1
|
Roy R, Das A, Ganguly D, Chakraborty P, Paul P, Das S, Maity A, Malik M, Tribedi P. Cuminaldehyde synergistically enhances the antimicrobial and antibiofilm potential of gentamicin: A direction towards an effective combination for the control of biofilm-linked threats of Staphylococcus aureus. Braz J Microbiol 2025:10.1007/s42770-025-01628-7. [PMID: 39934529 DOI: 10.1007/s42770-025-01628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Staphylococcus aureus, a Gram-positive, coccus-shaped bacterium often causes several infections on human hosts by exploiting biofilm. This current work investigates a potential strategy to manage the threats of biofilm-linked infections by embracing a combinatorial approach involving cuminaldehyde (phytochemical) and gentamicin (antibiotic). Despite showing antimicrobial properties individually, cuminaldehyde and gentamicin could exhibit enhanced antimicrobial potential when used together against S. aureus. The fractional inhibitory concentration index (FICI = 0.36) suggested that the selected compounds (cuminaldehyde and gentamicin) offered synergistic interaction while showing antimicrobial potential against the same organism. A series of experiments indicated that the selected compounds (cuminaldehyde and gentamicin) showed substantial antibiofilm potential against S. aureus when combined. The increased antibiofilm potential was linked to the accumulation of reactive oxygen species (ROS) and increased cell membrane permeability. Additionally, the combination of the selected compounds (cuminaldehyde and gentamicin) also impeded the cell surface hydrophobicity of S. aureus, aiding in the prevention of biofilm formation. The present study also showed that combining the mentioned compounds (cuminaldehyde and gentamicin) notably reduced the secretion of several virulence factors from S. aureus. Furthermore, the current research showed that these compounds (cuminaldehyde and gentamicin) could also exhibit antibiofilm potential against the clinical strains of Methicillin-Resistant S. aureus (MRSA). Taken together, this innovative approach not only enhances the potential of existing standard antibiotics but also opens up new therapeutic possibilities for combating biofilm-related infections.
Collapse
Affiliation(s)
- Ritwik Roy
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Awantika Das
- Microbiology Department, Suraksha Diagnostic Pvt. Ltd., Newtown, Kolkata, West Bengal, 700156, India
| | - Debolina Ganguly
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Poulomi Chakraborty
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Payel Paul
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Sharmistha Das
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Alakesh Maity
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Moumita Malik
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Prosun Tribedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| |
Collapse
|
2
|
Hyderi Z, Nagarajan H, Priya SJ, Jeyakanthan J, Veera Ravi A. Exploring the antimicrobial potential of 4,5,7-trihydroxyflavanone (THF) against vancomycin-resistant Enterococcus gallinarum infections: in vitro and in silico investigations. J Biomol Struct Dyn 2025; 43:1471-1485. [PMID: 38079308 DOI: 10.1080/07391102.2023.2291833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2025]
Abstract
Enterococcus gallinarum and other Enterococcus species commonly inhabit the human gastrointestinal tract. While the pathogenicity of Enterococcus gallinarum remains incompletely understood, its infections are alarmingly severein humans, as evidenced by numerous cases. Formerly, Vancomycin was the preferred drug, but recent findings indicate that clinical isolates of Enterococcus gallinarum are resistant, leading to the emergence of vancomycin-resistant enterococci (VRE) strains. The escalation of drug resistance is often linked to overexpressed virulence factors, some of which are implicated in biofilm formation in Enterococcus infections. Henceforth, this research investigates the potential of phytocompounds to combat E. gallinarum infection, employing both in vitro and in silico methodologies. In vitro techniques were employed to assess the efficacy of various phytocompounds, ultimately identifying 4,5,7-trihydroxyflavanone (THF) as particularly effective in inhibiting microbial growth. THF displayed over 80% antibacterial activity at 200 µg/ml against E. gallinarum. Subsequent qualitative and quantitative hemolysin assays implicated hemolysin as a target of THF. Molecular docking analysis of THF and Hemolysin A revealed a strong binding affinity. Notably, residues Asn18, Asp85, and His199 formed hydrogen bonds, while His22 and His86 were involved in robust π-π stacking and π-cation interactions with THF. Overall, this study highlights THF's potential in combating E. gallinarum infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zeeshan Hyderi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Hemavathy Nagarajan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - S Jaya Priya
