1
|
Andersen CC, Kjær EKR, Vase CB, Mathiasen R, Debes NM, Jørgensen NR, Jennum PJ. Melatonin secretion across puberty: A systematic review and meta-analysis. Psychoneuroendocrinology 2025; 173:107281. [PMID: 39823958 DOI: 10.1016/j.psyneuen.2025.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
BACKGROUND Melatonin levels decrease with aging and substantially during puberty. Studies have presented distinct melatonin levels in patients with disorders related to their pubertal development compared to healthy controls. The discrepancy suggests that a decrease in melatonin concentrations seen during adolescence might be related to the physical, hormonal, and/or neuronal alterations that occur during the pubertal period. The aim of this review was to analyze the literature reporting melatonin levels in healthy children and adolescents during puberty, and to look for a potential relationship. METHODS The Medline and Embase databases were searched on November 28th 2024, including all articles published from 1974 to 2024. Moreover, in the studies eligible for full-text review, a "snowball" search based by backwards referencing was carried out to identify additional studies. This means going through the references of the eligible studies, to find potential other articles relevant for our review and met our inclusion criteria. Lastly, a meta-analysis on serum melatonin concentrations with increasing age and Tanner status was performed. RESULTS 21 studies were included. 12 studies found a decrease, 5 found no difference and 3 reported an increase in melatonin levels during pubertal advancement. One study could not report secretory alterations but was eligible for inclusion in the meta-analysis. This analysis revealed that Tanner stages were significantly associated with decreasing average as well as peak concentrations of melatonin. CONCLUSION The simultaneous occurrence of pubertal progression and chronological aging complicates potential reasons to the decrease observed. However, possible explanations could be related to sex hormones, physical properties of puberty or light exposure. To justify these explanations research in controlled conditions along with biochemical and clinical assessment of pubertal status is needed.
Collapse
Affiliation(s)
| | - Eva K R Kjær
- Pediatric Oncology Research Laboratory, Rigshospitalet, Denmark
| | | | - René Mathiasen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nanette M Debes
- Department of Pediatrics, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Poul J Jennum
- Danish Center for Sleep Medicine, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Cardinali DP, Pandi-Perumal SR, Brown GM. Melatonin as a Chronobiotic and Cytoprotector in Non-communicable Diseases: More than an Antioxidant. Subcell Biochem 2024; 107:217-244. [PMID: 39693027 DOI: 10.1007/978-3-031-66768-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A circadian disruption, manifested by disturbed sleep and low-grade inflammation, is commonly seen in noncommunicable diseases (NCDs). Cardiovascular, respiratory and renal disorders, diabetes and the metabolic syndrome, cancer, and neurodegenerative diseases are among the most common NCDs prevalent in today's 24-h/7 days Society. The decline in plasma melatonin, which is a conserved phylogenetic molecule across all known aerobic creatures, is a constant feature in NCDs. The daily evening melatonin surge synchronizes both the central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN) and myriads of cellular clocks in the periphery ("chronobiotic effect"). Melatonin is the prototypical endogenous chronobiotic agent. Several meta-analyses and consensus studies support the use of melatonin to treat sleep/wake cycle disturbances associated with NCDs. Melatonin also has cytoprotective properties, acting primarily not only as an antioxidant by buffering free radicals, but also by regulating inflammation, down-regulating pro-inflammatory cytokines, suppressing low-grade inflammation, and preventing insulin resistance, among other effects. Melatonin's phylogenetic conservation is explained by its versatility of effects. In animal models of NCDs, melatonin treatment prevents a wide range of low-inflammation-linked alterations. As a result, the therapeutic efficacy of melatonin as a chronobiotic/cytoprotective drug has been proposed. Sirtuins 1 and 3 are at the heart of melatonin's chronobiotic and cytoprotective function, acting as accessory components or downstream elements of circadian oscillators and exhibiting properties such as mitochondrial protection. Allometric calculations based on animal research show that melatonin's cytoprotective benefits may require high doses in humans (in the 100 mg/day range). If melatonin is expected to improve health in NCDs, the low doses currently used in clinical trials (i.e., 2-10 mg) are unlikely to be beneficial. Multicentre double-blind studies are required to determine the potential utility of melatonin in health promotion. Moreover, melatonin dosage and levels used should be re-evaluated based on preclinical research information.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
| | - Seithikurippu R Pandi-Perumal
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Terasawa E. The mechanism underlying the pubertal increase in pulsatile GnRH release in primates. J Neuroendocrinol 2022; 34:e13119. [PMID: 35491543 PMCID: PMC9232993 DOI: 10.1111/jne.13119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
In primates, the gonatotropin-releasing hormone (GnRH) neurosecretory system, consisting of GnRH, kisspeptin, and neurokinin B neurons, is active during the neonatal/early infantile period. During the late infantile period, however, activity of the GnRH neurosecretory system becomes minimal as a result of gonadal steroid independent central inhibition, and this suppressed GnRH neurosecretory state continues throughout the prepubertal period. At the initiation of puberty, the GnRH neurosecretory system becomes active again because of the decrease in central inhibition. During the progress of puberty, kisspeptin and neurokinin B signaling to GnRH neurons further increases, resulting in the release of gonadotropins and subsequent gonadal maturation, and hence puberty. This review further discusses potential substrates of central inhibition and subsequent pubertal modification of the GnRH neurosecretory system by the pubertal increase in steroid hormones, which ensures the regulation of adult reproductive function.
