1
|
Hajheidari M, Sunyaev S, de Meaux J. Are complex traits underpinned by polygenic molecular traits? A reflection on the complexity of gene expression. PLANT & CELL PHYSIOLOGY 2025; 66:444-460. [PMID: 39626022 PMCID: PMC12085094 DOI: 10.1093/pcp/pcae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 05/18/2025]
Abstract
Variation in complex traits is controlled by multiple genes. The prevailing assumption is that such polygenic complex traits are underpinned by variation in elementary molecular traits, such as gene expression, which themselves have a simple genetic basis. Here, we review recent advances that reveal the captivating complexity of gene regulation: the cell type, time point, and magnitude of gene expression are not merely dependent on a couple of regulators; rather, they result from a probabilistic process shaped by cis- and trans-regulatory elements collaboratively integrating internal and external cues with the tightly regulated dynamics of DNA. In addition, the finding that genetic variants linked to complex diseases in humans often do not co-localize with quantitative trait loci modulating gene expression, along with the role of nonfunctional transcription factor (TF) binding sites, suggests that some of the genetic effects influencing gene expression variation may be indirect. If the number of genomic positions responsible for TF binding, TF binding site search time, DNA conformation and accessibility as well as regulation of all trans-acting factors is indeed vast, is it plausible that the complexity of elementary molecular traits approaches the complexity of higher-level organismal traits? Although it is hard to know the answer to this question, we motivate it by reviewing the complexity of the molecular machinery further.
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Juliette de Meaux
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany
| |
Collapse
|
2
|
Liu M, Xu Y, Song Y, Fan D, Li J, Zhang Z, Wang L, He J, Chen C, Ma C. Hierarchical Regulatory Networks Reveal Conserved Drivers of Plant Drought Response at the Cell-Type Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415106. [PMID: 40091436 PMCID: PMC12079547 DOI: 10.1002/advs.202415106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/29/2025] [Indexed: 03/19/2025]
Abstract
Drought is a critical environmental challenge affecting plant growth and productivity. Understanding the regulatory networks governing drought response at the cellular level remains an open question. Here, a comprehensive multi-omics integration framework that combines transcriptomic, proteomic, epigenetic, and network-based analyses to delineate cell-type-specific regulatory networks involved in plant drought response is presented. By analyzing nearly 30 000 multi-omics data samples across species, unique insights are revealed into conserved drought responses and cell-type-specific regulatory dynamics, leveraging novel integrative analytical workflows. Notably, CIPK23 emerges as a conserved protein kinase mediating drought tolerance through interactions with CBL4, as validated by yeast two-hybrid and BiFC assays. Experimental validation in Arabidopsis thaliana and Vitis vinifera confirms the functional conservation of CIPK23, which enhances drought resistance in overexpression lines. In addition, the authors' causal network analysis pinpoints critical regulatory drivers such as NLP7 and CIPK23, providing insights into the molecular mechanisms of drought adaptation. These findings advance understanding of plant drought tolerance and offer potential targets for improving crop resilience across diverse species.
Collapse
Affiliation(s)
- Moyang Liu
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Yuanyuan Xu
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Yue Song
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Dongying Fan
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Junpeng Li
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Zhen Zhang
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Lujia Wang
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Juan He
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Cheng Chen
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Chao Ma
- School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
3
|
Qi Z, Cheng Y, Gao Y, Liu R, Li H, Yu J, Guo J, Li M, Li C, Li Y, Wang H, Xu Q, Liu J, Sun X, Mu Z, Du J. Transcriptome and metabolome analysis revealed that phenylpropanoid and flavonoid biosynthesis respond to drought in tiger nut. PHYSIOLOGIA PLANTARUM 2025; 177:e70191. [PMID: 40196915 DOI: 10.1111/ppl.70191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 04/09/2025]
Abstract
Tiger nuts (Cyperus esculentus) have emerged as a novel oil crop, being utilized as raw materials for obtaining industrial ink. Drought is a serious stress that significantly affects the entire plant and reduces its yield. The seedling stage is crucial as it determines the future growth and yield. Consequently, it is essential to enhance the ability of tiger nuts to mitigate drought at the seedling stage. A comprehensive analysis was conducted on roots and leaves, including their phenotypes, physiological indicators, transcriptomes, and metabolomes. The results revealed that leaves and roots were affected by drought stress, as evidenced by phenotypic data such as leaf area and physiological indicators, including changes in peroxidase and catalase activity, malondialdehyde content, electrolyte leakage, and superoxide anion levels. Drought imposed greater effects on leaves. Phenylpropanoid and flavonoid biosynthesis were identified as candidate pathways using transcriptome and metabolome analysis, Real-Time Quantitative PCR (RT-qPCR), and physiological verifications. However, the response modes of the root and leaf parts differed based on the enriched pathways analysis, indicating that the changes in the content of some metabolites were contrasting between the roots and leaves. The study revealed the molecular mechanisms under drought, particularly the synergistic responses in leaves and roots, providing insights and a theoretical basis for enhancing the drought tolerance of tiger nuts.
Collapse
Affiliation(s)
- Zhang Qi
- Heilongjiang Bayi Agricultural University, Heilongjiang, China
- Jilin Academy of Agricultural Sciences, Jilin, China
| | - Yan Cheng
- Jilin Academy of Agricultural Sciences, Jilin, China
| | - Yuling Gao
- Heilongjiang Bayi Agricultural University, Heilongjiang, China
| | - Runqing Liu
- Heilongjiang Agricultural Engineering Vocational College, Heilongjiang, China
| | - Haoxin Li
- Heilongjiang Bayi Agricultural University, Heilongjiang, China
| | - Jinqi Yu
- Heilongjiang Bayi Agricultural University, Heilongjiang, China
| | - Jiaxuan Guo
- Heilongjiang Bayi Agricultural University, Heilongjiang, China
| | - Meiqing Li
- Heilongjiang Bayi Agricultural University, Heilongjiang, China
| | - Caihua Li
- Jilin Academy of Agricultural Sciences, Jilin, China
| | - Yuhuan Li
- Jilin Academy of Agricultural Sciences, Jilin, China
| | - Hongda Wang
- Heilongjiang Bayi Agricultural University, Heilongjiang, China
| | - Qingqing Xu
- Heilongjiang Bayi Agricultural University, Heilongjiang, China
| | - Jiaxi Liu
- Heilongjiang Bayi Agricultural University, Heilongjiang, China
| | - Xuewei Sun
- Jilin Academy of Agricultural Sciences, Jilin, China
- Jilin Zhengxun Agricultural Development Co., Ltd, Jilin, China
| | - Zhongsheng Mu
- Heilongjiang Bayi Agricultural University, Heilongjiang, China
- Jilin Academy of Agricultural Sciences, Jilin, China
| | - Jidao Du
- Heilongjiang Bayi Agricultural University, Heilongjiang, China
- National Coarse Cereals Engineering Research Center
| |
Collapse
|
4
|
Kosová K, Nešporová T, Vítámvás P, Vítámvás J, Klíma M, Ovesná J, Prášil IT. How to survive mild winters: Cold acclimation, deacclimation, and reacclimation in winter wheat and barley. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109541. [PMID: 39862458 DOI: 10.1016/j.plaphy.2025.109541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Cold acclimation and vernalization represent the major evolutionary adaptive responses to ensure winter survival of temperate plants. Due to climate change, mild winters can paradoxically worsen plant winter survival due to cold deacclimation induced by warm periods during winter. It seems that the ability of cold reacclimation in overwintering Triticeae cereals is limited, especially in vernalized plants. In the present review, the major factors determining cold acclimation (CA), deacclimation (DA) and reacclimation (RA) processes in winter-type Triticeae, namely wheat and barley, are discussed. Recent knowledge on cold sensing and signaling is briefly summarized. The impacts of chilling temperatures, photoperiod and light spectrum quality as the major environmental factors, and the roles of soluble proteins and sugars (carbohydrates) as well as cold stress memory molecular mechanisms as the major plant-based factors determining CA, DA, and RA processes are discussed. The roles of plant stress memory mechanisms and development processes, namely vernalization, in winter Triticeae reacclimation are elucidated. Recent findings about the role of O-glucose N-acetylation of target proteins during vernalization and their impacts on the expression of VRN1 gene and other target proteins resulting in cold-responsive modules reprogramming are presented.