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Jeyaraman Jeyakanthan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Arumugam Veera Ravi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, Alagappa University, Karaikudi, India
| |
Collapse
|
3
|
Roy R, Paul P, Chakraborty P, Malik M, Das S, Chatterjee S, Maity A, Dasgupta M, Sarker RK, Sarkar S, Das Gupta A, Tribedi P. Cuminaldehyde and Tobramycin Forestall the Biofilm Threats of Staphylococcus aureus: A Combinatorial Strategy to Evade the Biofilm Challenges. Appl Biochem Biotechnol 2024; 196:7588-7613. [PMID: 38526664 DOI: 10.1007/s12010-024-04914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Staphylococcus aureus, an opportunistic Gram-positive pathogen, is known for causing various infections in humans, primarily by forming biofilms. The biofilm-induced antibiotic resistance has been considered a significant medical threat. Combinatorial therapy has been considered a reliable approach to combat antibiotic resistance by using multiple antimicrobial agents simultaneously, targeting bacteria through different mechanisms of action. To this end, we examined the effects of two molecules, cuminaldehyde (a natural compound) and tobramycin (an antibiotic), individually and in combination, against staphylococcal biofilm. Our experimental observations demonstrated that cuminaldehyde (20 μg/mL) in combination with tobramycin (0.05 μg/mL) exhibited efficient reduction in biofilm formation compared to their individual treatments (p < 0.01). Additionally, the combination showed an additive interaction (fractional inhibitory concentration value 0.66) against S. aureus. Further analysis revealed that the effective combination accelerated the buildup of reactive oxygen species (ROS) and increased the membrane permeability of the bacteria. Our findings also specified that the cuminaldehyde in combination with tobramycin efficiently reduced biofilm-associated pathogenicity factors of S. aureus, including fibrinogen clumping ability, hemolysis property, and staphyloxanthin production. The selected concentrations of tobramycin and cuminaldehyde demonstrated promising activity against the biofilm development of S. aureus on catheter models without exerting antimicrobial effects. In conclusion, the combination of tobramycin and cuminaldehyde presented a successful strategy for combating staphylococcal biofilm-related healthcare threats. This combinatorial approach holds the potential for controlling biofilm-associated infections caused by S. aureus.
Collapse
Affiliation(s)
- Ritwik Roy
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Payel Paul
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Poulomi Chakraborty
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Moumita Malik
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sharmistha Das
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sudipta Chatterjee
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Alakesh Maity
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Monikankana Dasgupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Ranojit Kumar Sarker
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sarita Sarkar
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Anirban Das Gupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Prosun Tribedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| |
Collapse
|
4
|
