not previously known to occur in CD4+ T cells, involving BCAP, GAB3, IQGAP3 and JAML. We used CRISPR-Cas9-mediated gene knockout in primary T cells to confirm that BCAP is a positive regulator of PI3K-AKT signalling in CD4+ T cell blasts. Overall, our results provide evidence for a large protein network that regulates the recruitment and activation of PI3Kδ in T cells. Finally, this work shows how the PI3Kδ interactome is remodeled as CD4+ T cells differentiate from naïve T cells to activated T cell blasts. These activated T cells upregulate additional PI3Kδ adaptor proteins, including BCAP, GAB2, IQGAP3 and ICOS. This rewiring of TCR-PI3K signalling that occurs upon T cell differentiation may serve to reduce the threshold of activation and diversify the inputs for the PI3K pathway in effector T cells.
Collapse
Affiliation(s)
- Daisy H Luff
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Katarzyna Wojdyla
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, United Kingdom.,Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - David Oxley
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, United Kingdom
| | - Tamara Chessa
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Kevin Hudson
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Phillip T Hawkins
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Len R Stephens
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Simon T Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Cho HJ, Lee J, Yoon SR, Lee HG, Jung H. Regulation of Hematopoietic Stem Cell Fate and Malignancy. Int J Mol Sci 2020; 21:ijms21134780. [PMID: 32640596 PMCID: PMC7369689 DOI: 10.3390/ijms21134780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The regulation of hematopoietic stem cell (HSC) fate decision, whether they keep quiescence, self-renew, or differentiate into blood lineage cells, is critical for maintaining the immune system throughout one’s lifetime. As HSCs are exposed to age-related stress, they gradually lose their self-renewal and regenerative capacity. Recently, many reports have implicated signaling pathways in the regulation of HSC fate determination and malignancies under aging stress or pathophysiological conditions. In this review, we focus on the current understanding of signaling pathways that regulate HSC fate including quiescence, self-renewal, and differentiation during aging, and additionally introduce pharmacological approaches to rescue defects of HSC fate determination or hematopoietic malignancies by kinase signaling pathways.
Collapse
Affiliation(s)
- Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Department of Biomolecular Science, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (H.G.L.); (H.J.)
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Correspondence: (H.G.L.); (H.J.)
| |
Collapse
|
9
|
Rodriguez R, Fournier B, Cordeiro DJ, Winter S, Izawa K, Martin E, Boutboul D, Lenoir C, Fraitag S, Kracker S, Watts TH, Picard C, Bruneau J, Callebaut I, Fischer A, Neven B, Latour S. Concomitant PIK3CD and TNFRSF9 deficiencies cause chronic active Epstein-Barr virus infection of T cells. J Exp Med 2019; 216:2800-2818. [PMID: 31537641 PMCID: PMC6888974 DOI: 10.1084/jem.20190678] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/23/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Identification of biallelic loss-of-function mutations in TNFRSF9 and PIK3CD in a kindred with chronic active Epstein-Barr virus infection of T cells (CAEBV) suggests that CAEBV is the consequence of factors providing growth advantage to EBV-infected T cells combined with defective cell immunity toward EBV-infected cells. Infection of T cells by Epstein-Barr virus (EBV) causes chronic active EBV infection (CAEBV) characterized by T cell lymphoproliferative disorders (T-LPD) of unclear etiology. Here, we identified two homozygous biallelic loss-of-function mutations in PIK3CD and TNFRSF9 in a patient who developed a fatal CAEBV. The mutation in TNFRSF9 gene coding CD137/4-1BB, a costimulatory molecule expressed by antigen-specific activated T cells, resulted in a complete loss of CD137 expression and impaired T cell expansion toward CD137 ligand–expressing cells. Isolated as observed in one sibling, CD137 deficiency resulted in persistent EBV-infected T cells but without clinical manifestations. The mutation in PIK3CD gene that encodes the catalytic subunit p110δ of the PI3K significantly reduced its kinase activity. Deficient T cells for PIK3CD exhibited reduced AKT signaling, while calcium flux, RAS-MAPK activation, and proliferation were increased, suggestive of an imbalance between the PLCγ1 and PI3K pathways. These skewed signals in T cells may sustain accumulation of EBV-infected T cells, a process controlled by the CD137–CD137L pathway, highlighting its critical role in immunity to EBV.
Collapse
Affiliation(s)
- Rémy Rodriguez
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Debora Jorge Cordeiro
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Sarah Winter
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Kazushi Izawa
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Sylvie Fraitag
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sven Kracker
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Laboratory of Human Lymphohematopoiesis, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Centre d'Etude des Déficits Immunitaires, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Julie Bruneau
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris, France
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Collège de France, Paris, France.,Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Bénédicte Neven
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France .,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| |
Collapse
|
10
|
Malekzadeh A, Leurs C, van Wieringen W, Steenwijk MD, Schoonheim MM, Amann M, Naegelin Y, Kuhle J, Killestein J, Teunissen CE. Plasma proteome in multiple sclerosis disease progression. Ann Clin Transl Neurol 2019; 6:1582-1594. [PMID: 31364818 PMCID: PMC7651845 DOI: 10.1002/acn3.771] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 01/01/2023] Open
Abstract
Background The pathophysiology of multiple sclerosis disease progression remains undetermined. The aim of this study was to identify differences in plasma proteome during different stages of MS disease progression. Methods We used a multiplex aptamer proteomics platform (Somalogic) for sensitive detection of 1129 proteins in plasma. MS patients were selected and categorized based on baseline and a 4‐year follow‐up EDSS (delta EDSS) scores; relapse‐onset (RO) slow progression (n = 31), RO with rapid progression (n = 29), primary progressive (n = 30), and healthy controls (n = 20). The relation of baseline plasma protein levels with delta EDSS and different MRI progression parameters were assessed using linear regression models. Results Regression analyses of plasma proteins with delta EDSS showed six significant associations. Strong associations were found for the proteins LGLAS8 (P = 7.64 × 10−5, q = 0.06), CCL3 (P = 0.0001, q = 0.06), and RGMA (P = 0.0005, q = 0.09). In addition, associations of plasma proteins were found with percentage brain volume for C3 (P = 2,08 × 10−9, q = 1,70 × 10−6), FGF9 (P = 3,42 × 10−9, q = 1,70 × 10−6), and EHMT2 (P = 0.0007, q = 0.01). Most of the significant markers were associated with cell‐cell and cell‐extracellular matrix adhesion, immune system communication, immune system activation, and complement pathways. Conclusions Our results revealed eight novel biomarkers related to clinical and radiological progression in MS. These results indicate that changes in immune system, complement pathway and ECM remodeling proteins contribute to MS progression and may therefore be further explored for use in prognosis of MS.
Collapse
Affiliation(s)
- Arjan Malekzadeh
- Department of Clinical Chemistry, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Cyra Leurs
- Department of Neurology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Wessel van Wieringen
- Department of Mathematics, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Martijn D Steenwijk
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Michael Amann
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland.,Medical Image Analysis Center (MIAC AG), Basel, Switzerland
| | - Yvonne Naegelin
- Department of Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Joep Killestein
- Department of Neurology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Zhou M, Fang H, Du M, Li C, Tang R, Liu H, Gao Z, Ji Z, Ke B, Chen XL. The Modulation of Regulatory T Cells via HMGB1/PTEN/β-Catenin Axis in LPS Induced Acute Lung Injury. Front Immunol 2019; 10:1612. [PMID: 31402909 PMCID: PMC6669370 DOI: 10.3389/fimmu.2019.01612] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/27/2019] [Indexed: 01/08/2023] Open
Abstract
Sepsis-induced acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) remains the leading complication for mortality caused by bacterial infection. The regulatory T (Treg) cells appear to be an important modulator in resolving lung injury. Despite the extensive studies, little is known about the role of macrophage HMGB1/PTEN/β-catenin signaling in Treg development during ALI. Objectives: This study was designed to determine the roles and molecular mechanisms of HMGB1/PTEN/β-catenin signaling in mediating CD4+CD25+Foxp3+ Treg development in sepsis-induced lung injury in mice. Setting: University laboratory research of First Affiliated Hospital of Anhui Medical University. Subjects: PTEN/β-catenin Loxp and myeloid-specific knockout mice. Interventions: Groups of PTENloxp/β-cateninloxp and myeloid-specific PTEN/β-catenin knockout (PTENM−KO/β-cateninM−KO) mice were treated with LPS or recombinant HMGB1 (rHMGB1) to induce ALI. The effects of HMGB1-PTEN axis were further analyzed by in vitro co-cultures. Measures and Main Results: In a mouse model of ALI, blocking HMGB1 or myeloid-specific PTEN knockout (PTENM−KO) increased animal survival/body weight, reduced lung damage, increased TGF-β production, inhibited the expression of RORγt and IL-17, while promoting β-catenin signaling and increasing CD4+CD25+Foxp3+ Tregs in LPS- or rHMGB-induced lung injury. Notably, myeloid-specific β-catenin ablation (β-cateninM−KO) resulted in reduced animal survival and increased lung injury, accompanied by reduced CD4+CD25+Foxp3+ Tregs in rHMGB-induced ALI. Furthermore, disruption of macrophage HMGB1/PTEN or activation of β-catenin significantly increased CD4+CD25+Foxp3+ Tregs in vitro. Conclusions: HMGB1/PTEN/β-catenin signaling is a novel pathway that regulates Treg development and provides a potential therapeutic target in sepsis-induced lung injury.