Collapse
Affiliation(s)
- Klára Kosová
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic.
| | - Tereza Nešporová
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Pavel Vítámvás
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic
| | - Jan Vítámvás
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic; Faculty of Forestry and Wood Science, Czech University of Life Sciences, Prague, Czech Republic
| | - Miroslav Klíma
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic
| | - Jaroslava Ovesná
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic
| | - Ilja Tom Prášil
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic
| |
Collapse
|
5
|
Aanniz T, El Baaboua A, Aboulaghras S, Bouyahya A, Benali T, Balahbib A, El Omari N, Butnariu M, Muzammil K, Yadav KK, Al Abdulmonem W, Lee LH, Zengin G, Chamkhi I. Impact of water stress to plant epigenetic mechanisms in stress and adaptation. PHYSIOLOGIA PLANTARUM 2025; 177:e70058. [PMID: 39831338 DOI: 10.1111/ppl.70058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/18/2024] [Indexed: 01/22/2025]
Abstract
Water is the basic molecule in living beings, and it has a major impact on vital processes. Plants are sessile organisms with a sophisticated regulatory network that regulates how resources are distributed between developmental and adaptation processes. Drought-stressed plants can change their survival strategies to adapt to this unfavorable situation. Indeed, plants modify, change, and modulate gene expression when grown in a low-water environment. This adaptation occurs through several mechanisms that affect the expression of genes, allowing these plants to resist in dry regions. Epigenetic modulation has emerged as a major factor in the transcription regulation of drought stress-related genes. Moreover, specific molecular and epigenetic modifications in the expression of certain genetic networks lead to adapted responses that aid a plant's acclimatization and survival during repeated stress. Indeed, understanding plant responses to severe environmental stresses, including drought, is critical for biotechnological applications. Here, we first focused on drought stress in plants and their general adaptation mechanisms to this stress. We also discussed plant epigenetic regulation when exposed to water stress and how this adaptation can be passed down through generations.
Collapse
Affiliation(s)
- Tarik Aanniz
- Laboratory of Medical Biotechnology Laboratory (Medbiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | | | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences "King Mihai I" from Timisoara, Timis
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, KSA
| | - Krishna Kumar Yadav
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Learn-Han Lee
- Microbiome Research Group, Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel Université Mohammed V de Institut Scientifique Rabat
- Mohammed VI Polytechnic University, Agrobiosciences, Benguerir, Morocco
| |
Collapse
|
6
|
Yang Z, Zhan Y, Zhu Y, Zhu H, Zhou C, Yuan M, Li H, Liu M, Teng W, Li Y, Zhao X, Wang Y, Han Y. The analysis of the genetic loci affecting phenotypic plasticity of soybean isoflavone content by dQTG.seq model. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:9. [PMID: 39688708 DOI: 10.1007/s00122-024-04798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
KEY MESSAGE The dQTG.seq model was utilized to investigate the genetic underpinnings of phenotypic plasticity in soybean isoflavone content, leading to the identification of 100 marker sites associated with phenotypic plasticity, including 27 transcription factors. Overexpression of Glyma.18G091600 (GmERF7) hairy roots under low temperature, salt, and drought stress confirmed the regulatory role of GmERF7 in the phenotypic plasticity of soybean isoflavone content. Phenotypic plasticity is characteristic of organisms that undergo phenotypic changes in response to environmental fluctuations. This phenomenon is pivotal in evolutionary processes and the emergence of new traits. Isoflavones, significant secondary metabolites found in soybeans, have garnered considerable attention owing to their beneficial physiological effects on human health. The variation in isoflavone content among different soybean varieties is influenced by diverse environmental factors, thereby influencing the evaluation of high and low isoflavone varieties. In this study, we measured the phenotypic plasticity of isoflavone content in recombinant inbred lines Hefeng 25 and L-28 in three different environments over two years. Utilizing the dQTG.seq model, 100 statistically significant markers were identified, and 101 potential genes, including 27 transcription factors, were screened. Through qRT-PCR analysis, elevated expression levels of Glyma.18G091600, Glyma.09G196200, and Glyma.05G229500 were observed in various parts of soybean plants. Under low temperature, drought or salt stress conditions, the related enzymes involved in the isoflavone synthesis pathway were notably upregulated in Glyma.18G091600 (GmERF7) overexpressed hairy roots compared to wild-type controls, resulting to higher phenotypic plasticity values for DZ, GC, GT, and TI. These results suggest that GmERF7 influences the phenotypic plasticity of soybean isoflavone content, enhancing adaptation to adverse environments, while also promoting the synthesis and accumulation of soybean isoflavones.
Collapse
Affiliation(s)
- Zhenhong Yang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Yina Zhu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Hanhan Zhu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Changjun Zhou
- Daqing Branch, Heilongjiang Academy of Agricultural Science, Daqing, China
| | - Ming Yuan
- Qiqihar Branch, Heilongjiang Academy of Agricultural Science, Qiqihar, China
| | - Haiyan Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Miao Liu
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Yongguang Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Yuhe Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
7
|
Sena S, Prakash A, Van Staden J, Kumar V. Epigenetic control of plant regeneration: Unraveling the role of histone methylation. CURRENT PLANT BIOLOGY 2024; 40:100408. [DOI: 10.1016/j.cpb.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
8
|
Shafi I, Gautam M, Kariyat R. Integrating ecophysiology and omics to unlock crop response to drought and herbivory stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1500773. [PMID: 39559770 PMCID: PMC11570275 DOI: 10.3389/fpls.2024.1500773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Affiliation(s)
| | | | - Rupesh Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
9
|
Cisse EHM, Pascual LS, Gajanayake KB, Yang F. Tree species and drought: Two mysterious long-standing counterparts. PHYSIOLOGIA PLANTARUM 2024; 176:e14586. [PMID: 39468381 DOI: 10.1111/ppl.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024]
Abstract
Around 252 million years ago (Late Permian), Earth experienced one of its most significant drought periods, coinciding with a global climate crisis, resulting in a devastating loss of forest trees with no hope of recovery. In the current epoch (Anthropocene), the worsening of drought stress is expected to significantly affect forest communities. Despite extensive efforts, there is significantly less research at the molecular level on forest trees than on annual crop species. Would it not be wise to allocate equal efforts to woody species, regardless of their importance in providing essential furniture and sustaining most terrestrial ecosystems? For instance, the poplar genome is roughly quadruple the size of the Arabidopsis genome and has 1.6 times the number of genes. Thus, a massive effort in genomic studies focusing on forest trees has become inevitable to understand their adaptation to harsh conditions. Nevertheless, with the emerging role and development of high-throughput DNA sequencing systems, there is a growing body of literature about the responses of trees under drought at the molecular and eco-physiological levels. Therefore, synthesizing these findings through contextualizing drought history and concepts is essential to understanding how woody species adapt to water-limited conditions. Comprehensive genomic research on trees is critical for preserving biodiversity and ecosystem function. Integrating molecular insights with eco-physiological analysis will enhance forest management under climate change.
