1
|
Schavemaker PE, Lynch M. Bioenergetics and the Evolution of Cellular Traits. Annu Rev Biophys 2025; 54:81-99. [PMID: 40327439 DOI: 10.1146/annurev-biophys-070524-090334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Evolutionary processes have transformed simple cellular life into a great diversity of forms, ranging from the ubiquitous eukaryotic cell design to the more specific cellular forms of spirochetes, cyanobacteria, ciliates, heliozoans, amoeba, and many others. The cellular traits that constitute these forms require an evolutionary explanation. Ultimately, the persistence of a cellular trait depends on its net contribution to fitness, a quantitative measure. Independent of any positive effects, a cellular trait exhibits a baseline energetic cost that needs to be accounted for when quantitatively examining its net fitness effect. Here, we explore how the energetic burden introduced by a cellular trait quantitatively affects cellular fitness, describe methods for determining cell energy budgets, summarize the costs of cellular traits across the tree of life, and examine how the fitness impacts of these energetic costs compare to other evolutionary forces and trait benefits.
Collapse
Affiliation(s)
- Paul E Schavemaker
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA; ,
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA; ,
| |
Collapse
|
2
|
Bhargava CN, Ashok K, Pradhan SK, Kumar S, Manamohan M, Rai A, Asokan R. CRISPR/Cas9 Mediated Editing of Bdtektin1 Gene Induces Sterility in Male Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70043. [PMID: 40070114 DOI: 10.1002/arch.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 05/13/2025]
Abstract
The Oriental fruit fly, Bactrocera dorsalis (B. dorsalis) is a highly invasive, widely distributed notorious pest restricting global fruit trade immensely. There are several approaches to managing this pest, still require newer approaches. In this regard, recently a novel approach called precision-guided sterile insect technique (pgSIT) is gaining momentum in inducing both female sex elimination or sex conversion and male sterility at one go. Developing a species-specific pgSIT system requires validation of targets such as sex determination and spermatogenesis genes. In this regard, B. dorsalis is highly amenable for area-wide pest management and in the present study, we have validated the loss-of-function of the spermatogenesis-related gene, tektin1 using the CRISPR/Cas9 ribonucleoprotein (RNP) complex. This gene was cloned from the local isolate of B. dorsalis and two promising single guide RNAs (sgRNAs) were designed and validated through in vitro restriction analysis. Injection of the RNP complex (sgRNA + Cas9 protein) into the G0 embryo resulted in three adult males carrying mutations at the target site. The phenotype of the mutants was determined through crossing studies, namely, △1♂ × WT ♀, △2♂ × WT ♀, △3♂ × WT ♀, and WT ♂ × WT ♀ and that showed hatching rates of 0%, 11.70%, 0%, and 45.12%, respectively. The mutant males had more nonviable sperm as compared to control. This study underscores the pivotal role of the Bdtektin1 gene for male fertility and is a promising candidate for further development of pgSIT system for B. dorsalis.
Collapse
Affiliation(s)
- Chikmagalur Nagaraja Bhargava
- ICAR - Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
- University of Agricultural Sciences, Bengaluru, Karnataka, India
| | - Karuppannasamy Ashok
- ICAR - Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sanjay Kumar Pradhan
- ICAR - Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Sampath Kumar
- Tata Institute for Genetics and Society, Bengaluru, Karnataka, India
| | | | - Anil Rai
- ICAR - Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ramasamy Asokan
- ICAR - Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Stadler A, Gabriel HB, De Liz LV, Alonso-Gil S, Deng X, Crickley R, Korbula K, Mikolaskova B, Vaughan S, Huang K, Žagrović B, Sunter JD, Dong G. CFAP410 has a bimodular architecture with a conserved surface patch on its N-terminal leucine-rich repeat motif for binding interaction partners. Front Cell Dev Biol 2025; 13:1507470. [PMID: 40018707 PMCID: PMC11865075 DOI: 10.3389/fcell.2025.1507470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/09/2025] [Indexed: 03/01/2025] Open
Abstract
Cilia and flagella associated protein 410 (CFAP410) is a protein localized at the basal body of cilia/flagella and plays essential roles in ciliogenesis. Multiple single amino acid mutations in CFAP410 have been identified in patients. However, the molecular mechanism for how the mutations cause these disorders remains poorly understood due to a lack of high-resolution structures of the protein. Our studies demonstrate that CFAP410 adopts a bimodular architecture. We have previously reported our structural studies on the C-terminal domain (CTD) of CFAP410 from various organisms. Here we report a 1.0-Å resolution crystal structure of the N-terminal domain (NTD) of Trypanosoma brucei CFAP410. We further examined how the disease-causing mutations in this domain may affect the folding and structural stability of CFAP410. Our results suggest that the single-residue mutations in the CFAP410-NTD cause human diseases by destabilizing the structure that subsequently disrupts its interaction with other partners.
Collapse
Affiliation(s)
- Alexander Stadler
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Heloisa B. Gabriel
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Laryssa V. De Liz
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Santiago Alonso-Gil
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
| | - Xuan Deng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Robbie Crickley
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Katharina Korbula
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Barbora Mikolaskova
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Kaiyao Huang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Bojan Žagrović
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
| | - Jack D. Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Gang Dong
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
D'Gama PP, Jeong I, Nygård AM, Jamali A, Yaksi E, Jurisch-Yaksi N. Motile cilia modulate neuronal and astroglial activity in the zebrafish larval brain. Cell Rep 2025; 44:115195. [PMID: 39798091 DOI: 10.1016/j.celrep.2024.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/11/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025] Open
Abstract
The brain uses a specialized system to transport cerebrospinal fluid (CSF), consisting of interconnected ventricles lined by motile ciliated ependymal cells. These cells act jointly with CSF secretion and cardiac pressure gradients to regulate CSF dynamics. To date, the link between cilia-mediated CSF flow and brain function is poorly understood. Using zebrafish larvae as a model system, we identify that loss of ciliary motility does not alter progenitor proliferation, brain morphology, or spontaneous neural activity despite leading to an enlarged telencephalic ventricle. We observe altered neuronal responses to photic stimulations in the optic tectum and hindbrain and brain asymmetry defects in the habenula. Finally, we investigate astroglia since they contact CSF and regulate neuronal activity. Our analyses reveal a reduction in astroglial calcium signals during both spontaneous and light-evoked activity. Our findings highlight a role of motile cilia in regulating brain physiology through the modulation of neural and astroglial networks.
Collapse
Affiliation(s)
- Percival P D'Gama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway
| | - Andreas Moe Nygård
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway
| | - Ahmed Jamali
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Davutpaşa Caddesi, No:4, Topkapı, Istanbul 34010, Turkey
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway; Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway.
| |
Collapse
|
5
|
Ewerling A, May-Simera HL. Evolutionary trajectory for nuclear functions of ciliary transport complex proteins. Microbiol Mol Biol Rev 2024; 88:e0000624. [PMID: 38995044 PMCID: PMC11426024 DOI: 10.1128/mmbr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and vice versa. The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.
Collapse
Affiliation(s)
- Alexander Ewerling
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
6
|
Jordano MDA, Nagata RM, Morandini AC. A review of the role played by cilia in medusozoan feeding mechanics. Biol Rev Camb Philos Soc 2024; 99:950-964. [PMID: 38305571 DOI: 10.1111/brv.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Cilia are widely present in metazoans and have various sensory and motor functions, including collection of particles through feeding currents in suspensivorous animals. Suspended particles occur at low densities and are too small to be captured individually, and therefore must be concentrated. Animals that feed on these particles have developed different mechanisms to encounter and capture their food. These mechanisms occur in three phases: (i) encounter; (ii) capture; and (iii) particle handling, which occurs by means of a cilia-generated current or the movement of capturing structures (e.g. tentacles) that transport the particle to the mouth. Cilia may be involved in any of these phases. Some cnidarians, as do other suspensivorous animals, utilise cilia in their feeding mechanisms. However, few studies have considered ciliary flow when examining the biomechanics of cnidarian feeding. Anthozoans (sessile cnidarians) are known to possess flow-promoting cilia, but these are absent in medusae. The traditional view is that jellyfish capture prey only by means of nematocysts (stinging structures) and mucus, and do not possess cilia that collect suspended particles. Herein, we first provide an overview of suspension feeding in invertebrates, and then critically analyse the presence, distribution, and function of cilia in the Cnidaria (mainly Medusozoa), with a focus on particle collection (suspension feeding). We analyse the different mechanisms of suspension feeding and sort them according to our proposed classification framework. We present a scheme for the phases of pelagic jellyfish suspension feeding based on this classification. There is evidence that cilia create currents but act only in phases 1 and 3 of suspension feeding in medusozoans. Research suggests that some scyphomedusae must exploit other nutritional sources besides prey captured by nematocysts and mucus, since the resources provided by this diet alone are insufficient to meet their energy requirements. Therefore, smaller particles and prey may be captured through other phase-2 mechanisms that could involve ciliary currents. We hypothesise that medusae, besides capturing prey by nematocysts (present in the tentacles and oral arms), also capture small particles with their cilia, therefore expanding their trophic niche and suggesting reinterpretation of the trophic role of medusoid cnidarians as exclusively plankton predators. We suggest further study of particle collection by ciliary action and its influence on the biomechanics of jellyfishes, to expand our understanding of the ecology of this group.