Collapse
Affiliation(s)
- Min Zhou
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Min Du
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Rui Tang
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haiyan Liu
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhi Gao
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zongshu Ji
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bibo Ke
- Department of Surgery, The Dumont-UCLA Transplant Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Uche UU, Piccirillo AR, Kataoka S, Grebinoski SJ, D'Cruz LM, Kane LP. PIK3IP1/TrIP restricts activation of T cells through inhibition of PI3K/Akt. J Exp Med 2018; 215:3165-3179. [PMID: 30429249 PMCID: PMC6279406 DOI: 10.1084/jem.20172018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/27/2018] [Accepted: 10/19/2018] [Indexed: 12/16/2022] Open
Abstract
This study demonstrates a role for the transmembrane regulator of PI3K (TrIP) in restricting early T cell activation, at least in part through effects on PI3K. It is also shown that levels of TrIP decrease preceding full T cell activation. Phosphatidylinositol-3 kinases (PI3Ks) modulate cellular growth, proliferation, and survival; dysregulation of the PI3K pathway can lead to autoimmune disease and cancer. PIK3IP1 (or transmembrane inhibitor of PI3K [TrIP]) is a putative transmembrane regulator of PI3K. TrIP contains an extracellular kringle domain and an intracellular domain with homology to the inter-SH2 domain of the PI3K regulatory subunit p85, but the mechanism of TrIP function is poorly understood. We show that both the kringle and p85-like domains are necessary for TrIP inhibition of PI3K and that TrIP is down-modulated from the surface of T cells during T cell activation. In addition, we present evidence that the kringle domain may modulate TrIP function by mediating oligomerization. Using an inducible knockout mouse model, we show that TrIP-deficient T cells exhibit more robust activation and can mediate clearance of Listeria monocytogenes infection faster than WT mice. Thus, TrIP is a negative regulator of T cell activation and may represent a novel target for immune modulation.
Collapse
Affiliation(s)
- Uzodinma U Uche
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA.,Interdisciplinary Biomedical Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ann R Piccirillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Stephanie J Grebinoski
- Graduate Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Louise M D'Cruz
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
13
|
Ito Y, Hart JR, Vogt PK. Isoform-specific activities of the regulatory subunits of phosphatidylinositol 3-kinases - potentially novel therapeutic targets. Expert Opin Ther Targets 2018; 22:869-877. [PMID: 30205700 DOI: 10.1080/14728222.2018.1522302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The main regulatory subunits of Class IA phosphatidylinositol 3-kinase (PI3K), p85α and p85β, initiate diverse cellular activities independent of binding to the catalytic subunit p110. Several of these signaling processes directly or indirectly contribute to a regulation of PI3K and could become targets for therapeutic efforts. Areas covered: This review will highlight two general areas of p85 activity: (1) direct interaction with regulatory proteins and with determinants of the cytoskeleton, and (2) a genetic analysis by deletion and domain switches identifying new functions for p85 domains. Expert Opinion: Isoform-specific activities of regulatory subunits have long been at the periphery of the PI3K field. Our understanding of these unique functions of the regulatory subunits is fragmentary and raises many important questions. At this time, there is insufficient information to translate this knowledge into the clinic, but some tempting targets have emerged that could move the field forward with the help of novel technologies in drug design and identification.
Collapse
Affiliation(s)
- Yoshihiro Ito
- a Department of Molecular Medicine , The Scripps Research Institute , La Jolla , CA , USA
| | - Jonathan R Hart
- a Department of Molecular Medicine , The Scripps Research Institute , La Jolla , CA , USA
| | - Peter K Vogt
- a Department of Molecular Medicine , The Scripps Research Institute , La Jolla , CA , USA
| |
Collapse
|
14
|
Elich M, Sauer K. Regulation of Hematopoietic Cell Development and Function Through Phosphoinositides. Front Immunol 2018; 9:931. [PMID: 29780388 PMCID: PMC5945867 DOI: 10.3389/fimmu.2018.00931] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
One of the most paramount receptor-induced signal transduction mechanisms in hematopoietic cells is production of the lipid second messenger phosphatidylinositol(3,4,5)trisphosphate (PIP3) by class I phosphoinositide 3 kinases (PI3K). Defective PIP3 signaling impairs almost every aspect of hematopoiesis, including T cell development and function. Limiting PIP3 signaling is particularly important, because excessive PIP3 function in lymphocytes can transform them and cause blood cancers. Here, we review the key functions of PIP3 and related phosphoinositides in hematopoietic cells, with a special focus on those mechanisms dampening PIP3 production, turnover, or function. Recent studies have shown that beyond “canonical” turnover by the PIP3 phosphatases and tumor suppressors phosphatase and tensin homolog (PTEN) and SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1/2), PIP3 function in hematopoietic cells can also be dampened through antagonism with the soluble PIP3 analogs inositol(1,3,4,5)tetrakisphosphate (IP4) and inositol-heptakisphosphate (IP7). Other evidence suggests that IP4 can promote PIP3 function in thymocytes. Moreover, IP4 or the kinases producing it limit store-operated Ca2+ entry through Orai channels in B cells, T cells, and neutrophils to control cell survival and function. We discuss current models for how soluble inositol phosphates can have such diverse functions and can govern as distinct processes as hematopoietic stem cell homeostasis, neutrophil macrophage and NK cell function, and development and function of B cells and T cells. Finally, we will review the pathological consequences of dysregulated IP4 activity in immune cells and highlight contributions of impaired inositol phosphate functions in disorders such as Kawasaki disease, common variable immunodeficiency, or blood cancer.