Collapse
Affiliation(s)
- El Hadji Malick Cisse
- United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Castellón, Spain
| | - K Bandara Gajanayake
- United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Fan Yang
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou, China
| |
Collapse
|
10
|
Zi N, Ren W, Guo H, Yuan F, Liu Y, Fry E. DNA Methylation Participates in Drought Stress Memory and Response to Drought in Medicago ruthenica. Genes (Basel) 2024; 15:1286. [PMID: 39457410 PMCID: PMC11507442 DOI: 10.3390/genes15101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Drought is currently a global environmental problem, which inhibits plant growth and development and seriously restricts crop yields. Many plants exposed to drought stress can generate stress memory, which provides some advantages for resisting recurrent drought. DNA methylation is a mechanism involved in stress memory formation, and many plants can alter methylation levels to form stress memories; however, it remains unclear whether Medicago ruthenica exhibits drought stress memory, as the epigenetic molecular mechanisms underlying this process have not been described in this species. Methods: We conducted methylome and transcriptome sequencing to identify gene methylation and expression changes in plants with a history of two drought stress exposures. Results: Methylation analysis showed that drought stress resulted in an approximately 4.41% decrease in M. ruthenica genome methylation levels. The highest methylation levels were in CG dinucleotide contexts, followed by CHG contexts, with CHH contexts having the lowest levels. Analysis of associations between methylation and transcript levels showed that most DNA methylation was negatively correlated with gene expression except methylation within CHH motifs in gene promoter regions. Genes were divided into four categories according to the relationship between methylation and gene expression; the up-regulation of hypo-methylated gene expression accounted for the vast majority (692 genes) and included genes encoding factors key for abscisic acid (ABA) and proline synthesis. The hypo-methylation of the promoter and body regions of these two gene groups induced increased gene transcription levels. Conclusions: In conclusion, DNA methylation may contribute to drought stress memory formation and maintenance in M. ruthenica by increasing the transcription levels of genes key for ABA and proline biosynthesis.
Collapse
Affiliation(s)
- Na Zi
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China;
| | - Weibo Ren
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China;
| | - Huiqin Guo
- School of Life Science, Inner Mongolia Agriculture University, Hohhot 010010, China;
| | - Feng Yuan
- Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, National Center of Pratacultural Technology Innovation, Hohhot 010010, China; (F.Y.); (Y.L.)
| | - Yaling Liu
- Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, National Center of Pratacultural Technology Innovation, Hohhot 010010, China; (F.Y.); (Y.L.)
| | - Ellen Fry
- Department of Biology, Edge Hill University, Ormskirk L39 4QP, UK;
| |
Collapse
|
11
|
Wang C, Lu C, Wang J, Liu X, Wei Z, Qin Y, Zhang H, Wang X, Wei B, Lv W, Mu G. Molecular mechanisms regulating glucose metabolism in quinoa (Chenopodium quinoa Willd.) seeds under drought stress. BMC PLANT BIOLOGY 2024; 24:796. [PMID: 39174961 PMCID: PMC11342610 DOI: 10.1186/s12870-024-05510-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Abiotic stress seriously affects the growth and yield of crops. It is necessary to search and utilize novel abiotic stress resistant genes for 2.0 breeding programme in quinoa. In this study, the impact of drought stress on glucose metabolism were investigated through transcriptomic and metabolomic analyses in quinoa seeds. Candidate drought tolerance genes on glucose metabolism pathway were verified by qRT-PCR combined with yeast expression system. RESULTS From 70 quinoa germplasms, drought tolerant material M059 and drought sensitive material M024 were selected by comprehensive evaluation of drought resistance. 7042 differentially expressed genes (DEGs) were indentified through transcriptomic analyses. Gene Ontology (GO) analysis revealed that these DEGs were closely related to carbohydrate metabolic process, phosphorus-containing groups, and intracellular membrane-bounded organelles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis detected that DEGs were related to pathways involving carbohydrate metabolisms, glycolysis and gluconeogenesis. Twelve key differentially accumulated metabolites (DAMs), (D-galactose, UDP-glucose, succinate, inositol, D-galactose, D-fructose-6-phosphate, D-glucose-6-phosphate, D-glucose-1-phosphate, dihydroxyacetone phosphate, ribulose-5-phosphate, citric acid and L-malate), and ten key candidate DEGs (CqAGAL2, CqINV, CqFrK7, CqCELB, Cqbg1x, CqFBP, CqALDO, CqPGM, CqIDH3, and CqSDH) involved in drought response were identified. CqSDH, CqAGAL2, and Cqβ-GAL13 were candidate genes that have been validated in both transcriptomics and yeast expression screen system. CONCLUSION These findings provide a foundation for elucidating the molecular regulatory mechanisms governing glucose metabolism in quinoa seeds under drought stress, providing insights for future research exploring responses to drought stress in quinoa.
Collapse
Affiliation(s)
- Chunmei Wang
- North China State Key Laboratory of Crop Improvement and Regulation, Hebei Provincial Laboratory of Crop Germplasm Resources/College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei Province, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhang Jiakou, 075000, Hebei Province, P. R. China
| | - Chuan Lu
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, 050000, Hebei Province, P. R. China
| | - Junling Wang
- North China State Key Laboratory of Crop Improvement and Regulation, Hebei Provincial Laboratory of Crop Germplasm Resources/College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei Province, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhang Jiakou, 075000, Hebei Province, P. R. China
| | - Xiaoqing Liu
- North China State Key Laboratory of Crop Improvement and Regulation, Hebei Provincial Laboratory of Crop Germplasm Resources/College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei Province, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhang Jiakou, 075000, Hebei Province, P. R. China
| | - Zhimin Wei
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, The Key Research Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050000, Hebei Province, P. R. China
| | - Yan Qin
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, 050000, Hebei Province, P. R. China
| | - Huilong Zhang
- Shijiazhuang Fubao Ecological Technology Co., LTD, Shijiazhuang, 050000, Hebei Province, P. R. China
| | - Xiaoxia Wang
- North China State Key Laboratory of Crop Improvement and Regulation, Hebei Provincial Laboratory of Crop Germplasm Resources/College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei Province, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhang Jiakou, 075000, Hebei Province, P. R. China
| | - Boxiang Wei
- North China State Key Laboratory of Crop Improvement and Regulation, Hebei Provincial Laboratory of Crop Germplasm Resources/College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei Province, P. R. China
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhang Jiakou, 075000, Hebei Province, P. R. China
| | - Wei Lv
- The S&T Innovation Service Center of Hebei Province, Shijiazhuang, 050000, Hebei Province, P. R. China.
| | - Guojun Mu
- North China State Key Laboratory of Crop Improvement and Regulation, Hebei Provincial Laboratory of Crop Germplasm Resources/College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei Province, P. R. China.
- The Quinoa Industrial Technology Research Institute of Hebei Province, Zhang Jiakou, 075000, Hebei Province, P. R. China.
| |
Collapse
|
12
|
Chen S, Zhong K, Li Y, Bai C, Xue Z, Wu Y. Joint transcriptomic and metabolomic analysis provides new insights into drought resistance in watermelon ( Citrullus lanatus). FRONTIERS IN PLANT SCIENCE 2024; 15:1364631. [PMID: 38766468 PMCID: PMC11102048 DOI: 10.3389/fpls.2024.1364631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Introduction Watermelon is an annual vine of the family Cucurbitaceae. Watermelon plants produce a fruit that people love and have important nutritional and economic value. With global warming and deterioration of the ecological environment, abiotic stresses, including drought, have become important factors that impact the yield and quality of watermelon plants. Previous research on watermelon drought resistance has included analyzing homologous genes based on known drought-responsive genes and pathways in other species. Methods However, identifying key pathways and genes involved in watermelon drought resistance through high-throughput omics methods is particularly important. In this study, RNA-seq and metabolomic analysis were performed on watermelon plants at five time points (0 h, 1 h, 6 h, 12 h and 24 h) before and after drought stress. Results Transcriptomic analysis revealed 7829 differentially expressed genes (DEGs) at the five time points. The DEGs were grouped into five clusters using the k-means clustering algorithm. The functional category for each cluster was annotated based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database; different clusters were associated with different time points after stress. A total of 949 metabolites were divided into 10 categories, with lipids and lipid-like molecules accounting for the most metabolites. Differential expression analysis revealed 22 differentially regulated metabolites (DRMs) among the five time points. Through joint analysis of RNA-seq and metabolome data, the 6-h period was identified as the critical period for watermelon drought resistance, and the starch and sucrose metabolism, plant hormone signal transduction and photosynthesis pathways were identified as important regulatory pathways involved in watermelon drought resistance. In addition, 15 candidate genes associated with watermelon drought resistance were identified through joint RNA-seq and metabolome analysis combined with weighted correlation network analysis (WGCNA). Four of these genes encode transcription factors, including bHLH (Cla97C03G068160), MYB (Cla97C01G002440), HSP (Cla97C02G033390) and GRF (Cla97C02G042620), one key gene in the ABA pathway, SnRK2-4 (Cla97C10G186750), and the GP-2 gene (Cla97C05G105810), which is involved in the starch and sucrose metabolism pathway. Discussion In summary, our study provides a theoretical basis for elucidating the molecular mechanisms underlying drought resistance in watermelon plants and provides new genetic resources for the study of drought resistance in this crop.