Balogh H, Anthony AK, Stempel R, Vossen L, Federico VA, Valenzano GZ, Blackledge MS, Miller HB. Novel anti-virulence compounds disrupt exotoxin expression in MRSA. Microbiol Spectr 2024; 12:e0146424. [PMID: 39431895 PMCID: PMC11619317 DOI: 10.1128/spectrum.01464-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Hemolysins are lytic exotoxins expressed in most strains of S. aureus, but hemolytic activity varies between strains. We have previously reported several novel anti-virulence compounds that disrupt the S. aureus transcriptome, including hemolysin gene expression. This report delves further into our two lead compounds, loratadine and a structurally related brominated carbazole, and their effects on hemolysin production in methicillin-resistant S. aureus (MRSA). To gain understanding into how these compounds affect hemolysis, we analyzed these exotoxins at the DNA, RNA, and protein level after in vitro treatment. While lysis of red blood cells varied between strains, DNA sequence variation did not account for it. We hypothesized that our compounds would modulate gene expression of multiple hemolysins in two hospital-acquired strains of MRSA, both with staphylococcal cassette chromosome mec (SCCmec) type II. RNA-seq analysis of differential gene expression in untreated and compound-treated cultures revealed hundreds of differentially expressed genes, with a significant enrichment in genes involved in hemolysis. The brominated carbazole and loratadine both displayed the ability to reduce hemolysis in strain 43300 but displayed differential activity in strain USA100. These results corroborate gene expression studies as well as western blots of alpha hemolysin. Together, this work suggests that small molecules may alter exotoxin production in MRSA but that the directionality and/or magnitude of the difference are likely strain dependent.IMPORTANCEMethicillin-resistant S. aureus (MRSA) is a deadly human pathogen. In addition to evading antibiotics, these bacteria produce a wide range of toxins that negatively affect the host. Our work aims to identify and characterize novel compounds that can decrease the pathogenic effects of MRSA. Two lead compounds investigated in this study triggered changes in the production of multiple toxins. These changes were specific to the strain of MRSA investigated. Specifically, this work sheds light on novel compounds that decrease MRSA's ability to lyse host red blood cells. Importantly, it also highlights the importance of examining strain-specific differences in response to therapeutic interventions that could ultimately affect clinical outcomes.
Collapse
Affiliation(s)
- Halie Balogh
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Amaiya K. Anthony
- Department of Biology, High Point University, High Point, North Carolina, USA
| | - Robin Stempel
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Lauren Vossen
- Department of Biology, High Point University, High Point, North Carolina, USA
| | | | | | | | - Heather B. Miller
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| |
Collapse
|
5
|
Nguyen A, Roy JJS, Kim JH, Yun KH, Lee W, Kim KK, Kim T, Chaurasia AK. Repeated Exposure of Vancomycin to Vancomycin-Susceptible Staphylococcus aureus (VSSA) Parent Emerged VISA and VRSA Strains with Enhanced Virulence Potentials. J Microbiol 2024; 62:535-553. [PMID: 38814539 DOI: 10.1007/s12275-024-00139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/31/2024]
Abstract
The emergence of resistance against the last-resort antibiotic vancomycin in staphylococcal infections is a serious concern for human health. Although various drug-resistant pathogens of diverse genetic backgrounds show higher virulence potential, the underlying mechanism behind this is not yet clear due to variability in their genetic dispositions. In this study, we investigated the correlation between resistance and virulence in adaptively evolved isogenic strains. The vancomycin-susceptible Staphylococcus aureus USA300 was exposed to various concentrations of vancomycin repeatedly as a mimic of the clinical regimen to obtain mutation(s)-accrued-clonally-selected (MACS) strains. The phenotypic analyses followed by expression of the representative genes responsible for virulence and resistance of MACS strains were investigated. MACS strains obtained under 2 and 8 µg/ml vancomycin, named Van2 and Van8, respectively; showed enhanced vancomycin minimal inhibitory concentrations (MIC) to 4 and 16 µg/ml, respectively. The cell adhesion and invasion of MACS strains increased in proportion to their MICs. The correlation between resistance and virulence potential was partially explained by the differential expression of genes known to be involved in both virulence and resistance in MACS strains compared to parent S. aureus USA300. Repeated treatment of vancomycin against vancomycin-susceptible S. aureus (VSSA) leads to the emergence of vancomycin-resistant strains with variable levels of enhanced virulence potentials.