Collapse
Affiliation(s)
- Mila Elich
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Karsten Sauer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,Oncology R&D, Pfizer Worldwide R&D, San Diego, CA, United States
| |
Collapse
|
15
|
Choi JH, Kim KH, Roh KH, Jung H, Lee A, Lee JY, Song JY, Park SJ, Kim I, Lee WS, Seo SK, Choi IW, Fu YX, Yea SS, Park S. A PI3K p110α-selective inhibitor enhances the efficacy of anti-HER2/neu antibody therapy against breast cancer in mice. Oncoimmunology 2018; 7:e1421890. [PMID: 29721370 DOI: 10.1080/2162402x.2017.1421890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022] Open
Abstract
Combination therapies with phosphoinositide 3-kinase (PI3K) inhibitors and trastuzumab (anti-human epidermal growth factor receptor [HER]2/neu antibody) are effective against HER2+ breast cancer. Isoform-selective PI3K inhibitors elicit anti-tumor immune responses that are distinct from those induced by inhibitors of class I PI3K isoforms (pan-PI3K inhibitors). The present study investigated the therapeutic effect and potential for stimulating anti-tumor immunity of combined therapy with an anti-HER2/neu antibody and pan-PI3K inhibitor (GDC-0941) or a PI3K p110α isoform-selective inhibitor (A66) in mouse models of breast cancer. The anti-neu antibody inhibited tumor growth and enhanced anti-tumor immunity in HER2/neu+ breast cancer TUBO models, whereas GDC-0941 or A66 alone did not. Anti-neu antibody and PI3K inhibitor synergistically promoted anti-tumor immunity by increasing functional T cell production. In the presence of the anti-neu antibody, A66 was more effective than GDC-0941 at increasing the fraction of CD4+, CD8+, and IFN-γ+CD8+ T cells in the tumor-infiltrating lymphocyte population. Detection of IFN-γ levels by enzyme-linked immunospot assay showed that the numbers of tumor-specific T cells against neu and non-neu tumor antigens were increased by combined PI3K inhibitor plus anti-neu antibody treatment, with A66 exhibiting more potent effects than GDC-0941. In a TUBO (neu+) and TUBO-P2J (neu-) mixed tumor model representing immunohistochemistry 2+ tumors, A66 suppressed tumor growth and prolonged survival to a greater extent than GDC-0941 when combined with anti-neu antibody. These results demonstrate that a PI3K p110α-isoform-selective inhibitor is an effective adjunct to trastuzumab in the treatment of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Jae-Hyeog Choi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan, Republic of Korea
| | - Ki Hyang Kim
- Department of Internal Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Kug-Hwan Roh
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan, Republic of Korea
| | - Hana Jung
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan, Republic of Korea
| | - Anbok Lee
- Department of Surgery, Inje University College of Medicine, Busan, Republic of Korea
| | - Ji-Young Lee
- Department of Internal Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Joo Yeon Song
- Department of Pathology, Dongnam Institute of Radiological and Medical Sciences, Busan, Republic of Korea
| | - Seung Jae Park
- Department of Internal Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Ilhwan Kim
- Department of Internal Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Won-Sik Lee
- Department of Internal Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan, Republic of Korea
| | - Yang-Xin Fu
- The Department of Pathology and Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sung Su Yea
- Department of Biochemistry, Inje University College of Medicine, Busan, Republic of Korea
| | - SaeGwang Park
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
16
|
Tang P, Upton JEM, Barton-Forbes MA, Salvadori MI, Clynick MP, Price AK, Goobie SL. Autosomal Recessive Agammaglobulinemia Due to a Homozygous Mutation in PIK3R1. J Clin Immunol 2017; 38:88-95. [PMID: 29178053 DOI: 10.1007/s10875-017-0462-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
Abstract
The role of class IA phosphoinositide 3 kinases (PI3Ks) in immune function and regulation continues to expand with the identification of greater numbers of genetic variants. This case report is the second reported case of a homozygous premature stop codon within the PIK3R1 gene leading to autosomal recessive agammaglobulinemia. The proband, born to consanguineous parents, presented at 10 months of age with a history of oropharyngeal petechiae and bleeding from the mouth, gums, and tear ducts. Initial investigations revealed thrombocytopenia, neutropenia and the absence of B cells. Further genetic testing via a custom next-generation sequencing panel confirmed the presence of a homozygous mutation in PIK3R1, c.901 C>T, a premature stop codon at amino acid position 301. Given their many roles in immune regulation, recessive mutations in the PlK3R1 gene should be considered in infants presenting with hypogammaglobulinemia or agammaglobulinemia, particularly in the setting of parental consanguinity.
Collapse
Affiliation(s)
- Paoyun Tang
- Department of Pediatrics, London Health Science Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada
| | - Julia E M Upton
- Department of Pediatrics, Division of Immunology and Allergy, Hospital for Sick Children, University of Toronto, 7280-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Michelle A Barton-Forbes
- Department of Pediatrics, London Health Science Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada
| | - Marina I Salvadori
- Department of Pediatrics, London Health Science Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada
| | - Meghan P Clynick
- Department of Dermatology, Sunnybrook Health Science Centre, Unit M1 100, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - April K Price
- Department of Pediatrics, London Health Science Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada
| | - Sharan L Goobie
- Maritime Medical Genetics, Department of Pediatrics, Izaak Walton Killam (IWK) Health Centre, 5850/5980 University Avenue, PO Box 9700, Halifax, NS, B3K 6R8, Canada.
| |
Collapse
|
17
|
Taher TE, Bystrom J, Ong VH, Isenberg DA, Renaudineau Y, Abraham DJ, Mageed RA. Intracellular B Lymphocyte Signalling and the Regulation of Humoral Immunity and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:237-264. [PMID: 28456914 PMCID: PMC5597704 DOI: 10.1007/s12016-017-8609-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
B lymphocytes are critical for effective immunity; they produce antibodies and cytokines, present antigens to T lymphocytes and regulate immune responses. However, because of the inherent randomness in the process of generating their vast repertoire of antigen-specific receptors, B cells can also cause diseases through recognizing and reacting to self. Therefore, B lymphocyte selection and responses require tight regulation at multiple levels and at all stages of their development and activation to avoid diseases. Indeed, newly generated B lymphocytes undergo rigorous tolerance mechanisms in the bone marrow and, subsequently, in the periphery after their migration. Furthermore, activation of mature B cells is regulated through controlled expression of co-stimulatory receptors and intracellular signalling thresholds. All these regulatory events determine whether and how B lymphocytes respond to antigens, by undergoing apoptosis or proliferation. However, defects that alter regulated co-stimulatory receptor expression or intracellular signalling thresholds can lead to diseases. For example, autoimmune diseases can result from altered regulation of B cell responses leading to the emergence of high-affinity autoreactive B cells, autoantibody production and tissue damage. The exact cause(s) of defective B cell responses in autoimmune diseases remains unknown. However, there is evidence that defects or mutations in genes that encode individual intracellular signalling proteins lead to autoimmune diseases, thus confirming that defects in intracellular pathways mediate autoimmune diseases. This review provides a synopsis of current knowledge of signalling proteins and pathways that regulate B lymphocyte responses and how defects in these could promote autoimmune diseases. Most of the evidence comes from studies of mouse models of disease and from genetically engineered mice. Some, however, also come from studying B lymphocytes from patients and from genome-wide association studies. Defining proteins and signalling pathways that underpin atypical B cell response in diseases will help in understanding disease mechanisms and provide new therapeutic avenues for precision therapy.
Collapse
Affiliation(s)
- Taher E Taher
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jonas Bystrom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Voon H Ong
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | | | - Yves Renaudineau
- Immunology Laboratory, University of Brest Medical School, Brest, France
| | - David J Abraham
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | - Rizgar A Mageed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
18
|
PI3Kδ promotes CD4(+) T-cell interactions with antigen-presenting cells by increasing LFA-1 binding to ICAM-1. Immunol Cell Biol 2016; 94:486-95. [PMID: 26740009 PMCID: PMC4829101 DOI: 10.1038/icb.2016.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 12/15/2022]
Abstract
Activation of T lymphocytes by peptide/major histocompatibility complex on antigen-presenting cells (APCs) involves dynamic contacts between the two cells, during which T cells undergo marked morphological changes. These interactions are facilitated by integrins. Activation of the T cells increases the binding of the integrin lymphocyte function-associated antigen 1 (LFA-1) expressed by T cells to intercellular adhesion molecule (ICAM)-1 and ICAM-2 expressed by APCs. The signalling pathways that control integrin affinities are incompletely defined. The phosphoinositide 3-kinases (PI3Ks) generate second-messenger signalling molecules that control cell growth, proliferation, differentiation and trafficking. Here we show that in T cells, PI3Kδ attenuates the activation of Rac1, but sustains the activation of Rap1. Consequently, PI3Kδ increases LFA-1-dependent adhesion to form stable conjugates with APCs. Increased Rap1 activity and LFA-1 adhesion were only in part mediated by the downstream kinase Akt, suggesting the involvement of additional phosphatidylinositol(3,4,5)P3-binding proteins. These results establish a link between PI3K activity, cytoskeletal changes and integrin binding and help explain the impaired T-cell-dependent immune responses in PI3Kδ-deficient mice.