Collapse
Affiliation(s)
- Mayara de A Jordano
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, n. 101, São Paulo, 05508-090, Brazil
| | - Renato M Nagata
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, 96203-000, Brazil
| | - André C Morandini
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, n. 101, São Paulo, 05508-090, Brazil
- Centro de Biologia Marinha, Universidade de São Paulo, Rodovia Manuel Hipólito do Rego km 131.5, São Sebastião, 11612-109, Brazil
| |
Collapse
|
7
|
Righini M, Mancini R, Busutti M, Buscaroli A. Autosomal Dominant Polycystic Kidney Disease: Extrarenal Involvement. Int J Mol Sci 2024; 25:2554. [PMID: 38473800 DOI: 10.3390/ijms25052554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder, but kidneys are not the only organs involved in this systemic disorder. Individuals with the condition may display additional manifestations beyond the renal system, involving the liver, pancreas, and brain in the context of cystic manifestations, while involving the vascular system, gastrointestinal tract, bones, and cardiac valves in the context of non-cystic manifestations. Despite kidney involvement remaining the main feature of the disease, thanks to longer survival, early diagnosis, and better management of kidney-related problems, a new wave of complications must be faced by clinicians who treated patients with ADPKD. Involvement of the liver represents the most prevalent extrarenal manifestation and has growing importance in the symptom burden and quality of life. Vascular abnormalities are a key factor for patients' life expectancy and there is still debate whether to screen or not to screen all patients. Arterial hypertension is often the earliest onset symptom among ADPKD patients, leading to frequent cardiovascular complications. Although cardiac valvular abnormalities are a frequent complication, they rarely lead to relevant problems in the clinical history of polycystic patients. One of the newest relevant aspects concerns bone disorders that can exert a considerable influence on the clinical course of these patients. This review aims to provide the "state of the art" among the extrarenal manifestation of ADPKD.
Collapse
Affiliation(s)
- Matteo Righini
- Nephrology and Dialysis Unit, Santa Maria delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Raul Mancini
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Transplantation Unit, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Andrea Buscaroli
- Nephrology and Dialysis Unit, Santa Maria delle Croci Hospital, AUSL Romagna, 48121 Ravenna, Italy
| |
Collapse
|
8
|
Wan KY, Poon RN. Mechanisms and functions of multiciliary coordination. Curr Opin Cell Biol 2024; 86:102286. [PMID: 38035649 DOI: 10.1016/j.ceb.2023.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Ciliated organisms are present in virtually every branch of the eukaryotic tree of life. In diverse systems, cilia operate in a coordinated manner to drive fluid flows, or even propel entire organisms. How do groups of motile cilia coordinate their activity within a cell or across a tissue to fulfil essential functions of life? In this review, we highlight the latest developments in our understanding of the mechanisms and functions of multiciliary coordination in diverse systems. We explore new and emerging trends in bioimaging, analytical, and computational methods, which together with their application in new model systems, have conspired to deliver important insights into one of the most fundamental questions in cellular dynamics.
Collapse
Affiliation(s)
- Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, UK.
| | - Rebecca N Poon
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, UK
| |
Collapse
|
9
|
Carabajal MPA, Bonacina J, Scarinci N, Albarracín VH, Cantero MDR, Cantiello HF. The bacterial tubulin homolog FtsZ generates electrical oscillations. Biochem Biophys Res Commun 2023; 687:149186. [PMID: 37931420 DOI: 10.1016/j.bbrc.2023.149186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
FtsZ, a major cytoskeletal protein in all bacteria and archaea, forms a ring that directs cytokinesis. Bacterial FtsZ is considered the ancestral homolog of the eukaryotic microtubule (MT)-forming tubulins, sharing GTPase activity and the ability to assemble into protofilaments, rings, and sheets, but not MTs. Previous studies from our laboratory demonstrated that structures of isolated brain MTs spontaneously generate electrical oscillations and bursts of electrical activity similar to action potentials. No information about whether the prokaryotic tubulins may share similar properties is available. Here, we obtained by ammonium sulfate precipitation an enriched protein fraction of the endogenous FtsZ from wild-type Escherichia coli ATCC 25922 without any transfection or overexpression of the protein. As revealed by electron microscopy, FtsZ was detected by dot blot analysis and immunofluorescence that assembled into filaments and sheets in a polymerization buffer. We used the patch-clamp technique to explore the electrical properties of sheets of FtsZ and bacterial cells. Electrical recordings at various holding potentials ranging from ±200 mV showed a complex oscillatory behavior, with several peak frequencies between 12 and 110 Hz in the power spectra and a linear mean current response. To confirm the oscillatory electrical behavior of FtsZ we also conducted experiments with commercial recombinant FtsZ, with similar results. We also detected, by local field potentials, similar electrical oscillations in K+-depolarized pellets of E. coli cultures. FtsZ oscillations had a wider range of frequency peaks than MT sheets from eukaryotic origin. The findings indicate that the bacterial cytoskeleton generates electrical oscillators that may play a relevant role in cell division and unknown signaling mechanisms in bacterial populations.
Collapse
Affiliation(s)
- Mónica P A Carabajal
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, 4206, Argentina
| | - Julieta Bonacina
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, 4206, Argentina
| | - Noelia Scarinci
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, 4206, Argentina
| | - Virginia H Albarracín
- Centro Integral de Microscopía Electrónica (CIME, CONICET-UNT), Yerba Buena, 4107, Tucumán, Argentina
| | - María Del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, 4206, Argentina
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, 4206, Argentina.
| |
Collapse
|
10
|
Ros-Rocher N, Brunet T. What is it like to be a choanoflagellate? Sensation, processing and behavior in the closest unicellular relatives of animals. Anim Cogn 2023; 26:1767-1782. [PMID: 37067637 PMCID: PMC10770216 DOI: 10.1007/s10071-023-01776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
All animals evolved from a single lineage of unicellular precursors more than 600 million years ago. Thus, the biological and genetic foundations for animal sensation, cognition and behavior must necessarily have arisen by modifications of pre-existing features in their unicellular ancestors. Given that the single-celled ancestors of the animal kingdom are extinct, the only way to reconstruct how these features evolved is by comparing the biology and genomic content of extant animals to their closest living relatives. Here, we reconstruct the Umwelt (the subjective, perceptive world) inhabited by choanoflagellates, a group of unicellular (or facultatively multicellular) aquatic microeukaryotes that are the closest living relatives of animals. Although behavioral research on choanoflagellates remains patchy, existing evidence shows that they are capable of chemosensation, photosensation and mechanosensation. These processes often involve specialized sensorimotor cellular appendages (cilia, microvilli, and/or filopodia) that resemble those that underlie perception in most animal sensory cells. Furthermore, comparative genomics predicts an extensive "sensory molecular toolkit" in choanoflagellates, which both provides a potential basis for known behaviors and suggests the existence of a largely undescribed behavioral complexity that presents exciting avenues for future research. Finally, we discuss how facultative multicellularity in choanoflagellates might help us understand how evolution displaced the locus of decision-making from a single cell to a collective, and how a new space of behavioral complexity might have become accessible in the process.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Thibaut Brunet
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
11
|
Bastin BR, Meha SM, Khindurangala L, Schneider SQ. Cooption of regulatory modules for tektin paralogs during ciliary band formation in a marine annelid larva. Dev Biol 2023; 503:95-110. [PMID: 37557946 DOI: 10.1016/j.ydbio.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Tektins are a highly conserved family of coiled-coil domain containing proteins known to play a role in structure, stability and function of cilia and flagella. Tektin proteins are thought to form filaments which run the length of the axoneme along the inner surface of the A tubule of each microtubule doublet. Phylogenetic analyses suggest that the tektin family arose via duplications from a single tektin gene in a unicellular organism giving rise to four and five tektin genes in bilaterians and in spiralians, respectively. Although tektins are found in most metazoans, little is known about their expression and function outside of a handful of model species. Here we present the first comprehensive study of tektin family gene expression in any animal system, in the spiralian annelid Platynereis dumerilii. This indirect developing species retains a full ancient spiralian complement of five tektin genes. We show that all five tektins are expressed almost exclusively in known ciliary structures following the expression of the motile cilia master regulator foxJ1. The three older bilaterian tektin-1, tektin-2, and tektin-4 genes, show a high degree of spatial and temporal co-regulation, while the spiralian specific tektin-3/5A and tektin-3/5B show a delay in onset of expression in every ciliary structure. In addition, tektin-3/5B transcripts show a restricted subcellular localization to the most apical region near the multiciliary arrays. The exact recapitulation of the sequence of expression and localization of the five tektins at different times during larval development indicates the cooption of a fixed regulatory and cellular program during the formation of each ciliary band and multiciliated cell type in this spiralian.
Collapse
Affiliation(s)
- Benjamin R Bastin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.
| | - Steffanie M Meha
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| | - Lalith Khindurangala
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.
| | - Stephan Q Schneider
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
12
|
Cunha TJ, de Medeiros BAS, Lord A, Sørensen MV, Giribet G. Rampant loss of universal metazoan genes revealed by a chromosome-level genome assembly of the parasitic Nematomorpha. Curr Biol 2023; 33:3514-3521.e4. [PMID: 37467752 DOI: 10.1016/j.cub.2023.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/21/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
Parasites may manipulate host behavior to increase the odds of transmission or to reach the proper environment to complete their life cycle.1,2 Members of the phylum Nematomorpha (known as horsehair worms, hairworms, or Gordian worms) are large endoparasites that affect the behavior of their arthropod hosts. In terrestrial hosts, they cause erratic movements toward bodies of water,3,4,5,6 where the adult worm emerges from the host to find mates for reproduction. We present a chromosome-level genome assembly for the freshwater Acutogordius australiensis and a draft assembly for one of the few known marine species, Nectonema munidae. The assemblies span 201 Mbp and 213 Mbp in length (N50: 38 Mbp and 716 Kbp), respectively, and reveal four chromosomes in Acutogordius, which are largely rearranged compared to the inferred ancestral condition in animals. Both nematomorph genomes have a relatively low number of genes (11,114 and 8,717, respectively) and lack a high proportion (∼30%) of universal single-copy metazoan orthologs (BUSCO genes7). We demonstrate that missing genes are not an artifact of the assembly process, with the majority of missing orthologs being shared by the two independent assemblies. Missing BUSCOs are enriched for Gene Ontology (GO) terms associated with the organization of cilia and cell projections in other animals. We show that most cilium-related genes conserved across eukaryotes have been lost in Nematomorpha, providing a molecular basis for the suspected absence of ciliary structures in these animals.