Collapse
Affiliation(s)
- Ei Terasawa
- Department of Pediatrics and Wisconsin National Primate Research CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
4
|
Cardinali DP, Brown GM, Pandi-Perumal SR. Melatonin's Benefits and Risks as a Therapy for Sleep Disturbances in the Elderly: Current Insights. Nat Sci Sleep 2022; 14:1843-1855. [PMID: 36267165 PMCID: PMC9578490 DOI: 10.2147/nss.s380465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 01/19/2023] Open
Abstract
Aging is accompanied by circadian changes, including disruptive alterations in the sleep/wake cycle, as well as the beginning of low-degree inflammation ("inflammaging"), a scenario that leads to several chronic illnesses, including cancer, and metabolic, cardiovascular, and neurological dysfunctions. As a result, any effective approach to healthy aging must consider both the correction of circadian disturbance and the control of low-grade inflammation. One of the most important prerequisites for healthy aging is the preservation of robust circadian rhythmicity (particularly of the sleep/wake cycle). Sleep disturbance disrupts various activities in the central nervous system, including waste molecule elimination. Melatonin is a chemical with extraordinary phylogenetic conservation found in all known aerobic creatures whose alteration plays an important role in sleep changes with aging. Every day, the late afternoon/nocturnal surge in pineal melatonin helps to synchronize both the central circadian pacemaker found in the hypothalamic suprachiasmatic nuclei (SCN) and a plethora of peripheral cellular circadian clocks. Melatonin is an example of an endogenous chronobiotic substance that can influence the timing and amplitude of circadian rhythms. Moreover, melatonin is also an excellent anti-inflammatory agent, buffering free radicals, down-regulating proinflammatory cytokines, and reducing insulin resistance, among other things. We present both scientific and clinical evidence that melatonin is a safe drug for treating sleep disturbances in the elderly.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Gregory M Brown
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | |
Collapse
|
5
|
Bailey AM, Hall CA, Legan SJ, Demas GE. Food restriction during development delays puberty but does not affect adult seasonal reproductive responses to food availability in Siberian hamsters (Phodopus sungorus). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:691-702. [PMID: 34343418 DOI: 10.1002/jez.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/08/2022]
Abstract
Seasonally breeding animals respond to environmental cues to determine optimal conditions for reproduction. Siberian hamsters (Phodopus sungorus) primarily rely on photoperiod as a predictive cue of future energy availability. When raised in long-day photoperiods (>14 h light), supplemental cues such as food availability typically do not trigger the seasonal reproductive response of gonadal regression, which curtails reproduction in unsuitable environments. We investigated whether recognition of food availability as a cue could be altered by a nutritional challenge during development. Specifically, we predicted that hamsters receiving restricted food during development would be sensitized to food restriction (FR) as adults and undergo gonadal regression in response. Male and female hamsters were given either ad libitum (AL) food or FR from weaning until d60. The FR treatment predictably limited growth and delayed puberty in both sexes. For 5 weeks after d60, all hamsters received an AL diet to allow FR hamsters to gain mass equal to AL hamsters. Then, adult hamsters of both juvenile groups received either AL or FR for 6 weeks. Juvenile FR had lasting impacts on adult male body mass and food intake. Adult FR females exhibited decreased estrous cycling and uterine horn mass indiscriminately of juvenile food treatment, but there was little effect on male reproductive measurements. Overall, we observed a delay in puberty in response to postweaning FR, but this delay appeared not to affect seasonal reproductive responses in the long term. These findings increase our understanding of seasonal reproductive responses in a relevant environmental context.