Collapse
|
19
|
Abstract
B cells provide immunity to extracellular pathogens by secreting a diverse repertoire of antibodies with high affinity and specificity for exposed antigens. The B cell receptor (BCR) is a transmembrane antibody, which facilitates the clonal selection of B cells producing secreted antibodies of the same specificity. The diverse antibody repertoire is generated by V(D)J recombination of heavy and light chain genes, whereas affinity maturation is mediated by activation-induced cytidine deaminase (AID)-mediated mutagenesis. These processes, which are essential for the generation of adaptive humoral immunity, also render B cells susceptible to chromosomal rearrangements and point mutations that in some cases lead to cancer. In this chapter, we will review the central role of PI3K s in mediating signals from the B cell receptor that not only facilitate the development of functional B cell repertoire, but also support the growth and survival of neoplastic B cells, focusing on chronic lymphocytic leukemia (CLL) B cells. Perhaps because of the central role played by PI3K in BCR signaling, B cell leukemia and lymphomas are the first diseases for which a PI3K inhibitor has been approved for clinical use.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/enzymology
- Cell Survival
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/physiopathology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Klaus Okkenhaug
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK.
| | - Jan A Burger
- Department of Leukemia, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Chen XL, Serrano D, Mayhue M, Hoebe K, Ilangumaran S, Ramanathan S. GIMAP5 Deficiency Is Associated with Increased AKT Activity in T Lymphocytes. PLoS One 2015; 10:e0139019. [PMID: 26440416 PMCID: PMC4595448 DOI: 10.1371/journal.pone.0139019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/07/2015] [Indexed: 01/05/2023] Open
Abstract
Long-term survival of T lymphocytes in quiescent state is essential to maintain their cell numbers in secondary lymphoid organs. In mice and in rats, the loss of functional GTPase of the immune associated nucleotide binding protein 5 (GIMAP5) causes peripheral T lymphopenia due to spontaneous death of T cells. The underlying mechanism responsible for the disruption of quiescence in Gimap5 deficient T cells remains largely unknown. In this study, we show that loss of functional Gimap5 results in increased basal activation of mammalian target of rapamycin (mTOR), independent of protein phosphatase 2A (PP2A) or AMP-activated protein kinase (AMPK). Our results suggest that the constitutive activation of the phosphoinositide 3-kinase (PI3K) pathway may be one of the consequences of the absence of functional GIMAP5.
Collapse
Affiliation(s)
- Xi-Lin Chen
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Daniel Serrano
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Marian Mayhue
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Kasper Hoebe
- Department of Pediatrics, Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States of America
| | - Subburaj Ilangumaran
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- Centre de Recherche Clinique, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Sheela Ramanathan
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- Centre de Recherche Clinique, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- * E-mail:
| |
Collapse
|
21
|
Pearce VQ, Bouabe H, MacQueen AR, Carbonaro V, Okkenhaug K. PI3Kδ Regulates the Magnitude of CD8+ T Cell Responses after Challenge with Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 2015; 195:3206-17. [PMID: 26311905 PMCID: PMC4574522 DOI: 10.4049/jimmunol.1501227] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/24/2015] [Indexed: 12/26/2022]
Abstract
PI3Ks regulate diverse immune cell functions by transmitting intracellular signals from Ag, costimulatory receptors, and cytokine receptors to control cell division, differentiation, survival, and migration. In this study, we report the effect of inhibiting the p110δ subunit of PI3Kδ on CD8(+) T cell responses to infection with the intracellular bacteria Listeria monocytogenes. A strong dependency on PI3Kδ for IFN-γ production by CD8(+) T cells in vitro was not recapitulated after Listeria infection in vivo. Inactivation of PI3Kδ resulted in enhanced bacterial elimination by the innate immune system. However, the magnitudes of the primary and secondary CD8 +: T cell responses were reduced. Moreover, PI3Kδ activity was required for CD8(+) T cells to provide help to other responding CD8(+) cells. These findings identify PI3Kδ as a key regulator of CD8(+) T cell responses that integrates extrinsic cues, including those from other responding cells, to determine the collective behavior of CD8(+) T cell populations responding to infection.
Collapse
Affiliation(s)
- Verity Q Pearce
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Hicham Bouabe
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Amy R MacQueen
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Valentina Carbonaro
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| |
Collapse
|
22
|
Abstract
The fate of T and B lymphocytes, the key cells that direct the adaptive immune response, is regulated by a diverse network of signal transduction pathways. The T- and B-cell antigen receptors are coupled to intracellular tyrosine kinases and adaptor molecules to control the metabolism of inositol phospholipids and calcium release. The production of inositol polyphosphates and lipid second messengers directs the activity of downstream guanine-nucleotide-binding proteins and protein and lipid kinases/phosphatases that control lymphocyte transcriptional and metabolic programs. Lymphocyte activation is modulated by costimulatory molecules and cytokines that elicit intracellular signaling that is integrated with the antigen-receptor-controlled pathways.
Collapse
Affiliation(s)
- Doreen Cantrell
- College of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
23
|
Manna P, Jain SK. Phosphatidylinositol-3,4,5-triphosphate and cellular signaling: implications for obesity and diabetes. Cell Physiol Biochem 2015; 35:1253-75. [PMID: 25721445 DOI: 10.1159/000373949] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 12/26/2022] Open
Abstract
Phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P₃) is one of the most important phosphoinositides and is capable of activating a wide range of proteins through its interaction with their specific binding domains. Localization and activation of these effector proteins regulate a number of cellular functions, including cell survival, proliferation, cytoskeletal rearrangement, intracellular vesicle trafficking, and cell metabolism. Phosphoinositides have been investigated as an important agonist-dependent second messenger in the regulation of diverse physiological events depending upon the phosphorylation status of their inositol group. Dysregulation in formation as well as metabolism of phosphoinositides is associated with various pathophysiological disorders such as inflammation, allergy, cardiovascular diseases, cancer, and metabolic diseases. Recent studies have demonstrated that the impaired metabolism of PtdIns(3,4,5)P₃ is a prime mediator of insulin resistance associated with various metabolic diseases including obesity and diabetes. This review examines the current status of the role of PtdIns(3,4,5)P₃ signaling in the regulation of various cellular functions and the implications of dysregulated PtdIns(3,4,5)P₃ signaling in obesity, diabetes, and their associated complications.
Collapse
Affiliation(s)
- Prasenjit Manna
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | |
Collapse
|
24
|
Walsh CM, Fruman DA. Too much of a good thing: immunodeficiency due to hyperactive PI3K signaling. J Clin Invest 2014; 124:3688-90. [PMID: 25133419 DOI: 10.1172/jci77198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Primary immune deficiency diseases arise due to heritable defects that often involve signaling molecules required for immune cell function. Typically, these genetic defects cause loss of gene function, resulting in primary immune deficiencies such as severe combined immune deficiency (SCID) and X-linked agammaglobulinemia (XLA); however, gain-of-function mutations may also promote immune deficiency. In this issue of the JCI, Deau et al. establish that gain-of-function mutations in PIK3R1, which encodes the p85α regulatory subunit of class IA PI3Ks, lead to immunodeficiency. These observations are consistent with previous reports that hyperactivating mutations in PIK3CD, which encodes the p110δ catalytic subunit, are capable of promoting immune deficiency. Mutations that reduce PI3K activity also result in defective lymphocyte development and function; therefore, these findings support the notion that too little or too much PI3K activity leads to immunodeficiency.