Collapse
Affiliation(s)
- An Nguyen
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - J Jean Sophy Roy
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji-Hoon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyung-Hee Yun
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Truc Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Akhilesh Kumar Chaurasia
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
6
|
Balogh H, Anthony A, Stempel R, Vossen L, Federico VA, Valenzano GZ, Blackledge MS, Miller HB. Novel Anti-virulence Compounds Disrupt Exotoxin Expression in MRSA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594412. [PMID: 38798408 PMCID: PMC11118326 DOI: 10.1101/2024.05.15.594412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Hemolysins are lytic exotoxins expressed in most strains of S. aureus , but hemolytic activity varies between strains. We have previously reported several novel anti-virulence compounds that disrupt the S. aureus transcriptome, including hemolysin gene expression. This report delves further into our two lead compounds, loratadine and a structurally related brominated carbazole, and their effects on hemolysin production in MRSA. To gain understanding into how these compounds affect hemolysis, we analyzed these exotoxins at the DNA, RNA, and protein level after in vitro treatment. While lysis of red blood cells varied between strains, DNA sequence variation did not account for it. We hypothesized that our compounds would modulate gene expression of multiple hemolysins in a laboratory strain and a clinically relevant hospital-acquired strain of MRSA, both with SCC mec type II. RNA-seq analysis of differential gene expression in untreated and compound-treated cultures revealed hundreds of differentially expressed genes, with a significant enrichment in genes involved in hemolysis. The brominated carbazole and loratadine both displayed the ability to reduce hemolysis in the laboratory strain, but displayed differential activity in a hospital-acquired strain. These results corroborate gene expression studies as well as western blots of alpha hemolysin. Together, this work suggests that small molecules may alter exotoxin production in MRSA, but that the directionality and/or magnitude of the difference is likely strain-dependent.
Collapse
|
7
|
Das S, Malik M, Dastidar DG, Roy R, Paul P, Sarkar S, Chakraborty P, Maity A, Dasgupta M, Gupta AD, Chatterjee S, Sarker RK, Maiti D, Tribedi P. Piperine, a phytochemical prevents the biofilm city of methicillin-resistant Staphylococcus aureus: A biochemical approach to understand the underlying mechanism. Microb Pathog 2024; 189:106601. [PMID: 38423404 DOI: 10.1016/j.micpath.2024.106601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a drug-resistant human pathogen causes several nosocomial as well as community-acquired infections involving biofilm machinery. Hence, it has gained a wide interest within the scientific community to impede biofilm-induced MRSA-associated health complications. The current study focuses on the utilization of a natural bioactive compound called piperine to control the biofilm development of MRSA. Quantitative assessments like crystal violet, total protein recovery, and fluorescein-di-acetate (FDA) hydrolysis assays, demonstrated that piperine (8 and 16 μg/mL) could effectively compromise the biofilm formation of MRSA. Light and scanning electron microscopic image analysis confirmed the same. Further investigation revealed that piperine could reduce extracellular polysaccharide production by down-regulating the expression of icaA gene. Besides, piperine could reduce the cell-surface hydrophobicity of MRSA, a crucial factor of biofilm formation. Moreover, the introduction of piperine could interfere with microbial motility indicating the interaction of piperine with the quorum-sensing components. A molecular dynamics study showed a stable binding between piperine and AgrA protein (regulator of quorum sensing) suggesting the possible meddling of piperine in quorum-sensing of MRSA. Additionally, the exposure to piperine led to the accumulation of intracellular reactive oxygen species (ROS) and potentially heightened cell membrane permeability in inhibiting microbial biofilm formation. Besides, piperine could reduce the secretion of diverse virulence factors from MRSA. Further exploration revealed that piperine interacted with extracellular DNA (e-DNA), causing disintegration by weakening the biofilm architecture. Conclusively, this study suggests that piperine could be a potential antibiofilm molecule against MRSA-associated biofilm infections.