Collapse
Affiliation(s)
- Allison M Bailey
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Carlisha A Hall
- Department of Biology, University of North Carolina, Pembroke, North Carolina, USA
| | - Sandra J Legan
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Gregory E Demas
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
6
|
Abstract
The objective of chronotherapy is to optimize medical treatments taking into account the body's circadian rhythms. Chronotherapy is referred to and practiced in two different ways: (1) to alter the sleep-wake rhythms of patients to improve the sequels of several pathologies; (2) to take into account the circadian rhythms of patients to improve therapeutics. Even minor dysfunction of the biological clock can greatly affect sleep/wake physiology causing excessive diurnal somnolence, increase in sleep onset latency, phase delays or advances in sleep onset, frequent night awakenings, reduced sleep efficiency, delayed and shortened rapid eye movement sleep, or increased periodic leg movements. Chronotherapy aims to restore the proper circadian pattern of the sleep-wake cycle, through adequate sleep hygiene, timed light exposure, and the use of chronobiotic medications, such as melatonin, that affect the output phase of circadian rhythms, thus controlling the clock. Concerning the second use of chronotherapy, therapeutic outcomes as diverse as the survival after open-heart surgery or the efficacy and tolerance to chemotherapy vary according to the time of day. However, humans are heterogeneous concerning the timing of their internal clocks. Not only different chronotypes exist but also the endogenous human circadian period (τ) is not a stable trait as it depends on many internal and external factors. If any scheduled therapeutic intervention is going to be optimized, a tool is needed for simple diagnostic and objectively measurement of an individual's internal time at any given time. Methodologic advances like the use of single-sample gene expression and metabolomics are discussed.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Gregory M Brown
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
7
|
Lucien JN, Ortega MT, Shaw ND. Sleep and Puberty. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2021; 17:1-7. [PMID: 35005296 PMCID: PMC8730357 DOI: 10.1016/j.coemr.2020.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the 1970's, Boyar and colleagues made the seminal observation that during the early stages of puberty, there is a sleep-specific augmentation of pulsatile luteinizing hormone (LH) secretion. Building on this tantalizing association between sleep and the re-awakening of the neuro-reproductive axis, a number of investigators have since mapped the dynamic relationship between sleep and reproductive hormones across the pubertal transition. In this review, we focus on the complex, reciprocal relationship between sleep and reproductive hormones during adolescence as well as the potential effects of melatonin and orexin on gonadotropin-releasing hormone (GnRH) activity in children with chronic insomnia and narcolepsy, respectively. Given the important interaction between the reproductive and somatotropic axes during puberty, we end with a discussion of sleep and growth hormone (GH) secretion in children.
Collapse
Affiliation(s)
- Janet N Lucien
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS/NIH), Research Triangle Park, NC 27709
| | - Madison T Ortega
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS/NIH), Research Triangle Park, NC 27709
| | - Natalie D Shaw
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS/NIH), Research Triangle Park, NC 27709
| |
Collapse
|
8
|
Abstract
Preservation of a robust circadian rhythmicity (particulsarly of the sleep/wake cycle), a proper nutrition and adequate physical exercise are key elements for healthy aging. Aging comes along with circadian alteration, e.g. a disrupted sleep and inflammation, that leads to metabolic disorders. In turn, sleep cycle disturbances cause numerous pathophysiological changes that accelerates the aging process. In the central nervous system, sleep disruption impairs several functions, among them, the clearance of waste molecules. The decrease of plasma melatonin, a molecule of unusual phylogenetic conservation present in all known aerobic organisms, plays a particular role as far as the endocrine sequels of aging. Every day, the late afternoon/nocturnal increase of melatonin synchronizes both the central circadian pacemaker located in the hypothalamic suprachiasmatic nuclei as well as myriads of peripheral cellular circadian clocks. This is called the "chronobiotic effect" of melatonin, the methoxyindole being the prototype of the endogenous family of chronobiotic agents. In addition, melatonin exerts a significant cytoprotective action by buffering free radicals and reversing inflammation via down regulation of proinflammatory cytokines, suppression of low degree inflammation and prevention of insulin resistance. Because of these properties melatonin has been advocated to be a potential therapeutic tool in COVID 19 pandemic. Melatonin administration to aged animals counteracts a significant number of senescence-related changes. In humans, melatonin is effective both as a chronobiotic and a cytoprotective agent to maintain a healthy aging. Circulating melatonin levels are consistently reduced in the metabolic syndrome, ischemic and non-ischemic cardiovascular diseases and neurodegenerative disorders like the Alzheimer's and Parkinson's diseases. The potential therapeutic value of melatonin has been suggested by a limited number of clinical trials generally employing melatonin in the 2-10mg/day range. However, from animal studies the cytoprotective effects of melatonin need higher doses to become apparent (i.e. in the 100mg/day range). Hence, controlled studies employing melatonin doses in this range are urgently needed.