Collapse
|
25
|
Haselmayer P, Camps M, Muzerelle M, El Bawab S, Waltzinger C, Bruns L, Abla N, Polokoff MA, Jond-Necand C, Gaudet M, Benoit A, Bertschy Meier D, Martin C, Gretener D, Lombardi MS, Grenningloh R, Ladel C, Petersen JS, Gaillard P, Ji H. Characterization of Novel PI3Kδ Inhibitors as Potential Therapeutics for SLE and Lupus Nephritis in Pre-Clinical Studies. Front Immunol 2014; 5:233. [PMID: 24904582 PMCID: PMC4033217 DOI: 10.3389/fimmu.2014.00233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/06/2014] [Indexed: 12/17/2022] Open
Abstract
SLE is a complex autoimmune inflammatory disease characterized by pathogenic autoantibody production as a consequence of uncontrolled T–B cell activity and immune-complex deposition in various organs, including kidney, leading to tissue damage and function loss. There is a high unmet need for better treatment options other than corticosteroids and immunosuppressants. Phosphoinositol-3 kinase δ (PI3Kδ) is a promising target in this respect as it is essential in mediating B- and T-cell function in mouse and human. We report the identification of selective PI3Kδ inhibitors that blocked B-, T-, and plasmacytoid dendritic cell activities in human peripheral blood and in primary cell co-cultures (BioMAP®) without detecting signs of undesired toxicity. In an IFNα-accelerated mouse SLE model, our PI3Kδ inhibitors blocked nephritis development, whether administered at the onset of autoantibody appearance or the onset of proteinuria. Disease amelioration correlated with normalized immune cell numbers in the spleen, reduced immune-complex deposition as well as reduced inflammation, fibrosis, and tissue damage in the kidney. Improvements were similar to those achieved with a frequently prescribed drug for lupus nephritis, the potent immunosuppressant mycophenolate mofetil. Finally, we established a pharmacodynamics/pharmacokinetic/efficacy model that revealed that a sustained PI3Kδ inhibition of 50% is sufficient to achieve full efficacy in our disease model. These data demonstrate the therapeutic potential of PI3Kδ inhibitors in SLE and lupus nephritis.
Collapse
Affiliation(s)
- Philipp Haselmayer
- Immunology, Department of Preclinical Pharmacology, Merck Serono , Darmstadt , Germany ; Biologics and Immunology Platform, Merck Serono , Darmstadt , Germany
| | - Montserrat Camps
- Department of Cellular Immunology, Merck Serono SA , Geneva , Switzerland ; Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland
| | | | - Samer El Bawab
- Drug Metabolism and Pharmacokinetics (DMPK), Non-Clinical Development, Merck Serono , Darmstadt , Germany
| | - Caroline Waltzinger
- Department of Cellular Immunology, Merck Serono SA , Geneva , Switzerland ; Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland
| | - Lisa Bruns
- Immunology, Department of Preclinical Pharmacology, Merck Serono , Darmstadt , Germany ; Biologics and Immunology Platform, Merck Serono , Darmstadt , Germany
| | - Nada Abla
- Drug Metabolism and Pharmacokinetics (DMPK), Non-Clinical Development, Merck Serono SA , Geneva , Switzerland
| | - Mark A Polokoff
- BioSeek® Division, DiscoveRx Corporation , South San Francisco, CA , USA
| | - Carole Jond-Necand
- Department of Cellular Immunology, Merck Serono SA , Geneva , Switzerland ; Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland
| | - Marilène Gaudet
- Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland ; Department of Early PK/PD Biomarker, Merck Serono SA , Geneva , Switzerland
| | - Audrey Benoit
- Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland ; Department of Early PK/PD Biomarker, Merck Serono SA , Geneva , Switzerland
| | - Dominique Bertschy Meier
- Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland ; Department of Early PK/PD Biomarker, Merck Serono SA , Geneva , Switzerland
| | - Catherine Martin
- Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland ; Department of Early PK/PD Biomarker, Merck Serono SA , Geneva , Switzerland
| | - Denise Gretener
- Department of Screening, Merck Serono SA , Geneva , Switzerland
| | - Maria Stella Lombardi
- Department of Cellular Immunology, Merck Serono SA , Geneva , Switzerland ; Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland
| | - Roland Grenningloh
- Immunology, Department of Preclinical Pharmacology, EMD Serono Research and Development Institute , Billerica, MA , USA
| | - Christoph Ladel
- Biologics and Immunology Platform, Merck Serono , Darmstadt , Germany
| | | | | | - Hong Ji
- Biologics and Immunology Platform, Merck Serono SA , Geneva , Switzerland ; Department of Early PK/PD Biomarker, Merck Serono SA , Geneva , Switzerland
| |
Collapse
|
26
|
Abstract
The central role of phosphoinositide 3-kinase (PI3K) activation in tumour cell biology has prompted a sizeable effort to target PI3K and/or downstream kinases such as AKT and mammalian target of rapamycin (mTOR) in cancer. However, emerging clinical data show limited single-agent activity of inhibitors targeting PI3K, AKT or mTOR at tolerated doses. One exception is the response to PI3Kδ inhibitors in chronic lymphocytic leukaemia, where a combination of cell-intrinsic and -extrinsic activities drive efficacy. Here, we review key challenges and opportunities for the clinical development of inhibitors targeting the PI3K-AKT-mTOR pathway. Through a greater focus on patient selection, increased understanding of immune modulation and strategic application of rational combinations, it should be possible to realize the potential of this promising class of targeted anticancer agents.
Collapse
|
27
|
Affiliation(s)
- David A Fruman
- From the Department of Molecular Biology and Biochemistry and Institute for Immunology, University of California, Irvine (D.A.F.); and Weill Cornell Medical College, New York (L.C.C.)
| | | |
Collapse
|
28
|
Tzenaki N, Papakonstanti EA. p110δ PI3 kinase pathway: emerging roles in cancer. Front Oncol 2013; 3:40. [PMID: 23459844 PMCID: PMC3585436 DOI: 10.3389/fonc.2013.00040] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/12/2013] [Indexed: 12/11/2022] Open
Abstract
Class IA PI3Ks consists of three isoforms of the p110 catalytic subunit designated p110α, p110β, and p110δ which are encoded by three separate genes. Gain-of-function mutations on PIK3CA gene encoding for p110α isoform have been detected in a wide variety of human cancers whereas no somatic mutations of genes encoding for p110β or p110δ have been reported. Unlike p110α and p110β which are ubiquitously expressed, p110δ is highly enriched in leukocytes and thus the p110δ PI3K pathway has attracted more attention for its involvement in immune disorders. However, findings have been accumulated showing that the p110δ PI3K plays a seminal role in the development and progression of some hematologic malignancies. A wealth of knowledge has come from studies showing the central role of p110δ PI3K in B-cell functions and B-cell malignancies. Further data have documented that wild-type p110δ becomes oncogenic when overexpressed in cell culture models and that p110δ is the predominant isoform expressed in some human solid tumor cells playing a prominent role in these cells. Genetic inactivation of p110δ in mice models and highly-selective inhibitors of p110δ have demonstrated an important role of this isoform in differentiation, growth, survival, motility, and morphology with the inositol phosphatase PTEN to play a critical role in p110δ signaling. In this review, we summarize our understanding of the p110δ PI3K signaling pathway in hematopoietic cells and malignancies, we highlight the evidence showing the oncogenic potential of p110δ in cells of non-hematopoietic origin and we discuss perspectives for potential novel roles of p110δ PI3K in cancer.
Collapse
Affiliation(s)
- Niki Tzenaki
- Department of Biochemistry, School of Medicine, University of Crete Heraklion, Greece
| | | |
Collapse
|
29
|
Riedel A, Mofolo B, Avota E, Schneider-Schaulies S, Meintjes A, Mulder N, Kneitz S. Accumulation of splice variants and transcripts in response to PI3K inhibition in T cells. PLoS One 2013; 8:e50695. [PMID: 23383294 PMCID: PMC3562341 DOI: 10.1371/journal.pone.0050695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/23/2012] [Indexed: 12/17/2022] Open
Abstract
Background Measles virus (MV) causes T cell suppression by interference with phosphatidylinositol-3-kinase (PI3K) activation. We previously found that this interference affected the activity of splice regulatory proteins and a T cell inhibitory protein isoform was produced from an alternatively spliced pre-mRNA. Hypothesis Differentially regulated and alternatively splice variant transcripts accumulating in response to PI3K abrogation in T cells potentially encode proteins involved in T cell silencing. Methods To test this hypothesis at the cellular level, we performed a Human Exon 1.0 ST Array on RNAs isolated from T cells stimulated only or stimulated after PI3K inhibition. We developed a simple algorithm based on a splicing index to detect genes that undergo alternative splicing (AS) or are differentially regulated (RG) upon T cell suppression. Results Applying our algorithm to the data, 9% of the genes were assigned as AS, while only 3% were attributed to RG. Though there are overlaps, AS and RG genes differed with regard to functional regulation, and were found to be enriched in different functional groups. AS genes targeted extracellular matrix (ECM)-receptor interaction and focal adhesion pathways, while RG genes were mainly enriched in cytokine-receptor interaction and Jak-STAT. When combined, AS/RG dependent alterations targeted pathways essential for T cell receptor signaling, cytoskeletal dynamics and cell cycle entry. Conclusions PI3K abrogation interferes with key T cell activation processes through both differential expression and alternative splicing, which together actively contribute to T cell suppression.