Collapse
Affiliation(s)
- Sheng Chen
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kaiqin Zhong
- Fuzhou Institute of Vegetable Science, Fuzhou, China
| | - Yongyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changhui Bai
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zhuzheng Xue
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yufen Wu
- Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
13
|
Wang X, Li X, Dong S. Biochemical characterization and metabolic reprogramming of amino acids in Soybean roots under drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14319. [PMID: 38693848 DOI: 10.1111/ppl.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Amino acids play important roles in stress resistance, plant growth, development, and quality, with roots serving as the primary organs for drought response. We conducted biochemical and multi-omics analyses to investigate the metabolic processes of root amino acids in drought-resistant (HN44) and drought-sensitive (HN65) soybean (Glycine max) varieties. Our analysis revealed an increase in total amino acid content in both varieties, with phenylalanine, proline, and methionine accumulating in both. Additionally, several amino acids exhibited significant decreases in HN65 but slight increases in HN44. Multi-omics association analysis identified 13 amino acid-related pathways. We thoroughly examined the changes in genes and metabolites involved in various amino acid metabolism/synthesis and determined core genes and metabolites through correlation networks. The phenylalanine, tyrosine, and tryptophan metabolic pathways and proline, glutamic acid and sulfur-containing amino acid pathways were particularly important for drought resistance. Some candidate genes, such as ProDH and P4HA family genes, and metabolites, such as O-acetyl-L-serine, directly affected up- and downstream metabolism to induce drought resistance. This study provided a basis for soybean drought resistance breeding.
Collapse
Affiliation(s)
- Xiyue Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaomei Li
- College of Agriculture, Heilongjiang Agricultural Engineering Vocational College, Harbin, China
| | - Shoukun Dong
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
Mazur M, Matoša Kočar M, Jambrović A, Sudarić A, Volenik M, Duvnjak T, Zdunić Z. Crop-Specific Responses to Cold Stress and Priming: Insights from Chlorophyll Fluorescence and Spectral Reflectance Analysis in Maize and Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:1204. [PMID: 38732417 PMCID: PMC11085405 DOI: 10.3390/plants13091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
This study aimed to investigate the impact of cold stress and priming on photosynthesis in the early development of maize and soybean, crops with diverse photosynthetic pathways. The main objectives were to determine the effect of cold stress on chlorophyll a fluorescence parameters and spectral reflectance indices, to determine the effect of cold stress priming and possible stress memory and to determine the relationship between different parameters used in determining the stress response. Fourteen maize inbred lines and twelve soybean cultivars were subjected to control, cold stress, and priming followed by cold stress in a walk-in growth chamber. Measurements were conducted using a portable fluorometer and a handheld reflectance instrument. Cold stress induced an overall downregulation of PSII-related specific energy fluxes and efficiencies, the inactivation of RCs resulting in higher energy dissipation, and electron transport chain impairment in both crops. Spectral reflectance indices suggested cold stress resulted in pigment differences between crops. The effect of priming was more pronounced in maize than in soybean with mostly a cumulatively negative effect. However, priming stabilized the electron trapping efficiency and upregulated the electron transfer system in maize, indicating an adaptive response. Overall, this comprehensive analysis provides insights into the complex physiological responses of maize and soybean to cold stress, emphasizing the need for further genotype-specific cold stress response and priming effect research.
Collapse
Affiliation(s)
- Maja Mazur
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia; (M.M.K.); (A.J.); (A.S.); (M.V.); (T.D.); (Z.Z.)
| | - Maja Matoša Kočar
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia; (M.M.K.); (A.J.); (A.S.); (M.V.); (T.D.); (Z.Z.)
| | - Antun Jambrović
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia; (M.M.K.); (A.J.); (A.S.); (M.V.); (T.D.); (Z.Z.)
- Center of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Aleksandra Sudarić
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia; (M.M.K.); (A.J.); (A.S.); (M.V.); (T.D.); (Z.Z.)
- Center of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Mirna Volenik
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia; (M.M.K.); (A.J.); (A.S.); (M.V.); (T.D.); (Z.Z.)
| | - Tomislav Duvnjak
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia; (M.M.K.); (A.J.); (A.S.); (M.V.); (T.D.); (Z.Z.)
| | - Zvonimir Zdunić
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia; (M.M.K.); (A.J.); (A.S.); (M.V.); (T.D.); (Z.Z.)
- Center of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
15
|
Wang L, Mo Z, Yu X, Mao Y. Characterization of the basic leucine zipper transcription factor family of Neoporphyra haitanensis and its role in acclimation to dehydration stress. BMC PLANT BIOLOGY 2023; 23:617. [PMID: 38049766 PMCID: PMC10696790 DOI: 10.1186/s12870-023-04636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Neoporphyra haitanensis, a major marine crop native to southern China, grows in the harsh intertidal habitats of rocky coasts. The thallus can tolerate fluctuating and extreme environmental stresses, for example, repeated desiccation/rehydration due to the turning tides. It is also a typical model system for investigating stress tolerance mechanisms in intertidal seaweed. The basic leucine zipper (bZIP) transcription factors play important roles in the regulation of plants' responses to environmental stress stimuli. However, little information is available regarding the bZIP family in the marine crop Nh. haitanensis. RESULTS We identified 19 bZIP genes in the Nh. haitanensis genome and described their conserved domains. Based on phylogenetic analysis, these 19 NhhbZIP genes, distributed unevenly on the 11 superscaffolds, were divided into four groups. In each group, there were analogous exon/intron numbers and motif compositions, along with diverse exon lengths. Cross-species collinearity analysis indicated that 17 and 9 NhhbZIP genes were orthologous to bZIP genes in Neopyropia yezoensis and Porphyra umbilicalis, respectively. Evidence from RNA sequencing (RNA-seq) data showed that the majority of NhhbZIP genes (73.68%) exhibited transcript abundance in all treatments. Furthermore, genes NN 2, 4 and 5 showed significantly altered expression in response to moderate dehydration, severe dehydration, and rehydration, respectively. Gene co-expression network analysis of the representative genes was carried out, followed by gene set enrichment analysis. Two NhhbZIP genes collectively responding to dehydration and rehydration and their co-expressing genes mainly participated in DNA repair, DNA metabolic process, and regulation of helicase activity. Two specific NhhbZIP genes responding to severe dehydration and their corresponding network genes were mainly involved in macromolecule modification, cellular catabolic process, and transmembrane transport. Three specific NhhbZIP genes responding to rehydration and their co-expression gene networks were mainly involved in the regulation of the cell cycle process and defense response. CONCLUSIONS This study provides new insights into the structural composition, evolution, and function of the NhhbZIP gene family. Our results will help us to further study the functions of bZIP genes in response to dehydration and rehydration in Nh. haitanensis and improve Nh. haitanensis in southern China.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Ministry of Education), Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Xinzi Yu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunxiang Mao
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Yazhou Bay Innovation Institute & Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Ministry of Education), College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, China.