Collapse
Affiliation(s)
- Tauana J Cunha
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL 60605, USA.
| | - Bruno A S de Medeiros
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL 60605, USA
| | - Arianna Lord
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Martin V Sørensen
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
13
|
Ewerling A, Maissl V, Wickstead B, May-Simera HL. Neofunctionalization of ciliary BBS proteins to nuclear roles is likely a frequent innovation across eukaryotes. iScience 2023; 26:106410. [PMID: 37034981 PMCID: PMC10074162 DOI: 10.1016/j.isci.2023.106410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/20/2022] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The eukaryotic BBSome is a transport complex within cilia and assembled by chaperonin-like BBS proteins. Recent work indicates nuclear functions for BBS proteins in mammals, but it is unclear how common these are in extant proteins or when they evolved. We screened for BBS orthologues across a diverse set of eukaryotes, consolidated nuclear association via signal sequence predictions and permutation analysis, and validated nuclear localization in mammalian cells via fractionation and immunocytochemistry. BBS proteins are-with exceptions-conserved as a set in ciliated species. Predictions highlight five most likely nuclear proteins and suggest that nuclear roles evolved independently of nuclear access during mitosis. Nuclear localization was confirmed in human cells. These findings suggest that nuclear BBS functions are potentially not restricted to mammals, but may be a common frequently co-opted eukaryotic feature. Understanding the functional spectrum of BBS proteins will help elucidating their role in gene regulation, development, and disease.
Collapse
Affiliation(s)
- Alexander Ewerling
- Institute of Molecular Physiology, Faculty of Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Vanessa Maissl
- Institute of Molecular Physiology, Faculty of Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Helen Louise May-Simera
- Institute of Molecular Physiology, Faculty of Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
14
|
Towards an atomic model of a beating ciliary axoneme. Curr Opin Struct Biol 2023; 78:102516. [PMID: 36586349 DOI: 10.1016/j.sbi.2022.102516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/30/2022]
Abstract
The axoneme of motile cilia and eukaryotic flagella is an ordered assembly of hundreds of proteins that powers the locomotion of single cells and generates flow of liquid and particles across certain mammalian tissues. The symmetric and organized structure of the axoneme has invited structural biologists to unravel its intricate architecture at different scales. In the last few years, single-particle cryo-electron microscopy provided high-resolution structures of axonemal complexes that comprise dozens of proteins and are key to cilia function. This review summarizes unique structural features of the axoneme and the framework they provide to understand cilia assembly, the mechanism of ciliary beating, and clinical conditions associated with impaired cilia motility.
Collapse
|
15
|
D'Gama PP, Jurisch-Yaksi N. Methods to study motile ciliated cell types in the zebrafish brain. Methods Cell Biol 2023; 176:103-123. [PMID: 37164533 DOI: 10.1016/bs.mcb.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Cilia are well conserved hair-like structures that have diverse sensory and motile functions. In the brain, motile ciliated cells, known as ependymal cells, line the cerebrospinal fluid (CSF) filled ventricles, where their beating contribute to fluid movement. Ependymal cells have gathered increasing interest since they are associated with hydrocephalus, a neurological condition with ventricular enlargement. In this article, we highlight methods to identify and characterize motile ciliated ependymal lineage in the brain of zebrafish using histological staining and transgenic reporter lines.
Collapse
|
16
|
Abstract
A signature feature of the animal kingdom is the presence of epithelia: sheets of polarized cells that both insulate the organism from its environment and mediate interactions with it. Epithelial cells display a marked apico-basal polarity, which is highly conserved across the animal kingdom, both in terms of morphology and of molecular regulators. How did this architecture first evolve? Although the last eukaryotic common ancestor almost certainly possessed a simple form of apico-basal polarity (marked by the presence of one or several flagella at a single cellular pole), comparative genomics and evolutionary cell biology reveal that the polarity regulators of animal epithelial cells have a surprisingly complex and stepwise evolutionary history. Here, we retrace their evolutionary assembly. We suggest that the "polarity network" that polarized animal epithelial cells evolved by integration of initially independent cellular modules that evolved at distinct steps of our evolutionary ancestry. The first module dates back to the last common ancestor of animals and amoebozoans and involved Par1, extracellular matrix proteins, and the integrin-mediated adhesion complex. Other regulators, such as Cdc42, Dlg, Par6 and cadherins evolved in ancient unicellular opisthokonts, and might have first been involved in F-actin remodeling and filopodial dynamics. Finally, the bulk of "polarity proteins" as well as specialized adhesion complexes evolved in the metazoan stem-line, in concert with the newly evolved intercellular junctional belts. Thus, the polarized architecture of epithelia can be understood as a palimpsest of components of distinct histories and ancestral functions, which have become tightly integrated in animal tissues.
Collapse
|
17
|
Colgren J, Burkhardt P. The premetazoan ancestry of the synaptic toolkit and appearance of first neurons. Essays Biochem 2022; 66:781-795. [PMID: 36205407 PMCID: PMC9750855 DOI: 10.1042/ebc20220042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Neurons, especially when coupled with muscles, allow animals to interact with and navigate through their environment in ways unique to life on earth. Found in all major animal lineages except sponges and placozoans, nervous systems range widely in organization and complexity, with neurons possibly representing the most diverse cell-type. This diversity has led to much debate over the evolutionary origin of neurons as well as synapses, which allow for the directed transmission of information. The broad phylogenetic distribution of neurons and presence of many of the defining components outside of animals suggests an early origin of this cell type, potentially in the time between the first animal and the last common ancestor of extant animals. Here, we highlight the occurrence and function of key aspects of neurons outside of animals as well as recent findings from non-bilaterian animals in order to make predictions about when and how the first neuron(s) arose during animal evolution and their relationship to those found in extant lineages. With advancing technologies in single cell transcriptomics and proteomics as well as expanding functional techniques in non-bilaterian animals and the close relatives of animals, it is an exciting time to begin unraveling the complex evolutionary history of this fascinating animal cell type.
Collapse
Affiliation(s)
- Jeffrey Colgren
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| | - Pawel Burkhardt
- Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| |
Collapse
|
18
|
Pinskey JM, Lagisetty A, Gui L, Phan N, Reetz E, Tavakoli A, Fu G, Nicastro D. Three-dimensional flagella structures from animals' closest unicellular relatives, the Choanoflagellates. eLife 2022; 11:e78133. [PMID: 36384644 PMCID: PMC9671500 DOI: 10.7554/elife.78133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
In most eukaryotic organisms, cilia and flagella perform a variety of life-sustaining roles related to environmental sensing and motility. Cryo-electron microscopy has provided considerable insight into the morphology and function of flagellar structures, but studies have been limited to less than a dozen of the millions of known eukaryotic species. Ultrastructural information is particularly lacking for unicellular organisms in the Opisthokonta clade, leaving a sizeable gap in our understanding of flagella evolution between unicellular species and multicellular metazoans (animals). Choanoflagellates are important aquatic heterotrophs, uniquely positioned within the opisthokonts as the metazoans' closest living unicellular relatives. We performed cryo-focused ion beam milling and cryo-electron tomography on flagella from the choanoflagellate species Salpingoeca rosetta. We show that the axonemal dyneins, radial spokes, and central pair complex in S. rosetta more closely resemble metazoan structures than those of unicellular organisms from other suprakingdoms. In addition, we describe unique features of S. rosetta flagella, including microtubule holes, microtubule inner proteins, and the flagellar vane: a fine, net-like extension that has been notoriously difficult to visualize using other methods. Furthermore, we report barb-like structures of unknown function on the extracellular surface of the flagellar membrane. Together, our findings provide new insights into choanoflagellate biology and flagella evolution between unicellular and multicellular opisthokonts.
Collapse
Affiliation(s)
- Justine M Pinskey
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Adhya Lagisetty
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Long Gui
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Nhan Phan
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Evan Reetz
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Amirrasoul Tavakoli
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Gang Fu
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
19
|
Murtaza A, Afzal H, Doan TD, Ke GM, Cheng LT. Flagellin Improves the Immune Response of an Infectious Bursal Disease Virus (IBDV) Subunit Vaccine. Vaccines (Basel) 2022; 10:1780. [PMID: 36366289 PMCID: PMC9695526 DOI: 10.3390/vaccines10111780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 09/17/2024] Open
Abstract
Flagellin activates the immune system through Toll-like receptor 5 (TLR5) and can work as an adjuvant for subunit vaccines. In this study, we tested the adjuvancy of two different N-terminal fragments of flagellin, (1) FliC99, residues 1-99, and (2) FliC176, residues 1-176, to incorporate larger areas of the hotspot region for potentially higher levels of TLR5 activation and immune response. A truncated version of the VP2 protein (name tVP2, residues 199-356) of the Infectious bursal disease virus (IBDV) was genetically linked to the flagellin constructs, and the immune response was evaluated in chickens. Results showed that both chimeric antigen-adjuvant constructs increased humoral (total IgG titers), cellular and cytokine immune response (IL-4, IFN-γ). The resulting antibody also successfully neutralized IBDV. We conclude that the N-terminus of flagellin can act as an immune activator to enhance vaccine efficacy.