Collapse
Affiliation(s)
- Alice Riedel
- Institute for Virology and Immunobiology, University of Wuerzburg, Versbacher, Wuerzburg, Germany
| | - Boitumelo Mofolo
- Computational Biology Group, Department of Clinical Laboratory Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Elita Avota
- Institute for Virology and Immunobiology, University of Wuerzburg, Versbacher, Wuerzburg, Germany
| | | | - Ayton Meintjes
- Computational Biology Group, Department of Clinical Laboratory Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Nicola Mulder
- Computational Biology Group, Department of Clinical Laboratory Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Susanne Kneitz
- Department of Physiological Chemistry I, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
30
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) control many important aspects of immune cell development, differentiation, and function. Mammals have eight PI3K catalytic subunits that are divided into three classes based on similarities in structure and function. Specific roles for the class I PI3Ks have been broadly investigated and are relatively well understood, as is the function of their corresponding phosphatases. More recently, specific roles for the class II and class III PI3Ks have emerged. Through vertebrate evolution and in parallel with the evolution of adaptive immunity, there has been a dramatic increase not only in the genes for PI3K subunits but also in genes for phosphatases that act on 3-phosphoinositides and in 3-phosphoinositide-binding proteins. Our understanding of the PI3Ks in immunity is guided by fundamental discoveries made in simpler model organisms as well as by appreciating new adaptations of this signaling module in mammals in general and in immune cells in particular.
Collapse
Affiliation(s)
- Klaus Okkenhaug
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, CB22 3AT, United Kingdom.
| |
Collapse
|
31
|
So L, Yea SS, Oak JS, Lu M, Manmadhan A, Ke QH, Janes MR, Kessler LV, Kucharski JM, Li LS, Martin MB, Ren P, Jessen KA, Liu Y, Rommel C, Fruman DA. Selective inhibition of phosphoinositide 3-kinase p110α preserves lymphocyte function. J Biol Chem 2012; 288:5718-31. [PMID: 23275335 DOI: 10.1074/jbc.m112.379446] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Class IA phosphoinositide 3-kinase (PI3K) is essential for clonal expansion, differentiation, and effector function of B and T lymphocytes. The p110δ catalytic isoform of PI3K is highly expressed in lymphocytes and plays a prominent role in B and T cell responses. Another class IA PI3K catalytic isoform, p110α, is a promising drug target in cancer but little is known about its function in lymphocytes. Here we used highly selective inhibitors to probe the function of p110α in lymphocyte responses in vitro and in vivo. p110α inhibition partially reduced B cell receptor (BCR)-dependent AKT activation and proliferation, and diminished survival supported by the cytokines BAFF and IL-4. Selective p110δ inhibition suppressed B cell responses much more strongly, yet maximal suppression was achieved by targeting multiple PI3K isoforms. In mouse and human T cells, inhibition of single class IA isoforms had little effect on proliferation, whereas pan-class I inhibition did suppress T cell expansion. In mice, selective p110α inhibition using the investigational agent MLN1117 (previously known as INK1117) did not disrupt the marginal zone B cell compartment and did not block T cell-dependent germinal center formation. In contrast, the selective p110δ inhibitor IC87114 strongly suppressed germinal center formation and reduced marginal zone B cell numbers, similar to a pan-class I inhibitor. These findings show that although acute p110α inhibition partially diminishes AKT activation, selective p110α inhibitors are likely to be less immunosuppressive in vivo compared with p110δ or pan-class I inhibitors.
Collapse
Affiliation(s)
- Lomon So
- Department of Molecular Biology & Biochemistry, and Institute for Immunology, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Redondo-Muñoz J, Rodríguez MJ, Silió V, Pérez-García V, Valpuesta JM, Carrera AC. Phosphoinositide 3-kinase beta controls replication factor C assembly and function. Nucleic Acids Res 2012; 41:855-68. [PMID: 23175608 PMCID: PMC3553946 DOI: 10.1093/nar/gks1095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Genomic integrity is preserved by the action of protein complexes that control DNA homeostasis. These include the sliding clamps, trimeric protein rings that are arranged around DNA by clamp loaders. Replication factor C (RFC) is the clamp loader for proliferating cell nuclear antigen, which acts on DNA replication. Other processes that require mobile contact of proteins with DNA use alternative RFC complexes that exchange RFC1 for CTF18 or RAD17. Phosphoinositide 3-kinases (PI3K) are lipid kinases that generate 3-poly-phosphorylated-phosphoinositides at the plasma membrane following receptor stimulation. The two ubiquitous isoforms, PI3Kalpha and PI3Kbeta, have been extensively studied due to their involvement in cancer and nuclear PI3Kbeta has been found to regulate DNA replication and repair, processes controlled by molecular clamps. We studied here whether PI3Kbeta directly controls the process of molecular clamps loading. We show that PI3Kbeta associated with RFC1 and RFC1-like subunits. Only when in complex with PI3Kbeta, RFC1 bound to Ran GTPase and localized to the nucleus, suggesting that PI3Kbeta regulates RFC1 nuclear import. PI3Kbeta controlled not only RFC1- and RFC-RAD17 complexes, but also RFC-CTF18, in turn affecting CTF18-mediated chromatid cohesion. PI3Kbeta thus has a general function in genomic stability by controlling the localization and function of RFC complexes.
Collapse
Affiliation(s)
- Javier Redondo-Muñoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus de Cantoblanco, Madrid E-28049, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Gamper CJ, Powell JD. All PI3Kinase signaling is not mTOR: dissecting mTOR-dependent and independent signaling pathways in T cells. Front Immunol 2012; 3:312. [PMID: 23087689 PMCID: PMC3466461 DOI: 10.3389/fimmu.2012.00312] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/17/2012] [Indexed: 12/14/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is emerging as playing a central role in regulating T cell activation, differentiation, and function. mTOR integrates diverse signals from the immune microenvironment to shape the outcome of T cell receptor (TCR) antigen recognition. Phosphatidylinositol 3-kinase (PI3K) enzymes are critical mediators of T cell activation through their generation of the second messenger phosphatidylinositol (3,4,5) triphosphate (PIP3). Indeed, PIP3 generation results in the activation of Protein Kinase B (PKB, also known as AKT), a key activator of mTOR. However, recent genetic studies have demonstrated inconsistencies between PI3K disruption and loss of mTOR expression with regard to the regulation of effector and regulatory T cell homeostasis and function. In this review, we focus on how PI3K activation directs mature CD4 T cell activation and effector function by pathways dependent on and independent of mTOR signaling. Importantly, what has become clear is that targeting both mTOR-dependent and mTOR-independent PI3K-induced signaling distally affords the opportunity for more selective regulation of T cell differentiation and function.
Collapse
|
34
|
Banham-Hall E, Clatworthy MR, Okkenhaug K. The Therapeutic Potential for PI3K Inhibitors in Autoimmune Rheumatic Diseases. Open Rheumatol J 2012; 6:245-58. [PMID: 23028409 PMCID: PMC3460535 DOI: 10.2174/1874312901206010245] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/16/2011] [Accepted: 11/20/2011] [Indexed: 12/14/2022] Open
Abstract
The class 1 PI3Ks are lipid kinases with key roles in cell surface receptor-triggered signal transduction pathways. Two isoforms of the catalytic subunits, p110γ and p110δ, are enriched in leucocytes in which they promote activation, cellular growth, proliferation, differentiation and survival through the generation of the second messenger PIP3. Genetic inactivation or pharmaceutical inhibition of these PI3K isoforms in mice result in impaired immune responses and reduced susceptibility to autoimmune and inflammatory conditions. We review the PI3K signal transduction pathways and the effects of inhibition of p110γ and/or p110δ on innate and adaptive immunity. Focusing on rheumatoid arthritis and systemic lupus erythematosus we discuss the preclinical evidence and prospects for small molecule inhibitors of p110γ and/or p110δ in autoimmune disease.