- Laboratory of Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266700, China.
| |
Collapse
|
16
|
Sharma M, Sidhu AK, Samota MK, Gupta M, Koli P, Choudhary M. Post-Translational Modifications in Histones and Their Role in Abiotic Stress Tolerance in Plants. Proteomes 2023; 11:38. [PMID: 38133152 PMCID: PMC10747722 DOI: 10.3390/proteomes11040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Abiotic stresses profoundly alter plant growth and development, resulting in yield losses. Plants have evolved adaptive mechanisms to combat these challenges, triggering intricate molecular responses to maintain tissue hydration and temperature stability during stress. A pivotal player in this defense is histone modification, governing gene expression in response to diverse environmental cues. Post-translational modifications (PTMs) of histone tails, including acetylation, phosphorylation, methylation, ubiquitination, and sumoylation, regulate transcription, DNA processes, and stress-related traits. This review comprehensively explores the world of PTMs of histones in plants and their vital role in imparting various abiotic stress tolerance in plants. Techniques, like chromatin immune precipitation (ChIP), ChIP-qPCR, mass spectrometry, and Cleavage Under Targets and Tag mentation, have unveiled the dynamic histone modification landscape within plant cells. The significance of PTMs in enhancing the plants' ability to cope with abiotic stresses has also been discussed. Recent advances in PTM research shed light on the molecular basis of stress tolerance in plants. Understanding the intricate proteome complexity due to various proteoforms/protein variants is a challenging task, but emerging single-cell resolution techniques may help to address such challenges. The review provides the future prospects aimed at harnessing the full potential of PTMs for improved plant responses under changing climate change.
Collapse
Affiliation(s)
- Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Amanpreet K. Sidhu
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Mahesh Kumar Samota
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Regional Station, Abohar 152116, India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
| | - Pushpendra Koli
- Plant Animal Relationship Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi 284003, India;
- Post-Harvest Biosecurity, Murdoch University, Perth, WA 6150, Australia
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
17
|
Zuo DD, Ahammed GJ, Guo DL. Plant transcriptional memory and associated mechanism of abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107917. [PMID: 37523825 DOI: 10.1016/j.plaphy.2023.107917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/02/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Plants face various adverse environmental conditions, particularly with the ongoing changes in global climate, which drastically affect the growth, development and productivity of crops. To cope with these stresses, plants have evolved complex mechanisms, and one of the crucial ways is to develop transcriptional memories from stress exposure. This induced learning enables plants to better and more strongly restart the response and adaptation mechanism to stress when similar or dissimilar stresses reoccur. Understanding the molecular mechanism behind plant transcriptional memory of stress can provide a theoretical basis for breeding stress-tolerant crops with resilience to future climates. Here we review the recent research progress on the transcriptional memory of plants under various stresses and the applications of underlying mechanisms for sustainable agricultural production. We propose that a thorough understanding of plant transcriptional memory is crucial for both agronomic management and resistant breeding, and thus may help to improve agricultural yield and quality under changing climatic conditions.
Collapse
Affiliation(s)
- Ding-Ding Zuo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
18
|
Húdoková H, Fleischer P, Ježík M, Marešová J, Pšidová E, Mukarram M, Ditmarová Ľ, Sliacka-KonôPková A, Jamnická G. Can seedlings of Norway spruce ( Picea abies L. H. Karst.) populations withstand changed climate conditions? PHOTOSYNTHETICA 2023; 61:328-341. [PMID: 39651359 PMCID: PMC11558570 DOI: 10.32615/ps.2023.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/12/2023] [Indexed: 12/11/2024]
Abstract
A manipulative experiment with two different water regimes was established to identify the variability of physiological responses to environmental changes in 5-year-old Norway spruce provenances in the Western Carpathians. While variations in the growth responses were detected only between treatments, photosynthetic and biochemical parameters were also differently influenced among provenances. Following drought treatment, an obvious shrinkage of tree stems was observed. In most provenances, drought had a negative effect on leaf gas-exchange parameters and kinetics of chlorophyll a fluorescence. Secondary metabolism was not affected so much with notable differences in concentration of sabinene, o-cimene, and (-)-alpha-terpineol monoterpenes. The most suitable indicators of drought stress were abscisic acid and fluorescence parameters. Seedlings from the highest altitude (1,500 m a.s.l.) responded better to stress conditions than the other populations. Such provenance trials may be a valuable tool in assessing the adaptive potential of spruce populations under changing climate.
Collapse
Affiliation(s)
- H. Húdoková
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
- Technical University in Zvolen, Faculty of Ecology and Environmental Sciences, T.G. Masaryka 24, 96001 Zvolen, Slovakia
| | - P. Fleischer
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
- Technical University in Zvolen, Faculty of Forestry, T.G. Masaryka 24, 96001 Zvolen, Slovakia
- Administration of Tatra National Park, Tatranská Lomnica, 059 60 Vysoké Tatry, Slovakia
| | - M. Ježík
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
| | - J. Marešová
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
| | - E. Pšidová
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
| | - M. Mukarram
- Technical University in Zvolen, Faculty of Forestry, T.G. Masaryka 24, 96001 Zvolen, Slovakia
| | - Ľ. Ditmarová
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
| | - A. Sliacka-KonôPková
- Technical University in Zvolen, Faculty of Forestry, T.G. Masaryka 24, 96001 Zvolen, Slovakia
| | - G. Jamnická
- Institute of Forest Ecology, Slovak Academy of Sciences, Ľ. Štúra 2, 96001 Zvolen, Slovakia
| |
Collapse
|
19
|
Zhang Z, Xia T, Zhou S, Yang X, Lyu T, Wang L, Fang J, Wang Q, Dou H, Zhang H. High-Quality Chromosome-Level Genome Assembly of the Corsac Fox ( Vulpes corsac) Reveals Adaptation to Semiarid and Harsh Environments. Int J Mol Sci 2023; 24:ijms24119599. [PMID: 37298549 DOI: 10.3390/ijms24119599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The Corsac fox (Vulpes corsac) is a species of fox distributed in the arid prairie regions of Central and Northern Asia, with distinct adaptations to dry environments. Here, we applied Oxford-Nanopore sequencing and a chromosome structure capture technique to assemble the first Corsac fox genome, which was then assembled into chromosome fragments. The genome assembly has a total length of 2.2 Gb with a contig N50 of 41.62 Mb and a scaffold N50 of 132.2 Mb over 18 pseudo-chromosomal scaffolds. The genome contained approximately 32.67% of repeat sequences. A total of 20,511 protein-coding genes were predicted, of which 88.9% were functionally annotated. Phylogenetic analyses indicated a close relation to the Red fox (Vulpes vulpes) with an estimated divergence time of ~3.7 million years ago (MYA). We performed separate enrichment analyses of species-unique genes, the expanded and contracted gene families, and positively selected genes. The results suggest an enrichment of pathways related to protein synthesis and response and an evolutionary mechanism by which cells respond to protein denaturation in response to heat stress. The enrichment of pathways related to lipid and glucose metabolism, potentially preventing stress from dehydration, and positive selection of genes related to vision, as well as stress responses in harsh environments, may reveal adaptive evolutionary mechanisms in the Corsac fox under harsh drought conditions. Additional detection of positive selection for genes associated with gustatory receptors may reveal a unique desert diet strategy for the species. This high-quality genome provides a valuable resource for studying mammalian drought adaptation and evolution in the genus Vulpes.
Collapse
Affiliation(s)
- Zhihao Zhang
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Tian Xia
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Shengyang Zhou
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Xiufeng Yang
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Tianshu Lyu
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Lidong Wang
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Jiaohui Fang
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Qi Wang
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir 021000, China
| | - Huashan Dou
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir 021000, China
| | - Honghai Zhang
- School of Life Science, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
20
|
Lehrer MA, Hawkins JS. Plant height shapes hydraulic architecture but does not predict metaxylem area under drought in Sorghum bicolor. PLANT DIRECT 2023; 7:e498. [PMID: 37228332 PMCID: PMC10203038 DOI: 10.1002/pld3.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/19/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Climate change-induced variations in temperature and precipitation negatively impact plant growth and development. To ensure future food quality and availability, a critical need exists to identify morphological and physiological responses that confer drought tolerance in agro-economically important crop plants throughout all growth stages. In this study, two Sorghum bicolor accessions that differ in their pre-flowering responses to drought were exposed to repeated cycles of drying and rewatering. Morphological, physiological, and histological traits were measured across both juvenile and adult developmental stages. Our results demonstrate that plant height is not predictive of metaxylem area but does influence the hydraulic path and water management in an accession-specific manner. Further, when drought-responsive changes to the plant architecture are unable to compensate for the hydraulic risk associated with prolonged drought exposure, tight control of stomatal aperture is crucial to further mitigate hydraulic damage and prevent xylem embolism.