Collapse
Affiliation(s)
- Asad Murtaza
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Centre for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong, China
| | - Haroon Afzal
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Thu-Dung Doan
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
20
|
Luxmi R, King SM. Cilia-derived vesicles: An ancient route for intercellular communication. Semin Cell Dev Biol 2022; 129:82-92. [PMID: 35346578 PMCID: PMC9378432 DOI: 10.1016/j.semcdb.2022.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) provide a mechanism for intercellular communication that transports complex signals in membrane delimited structures between cells, tissues and organisms. Cells secrete EVs of various subtypes defined by the pathway leading to release and by the pathological condition of the cell. Cilia are evolutionarily conserved organelles that can act as sensory structures surveilling the extracellular environment. Here we discuss the secretory functions of cilia and their biological implications. Studies in multiple species - from the nematode Caenorhabditis elegans and the chlorophyte alga Chlamydomonas reinhardtii to mammals - have revealed that cilia shed bioactive EVs (ciliary EVs or ectosomes) by outward budding of the ciliary membrane. The content of ciliary EVs is distinct from that of other vesicles released by cells. Peptides regulate numerous aspects of metazoan physiology and development through evolutionarily conserved mechanisms. Intriguingly, cilia-derived vesicles have recently been found to mediate peptidergic signaling. C. reinhardtii releases the peptide α-amidating enzyme (PAM), bioactive amidated products and components of the peptidergic signaling machinery in ciliary EVs in a developmentally regulated manner. Considering the origin of cilia in early eukaryotes, it is likely that release of peptidergic signals in ciliary EVs represents an alternative and ancient mode of regulated secretion that cells can utilize in the absence of dedicated secretory granules.
Collapse
Affiliation(s)
- Raj Luxmi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA.
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA.
| |
Collapse
|
21
|
The physiological cargo adaptor of kinesin-2 functions as an evolutionary conserved lockpick. Proc Natl Acad Sci U S A 2022; 119:e2109378119. [PMID: 35947619 PMCID: PMC9388150 DOI: 10.1073/pnas.2109378119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specific recognition of cellular cargo and efficient transport to its correct intracellular destination is an infrastructural challenge faced by most eukaryotic cells. This remarkable deed is accomplished by processive motor proteins that are subject to robust regulatory mechanisms. The first level of regulation entails the ability of the motor to suppress its own activity. This autoinhibition is eventually relieved by specific cargo binding. To better understand the role of the cargo during motor activation, we dissected the activation mechanism of the ciliary homodimeric kinesin-2 from Caenorhabditis elegans by its physiological cargo. In functional reconstitution assays, we identified two cargo adaptor proteins that together are necessary and sufficient to allosterically activate the autoinhibited motor. Surprisingly, the orthologous adaptor proteins from the unicellular green algae Chlamydomonas reinhardtii also fully activated the kinesin-2 from worm, even though C. reinhardtii itself lacks a homodimeric kinesin-2 motor. The latter suggested that a motor activation mechanism similar to the C. elegans model existed already well before metazoans evolved, and prompted us to scrutinize predicted homodimeric kinesin-2 orthologs in other evolutionarily distant eukaryotes. We show that the ciliate Tetrahymena thermophila not only possesses a homodimeric kinesin-2 but that it also shares the same allosteric activation mechanism that we delineated in the C. elegans model. Our results point to a much more fundamental role of homodimeric kinesin-2 in intraflagellar transport (IFT) than previously thought and warrant further scrutiny of distantly related organisms toward a comprehensive picture of the IFT process and its evolution.
Collapse
|
22
|
Tekle YI, Wang F, Wood FC, Anderson OR, Smirnov A. New insights on the evolutionary relationships between the major lineages of Amoebozoa. Sci Rep 2022; 12:11173. [PMID: 35778543 PMCID: PMC9249873 DOI: 10.1038/s41598-022-15372-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
The supergroup Amoebozoa unites a wide diversity of amoeboid organisms and encompasses enigmatic lineages that have been recalcitrant to modern phylogenetics. Deep divergences, taxonomic placement of some key taxa and character evolution in the group largely remain poorly elucidated or controversial. We surveyed available Amoebozoa genomes and transcriptomes to mine conserved putative single copy genes, which were used to enrich gene sampling and generate the largest supermatrix in the group to date; encompassing 824 genes, including gene sequences not previously analyzed. We recovered a well-resolved and supported tree of Amoebozoa, revealing novel deep level relationships and resolving placement of enigmatic lineages congruent with morphological data. In our analysis the deepest branching group is Tubulinea. A recent proposed major clade Tevosa, uniting Evosea and Tubulinea, is not supported. Based on the new phylogenetic tree, paleoecological and paleontological data as well as data on the biology of presently living amoebozoans, we hypothesize that the evolution of Amoebozoa probably was driven by adaptive responses to a changing environment, where successful survival and predation resulted from a capacity to disrupt and graze on microbial mats-a dominant ecosystem of the mid-Proterozoic period of the Earth history.
Collapse
Affiliation(s)
- Yonas I Tekle
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA.
| | - Fang Wang
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA
| | - Fiona C Wood
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA
| | - O Roger Anderson
- Department of Biology and Paleo Environment, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
23
|
Rusterholz TDS, Hofmann C, Bachmann-Gagescu R. Insights Gained From Zebrafish Models for the Ciliopathy Joubert Syndrome. Front Genet 2022; 13:939527. [PMID: 35846153 PMCID: PMC9280682 DOI: 10.3389/fgene.2022.939527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Cilia are quasi-ubiquitous microtubule-based sensory organelles, which play vital roles in signal transduction during development and cell homeostasis. Dysfunction of cilia leads to a group of Mendelian disorders called ciliopathies, divided into different diagnoses according to clinical phenotype constellation and genetic causes. Joubert syndrome (JBTS) is a prototypical ciliopathy defined by a diagnostic cerebellar and brain stem malformation termed the “Molar Tooth Sign” (MTS), in addition to which patients display variable combinations of typical ciliopathy phenotypes such as retinal dystrophy, fibrocystic renal disease, polydactyly or skeletal dystrophy. Like most ciliopathies, JBTS is genetically highly heterogeneous with ∼40 associated genes. Zebrafish are widely used to model ciliopathies given the high conservation of ciliary genes and the variety of specialized cilia types similar to humans. In this review, we compare different existing JBTS zebrafish models with each other and describe their contributions to our understanding of JBTS pathomechanism. We find that retinal dystrophy, which is the most investigated ciliopathy phenotype in zebrafish ciliopathy models, is caused by distinct mechanisms according to the affected gene. Beyond this, differences in phenotypes in other organs observed between different JBTS-mutant models suggest tissue-specific roles for proteins implicated in JBTS. Unfortunately, the lack of systematic assessment of ciliopathy phenotypes in the mutants described in the literature currently limits the conclusions that can be drawn from these comparisons. In the future, the numerous existing JBTS zebrafish models represent a valuable resource that can be leveraged in order to gain further insights into ciliary function, pathomechanisms underlying ciliopathy phenotypes and to develop treatment strategies using small molecules.
Collapse
Affiliation(s)
- Tamara D. S. Rusterholz
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Claudia Hofmann
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- *Correspondence: Ruxandra Bachmann-Gagescu,
| |
Collapse
|
24
|
Weiner E, Pinskey JM, Nicastro D, Otegui MS. Electron microscopy for imaging organelles in plants and algae. PLANT PHYSIOLOGY 2022; 188:713-725. [PMID: 35235662 PMCID: PMC8825266 DOI: 10.1093/plphys/kiab449] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/23/2021] [Indexed: 05/31/2023]
Abstract
Recent developments in both instrumentation and image analysis algorithms have allowed three-dimensional electron microscopy (3D-EM) to increase automated image collections through large tissue volumes using serial block-face scanning EM (SEM) and to achieve near-atomic resolution of macromolecular complexes using cryo-electron tomography (cryo-ET) and sub-tomogram averaging. In this review, we discuss applications of cryo-ET to cell biology research on plant and algal systems and the special opportunities they offer for understanding the organization of eukaryotic organelles with unprecedently resolution. However, one of the most challenging aspects for cryo-ET is sample preparation, especially for multicellular organisms. We also discuss correlative light and electron microscopy (CLEM) approaches that have been developed for ET at both room and cryogenic temperatures.