Collapse
Affiliation(s)
- Edward Banham-Hall
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, CB22
3AT, UK
| | - Menna R Clatworthy
- Cambridge Institute for Medical Research and the Department of Medicine, University of Cambridge School of Clinical
Medicine, Cambridge CB2 0XY, UK
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, CB22
3AT, UK
| |
Collapse
|
35
|
Puri KD, Gold MR. Selective inhibitors of phosphoinositide 3-kinase delta: modulators of B-cell function with potential for treating autoimmune inflammatory diseases and B-cell malignancies. Front Immunol 2012; 3:256. [PMID: 22936933 PMCID: PMC3425960 DOI: 10.3389/fimmu.2012.00256] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/31/2012] [Indexed: 12/22/2022] Open
Abstract
The delta isoform of the p110 catalytic subunit (p110δ) of phosphoinositide 3-kinase is expressed primarily in hematopoietic cells and plays an essential role in B-cell development and function. Studies employing mice lacking a functional p110δ protein, as well as the use of highly-selective chemical inhibitors of p110δ, have revealed that signaling via p110δ-containing PI3K complexes (PI3Kδ) is critical for B-cell survival, migration, and activation, functioning downstream of key receptors on B cells including the B-cell antigen receptor, chemokine receptors, pro-survival receptors such as BAFF-R and the IL-4 receptor, and co-stimulatory receptors such as CD40 and Toll-like receptors (TLRs). Similarly, this PI3K isoform plays a key role in the survival, proliferation, and dissemination of B-cell lymphomas. Herein we summarize studies showing that these processes can be inhibited in vitro and in vivo by small molecule inhibitors of p110δ enzymatic activity, and that these p110δ inhibitors have shown efficacy in clinical trials for the treatment of several types of B-cell malignancies including chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL). PI3Kδ also plays a critical role in the activation, proliferation, and tissue homing of self-reactive B cells that contribute to autoimmune diseases, in particular innate-like B-cell populations such as marginal zone (MZ) B cells and B-1 cells that have been strongly linked to autoimmunity. We discuss the potential utility of p110δ inhibitors, either alone or in combination with B-cell depletion, for treating autoimmune diseases such as lupus, rheumatoid arthritis, and type 1 diabetes. Because PI3Kδ plays a major role in both B-cell-mediated autoimmune inflammation and B-cell malignancies, PI3Kδ inhibitors may represent a promising therapeutic approach for treating these diseases.
Collapse
|
36
|
Soond DR, Slack ECM, Garden OA, Patton DT, Okkenhaug K. Does the PI3K pathway promote or antagonize regulatory T cell development and function? Front Immunol 2012; 3:244. [PMID: 22912633 PMCID: PMC3418637 DOI: 10.3389/fimmu.2012.00244] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/23/2012] [Indexed: 11/23/2022] Open
Abstract
Regulatory T cells (Tregs) prevent autoimmunity and inflammation by suppressing the activation of other T cells and antigen presenting cells. The role of phosphoinositide 3-kinase (PI3K) signaling in Treg is controversial. Some studies suggest that inhibition of the PI3K pathway is essential for the development of Tregs whereas other studies have shown reduced Treg numbers and function when PI3K activity is suppressed. Here we attempt to reconcile the different studies that have explored PI3K and the downstream effectors Akt, Foxo, and mTOR in regulatory T cell development and function and discuss the implications for health and therapeutic intervention.
Collapse
Affiliation(s)
- Dalya R Soond
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute Cambridge, UK
| | | | | | | | | |
Collapse
|
37
|
Pauls SD, Lafarge ST, Landego I, Zhang T, Marshall AJ. The phosphoinositide 3-kinase signaling pathway in normal and malignant B cells: activation mechanisms, regulation and impact on cellular functions. Front Immunol 2012; 3:224. [PMID: 22908014 PMCID: PMC3414724 DOI: 10.3389/fimmu.2012.00224] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/10/2012] [Indexed: 12/20/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a central signal transduction axis controlling normal B cell homeostasis and activation in humoral immunity. The p110δ PI3K catalytic subunit has emerged as a critical mediator of multiple B cell functions. The activity of this pathway is regulated at multiple levels, with inositol phosphatases PTEN and SHIP both playing critical roles. When deregulated, the PI3K pathway can contribute to B cell malignancies and autoantibody production. This review summarizes current knowledge on key mechanisms that activate and regulate the PI3K pathway and influence normal B cell functional responses including the development of B cell subsets, antigen presentation, immunoglobulin isotype switch, germinal center responses, and maintenance of B cell anergy. We also discuss PI3K pathway alterations reported in select B cell malignancies and highlight studies indicating the functional significance of this pathway in malignant B cell survival and growth within tissue microenvironments. Finally, we comment on early clinical trial results, which support PI3K inhibition as a promising treatment of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
38
|
Limon JJ, Fruman DA. Akt and mTOR in B Cell Activation and Differentiation. Front Immunol 2012; 3:228. [PMID: 22888331 PMCID: PMC3412259 DOI: 10.3389/fimmu.2012.00228] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/14/2012] [Indexed: 01/08/2023] Open
Abstract
Activation of phosphoinositide 3-kinase (PI3K) is required for B cell proliferation and survival. PI3K signaling also controls key aspects of B cell differentiation. Upon engagement of the B cell receptor (BCR), PI3K activation promotes Ca2+ mobilization and activation of NFκB-dependent transcription, events which are essential for B cell proliferation. PI3K also initiates a distinct signaling pathway involving the Akt and mTOR serine/threonine kinases. It has been generally assumed that activation of Akt and mTOR downstream of PI3K is essential for B cell function. However, Akt and mTOR have complex roles in B cell fate decisions and suppression of this pathway can enhance certain B cell responses while repressing others. In this review we will discuss genetic and pharmacological studies of Akt and mTOR function in normal B cells, and in malignancies of B cell origin.
Collapse
Affiliation(s)
- Jose J Limon
- Department of Molecular Biology and Biochemistry, Institute for Immunology, University of California Irvine Irvine, CA, USA
| | | |
Collapse
|
39
|
Abstract
Activation of PI3K (phosphoinositide 3-kinase) is a shared response to engagement of diverse types of transmembrane receptors. Depending on the cell type and stimulus, PI3K activation can promote different fates including proliferation, survival, migration and differentiation. The diverse roles of PI3K signalling are well illustrated by studies of lymphocytes, the cells that mediate adaptive immunity. Genetic and pharmacological experiments have shown that PI3K activation regulates many steps in the development, activation and differentiation of both B- and T-cells. These findings have prompted the development of PI3K inhibitors for the treatment of autoimmunity and inflammatory diseases. PI3K activation, however, has both positive and negative roles in immune system activation. Consequently, although PI3K suppression can attenuate immune responses it can also enhance inflammation, disrupt peripheral tolerance and promote autoimmunity. An exciting discovery is that a selective inhibitor of the p110δ catalytic isoform of PI3K, CAL-101, achieves impressive clinical efficacy in certain B-cell malignancies. A model is emerging in which p110δ inhibition disrupts signals from the lymphoid microenvironment, leading to release of leukaemia and lymphoma cells from their protective niche. These encouraging findings have given further momentum to PI3K drug development efforts in both cancer and immune diseases.