Collapse
Affiliation(s)
- Melissa A. Lehrer
- Department of BiologyWest Virginia UniversityMorgantownWest VirginiaUSA
- Department of Ecosystem Science and ManagementThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | |
Collapse
|
21
|
Wu J, Wei Z, Zhao W, Zhang Z, Chen D, Zhang H, Liu X. Transcriptome Analysis of the Salt-Treated Actinidia deliciosa (A. Chev.) C. F. Liang and A. R. Ferguson Plantlets. Curr Issues Mol Biol 2023; 45:3772-3786. [PMID: 37232712 DOI: 10.3390/cimb45050243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
The area of saline land in the world is quite large, and there is broad room for its development and usage. 'Xuxiang' is an Actinidia deliciosa variety that is tolerant to salt and can be planted in an area of light-saline land, and has good comprehensive characteristics and high economic value. However, the molecular mechanism of salt tolerance is unknown at present. To understand the molecular mechanism of salt tolerance, the leaves of A. deliciosa 'Xuxiang' were used as explants to establish a sterile tissue culture system, and plantlets were obtained using this system. One percent concentration (w/v) of sodium chloride (NaCl) was employed to treat the young plantlets cultured in Murashige and Skoog (MS) medium, then RNA-seq was used for transcriptome analysis. The results showed that the genes related to salt stress in the phenylpropanoid biosynthesis pathway and the anabolism of trehalose and maltose pathways were up-regulated; however, those genes in the plant hormone signal transduction and metabolic pathways of starch, sucrose, glucose, and fructose were down-regulated after salt treatment. The expression levels of ten genes that were up-regulated and down-regulated in these pathways were confirmed by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. The salt tolerance of A. deliciosa might be related to the expression level changes in the genes in the pathways of plant hormone signal transduction, phenylpropanoid biosynthesis, and starch, sucrose, glucose, and fructose metabolism. The increased expression levels of the genes encoding alpha-trehalose-phosphate synthase, trehalose-phosphatase, alpha-amylase, beta-amylase, feruloyl-CoA 6-hydroxylase, ferulate 5-hydroxylase, and coniferyl-alcohol glucosyl transferase might be vital to the salt stress response of the young A. deliciosa plants.
Collapse
Affiliation(s)
- Jiexin Wu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Zhuo Wei
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Wenjuan Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Zhiming Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Daming Chen
- Research Institute of Agriculture Ecological in Hot Areas, Yunnan Academy of Agricultural Science, Yuanmou 651300, China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xiaozhen Liu
- Research Institute of Agriculture Ecological in Hot Areas, Yunnan Academy of Agricultural Science, Yuanmou 651300, China
| |
Collapse
|
22
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
23
|
Petrik P, Petek-Petrik A, Kurjak D, Mukarram M, Klein T, Gömöry D, Střelcová K, Frýdl J, Konôpková A. Interannual adjustments in stomatal and leaf morphological traits of European beech (Fagus sylvatica L.) demonstrate its climate change acclimation potential. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1287-1296. [PMID: 35238138 DOI: 10.1111/plb.13401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The current projections of climate change might exceed the ability of European forest trees to adapt to upcoming environmental conditions. However, stomatal and leaf morphological traits could greatly influence the acclimation potential of forest tree species subjected to global warming, including the single most important forestry species in Europe, European beech. We analysed stomatal (guard cell length, stomatal density and potential conductance index) and leaf (leaf area, leaf dry weight and leaf mass per area) morphological traits of ten provenances from two provenance trials with contrasting climates between 2016 and 2020. The impact of meteorological conditions of the current and preceding year on stomatal and leaf traits was tested by linear and quadratic regressions. Ecodistance was used to capture the impact of adaptation after the transfer of provenances to new environments. Interactions of trial-provenance and trial-year factors were significant for all measured traits. Guard cell length was lowest and stomatal density was highest across beech provenances in the driest year, 2018. Adaptation was also reflected in a significant relationship between aridity ecodistance and measured traits. Moreover, the meteorological conditions of the preceding year affected the interannual variability of stomatal and leaf traits more than the meteorological conditions of the spring of the current year, suggesting the existence of plant stress memory. High intraspecific variability of stomatal and leaf traits controlled by the interaction of adaptation, acclimation and plant memory suggests a high acclimation potential of European beech provenances under future conditions of global climate change.
Collapse
Affiliation(s)
- P Petrik
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - A Petek-Petrik
- Department of Vegetation Ecology, Institute of Botany CAS, Brno, Czech Republic
| | - D Kurjak
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M Mukarram
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - T Klein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - D Gömöry
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - K Střelcová
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - J Frýdl
- Forestry and Game Management Research Institute, Jíloviště, Czech Republic
| | - A Konôpková
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
24
|
Transcriptome Profiling of Stem-Differentiating Xylem in Response to Abiotic Stresses Based on Hybrid Sequencing in Cunninghamia lanceolata. Int J Mol Sci 2022; 23:ijms232213986. [PMID: 36430463 PMCID: PMC9695776 DOI: 10.3390/ijms232213986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/22/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Cunninghamia lanceolata (C. lanceolata) belongs to Gymnospermae, which are fast-growing and have desirable wood properties. However, C. lanceolata's stress resistance is little understood. To unravel the physiological and molecular regulation mechanisms under environmental stresses in the typical gymnosperm species of C. lanceolata, three-year-old plants were exposed to simulated drought stress (polyethylene glycol 8000), salicylic acid, and cold treatment at 4 °C for 8 h, 32 h, and 56 h, respectively. Regarding the physiological traits, we observed a decreased protein content and increased peroxidase upon salicylic acid and polyethylene glycol treatment. Superoxide dismutase activity either decreased or increased at first and then returned to normal under the stresses. Regarding the molecular regulation, we used both nanopore direct RNA sequencing and short-read sequencing to reveal a total of 5646 differentially expressed genes in response to different stresses, of which most had functions in lignin catabolism, pectin catabolism, and xylan metabolism, indicating that the development of stem-differentiating xylem was affected upon stress treatment. Finally, we identified a total of 51 AP2/ERF, 29 NAC, and 37 WRKY transcript factors in C. lanceolata. The expression of most of the NAC TFs increased under cold stress, and the expression of most of the WRKY TFs increased under cold and SA stress. These results revealed the transcriptomics responses in C. lanceolata to short-term stresses under this study's experimental conditions and provide preliminary clues about stem-differentiating xylem changes associated with different stresses.
Collapse
|
25
|
Sintaha M, Man CK, Yung WS, Duan S, Li MW, Lam HM. Drought Stress Priming Improved the Drought Tolerance of Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:2954. [PMID: 36365408 PMCID: PMC9653977 DOI: 10.3390/plants11212954] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The capability of a plant to protect itself from stress-related damages is termed "adaptability" and the phenomenon of showing better performance in subsequent stress is termed "stress memory". While drought is one of the most serious disasters to result from climate change, the current understanding of drought stress priming in soybean is still inadequate for effective crop improvement. To fill this gap, in this study, the drought memory response was evaluated in cultivated soybean (Glycine max). To determine if a priming stress prior to a drought stress would be beneficial to the survival of soybean, plants were divided into three treatment groups: the unprimed group receiving one cycle of stress (1S), the primed group receiving two cycles of stress (2S), and the unstressed control group not subjected to any stress (US). When compared with the unprimed plants, priming led to a reduction of drought stress index (DSI) by 3, resulting in more than 14% increase in surviving leaves, more than 13% increase in leaf water content, slight increase in shoot water content and a slower rate of loss of water from the detached leaves. Primed plants had less than 60% the transpiration rate and stomatal conductance compared to the unprimed plants, accompanied by a slight drop in photosynthesis rate, and about a 30% increase in water usage efficiency (WUE). Priming also increased the root-to-shoot ratio, potentially improving water uptake. Selected genes encoding late embryogenesis abundant (LEA) proteins and MYB, NAC and PP2C domain-containing transcription factors were shown to be highly induced in primed plants compared to the unprimed group. In conclusion, priming significantly improved the drought stress response in soybean during recurrent drought, partially through the maintenance of water status and stronger expression of stress related genes. In sum, we have identified key physiological parameters for soybean which may be used as indicators for future genetic study to identify the genetic element controlling the drought stress priming.