Collapse
Affiliation(s)
- Sharmistha Das
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Moumita Malik
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Debabrata Ghosh Dastidar
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F Nilgunj Road, Panihati, Kolkata, West Bengal, 700114, India.
| | - Ritwik Roy
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Payel Paul
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Sarita Sarkar
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Poulomi Chakraborty
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Alakesh Maity
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Monikankana Dasgupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Anirban Das Gupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Sudipta Chatterjee
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Ranojit Kumar Sarker
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| | - Debasish Maiti
- Department of Human Physiology, Tripura University, Suryamaninagar, Agartala, Tripura, 799022, India.
| | - Prosun Tribedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| |
Collapse
|
8
|
Jiang H, Chen J, Du X, Feng D, Zhang Y, Qi J, He Y, An Z, Lu Y, Ge C, Wang Y. Unveiling Synergistic Potency: Exploring Butyrolactone I to Enhance Gentamicin Efficacy against Methicillin-Resistant Staphylococcus aureus (MRSA) Strain USA300. ACS Infect Dis 2024; 10:196-214. [PMID: 38127778 DOI: 10.1021/acsinfecdis.3c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Staphylococcus aureus, including MRSA strains, poses significant health risks, imposing a significant disease burden and mortality. We investigate butyrolactone I (BL-1), a marine-derived metabolite from Aspergillus terreus, enhancing aminoglycoside efficacy against MRSA. A promising synergy is observed with BL-1 and various aminoglycosides, marked by low fractional inhibitory concentration indexes (FICIs < 0.5). Comprehensive studies utilizing USA300 MRSA and gentamicin reveal a remarkable one-fourth reduction in minimum inhibitory concentration (MIC) with 20 μg/mL BL-1. A relative abundance assay indicates that BL-1 enhances gentamicin uptake while restraining extracellular presence, involving intricate transmembrane signaling and molecular interactions. RNA-Seq analysis yielded an unexpected revelation, unveiling a distinctive gene expression profile and distinguishing it from other treatment approaches. Furthermore, meticulous analyses validated the extensive perturbations induced by BL-1 exposure, affecting diverse biological functions, encompassing glycolysis, amino acid metabolisms, substance transmembrane transport, and virulence generation. These valuable insights inspired further confirmation of bacterial virulence and the modulation of membrane permeability resulting from BL-1 treatment. Phenotypic validations corroborated our observations, revealing reduced membrane permeability and hemolytic toxicity, albeit demanding a deeper comprehension of the intricate interplay underlying these actions. Our study contributes crucial mechanistic insights to the development of therapeutic strategies against this notorious pathogen and the judicious employment of aminoglycosides. Additionally, it elucidates marine-derived metabolites' ecological and functional roles, exemplified by fungal quorum sensing signals. These compounds could give producers a competitive edge, inhibiting microorganism proliferation and suggesting novel approaches for combating resistant pathogens.
Collapse
Affiliation(s)
- Hanxiang Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaqin Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Xinyang Du
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Dong Feng
- Nanjing Southern Pharmaceutical Technology Co., Ltd., Nanjing 211100, China
| | - Yanjun Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jiangfeng Qi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yajing He
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Zhilong An
- Nanjing Southern Pharmaceutical Technology Co., Ltd., Nanjing 211100, China
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Chun Ge
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Department of Clinical Pharmacy, School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
9
|
Liu JY, Jia JJ, Liu M, Duan H, Hu ML, Liu C, Xue RY, Jin ZL, Zhang SS, Li GC, Feng R, Jin Z, Li HB, He L. A novel indolylbenzoquinone compound HL-J6 suppresses biofilm formation and α-toxin secretion in methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 2023; 62:106972. [PMID: 37741585 DOI: 10.1016/j.ijantimicag.2023.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Eradication of methicillin-resistant Staphylococcus aureus (MRSA) is challenging due to multi-drug resistance of strains and biofilm formation, the latter of which is an important barrier to the penetration of antibiotics and host defences. As such, there is an urgent need to discover and develop novel agents to fight MRSA-associated infection. In this study, HL-J6, a novel indolylbenzoquinone compound, was shown to inhibit S. aureus strains, with a minimum inhibitory concentration against MRSA252 of 2 µg/mL. Moreover, HL-J6 exhibited potent antibiofilm activity in vitro and was able to kill bacteria in biofilm. In the mouse models of wound infection, HL-J6 treatment reduced the MRSA load significantly and inhibited biofilm formation on the wounds. The potent targets of its antibiofilm activity were explored by real-time reverse transcriptase polymerase chain rection, which indicated that HL-J6 downregulated the transcription levels of sarA, atlAE and icaADBC. Moreover, Western blot results showed that HL-J6 reduced the secretion level of α-toxin, a major virulence factor. These findings indicate that HL-J6 is a promising lead compound for the development of novel drugs against MRSA biofilm infections.