Collapse
|
40
|
Attenuation of phosphoinositide 3-kinase δ signaling restrains autoimmune disease. J Autoimmun 2012; 38:381-91. [DOI: 10.1016/j.jaut.2012.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/02/2012] [Accepted: 04/02/2012] [Indexed: 11/20/2022]
|
41
|
Soond DR, Garçon F, Patton DT, Rolf J, Turner M, Scudamore C, Garden OA, Okkenhaug K. Pten loss in CD4 T cells enhances their helper function but does not lead to autoimmunity or lymphoma. THE JOURNAL OF IMMUNOLOGY 2012; 188:5935-43. [PMID: 22611241 DOI: 10.4049/jimmunol.1102116] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PTEN, one of the most commonly mutated or lost tumor suppressors in human cancers, antagonizes signaling by the PI3K pathway. Mice with thymocyte-specific deletion of Pten rapidly develop peripheral lymphomas and autoimmunity, which may be caused by failed negative selection of thymocytes or from dysregulation of postthymic T cells. We induced conditional deletion of Pten from CD4 Th cells using a Cre knocked into the Tnfrsf4 (OX40) locus to generate OX40(Cre)Pten(f) mice. Pten-deficient Th cells proliferated more and produced greater concentrations of cytokines. The OX40(Cre)Pten(f) mice had a general increase in the number of lymphocytes in the lymph nodes, but not in the spleen. When transferred into wild-type (WT) mice, Pten-deficient Th cells enhanced anti-Listeria responses and the clearance of tumors under conditions in which WT T cells had no effect. Moreover, inflammatory responses were exaggerated and resolved later in OX40(Cre)Pten(f) mice than in WT mice. However, in contrast with models of thymocyte-specific Pten deletion, lymphomas and autoimmunity were not observed, even in older OX40(Cre)Pten(f) mice. Hence loss of Pten enhances Th cell function without obvious deleterious effects.
Collapse
Affiliation(s)
- Dalya R Soond
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Györy I, Boller S, Nechanitzky R, Mandel E, Pott S, Liu E, Grosschedl R. Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells. Genes Dev 2012; 26:668-82. [PMID: 22431510 DOI: 10.1101/gad.187328.112] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The transcription factor Ebf1 is an important determinant of early B lymphopoiesis. To gain insight into the functions of Ebf1 at distinct stages of differentiation, we conditionally inactivated Ebf1. We found that Ebf1 is required for the proliferation, survival, and signaling of pro-B cells and peripheral B-cell subsets, including B1 cells and marginal zone B cells. The proliferation defect of Ebf1-deficient pro-B cells and the impaired expression of multiple cell cycle regulators are overcome by transformation with v-Abl. The survival defect of transformed Ebf1(fl/fl) pro-B cells can be rescued by the forced expression of the Ebf1 targets c-Myb or Bcl-x(L). In mature B cells, Ebf1 deficiency interferes with signaling via the B-cell-activating factor receptor (BAFF-R)- and B-cell receptor (BCR)-dependent Akt pathways. Moreover, Ebf1 is required for germinal center formation and class switch recombination. Genome-wide analyses of Ebf1-mediated gene expression and chromatin binding indicate that Ebf1 regulates both common and distinct sets of genes in early and late stage B cells. By regulating important components of transcription factor and signaling networks, Ebf1 appears to be involved in the coordination of cell proliferation, survival, and differentiation at multiple stages of B lymphopoiesis.
Collapse
Affiliation(s)
- Ildiko Györy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
The impact of CDK inhibition in human malignancies associated with pronounced defects in apoptosis: advantages of multi-targeting small molecules. Future Med Chem 2012; 4:395-424. [DOI: 10.4155/fmc.12.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malignant cells in chronic lymphocytic leukemia (CLL) and related diseases are heterogeneous and consist primarily of long-lived resting cells in the periphery and a minor subset of dividing cells in proliferating centers. Both cell populations have different molecular signatures that play a major role in determining their sensitivity to therapy. Contemporary approaches to treating CLL are heavily reliant on cytotoxic chemotherapeutics. However, none of the current treatment regimens can be considered curative. Pharmacological CDK inhibitors have extended the repertoire of potential drugs for CLL. Multi-targeted CDK inhibitors affect CDKs involved in regulating both cell cycle progression and transcription. Their interference with transcriptional elongation represses anti-apoptotic proteins and, thus, promotes the induction of apoptosis. Importantly, there is evidence that treatment with CDK inhibitors can overcome resistance to therapy. The pharmacological CDK inhibitors have great potential for use in combination with other therapeutics and represent promising tools for the development of new curative treatments for CLL.
Collapse
|
44
|
Xiong Q, Ancona N, Hauser ER, Mukherjee S, Furey TS. Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets. Genome Res 2012; 22:386-97. [PMID: 21940837 PMCID: PMC3266045 DOI: 10.1101/gr.124370.111] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/19/2011] [Indexed: 12/11/2022]
Abstract
Single variant or single gene analyses generally account for only a small proportion of the phenotypic variation in complex traits. Alternatively, gene set or pathway association analyses are playing an increasingly important role in uncovering genetic architectures of complex traits through the identification of systematic genetic interactions. Two dominant paradigms for gene set analyses are association analyses based on SNP genotypes and those based on gene expression profiles. However, gene-disease association can manifest in many ways, such as alterations of gene expression, genotype, and copy number; thus, an integrative approach combining multiple forms of evidence can more accurately and comprehensively capture pathway associations. We have developed a single statistical framework, Gene Set Association Analysis (GSAA), that simultaneously measures genome-wide patterns of genetic variation and gene expression variation to identify sets of genes enriched for differential expression and/or trait-associated genetic markers. Simulation studies illustrate that joint analyses of genomic data increase the power to detect real associations when compared with gene set methods that use only one genomic data type. The analysis of two human diseases, glioblastoma and Crohn's disease, detected abnormalities in previously identified disease-associated pathways, such as pathways related to PI3K signaling, DNA damage response, and the activation of NFKB. In addition, GSAA predicted novel pathway associations, for example, differential genetic and expression characteristics in genes from the ABC transporter family in glioblastoma and from the HLA system in Crohn's disease. These demonstrate that GSAA can help uncover biological pathways underlying human diseases and complex traits.
Collapse
Affiliation(s)
- Qing Xiong
- Department of Genetics, Department of Biology, Lineberger Comprehensive Cancer Center, and Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Nicola Ancona
- Institute of Intelligent Systems for Automation National Research Council, Bari IT 70126, Italy
| | - Elizabeth R. Hauser
- Center for Human Genetics and Section of Medical Genetics, Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Sayan Mukherjee
- Departments of Statistical Science, Computer Science, and Mathematics, Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708, USA
| | - Terrence S. Furey
- Department of Genetics, Department of Biology, Lineberger Comprehensive Cancer Center, and Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
45
|
Turner M, Hodson DJ. An emerging role of RNA-binding proteins as multifunctional regulators of lymphocyte development and function. Adv Immunol 2012; 115:161-85. [PMID: 22608259 DOI: 10.1016/b978-0-12-394299-9.00006-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sequence-specific RNA-binding proteins (RBP) and the regulation of RNA decay have long been recognized as important regulators of the inflammatory response. RBP influence gene expression throughout the lifespan of the mRNA by regulating splicing, polyadenylation, cellular localization, translation, and decay. Increasing evidence now indicates that these proteins, together with the RNA decay machinery that they recruit, also regulate the development and activation of lymphocytes. The activity of RBP is regulated by the same signal transduction pathways that govern lymphocyte development and differentiation in response to antigen and cytokine receptor engagement. Roles for these proteins in regulating the diverse functions of lymphocytes are becoming increasingly apparent.
Collapse
Affiliation(s)
- Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | | |
Collapse
|
46
|
Engels N, Wienands J. The signaling tool box for tyrosine-based costimulation of lymphocytes. Curr Opin Immunol 2011; 23:324-9. [PMID: 21324660 DOI: 10.1016/j.coi.2011.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 12/31/2022]
Abstract
Triggering lymphocyte effector functions is controlled by a diverse array of immune cell coreceptors that dampen or potentiate the primary activation signal from antigen receptors. Attenuation of lymphocyte activation has been shown to be accomplished by immunoreceptor tyrosine-based inhibition motifs that upon phosphorylation recruit protein or lipid phosphatases. By contrast, a general concept of signal amplification and/or diversification is still out. However, the recent discovery of antigen receptor-intrinsic costimulation by membrane-bound immunoglobulins in class-switched memory B cells identified a consensus phosphorylation motif that can boost antigen-induced signal chains and is also employed by costimulatory receptors on T and Natural Killer cells to provide secondary signals for cellular activation. Here we define a common basis of tyrosine-based lymphocyte costimulation comprising immunoglobulin tail tyrosine (ITT)-like phosphorylation motifs and their proximal effectors, growth factor receptor-bound protein (Grb) 2 and phosphatidylinositol-3 kinase (PI3K) enzymes of class IA.
Collapse
Affiliation(s)
- Niklas Engels
- Georg August University of Göttingen, Institute of Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | | |
Collapse
|