Collapse
Affiliation(s)
- Mariz Sintaha
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chun-Kuen Man
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wai-Shing Yung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shaowei Duan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Man-Wah Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
26
|
Nguyen NH, Vu NT, Cheong JJ. Transcriptional Stress Memory and Transgenerational Inheritance of Drought Tolerance in Plants. Int J Mol Sci 2022; 23:12918. [PMID: 36361708 PMCID: PMC9654142 DOI: 10.3390/ijms232112918] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2023] Open
Abstract
Plants respond to drought stress by producing abscisic acid, a chemical messenger that regulates gene expression and thereby expedites various physiological and cellular processes including the stomatal operation to mitigate stress and promote tolerance. To trigger or suppress gene transcription under drought stress conditions, the surrounding chromatin architecture must be converted between a repressive and active state by epigenetic remodeling, which is achieved by the dynamic interplay among DNA methylation, histone modifications, loop formation, and non-coding RNA generation. Plants can memorize chromatin status under drought conditions to enable them to deal with recurrent stress. Furthermore, drought tolerance acquired during plant growth can be transmitted to the next generation. The epigenetically modified chromatin architectures of memory genes under stressful conditions can be transmitted to newly developed cells by mitotic cell division, and to germline cells of offspring by overcoming the restraints on meiosis. In mammalian cells, the acquired memory state is completely erased and reset during meiosis. The mechanism by which plant cells overcome this resetting during meiosis to transmit memory is unclear. In this article, we review recent findings on the mechanism underlying transcriptional stress memory and the transgenerational inheritance of drought tolerance in plants.
Collapse
Affiliation(s)
- Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam
| | - Nam Tuan Vu
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
27
|
Niu Y, Zhang Q, Wang J, Li Y, Wang X, Bao Y. Vitamin E synthesis and response in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:994058. [PMID: 36186013 PMCID: PMC9515888 DOI: 10.3389/fpls.2022.994058] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Vitamin E, also known as tocochromanol, is a lipid-soluble antioxidant that can only be produced by photosynthetic organisms in nature. Vitamin E is not only essential in human diets, but also required for plant environment adaptions. To synthesize vitamin E, specific prenyl groups needs to be incorporated with homogentisate as the first step of reaction. After decades of studies, an almost complete roadmap has been revealed for tocochromanol biosynthesis pathway. However, chlorophyll-derived prenyl precursors for synthesizing tocochromanols are still a mystery. In recent years, by employing forward genetic screening and genome-wide-association approaches, significant achievements were acquired in studying vitamin E. In this review, by summarizing the recent progresses in vitamin E, we provide to date the most updated whole view of vitamin E biosynthesis pathway. Also, we discussed about the role of vitamin E in plants stress response and its potential as signaling molecules.
Collapse
Affiliation(s)
- Yue Niu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaojiao Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjie Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Bao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Hou N, Li C, He J, Liu Y, Yu S, Malnoy M, Mobeen Tahir M, Xu L, Ma F, Guan Q. MdMTA-mediated m 6 A modification enhances drought tolerance by promoting mRNA stability and translation efficiency of genes involved in lignin deposition and oxidative stress. THE NEW PHYTOLOGIST 2022; 234:1294-1314. [PMID: 35246985 DOI: 10.1111/nph.18069] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Although the N6 -methyladenosine (m6 A) modification is the most prevalent RNA modification in eukaryotes, the global m6 A modification landscape and its molecular regulatory mechanism in response to drought stress remain unclear. Transcriptome-wide m6 A methylome profiling revealed that m6 A is mainly enriched in the coding sequence and 3' untranslated region in response to drought stress in apple, by recognizing the plant-specific sequence motif UGUAH (H=A, U or C). We identified a catalytically active component of the m6 A methyltransferase complex, MdMTA. An in vitro methyl transfer assay, dot blot, LC-MS/MS and m6 A-sequencing (m6 A-seq) suggested that MdMTA is an m6 A writer and essential for m6 A mRNA modification. Further studies revealed that MdMTA is required for apple drought tolerance. m6 A-seq and RNA-seq analyses under drought conditions showed that MdMTA mediates m6 A modification and transcripts of mRNAs involved in oxidative stress and lignin deposition. Moreover, m6 A modification promotes mRNA stability and the translation efficiency of these genes in response to drought stress. Consistently, MdMTA enhances lignin deposition and scavenging of reactive oxygen species under drought conditions. Our results reveal the global involvement of m6 A modification in the drought response of perennial apple trees and illustrate its molecular mechanisms, thereby providing candidate genes for the breeding of stress-tolerant apple cultivars.
Collapse
Affiliation(s)
- Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Chaoshuo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Yu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Sisi Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach, San Michele all'Adige, 38010, Italy
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Lingfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi, 712100, China
| |
Collapse
|
29
|
Qureshi MK, Gawroński P, Munir S, Jindal S, Kerchev P. Hydrogen peroxide-induced stress acclimation in plants. Cell Mol Life Sci 2022; 79:129. [PMID: 35141765 PMCID: PMC11073338 DOI: 10.1007/s00018-022-04156-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Among all reactive oxygen species (ROS), hydrogen peroxide (H2O2) takes a central role in regulating plant development and responses to the environment. The diverse role of H2O2 is achieved through its compartmentalized synthesis, temporal control exerted by the antioxidant machinery, and ability to oxidize specific residues of target proteins. Here, we examine the role of H2O2 in stress acclimation beyond the well-studied transcriptional reprogramming, modulation of plant hormonal networks and long-distance signalling waves by highlighting its global impact on the transcriptional regulation and translational machinery.
Collapse
Affiliation(s)
- Muhammad Kamran Qureshi
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Sana Munir
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan road, Multan, 60800, Pakistan
| | - Sunita Jindal
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic.
| |
Collapse
|
30
|
Živanović B, Milić Komić S, Nikolić N, Mutavdžić D, Srećković T, Veljović Jovanović S, Prokić L. Differential Response of Two Tomato Genotypes, Wild Type cv. Ailsa Craig and Its ABA-Deficient Mutant flacca to Short-Termed Drought Cycles. PLANTS 2021; 10:plants10112308. [PMID: 34834671 PMCID: PMC8617711 DOI: 10.3390/plants10112308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023]
Abstract
Two tomato genotypes with constitutively different ABA level, flacca mutant and wild type of Ailsa Craig cv. (WT), were subjected to three repeated drought cycles, with the aim to reveal the role of the abscisic acid (ABA) threshold in developing drought tolerance. Differential responses to drought of two genotypes were obtained: more pronounced stomatal closure, ABA biosynthesis and proline accumulation in WT compared to the mutant were compensated by dry weight accumulation accompanied by transient redox disbalance in flacca. Fourier-transform infrared (FTIR) spectra analysis of isolated cell wall material and morphological parameter measurements on tomato leaves indicated changes in dry weight accumulation and carbon re-allocation to cell wall constituents in flacca, but not in WT. A higher proportion of cellulose, pectin and lignin in isolated cell walls from flacca leaves further increased with repeated drought cycles. Different ABA-dependent stomatal closure between drought cycles implies that acquisition of stomatal sensitivity may be a part of stress memory mechanism developed under given conditions. The regulatory role of ABA in the cell wall restructuring and growth regulation under low leaf potential was discussed with emphasis on the beneficial effects of drought priming in developing differential defense strategies against drought.