Collapse
Affiliation(s)
- Jing-Yi Liu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing-Jing Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs and Sichuan Research Centre for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Ming Liu
- Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hao Duan
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China; School of Clinical Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Ming-Li Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs and Sichuan Research Centre for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Chang Liu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ruo-Yi Xue
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zi-Li Jin
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shan-Shan Zhang
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China; School of Clinical Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Guo-Cheng Li
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rang Feng
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhe Jin
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hai-Bo Li
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Ling He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs and Sichuan Research Centre for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Jaramillo-Jaramillo AS, Coulson TJD, Hofacre C, Jones M, O'Neill L, Nguyen N, Labbe A. Effect of in-water administration of quorum system inhibitors in broilers' productive performance and intestinal microbiome in a mild necrotic enteritis challenge. Avian Pathol 2023; 52:309-322. [PMID: 37485826 DOI: 10.1080/03079457.2023.2224260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023]
Abstract
The poultry industry has been facing the impact of necrotic enteritis (NE), a disease caused by the bacterium Clostridium perfringens producing the haemolytic toxin NetB. NE severity may vary from mild clinical to prominent enteric signs causing reduced growth rates and affecting feed conversion ratio. NetB production is controlled by the Agr-like quorum-sensing (QS) system, which coordinates virulence gene expression in response to bacterial cell density. In this study, the peptide-containing cell-free spent media (CFSM) from Enterococcus faecium was tested in NE challenged broilers in two battery cage and one floor pen studies. Results showed a significant reduction of NE mortality. Metagenomic sequencing of the jejunum microbiome revealed no impact of the CFSM on the microbial community, and growth of C. perfringens was unaffected by CFSM in vitro. The expression of QS-controlled virulence genes netB, plc and pfoA was found to be significantly repressed by CFSM during the mid-logarithmic stage of C. perfringens growth and this corresponded with a significant decrease in haemolytic activity. Purified fractions of CFSM containing bioactive peptides were found to cause reduced haemolysis. These results showed that bioactive peptides reduce NE mortality in broilers by interfering with the QS system of C. perfringens and reducing bacterial virulence. Furthermore, the microbiome of C. perfringens-challenged broilers is not affected by quorum sensing inhibitor containing CFSM.
Collapse
Affiliation(s)
| | | | - C Hofacre
- Southern Poultry Research Group, Inc., Watkinsville, GA, USA
| | - M Jones
- Southern Poultry Research Group, Inc., Watkinsville, GA, USA
| | - L O'Neill
- MicroSintesis Inc., Victoria, P.E.I. Canada
| | - N Nguyen
- MicroSintesis Inc., Victoria, P.E.I. Canada
| | - A Labbe
- MicroSintesis Inc., Victoria, P.E.I. Canada
| |
Collapse
|
11
|
Lin J, Yu Y, Zhao K, Zhao J, Rensing C, Chen J, Jia X. PtrA regulates prodigiosin synthesis and biological functions in Serratia marcescens FZSF02. Front Microbiol 2023; 14:1240102. [PMID: 37795293 PMCID: PMC10545897 DOI: 10.3389/fmicb.2023.1240102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Serratia marcescens is a gram-negative bacterium that is able to produce many secondary metabolites, such as the prominent red pigment prodigiosin (PG). In this work, a ptrA-disrupted mutant strain with reduced PG production was selected from Tn5 transposon mutants. RT-qPCR results indicated that ptrA promoted elevated transcription of the pig gene cluster in S. marcescens FZSF02. Furthermore, we found that ptrA also controls several other important biological functions of S. marcescens, including swimming and swarming motilities, biofilm formation, hemolytic activity, and stress tolerance. In conclusion, this study demonstrates that ptrA is a PG synthesis-promoting factor in S. marcescens and provides a brief understanding of the regulatory mechanism of ptrA in S. marcescens cell motility and hemolytic activity.