Collapse
Affiliation(s)
- Ethan Weiner
- Department of Botany, University of Wisconsin, Madison 53706, Wisconsin
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison 53706, Wisconsin
| | - Justine M Pinskey
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas 75390, Texas
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas 75390, Texas
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin, Madison 53706, Wisconsin
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison 53706, Wisconsin
| |
Collapse
|
25
|
Lindemann CB. The flagellar germ-line hypothesis: How flagellate and ciliate gametes significantly shaped the evolution of organismal complexity. Bioessays 2021; 44:e2100143. [PMID: 34967029 DOI: 10.1002/bies.202100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022]
Abstract
This essay presents a hypothesis which contends that the development of organismic complexity in the eukaryotes depended extensively on propagation via flagellated and ciliated gametes. Organisms utilizing flagellate and ciliate gametes to propagate their germ line have contributed most of the organismic complexity found in the higher animals. The genes of the flagellum and the flagellar assembly system (intraflagellar transport) have played a disproportionately important role in the construction of complex tissues and organs. The hypothesis also proposes that competition between large numbers of haploid flagellated male gametes rigorously conserved the functionality of a key set of flagellar genes for more than 700 million years. This in turn has insured that a large set (>600) of highly functional cytoskeletal and signal pathway genes is always present in the lineage of organisms with flagellated or ciliated gametes to act as a dependable resource, or "toolkit," for organ elaboration.
Collapse
|
26
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
27
|
Plastic cell morphology changes during dispersal. iScience 2021; 24:102915. [PMID: 34430806 PMCID: PMC8367785 DOI: 10.1016/j.isci.2021.102915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022] Open
Abstract
Dispersal is the movement of organisms from one habitat to another that potentially results in gene flow. It is often plastic, allowing organisms to adjust dispersal movements depending on environmental conditions. A fundamental aim in ecology is to understand the determinants underlying dispersal and its plasticity. We utilized 22 strains of the ciliate Tetrahymena thermophila to determine if different phenotypic dispersal strategies co-exist within a species and which mechanisms underlie this variability. We quantified the cell morphologies impacting cell motility and dispersal. Distinct differences in innate cellular morphology and dispersal rates were detected, but no universally utilized combinations of morphological parameters correlate with dispersal. Rather, multiple distinct and plastic morphological changes impact cilia-dependent motility during dispersal, especially in proficient dispersing strains facing challenging environmental conditions. Combining ecology and cell biology experiments, we show that dispersal can be promoted through plastic motility-associated changes to cell morphology and motile cilia.
Collapse
|
28
|
Abstract
The origin of eukaryotes has been defined as the major evolutionary transition since the origin of life itself. Most hallmark traits of eukaryotes, such as their intricate intracellular organization, can be traced back to a putative common ancestor that predated the broad diversity of extant eukaryotes. However, little is known about the nature and relative order of events that occurred in the path from preexisting prokaryotes to this already sophisticated ancestor. The origin of mitochondria from the endosymbiosis of an alphaproteobacterium is one of the few robustly established events to which most hypotheses on the origin of eukaryotes are anchored, but the debate is still open regarding the time of this acquisition, the nature of the host, and the ecological and metabolic interactions between the symbiotic partners. After the acquisition of mitochondria, eukaryotes underwent a fast radiation into several major clades whose phylogenetic relationships have been largely elusive. Recent progress in the comparative analyses of a growing number of genomes is shedding light on the early events of eukaryotic evolution as well as on the root and branching patterns of the tree of eukaryotes. Here I discuss current knowledge and debates on the origin and early evolution of eukaryotes. I focus particularly on how phylogenomic analyses have challenged some of the early assumptions about eukaryotic evolution, including the widespread idea that mitochondrial symbiosis in an archaeal host was the earliest event in eukaryogenesis. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Toni Gabaldón
- Barcelona Supercomputing Centre (BCS-CNS), 08034 Barcelona, Spain; .,Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
29
|
Warren B, Nowotny M. Bridging the Gap Between Mammal and Insect Ears – A Comparative and Evolutionary View of Sound-Reception. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.667218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Insects must wonder why mammals have ears only in their head and why they evolved only one common principle of ear design—the cochlea. Ears independently evolved at least 19 times in different insect groups and therefore can be found in completely different body parts. The morphologies and functional characteristics of insect ears are as wildly diverse as the ecological niches they exploit. In both, insects and mammals, hearing organs are constrained by the same biophysical principles and their respective molecular processes for mechanotransduction are thought to share a common evolutionary origin. Due to this, comparative knowledge of hearing across animal phyla provides crucial insight into fundamental processes of auditory transduction, especially at the biomechanical and molecular level. This review will start by comparing hearing between insects and mammals in an evolutionary context. It will then discuss current findings about sound reception will help to bridge the gap between both research fields.
Collapse
|
30
|
Genau AC, Li Z, Renzaglia KS, Fernandez Pozo N, Nogué F, Haas FB, Wilhelmsson PKI, Ullrich KK, Schreiber M, Meyberg R, Grosche C, Rensing SA. HAG1 and SWI3A/B control of male germ line development in P. patens suggests conservation of epigenetic reproductive control across land plants. PLANT REPRODUCTION 2021; 34:149-173. [PMID: 33839924 PMCID: PMC8128824 DOI: 10.1007/s00497-021-00409-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/02/2021] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Bryophytes as models to study the male germ line: loss-of-function mutants of epigenetic regulators HAG1 and SWI3a/b demonstrate conserved function in sexual reproduction. With the water-to-land transition, land plants evolved a peculiar haplodiplontic life cycle in which both the haploid gametophyte and the diploid sporophyte are multicellular. The switch between these phases was coined alternation of generations. Several key regulators that control the bauplan of either generation are already known. Analyses of such regulators in flowering plants are difficult due to the highly reduced gametophytic generation, and the fact that loss of function of such genes often is embryo lethal in homozygous plants. Here we set out to determine gene function and conservation via studies in bryophytes. Bryophytes are sister to vascular plants and hence allow evolutionary inferences. Moreover, embryo lethal mutants can be grown and vegetatively propagated due to the dominance of the bryophyte gametophytic generation. We determined candidates by selecting single copy orthologs that are involved in transcriptional control, and of which flowering plant mutants show defects during sexual reproduction, with a focus on the under-studied male germ line. We selected two orthologs, SWI3a/b and HAG1, and analyzed loss-of-function mutants in the moss P. patens. In both mutants, due to lack of fertile spermatozoids, fertilization and hence the switch to the diploid generation do not occur. Pphag1 additionally shows arrested male and impaired female gametangia development. We analyzed HAG1 in the dioecious liverwort M. polymorpha and found that in Mphag1 the development of gametangiophores is impaired. Taken together, we find that involvement of both regulators in sexual reproduction is conserved since the earliest divergence of land plants.
Collapse
Affiliation(s)
- Anne C Genau
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Zhanghai Li
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Karen S Renzaglia
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Noe Fernandez Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, Université Paris-Saclay, 78000, Versailles, AgroParisTech, France
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Per K I Wilhelmsson
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Mona Schreiber
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Rabea Meyberg
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Christopher Grosche
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany.
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
31
|
Bauer D, Ishikawa H, Wemmer KA, Hendel NL, Kondev J, Marshall WF. Analysis of biological noise in the flagellar length control system. iScience 2021; 24:102354. [PMID: 33898946 PMCID: PMC8059064 DOI: 10.1016/j.isci.2021.102354] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Any proposed mechanism for organelle size control should be able to account not only for average size but also for the variation in size. We analyzed cell-to-cell variation and within-cell variation of length for the two flagella in Chlamydomonas, finding that cell-to-cell variation is dominated by cell size, whereas within-cell variation results from dynamic fluctuations. Fluctuation analysis suggests tubulin assembly is not directly coupled with intraflagellar transport (IFT) and that the observed length fluctuations reflect tubulin assembly and disassembly events involving large numbers of tubulin dimers. Length variation is increased in long-flagella mutants, an effect consistent with theoretical models for flagellar length regulation. Cells with unequal flagellar lengths show impaired swimming but improved gliding, raising the possibility that cells have evolved mechanisms to tune biological noise in flagellar length. Analysis of noise at the level of organelle size provides a way to probe the mechanisms determining cell geometry.
Collapse
Affiliation(s)
- David Bauer
- Department of Biochemistry & Biophysics, University of California, San Francisco, 600 16th St., San Francisco, CA, USA
| | - Hiroaki Ishikawa
- Department of Biochemistry & Biophysics, University of California, San Francisco, 600 16th St., San Francisco, CA, USA
| | - Kimberly A. Wemmer
- Department of Biochemistry & Biophysics, University of California, San Francisco, 600 16th St., San Francisco, CA, USA
| | - Nathan L. Hendel
- Department of Biochemistry & Biophysics, University of California, San Francisco, 600 16th St., San Francisco, CA, USA
| | - Jane Kondev
- Department of Physics, Brandeis University, Abelson-Bass-Yalem Building, 97-301, Waltham, MA, USA
| | - Wallace F. Marshall
- Department of Biochemistry & Biophysics, University of California, San Francisco, 600 16th St., San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, 600 16th St., San Francisco, CA, USA
| |
Collapse
|
32
|
Gonçalves J, Sharma A, Coyaud É, Laurent EMN, Raught B, Pelletier L. LUZP1 and the tumor suppressor EPLIN modulate actin stability to restrict primary cilia formation. J Cell Biol 2021; 219:151837. [PMID: 32496561 PMCID: PMC7337498 DOI: 10.1083/jcb.201908132] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/11/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Cilia and flagella are microtubule-based cellular projections with important sensory and motility functions. Their absence or malfunction is associated with a growing number of human diseases collectively referred to as ciliopathies. However, the fundamental mechanisms underpinning cilia biogenesis and functions remain only partly understood. Here, we show that depleting LUZP1 or its interacting protein, EPLIN, increases the levels of MyosinVa at the centrosome and primary cilia formation. We further show that LUZP1 localizes to both actin filaments and the centrosome/basal body. Like EPLIN, LUZP1 is an actin-stabilizing protein that regulates actin dynamics, at least in part, by mobilizing ARP2 to the centrosomes. Both LUZP1 and EPLIN interact with known ciliogenesis and cilia-length regulators and as such represent novel players in actin-dependent centrosome to basal body conversion. Ciliogenesis deregulation caused by LUZP1 or EPLIN loss may thus contribute to the pathology of their associated disease states.