Collapse
|
9
|
Giroud S, Habold C, Nespolo RF, Mejías C, Terrien J, Logan SM, Henning RH, Storey KB. The Torpid State: Recent Advances in Metabolic Adaptations and Protective Mechanisms †. Front Physiol 2021; 11:623665. [PMID: 33551846 PMCID: PMC7854925 DOI: 10.3389/fphys.2020.623665] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Torpor and hibernation are powerful strategies enabling animals to survive periods of low resource availability. The state of torpor results from an active and drastic reduction of an individual's metabolic rate (MR) associated with a relatively pronounced decrease in body temperature. To date, several forms of torpor have been described in all three mammalian subclasses, i.e., monotremes, marsupials, and placentals, as well as in a few avian orders. This review highlights some of the characteristics, from the whole organism down to cellular and molecular aspects, associated with the torpor phenotype. The first part of this review focuses on the specific metabolic adaptations of torpor, as it is used by many species from temperate zones. This notably includes the endocrine changes involved in fat- and food-storing hibernating species, explaining biomedical implications of MR depression. We further compare adaptive mechanisms occurring in opportunistic vs. seasonal heterotherms, such as tropical and sub-tropical species. Such comparisons bring new insights into the metabolic origins of hibernation among tropical species, including resistance mechanisms to oxidative stress. The second section of this review emphasizes the mechanisms enabling heterotherms to protect their key organs against potential threats, such as reactive oxygen species, associated with the torpid state. We notably address the mechanisms of cellular rehabilitation and protection during torpor and hibernation, with an emphasis on the brain, a central organ requiring protection during torpor and recovery. Also, a special focus is given to the role of an ubiquitous and readily-diffusing molecule, hydrogen sulfide (H2S), in protecting against ischemia-reperfusion damage in various organs over the torpor-arousal cycle and during the torpid state. We conclude that (i) the flexibility of torpor use as an adaptive strategy enables different heterothermic species to substantially suppress their energy needs during periods of severely reduced food availability, (ii) the torpor phenotype implies marked metabolic adaptations from the whole organism down to cellular and molecular levels, and (iii) the torpid state is associated with highly efficient rehabilitation and protective mechanisms ensuring the continuity of proper bodily functions. Comparison of mechanisms in monotremes and marsupials is warranted for understanding the origin and evolution of mammalian torpor.
Collapse
Affiliation(s)
- Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Mejías
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jérémy Terrien
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d’Histoire Naturelle, Brunoy, France
| | | | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
10
|
Tolla E, Stevenson TJ. Sex Differences and the Neuroendocrine Regulation of Seasonal Reproduction by Supplementary Environmental Cues. Integr Comp Biol 2020; 60:1506-1516. [PMID: 32869105 DOI: 10.1093/icb/icaa096] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Seasonal rhythms in reproduction are conserved across nature and optimize the timing of breeding to environmental conditions favorable for offspring and parent survival. The primary predictive cue for timing seasonal breeding is photoperiod. Supplementary cues, such as food availability, social signals, and temperature, fine-tune the timing of reproduction. Male and female animals show differences in the sensory detection, neural integration, and physiological responses to the same supplementary cue. The neuroendocrine regulation of sex-specific integration of predictive and supplementary cues is not well characterized. Recent findings indicate that epigenetic modifications underlie the organization of sex differences in the brain. It has also become apparent that deoxyribonucleic acid methylation and chromatin modifications play an important role in the regulation and timing of seasonal rhythms. This article will highlight evidence for sex-specific responses to supplementary cues using data collected from birds and mammals. We will then emphasize that supplementary cues are integrated in a sex-dependent manner due to the neuroendocrine differences established and maintained by the organizational and activational effects of reproductive sex hormones. We will then discuss how epigenetic processes involved in reproduction provide a novel link between early-life organizational effects in the brain and sex differences in the response to supplementary cues.