Collapse
Affiliation(s)
- Junjie Lin
- Institute of Soil and Fertilizer, Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanshuang Yu
- College of Resources and Environment, Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ke Zhao
- College of Resources and Environment, Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jie Zhao
- College of Resources and Environment, Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Christopher Rensing
- College of Resources and Environment, Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jichen Chen
- Institute of Soil and Fertilizer, Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| | - Xianbo Jia
- Institute of Soil and Fertilizer, Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| |
Collapse
|
12
|
Wu Y, Chen T, Wang Y, Huang M, Wang Y, Luo Z. New insight into the virulence and inflammatory response of Staphylococcus aureus strains isolated from diabetic foot ulcers. Front Cell Infect Microbiol 2023; 13:1234994. [PMID: 37577369 PMCID: PMC10416727 DOI: 10.3389/fcimb.2023.1234994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Staphylococcus aureus strains isolated from diabetic foot ulcers (DFUs) have less virulence, but still cause severe infections. Furthermore, hypovirulent S. aureus strains appear to be localized in the deep tissues of diabetic foot osteomyelitis, indicating that the unique environment within DFUs affects the pathogenicity of S. aureus. In this study, the cell-free culture medium (CFCM) of S. aureus strains isolated from DFUs exhibited higher cytotoxicity to human erythrocytes than those isolated from non-diabetic patients with sepsis or wounds. Among these S. aureus strains isolated from DFUs, β-toxin negative strains have less virulence than β-toxin positive strains, but induced a higher expression of inflammatory cytokines. Our study and previous studies have shown that the synergistic effect of phenol-soluble modulin α and β-toxin contributes to the higher hemolytic activity of β-toxin positive strains. However, lysis of human erythrocytes by the CFCM of β-toxin negative strains was greatly inhibited by an autolysin inhibitor, sodium polyanethole sulfonate (SPS). A high level of glucose greatly reduced the hemolytic activity of S. aureus, but promoted the expression of interleukin-6 (IL-6) in human neutrophils. However, 5 mM glucose or glucose-6-phosphate (G6P) increased the hemolytic activity of SA118 (a β-toxin negative strain) isolated from DFUs. Additionally, patients with DFUs with growth of S. aureus had lower level of serum IL-6 than those with other bacteria, and the CFCM of S. aureus strains significantly reduced lipopolysaccharide-induced IL-6 expression in human neutrophils. Therefore, the virulence and inflammatory response of S. aureus strains isolated from DFUs are determined by the levels of glucose and its metabolites, which may explain why it is the predominant bacteria isolated from DFUs.