Collapse
Affiliation(s)
- João Gonçalves
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Amit Sharma
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Estelle M N Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Feldman KS, Kim E, Czachowski MJ, Wu Y, Lo CW, Zahid M. Differential effect of anesthetics on mucociliary clearance in vivo in mice. Sci Rep 2021; 11:4896. [PMID: 33649513 PMCID: PMC7921682 DOI: 10.1038/s41598-021-84605-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/18/2021] [Indexed: 11/09/2022] Open
Abstract
Respiratory mucociliary clearance (MCC) is a key defense mechanism that functions to entrap and transport inhaled pollutants, particulates, and pathogens away from the lungs. Previous work has identified a number of anesthetics to have cilia depressive effects in vitro. Wild-type C57BL/6 J mice received intra-tracheal installation of 99mTc-Sulfur colloid, and were imaged using a dual-modality SPECT/CT system at 0 and 6 h to measure baseline MCC (n = 8). Mice were challenged for one hour with inhalational 1.5% isoflurane, or intraperitoneal ketamine (100 mg/kg)/xylazine (20 mg/kg), ketamine (0.5 mg/kg)/dexmedetomidine (50 mg/kg), fentanyl (0.2 mg/kg)/1.5% isoflurane, propofol (120 mg/Kg), or fentanyl/midazolam/dexmedetomidine (0.025 mg/kg/2.5 mg/kg/0.25 mg/kg) prior to MCC assessment. The baseline MCC was 6.4%, and was significantly reduced to 3.7% (p = 0.04) and 3.0% (p = 0.01) by ketamine/xylazine and ketamine/dexmedetomidine challenge respectively. Importantly, combinations of drugs containing fentanyl, and propofol in isolation did not significantly depress MCC. Although no change in cilia length or percent ciliation was expected, we tried to correlate ex-vivo tracheal cilia ciliary beat frequency and cilia-generated flow velocities with MCC and found no correlation. Our results indicate that anesthetics containing ketamine (ketamine/xylazine and ketamine/dexmedetomidine) significantly depress MCC, while combinations containing fentanyl (fentanyl/isoflurane, fentanyl/midazolam/dexmedetomidine) and propofol do not. Our method for assessing MCC is reproducible and has utility for studying the effects of other drug combinations.
Collapse
Affiliation(s)
- Kyle S Feldman
- Department of Developmental Biology, Rangos Research Center, University of Pittsburgh School of Medicine, 530 45th St., Pittsburgh, PA, 15201, USA
| | - Eunwon Kim
- Department of Developmental Biology, Rangos Research Center, University of Pittsburgh School of Medicine, 530 45th St., Pittsburgh, PA, 15201, USA
| | | | - Yijen Wu
- Department of Developmental Biology, Rangos Research Center, University of Pittsburgh School of Medicine, 530 45th St., Pittsburgh, PA, 15201, USA
| | - Cecilia W Lo
- Department of Developmental Biology, Rangos Research Center, University of Pittsburgh School of Medicine, 530 45th St., Pittsburgh, PA, 15201, USA
| | - Maliha Zahid
- Department of Developmental Biology, Rangos Research Center, University of Pittsburgh School of Medicine, 530 45th St., Pittsburgh, PA, 15201, USA.
| |
Collapse
|
34
|
Understanding Primary Ciliary Dyskinesia and Other Ciliopathies. J Pediatr 2021; 230:15-22.e1. [PMID: 33242470 PMCID: PMC8690631 DOI: 10.1016/j.jpeds.2020.11.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Ciliopathies are a collection of disorders related to cilia dysfunction. Cilia are specialized organelles that project from the surface of most cells. Motile and primary (sensory) cilia are essential structures and have wide ranging functions. Our understanding of the genetics, pathophysiology, and clinical manifestations of motile ciliopathies, including primary ciliary dyskinesia (PCD), has rapidly advanced since the disease was linked to ciliary ultrastructural defects nearly five decades ago. We will provide an overview of different types of cilia, their role in child health and disease, focusing on motile ciliopathies, and describe recent advances that have led to improved diagnostics and may yield therapeutic targets to restore ciliary structure and function.
Collapse
|
35
|
Yadav S, Kunwar A. Temperature-Dependent Activity of Motor Proteins: Energetics and Their Implications for Collective Behavior. Front Cell Dev Biol 2021; 9:610899. [PMID: 33732692 PMCID: PMC7959718 DOI: 10.3389/fcell.2021.610899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
Molecular motor proteins are an extremely important component of the cellular transport system that harness chemical energy derived from ATP hydrolysis to carry out directed mechanical motion inside the cells. Transport properties of these motors such as processivity, velocity, and their load dependence have been well established through single-molecule experiments. Temperature dependent biophysical properties of molecular motors are now being probed using single-molecule experiments. Additionally, the temperature dependent biochemical properties of motors (ATPase activity) are probed to understand the underlying mechanisms and their possible implications on the enzymatic activity of motor proteins. These experiments in turn have revealed their activation energies and how they compare with the thermal energy available from the surrounding medium. In this review, we summarize such temperature dependent biophysical and biochemical properties of linear and rotary motor proteins and their implications for collective function during intracellular transport and cellular movement, respectively.
Collapse
Affiliation(s)
- Saumya Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
36
|
Abstract
Respiratory motile cilia, specialized organelles of the cell, line the apical surface of epithelial cells lining the respiratory tract. By beating in a metachronal, synchronal fashion, these multiple, motile, actin-based organelles generate a cephalad fluid flow clearing the respiratory tract of inhaled pollutants and pathogens. With increasing environmental pollution, novel viral pathogens and emerging multi-drug resistant bacteria, cilia generated mucociliary clearance (MCC) is essential for maintaining lung health. MCC is also depressed in multiple congenital disorders like primary ciliary dyskinesia, cystic fibrosis as well as acquired disorders like chronic obstructive pulmonary disease. All these disorders have established, in some case multiple, mouse models. In this publication, we detail a method using a small amount of radioactivity and dual-modality SPECT/CT imaging to accurately and reproducibly measure MCC in mice in vivo. The method allows for recovery of mice after imaging, making serial measurements possible, and testing potential therapeutics longitudinally over time. The data in wild-type mice demonstrates the reproducibility of the MCC measurement as long as adequate attention to detail is paid, and the protocol strictly adhered to.
Collapse
Affiliation(s)
- Kyle S Feldman
- Department of Developmental Biology, University of Pittsburgh School of Medicine
| | - Maliha Zahid
- Department of Developmental Biology, University of Pittsburgh School of Medicine;
| |
Collapse
|
37
|
Jokura K, Inaba K. Structural diversity and distribution of cilia in the apical sense organ of the ctenophore Bolinopsis mikado. Cytoskeleton (Hoboken) 2020; 77:442-455. [PMID: 33103333 DOI: 10.1002/cm.21640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/03/2023]
Abstract
The apical organ of ctenophores is the center of sensory information that controls locomotion. Previous studies have described several types of cilia in this organ. However, detailed ciliary structures, particularly axonemal structures, have not been extensively investigated. Here, we reported that the apical organ of the ctenophore Bolinopsis mikado contains six types of cilia with different axonemal structures. These include the typical "9 + 2" motile axonemes, with both outer and inner dynein arms, only the inner dynein arm, or no dynein arm; axonemes with electron-dense structures in the A-tubules; "9 + 0" axonemes lacking the central pair of microtubules; and axonemes with compartmenting lamellae. Considering that "9 + 2" axonemal structures with both dynein arms are thought to be ancestral forms of cilia, the apical organ of ctenophores would comprise an elaborate assembly of modified ciliary forms that sense and transmit extracellular stimuli and generate various fluid flows.
Collapse
Affiliation(s)
- Kei Jokura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| |
Collapse
|
38
|
Montoro DT, Haber AL, Rood JE, Regev A, Rajagopal J. A Synthesis Concerning Conservation and Divergence of Cell Types across Epithelia. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035733. [PMID: 32122885 DOI: 10.1101/cshperspect.a035733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Advances in single-cell RNA-seq (scRNA-seq) and computational analysis have enabled the systematic interrogation of the cellular composition of tissues. Combined with tools from developmental biology, cell biology, and genetics, these approaches are revealing fundamental aspects of tissue geometry and physiology, including the distribution, origins, and inferred functions of specialized cell types, and the dynamics of cellular turnover and differentiation. By comparing different tissues, such studies can delineate shared and specialized features of cell types and their lineage. Here, we compare two developmentally related murine epithelia, the airway and the small intestinal epithelia, which are both derived from the embryonic endodermal gut tube. We examine how airway and intestine generate and functionalize common archetypal cell types to fulfill similar shared physiologic functionalities. We point to cases in which similar cell types are repurposed to accommodate each tissue's unique physiologic role, and highlight tissue-specific cells whose specializations contribute to the distinct functional roles of each organ. We discuss how archetypal and unique cell types are incorporated within a cellular lineage, and how the regulation of the proportions of these cell types enables tissue-level organization to meet functional demands and maintain homeostasis.