Collapse
Affiliation(s)
- Bojana Živanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Sonja Milić Komić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Nenad Nikolić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Dragosav Mutavdžić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Tatjana Srećković
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Sonja Veljović Jovanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
- Correspondence: (S.V.J.); (L.P.)
| | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
- Correspondence: (S.V.J.); (L.P.)
| |
Collapse
|
31
|
Li H, Chen J, Zhao Q, Han Y, Li L, Sun C, Wang K, Wang Y, Zhao M, Chen P, Lei J, Wang Y, Zhang M. Basic leucine zipper (bZIP) transcription factor genes and their responses to drought stress in ginseng, Panax ginseng C.A. Meyer. BMC Genomics 2021; 22:316. [PMID: 33932982 PMCID: PMC8088647 DOI: 10.1186/s12864-021-07624-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ginseng is an important medicinal herb in Asia and Northern America. The basic leucine zipper (bZIP) transcription factor genes play important roles in many biological processes and plant responses to abiotic and biotic stresses, such as drought stress. Nevertheless, the genes remain unknown in ginseng. RESULTS Here, we report 91 bZIP genes identified from ginseng, designated PgbZIP genes. These PgbZIP genes were alternatively spliced into 273 transcripts. Phylogenetic analysis grouped the PgbZIP genes into ten groups, including A, B, C, D, E, F, G, H, I and S. Gene Ontology (GO) categorized the PgbZIP genes into five functional subcategories, suggesting that they have diversified in functionality, even though their putative proteins share a number of conserved motifs. These 273 PgbZIP transcripts expressed differentially across 14 tissues, the roots of different ages and the roots of different genotypes. However, the transcripts of the genes expressed coordinately and were more likely to form a co-expression network. Furthermore, we studied the responses of the PgbZIP genes to drought stress in ginseng using a random selection of five PgbZIP genes, including PgbZIP25, PgbZIP38, PgbZIP39, PgbZIP53 and PgbZIP54. The results showed that all five PgbZIP genes responded to drought stress in ginseng, indicating that the PgbZIP genes play important roles in ginseng responses to drought stress. CONCLUSIONS These results provide knowledge and gene resources for deeper functional analysis of the PgbZIP genes and molecular tools for enhanced drought tolerance breeding in ginseng.
Collapse
Affiliation(s)
- Hongjie Li
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Jing Chen
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Qi Zhao
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Yilai Han
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Li Li
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Chunyu Sun
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China.,Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China.,Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Yanfang Wang
- Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China.,College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China.,Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Ping Chen
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Jun Lei
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China. .,Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China. .,Jilin Engineering Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin, China.
| |
Collapse
|
32
|
Jung C, Nguyen NH, Cheong JJ. Transcriptional Regulation of Protein Phosphatase 2C Genes to Modulate Abscisic Acid Signaling. Int J Mol Sci 2020; 21:ijms21249517. [PMID: 33327661 PMCID: PMC7765119 DOI: 10.3390/ijms21249517] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 01/04/2023] Open
Abstract
The plant hormone abscisic acid (ABA) triggers cellular tolerance responses to osmotic stress caused by drought and salinity. ABA controls the turgor pressure of guard cells in the plant epidermis, leading to stomatal closure to minimize water loss. However, stomatal apertures open to uptake CO2 for photosynthesis even under stress conditions. ABA modulates its signaling pathway via negative feedback regulation to maintain plant homeostasis. In the nuclei of guard cells, the clade A type 2C protein phosphatases (PP2Cs) counteract SnRK2 kinases by physical interaction, and thereby inhibit activation of the transcription factors that mediate ABA-responsive gene expression. Under osmotic stress conditions, PP2Cs bind to soluble ABA receptors to capture ABA and release active SnRK2s. Thus, PP2Cs function as a switch at the center of the ABA signaling network. ABA induces the expression of genes encoding repressors or activators of PP2C gene transcription. These regulators mediate the conversion of PP2C chromatins from a repressive to an active state for gene transcription. The stress-induced chromatin remodeling states of ABA-responsive genes could be memorized and transmitted to plant progeny; i.e., transgenerational epigenetic inheritance. This review focuses on the mechanism by which PP2C gene transcription modulates ABA signaling.
Collapse
Affiliation(s)
- Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology, Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea;
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam;
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-4888; Fax: +82-2-873-5260
| |
Collapse
|
33
|
Kim YK, Chae S, Oh NI, Nguyen NH, Cheong JJ. Recurrent Drought Conditions Enhance the Induction of Drought Stress Memory Genes in Glycine max L. Front Genet 2020; 11:576086. [PMID: 33193691 PMCID: PMC7581891 DOI: 10.3389/fgene.2020.576086] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023] Open
Abstract
Plants remember what they have experienced and are thereby able to confront repeated stresses more promptly and strongly. A subset of the drought responsive genes, called stress memory genes, displayed greatly elevated levels under recurrent drought conditions. To screen for a set of drought stress memory genes in soybean (Glycine max L.), we designed a 180K DNA chip comprising 60-bp probes synthesized in situ to examine 55,589 loci. Through microarray analysis using the DNA chip, we identified 2,162 and 2,385 genes with more than fourfold increases or decreases in transcript levels, respectively, under initial (first) drought stress conditions, when compared with the non-treated control. The transcript levels of the drought-responsive genes returned to basal levels during recovery (watered) states, and 392 and 613 genes displayed more than fourfold elevated or reduced levels, respectively, under subsequent (second) drought conditions, when compared to those observed under the first drought stress conditions. Gene Ontology and MapMan analyses classified the drought-induced memory genes exhibiting elevated levels of transcripts into several functional categories, including those involved in tolerance responses to abiotic stresses, which encode transcription factors, protein phosphatase 2Cs, and late embryogenesis abundant proteins. The drought-repressed memory genes exhibiting reduced levels of transcripts were classified into categories including photosynthesis and primary metabolism. Co-expression network analysis revealed that the soybean drought-induced and -repressed memory genes were equivalent to 172 and 311 Arabidopsis genes, respectively. The soybean drought stress memory genes include genes involved in the dehydration memory responses of Arabidopsis.
Collapse
Affiliation(s)
- Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, South Korea
| | - Songhwa Chae
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, South Korea
| | - Nam-Iee Oh
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Nguyen Hoai Nguyen
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
34
|
Kim YK, Chae S, Oh NI, Nguyen NH, Cheong JJ. Recurrent Drought Conditions Enhance the Induction of Drought Stress Memory Genes in Glycine max L. Front Genet 2020. [PMID: 33193691 DOI: 10.3389/fgene.2020.576086/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Plants remember what they have experienced and are thereby able to confront repeated stresses more promptly and strongly. A subset of the drought responsive genes, called stress memory genes, displayed greatly elevated levels under recurrent drought conditions. To screen for a set of drought stress memory genes in soybean (Glycine max L.), we designed a 180K DNA chip comprising 60-bp probes synthesized in situ to examine 55,589 loci. Through microarray analysis using the DNA chip, we identified 2,162 and 2,385 genes with more than fourfold increases or decreases in transcript levels, respectively, under initial (first) drought stress conditions, when compared with the non-treated control. The transcript levels of the drought-responsive genes returned to basal levels during recovery (watered) states, and 392 and 613 genes displayed more than fourfold elevated or reduced levels, respectively, under subsequent (second) drought conditions, when compared to those observed under the first drought stress conditions. Gene Ontology and MapMan analyses classified the drought-induced memory genes exhibiting elevated levels of transcripts into several functional categories, including those involved in tolerance responses to abiotic stresses, which encode transcription factors, protein phosphatase 2Cs, and late embryogenesis abundant proteins. The drought-repressed memory genes exhibiting reduced levels of transcripts were classified into categories including photosynthesis and primary metabolism. Co-expression network analysis revealed that the soybean drought-induced and -repressed memory genes were equivalent to 172 and 311 Arabidopsis genes, respectively. The soybean drought stress memory genes include genes involved in the dehydration memory responses of Arabidopsis.
Collapse
Affiliation(s)
- Yeon-Ki Kim
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, South Korea
| | - Songhwa Chae
- Department of Biosciences and Bioinformatics, Myongji University, Yongin, South Korea
| | - Nam-Iee Oh
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Nguyen Hoai Nguyen
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|