Collapse
Affiliation(s)
- Yuan Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ti Chen
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yanle Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mao Huang
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yurong Wang
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhen Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Chen T, Xu H, Yao X, Luo Z. Role of sodium pyruvate in maintaining the survival and cytotoxicity of Staphylococcus aureus under high glucose conditions. Front Microbiol 2023; 14:1209358. [PMID: 37405167 PMCID: PMC10315490 DOI: 10.3389/fmicb.2023.1209358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Glucose is a crucial carbon source for the growth of Staphylococcus aureus, but an excess of glucose is detrimental and even leads to cell death. Pyruvate, the central metabolite of glycolysis, has been shown to have anti-inflammatory and antioxidant properties. This study aimed to investigate the protective effect of pyruvate on S. aureus under high glucose conditions. Sodium pyruvate greatly increased the cytotoxicity of S. aureus strain BAA-1717 to human erythrocytes and neutrophils in vitro. However, the cytotoxicity and survival of S. aureus were significantly reduced by high glucose, which was restored to normal levels by the addition of sodium pyruvate. The expression of hlg and lukS in S. aureus was higher in the LB-GP cultures than that in LB-G cultures, but there was no significant difference in cytotoxicity between LB-GP and LB-G cultures. Furthermore, the hemolytic activity of S. aureus supernatants could be inhibited by the cell-free culture medium (CFCM) of LB-G cultures, suggesting that high levels of extracellular proteases were presence in the CFCM of LB-G cultures, resulting in degradation of the hemolytic factors. The expression of sarA, which negatively regulates extracellular protease secretion, was higher in LB-GP cultures than that in LB-G cultures. Additionally, sodium pyruvate increased acetate production in S. aureus, which helps maintain cell viability under acidic environment. In conclusion, pyruvate plays an important role in the survival and cytotoxicity of S. aureus under high glucose conditions. This finding may aid in the development of effective treatments for diabetic foot infections.
Collapse
Affiliation(s)
- Ti Chen
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huan Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Yao
- Department of Medical Laboratory Science, School of Medicine, Hunan Normal University, Changsha, China
| | - Zhen Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Xu K, Wang Y, Jian Y, Chen T, Liu Q, Wang H, Li M, He L. Staphylococcus aureus ST1 promotes persistent urinary tract infection by highly expressing the urease. Front Microbiol 2023; 14:1101754. [PMID: 36910215 PMCID: PMC9992547 DOI: 10.3389/fmicb.2023.1101754] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Staphylococcus aureus (SA) is a relatively uncommon cause of urinary tract infections (UTIs) in the general population. Although rare, S. aureus-induced UTIs are prone to potentially life-threatening invasive infections such as bacteremia. To investigate the molecular epidemiology, phenotypic characteristics, and pathophysiology of S. aureus-induced UTIs, we analyzed non-repetitive 4,405 S. aureus isolates collected from various clinical sources from 2008 to 2020 from a general hospital in Shanghai, China. Among these, 193 isolates (4.38%) were cultivated from the midstream urine specimens. Epidemiological analysis showed UTI-derived ST1 (UTI-ST1) and UTI-ST5 are the primary sequence types of UTI-SA. Furthermore, we randomly selected 10 isolates from each of the UTI-ST1, non-UTI-ST1 (nUTI-ST1), and UTI-ST5 groups to characterize their in vitro and in vivo phenotypes. The in vitro phenotypic assays revealed that UTI-ST1 exhibits an obvious decline in hemolysis of human red blood cells and increased biofilm and adhesion in the urea-supplemented medium, compared to the medium without urea, while UTI-ST5 and nUTI-ST1 did not show significant differences between the biofilm-forming and adhesion abilities. In addition, the UTI-ST1 displayed intense urease activities by highly expressing urease genes, indicating the potential role of urease in UTI-ST1 survival and persistence. Furthermore, in vitro virulence assays using the UTI-ST1 ureC mutant showed no significant difference in the hemolytic and biofilm-forming phenotypes in the presence or absence of urea in the tryptic soy broth (TSB) medium. The in vivo UTI model also showed that the CFU of the UTI-ST1 ureC mutant rapidly reduced during UTI pathogenesis 72 h post-infection, while UTI-ST1 and UTI-ST5 persisted in the urine of the infected mice. Furthermore, the phenotypes and the urease expression of UTI-ST1 were found to be potentially regulated by the Agr system with the change in environmental pH. In summary, our results provide important insights into the role of urease in S. aureus-induced UTI pathogenesis in promoting bacterial persistence in the nutrient-limiting urinary microenvironment.
Collapse
Affiliation(s)
- Kai Xu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jian
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianchi Chen
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei He
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|