Collapse
Affiliation(s)
- Daniel T Montoro
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Adam L Haber
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Jennifer E Rood
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jayaraj Rajagopal
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Howard Hughes Medical Institute Faculty Scholar, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
39
|
Konno A, Inaba K. Region-Specific Loss of Two-Headed Ciliary Dyneins in Ascidian Endostyle. Zoolog Sci 2020; 37:512-518. [DOI: 10.2108/zs200095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/09/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Alu Konno
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 5-10-1, Shizuoka 415-0025, Japan
| |
Collapse
|
40
|
Genevière AM, Derelle E, Escande ML, Grimsley N, Klopp C, Ménager C, Michel A, Moreau H. Responses to iron oxide and zinc oxide nanoparticles in echinoderm embryos and microalgae: uptake, growth, morphology, and transcriptomic analysis. Nanotoxicology 2020; 14:1342-1361. [PMID: 33078975 DOI: 10.1080/17435390.2020.1827074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We investigated the toxicity of Iron oxide and Zinc oxide engineered nanoparticles (ENPs) on Paracentrotus lividus sea urchin embryos and three species of microalgae. Morphological responses, internalization, and potential impacts of Fe2O3 and ZnO ENPs on physiology and metabolism were assessed. Both types of ENPs affected P. lividus larval development, but ZnO ENPs had a much stronger effect. While growth of the alga Micromonas commoda was severely impaired by both ENPs, Ostreococcus tauri or Nannochloris sp. were unaffected. Transmission electron microscopy showed the internalization of ENPs in sea urchin embryonic cells while only nanoparticle interaction with external membranes was evidenced in microalgae, suggesting that marine organisms react in diverse ways to ENPs. Transcriptome-wide analysis in P. lividus and M. commoda showed that many different physiological pathways were affected, some of which were common to both species, giving insights about the mechanisms underpinning toxic responses.
Collapse
Affiliation(s)
- Anne-Marie Genevière
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| | - Evelyne Derelle
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France.,Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzane, France
| | - Marie-Line Escande
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| | - Nigel Grimsley
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| | - Christophe Klopp
- INRA, Plateforme Bioinformatique Toulouse, Midi Pyrenees UBIA, Castanet Tolosan, France
| | - Christine Ménager
- Sorbonne Université, CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX, Paris, France
| | - Aude Michel
- Sorbonne Université, CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX, Paris, France
| | - Hervé Moreau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| |
Collapse
|
41
|
Meyberg R, Perroud PF, Haas FB, Schneider L, Heimerl T, Renzaglia KS, Rensing SA. Characterisation of evolutionarily conserved key players affecting eukaryotic flagellar motility and fertility using a moss model. THE NEW PHYTOLOGIST 2020; 227:440-454. [PMID: 32064607 PMCID: PMC8224819 DOI: 10.1111/nph.16486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/07/2020] [Indexed: 05/18/2023]
Abstract
Defects in flagella/cilia are often associated with infertility and disease. Motile male gametes (sperm cells) are an ancestral eukaryotic trait that has been lost in several lineages like flowering plants. Here, we made use of a phenotypic male fertility difference between two moss (Physcomitrella patens) ecotypes to explore spermatozoid function. We compare genetic and epigenetic variation as well as expression profiles between the Gransden and Reute ecotype to identify a set of candidate genes associated with moss male infertility. We generated a loss-of-function mutant of a coiled-coil domain containing 39 (ccdc39) gene that is part of the flagellar hydin network. Defects in mammal and algal homologues of this gene coincide with a loss of fertility, demonstrating the evolutionary conservation of flagellar function related to male fertility across kingdoms. The Ppccdc39 mutant resembles the Gransden phenotype in terms of male fertility. Potentially, several somatic (epi-)mutations occurred during prolonged vegetative propagation of Gransden, causing regulatory differences of for example the homeodomain transcription factor BELL1. Probably these somatic changes are causative for the observed male fertility defect. We propose that moss spermatozoids might be employed as an easily accessible system to study male infertility of humans and animals in terms of flagellar structure and movement.
Collapse
Affiliation(s)
- Rabea Meyberg
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Pierre-François Perroud
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Fabian B. Haas
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Lucas Schneider
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Thomas Heimerl
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | - Karen S. Renzaglia
- Department of Plant Biology, Southern Illinois University, Mail Code 6509, 1125 Lincoln Drive, Carbondale, IL 62901, USA
| | - Stefan A. Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| |
Collapse
|
42
|
Arslanhan MD, Gulensoy D, Firat-Karalar EN. A Proximity Mapping Journey into the Biology of the Mammalian Centrosome/Cilium Complex. Cells 2020; 9:E1390. [PMID: 32503249 PMCID: PMC7348975 DOI: 10.3390/cells9061390] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
The mammalian centrosome/cilium complex is composed of the centrosome, the primary cilium and the centriolar satellites, which together regulate cell polarity, signaling, proliferation and motility in cells and thereby development and homeostasis in organisms. Accordingly, deregulation of its structure and functions is implicated in various human diseases including cancer, developmental disorders and neurodegenerative diseases. To better understand these disease connections, the molecular underpinnings of the assembly, maintenance and dynamic adaptations of the centrosome/cilium complex need to be uncovered with exquisite detail. Application of proximity-based labeling methods to the centrosome/cilium complex generated spatial and temporal interaction maps for its components and provided key insights into these questions. In this review, we first describe the structure and cell cycle-linked regulation of the centrosome/cilium complex. Next, we explain the inherent biochemical and temporal limitations in probing the structure and function of the centrosome/cilium complex and describe how proximity-based labeling approaches have addressed them. Finally, we explore current insights into the knowledge we gained from the proximity mapping studies as it pertains to centrosome and cilium biogenesis and systematic characterization of the centrosome, cilium and centriolar satellite interactomes.
Collapse
Affiliation(s)
| | | | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koc University, 34450 Istanbul, Turkey; (M.D.A.); (D.G.)
| |
Collapse
|
43
|
Zhang SF, Zhang K, Cheng HM, Lin L, Wang DZ. Comparative transcriptomics reveals colony formation mechanism of a harmful algal bloom species Phaeocystis globosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137454. [PMID: 32114233 DOI: 10.1016/j.scitotenv.2020.137454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Phaeocystis globosa is a major causative agent of harmful algal blooms in the global ocean, featuring a complex polymorphic life cycle alternating between free-living solitary cells and colonial cells. Colony is the dominant morphotype during P. globosa bloom. However, the underlying mechanism of colony formation is poorly understood. Here, we comprehensively compared global transcriptomes of P. globosa cells at four distinctive colony formation stages: free-living solitary cells, two cell-, four cell- and multi-cell colonies, under low (20 °C) and high (32 °C) temperatures, and characterized the genes involved in colony formation. Glycosaminoglycan (GAG) synthesis was enhanced while its degradation was decreased during colony formation, resulting in the accumulation of GAGs that are an essential substrate of the colony matrix. Nitrogen metabolism and glutamine synthesis were remarkably increased in the colonial cells, which provided precursors for GAG synthesis. Furthermore, cell defense and motility were down-regulated in the colonial cells, thereby conserving energy for GAG synthesis. Notably, high temperature led to decreased synthesis and increased degradation of GAGs, resulting in insufficient substrates to form the colony. Our study indicates that GAGs accumulation is critical for colony formation of P. globosa, but high temperature inhibits GAGs' accumulation and colony formation.
Collapse
Affiliation(s)
- Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Kun Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Hua-Min Cheng
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
44
|
CAMSAP3 facilitates basal body polarity and the formation of the central pair of microtubules in motile cilia. Proc Natl Acad Sci U S A 2020; 117:13571-13579. [PMID: 32482850 PMCID: PMC7306751 DOI: 10.1073/pnas.1907335117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cilia are composed of hundreds of proteins whose identities and functions are far from being completely understood. In this study, we determined that calmodulin-regulated spectrin-associated protein 3 (CAMSAP3) plays an important role for the function of motile cilia in multiciliated cells (MCCs). Global knockdown of CAMSAP3 protein expression in mice resulted in defects in ciliary structures, polarity, and synchronized beating in MCCs. These animals also displayed signs and symptoms reminiscent of primary ciliary dyskinesia (PCD), including a mild form of hydrocephalus, subfertility, and impaired mucociliary clearance that leads to hyposmia, anosmia, rhinosinusitis, and otitis media. Functional characterization of CAMSAP3 enriches our understanding of the molecular mechanisms underlying the generation and function of motile cilia in MCCs. Synchronized beating of cilia on multiciliated cells (MCCs) generates a directional flow of mucus across epithelia. This motility requires a “9 + 2” microtubule (MT) configuration in axonemes and the unidirectional array of basal bodies of cilia on the MCCs. However, it is not fully understood what components are needed for central MT-pair assembly as they are not continuous with basal bodies in contrast to the nine outer MT doublets. In this study, we discovered that a homozygous knockdown mouse model for MT minus-end regulator calmodulin-regulated spectrin-associated protein 3 (CAMSAP3), Camsap3tm1a/tm1a, exhibited multiple phenotypes, some of which are typical of primary ciliary dyskinesia (PCD), a condition caused by motile cilia defects. Anatomical examination of Camsap3tm1a/tm1a mice revealed severe nasal airway blockage and abnormal ciliary morphologies in nasal MCCs. MCCs from different tissues exhibited defective synchronized beating and ineffective generation of directional flow likely underlying the PCD-like phenotypes. In normal mice, CAMSAP3 localized to the base of axonemes and at the basal bodies in MCCs. However, in Camsap3tm1a/tm1a, MCCs lacked CAMSAP3 at the ciliary base. Importantly, the central MT pairs were missing in the majority of cilia, and the polarity of the basal bodies was disorganized. These phenotypes were further confirmed in MCCs of Xenopus embryos when CAMSAP3 expression was knocked down by morpholino injection. Taken together, we identified CAMSAP3 as being important for the formation of central MT pairs, proper orientation of basal bodies, and synchronized beating of motile cilia.
Collapse
|
45
|
Hao H, Yuan S, Cheng S, Sun Q, Giesy JP, Liu C. Effects of tris (2-chloroethyl) phosphate (TCEP) on growth, reproduction and gene transcription in the protozoan Tetrahymena thermophila. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105477. [PMID: 32276178 DOI: 10.1016/j.aquatox.2020.105477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
As a typical organophosphorus flame retardant, tris (2-chloroethyl) phosphate (TCEP) has been widely detected in various environmental media. Toxicity of TCEP to vertebrates have been investigated, but potential effects on lower trophic level species were unknown to date. In this study, toxic effects and molecular mechanisms of toxic actions of TCEP on the aquatic protozoan Tetrahymena thermophila were evaluated by use of phenotypic observations, transcriptome sequencing analysis and real-time quantitative PCR detection. Exposure to 0.044, 0.411 or 4.26 mg/L TCEP for 5 days decreased the theoretical population, cell viability, number of cilia and cell size of Tetrahymena thermophila in a time- and dose-dependent manner. Meanwhile, RNA-Seq analysis indicated that exposure to 4.26 mg/L TCEP significantly changed expression of 2932 genes (up-regulation: 1228; down-regulation: 1704). Of these, expressions of 9, 10 and 17 genes that were enriched in soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) interaction in vesicular transport, proteasome and endocytosis pathway respectively were down-regulated. Data collected during this study suggested that exposure to high concentrations of TCEP might affect growth and reproduction of Tetrahymena thermophila through down-regulating transcriptional levels of genes encoding proteins associated with vesicle trafficking, proteasome and endocytosis.
Collapse
Affiliation(s)
- Hui Hao
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siliang Yuan
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiyang Cheng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Sun
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Chunsheng Liu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
46
|
Jeffery KJ, Rovelli C. Transitions in Brain Evolution: Space, Time and Entropy. Trends Neurosci 2020; 43:467-474. [PMID: 32414530 PMCID: PMC7183980 DOI: 10.1016/j.tins.2020.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 11/19/2022]
Abstract
How did brains evolve to become so complex, and what is their future? Brains pose an explanatory challenge because entropy, which inexorably increases over time, is commonly associated with disorder and simplicity. Recently we showed how evolution is an entropic process, building structures – organisms – which themselves facilitate entropy growth. Here we suggest that key transitional points in evolution extended organisms’ reach into space and time, opening channels into new regions of a complex multidimensional state space that also allow entropy to increase. Brain evolution enabled representation of space and time, which vastly enhances this process. Some of these channels lead to tiny, dead-ends in the state space: the persistence of complex life is thus not thermodynamically guaranteed. Evolution of brain complexity is (counterintuitively) an entropy-enhancing process leading organisms to new regions of a space of states, which in turn allow access through channels to additional new spaces, and thus entropy to continue growing. Step transitions in evolution have occurred as organisms acquired new abilities to reach out in space and time, vastly increasing the visitable space of states, and thereby access to new channels. The ability of brains to represent space and time, culminating in human language and hence human technological civilisation, was an important set of transitions that magnified this process. Continued evolution of biological complexity is not assured, because some newly accessible regions of the state space may be small and have no exits, resulting in extinction.
Collapse
Affiliation(s)
- Kate J Jeffery
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, 26 Bedford Way, London WC1H 0AP, UK.
| | - Carlo Rovelli
- Aix-Marseille Université, Université de Toulon, CNRS, CPT, 13288 Marseille, France; Perimeter Institute, 31 Caroline Street North, Waterloo N2L 2Y5, Canada; The Rotman Institute of Philosophy, 1151 Richmond St. N, London N6A 5B7, Canada
| |
Collapse
|
47
|
Sonar P, Youyen W, Cleetus A, Wisanpitayakorn P, Mousavi SI, Stepp WL, Hancock WO, Tüzel E, Ökten Z. Kinesin-2 from C. reinhardtii Is an Atypically Fast and Auto-inhibited Motor that Is Activated by Heterotrimerization for Intraflagellar Transport. Curr Biol 2020; 30:1160-1166.e5. [PMID: 32142698 DOI: 10.1016/j.cub.2020.01.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/04/2019] [Accepted: 01/14/2020] [Indexed: 11/17/2022]
Abstract
Construction and function of virtually all cilia require the universally conserved process of intraflagellar transport (IFT) [1, 2]. During the atypically fast IFT in the green alga C. reinhardtii, on average, 10 kinesin-2 motors "line up" in a tight assembly on the trains [3], provoking the question of how these motors coordinate their action to ensure smooth and fast transport along the flagellum without standing in each other's way. Here, we show that the heterodimeric FLA8/10 kinesin-2 alone is responsible for the atypically fast IFT in C. reinhardtii. Notably, in single-molecule studies, FLA8/10 moved at speeds matching those of in vivo IFT [4] but additionally displayed a slow velocity distribution, indicative of auto-inhibition. Addition of the KAP subunit to generate the heterotrimeric FLA8/10/KAP relieved this inhibition, thus providing a mechanistic rationale for heterotrimerization with the KAP subunit fully activating FLA8/10 for IFT in vivo. Finally, we linked fast FLA8/10 and slow KLP11/20 kinesin-2 from C. reinhardtii and C. elegans through a DNA tether to understand the molecular underpinnings of motor coordination during IFT in vivo. For motor pairs from both species, the co-transport velocities very nearly matched the single-molecule velocities, and both complexes spent roughly 80% of the time with only one of the two motors attached to the microtubule. Thus, irrespective of phylogeny and kinetic properties, kinesin-2 motors work mostly alone without sacrificing efficiency. Our findings thus offer a simple mechanism for how efficient IFT is achieved across diverse organisms despite being carried out by motors with different properties.
Collapse
Affiliation(s)
- Punam Sonar
- Physik Department E22, Technische Universität München, Garching 85748, Germany
| | - Wiphu Youyen
- Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Augustine Cleetus
- Physik Department E22, Technische Universität München, Garching 85748, Germany
| | | | - Sayed I Mousavi
- Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Willi L Stepp
- Physik Department E22, Technische Universität München, Garching 85748, Germany
| | - William O Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Erkan Tüzel
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Zeynep Ökten
- Physik Department E22, Technische Universität München, Garching 85748, Germany.
| |
Collapse
|
48
|
Gong A, Rode S, Kaupp UB, Gompper G, Elgeti J, Friedrich BM, Alvarez L. The steering gaits of sperm. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190149. [PMID: 31884910 PMCID: PMC7017342 DOI: 10.1098/rstb.2019.0149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2019] [Indexed: 11/25/2022] Open
Abstract
Sperm are highly specialized cells, which have been subject to substantial evolutionary pressure. Whereas some sperm features are highly conserved, others have undergone major modifications. Some of these variations are driven by adaptation to mating behaviours or fitness at the organismic level. Others represent alternative solutions to the same task. Sperm must find the egg for fertilization. During this task, sperm rely on long slender appendages termed flagella that serve as sensory antennas, propellers and steering rudders. The beat of the flagellum is periodic. The resulting travelling wave generates the necessary thrust for propulsion in the fluid. Recent studies reveal that, for steering, different species rely on different fundamental features of the beat wave. Here, we discuss some examples of unity and diversity across sperm from different species with a particular emphasis on the steering mechanisms. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- A. Gong
- Center of Advanced European Studies and Research (CAESAR), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - S. Rode
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - U. B. Kaupp
- Center of Advanced European Studies and Research (CAESAR), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - G. Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - J. Elgeti
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - B. M. Friedrich
- Biological Algorithms Group, TU Dresden, Biological Systems Path of the Center for Advancing Electronics Dresden (CFAED), Helmholtzstrasse 18, 01069 Dresden, Germany
| | - L. Alvarez
- Center of Advanced European Studies and Research (CAESAR), Molecular Sensory Systems, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
49
|
Ringers C, Olstad EW, Jurisch-Yaksi N. The role of motile cilia in the development and physiology of the nervous system. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190156. [PMID: 31884916 DOI: 10.1098/rstb.2019.0156] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Motile cilia are miniature, whip-like organelles whose beating generates a directional fluid flow. The flow generated by ciliated epithelia is a subject of great interest, as defective ciliary motility results in severe human diseases called motile ciliopathies. Despite the abundance of motile cilia in diverse organs including the nervous system, their role in organ development and homeostasis remains poorly understood. Recently, much progress has been made regarding the identity of motile ciliated cells and the role of motile-cilia-mediated flow in the development and physiology of the nervous system. In this review, we will discuss these recent advances from sensory organs, specifically the nose and the ear, to the spinal cord and brain ventricles. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Christa Ringers
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Emilie W Olstad
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway
| |
Collapse
|
50
|
Abstract
Cilia are specialized cellular organelles that are united in structure and implicated in diverse key life processes across eukaryotes. In both unicellular and multicellular organisms, variations on the same ancestral form mediate sensing, locomotion and the production of physiological flows. As we usher in a new, more interdisciplinary era, the way we study cilia is changing. This special theme issue brings together biologists, biophysicists and mathematicians to highlight the remarkable range of systems in which motile cilia fulfil vital functions, and to inspire and define novel strategies for future research. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|