Collapse
Affiliation(s)
- Elisabetta Tolla
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
11
|
La Y, He X, Zhang L, Di R, Wang X, Gan S, Zhang X, Zhang J, Hu W, Chu M. Comprehensive Analysis of Differentially Expressed Profiles of mRNA, lncRNA, and circRNA in the Uterus of Seasonal Reproduction Sheep. Genes (Basel) 2020; 11:genes11030301. [PMID: 32178360 PMCID: PMC7140836 DOI: 10.3390/genes11030301] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022] Open
Abstract
Photoperiod is one of the important factors leading to seasonal reproduction of sheep. However, the molecular mechanisms underlying the photoperiod regulation of seasonal reproduction remain poorly understood. In this study, we compared the expression profiles of mRNAs, lncRNAs, and circRNAs in uterine tissues from Sunite sheep during three different photoperiods, namely, the short photoperiod (SP), short transfer to long photoperiod (SLP), and long photoperiod (LP). The results showed that 298, 403, and 378 differentially expressed (DE) mRNAs, 171, 491, and 499 DE lncRNAs, and 124, 270, and 400 DE circRNAs were identified between SP and LP, between SP and SLP, and between LP and SLP, respectively. Furthermore, functional enrichment analysis showed that the differentially expressed RNAs were mainly involved in the GnRH signaling pathway, thyroid hormone synthesis, and thyroid hormone signaling pathway. In addition, co-expression networks of lncRNA–mRNA were constructed based on the correlation analysis between the differentially expressed RNAs. Our study provides new insights into the expression changes of RNAs in different photoperiods, which might contribute to understanding the molecular mechanisms of seasonal reproduction in sheep.
Collapse
Affiliation(s)
- Yongfu La
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.)
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.)
| | - Wenping Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
- Correspondence: (W.H.); (M.C.); Tel.: +86-15901106848 (W.H.); +86-010-62819850 (M.C.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
- Correspondence: (W.H.); (M.C.); Tel.: +86-15901106848 (W.H.); +86-010-62819850 (M.C.)
| |
Collapse
|
12
|
Ainani H, El Bousmaki N, Poirel VJ, Achaâban MR, Ouassat M, Piro M, Klosen P, Simonneaux V, El Allali K. The dromedary camel displays annual variation in hypothalamic kisspeptin and Arg-Phe-amide-related peptide-3 according to sex, season, and breeding activity. J Comp Neurol 2019; 528:32-47. [PMID: 31251823 DOI: 10.1002/cne.24736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/25/2023]
Abstract
The dromedary camel (Camelus dromedarius) is a desert mammal whose cycles in reproductive activity ensure that the offspring's birth and weaning coincide with periods of abundant food resources and favorable climate conditions. In this study, we assessed whether kisspeptin (Kp) and arginine-phenylalanine (RF)-amide related peptide-3 (RFRP-3), two hypothalamic peptides known to regulate the mammalian hypothalamo-pituitary gonadal axis, may be involved in the seasonal control of camel's reproduction. Using specific antibodies and riboprobes, we found that Kp neurons are present in the preoptic area (POA), suprachiasmatic (SCN), and arcuate (ARC) nuclei, and that RFRP-3 neurons are present in the paraventricular (PVN), dorsomedial (DMH), and ventromedial (VMH) hypothalamic nuclei. Kp fibers are found in various hypothalamic areas, notably the POA, SCN, PVN, DMH, VMH, supraoptic nucleus, and the ventral and dorsal premammillary nucleus. RFRP-3 fibers are found in the POA, SCN, PVN, DMH, VMH, and ARC. POA and ARC Kp neurons and DMH RFRP-3 neurons display sexual dimorphism with more neurons in female than in male. Both neuronal populations display opposed seasonal variations with more Kp neurons and less RFRP-3 neurons during the breeding (December-January) than the nonbreeding (July-August) season. This study is the first describing Kp and RFRP-3 in the camel's brain with, during the winter period lower RFRP-3 expression and higher Kp expression possibly responsible for the HPG axis activation. Altogether, our data indicate the involvement of both Kp and RFRP-3 in the seasonal control of the dromedary camel's breeding activity.
Collapse
Affiliation(s)
- Hassan Ainani
- Comparative Anatomy Unit, Hassan II Agronomy and Veterinary Institute, Rabat Instituts, Rabat, Morocco.,Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, Strasbourg, France
| | - Najlae El Bousmaki
- Comparative Anatomy Unit, Hassan II Agronomy and Veterinary Institute, Rabat Instituts, Rabat, Morocco
| | - Vincent-Joseph Poirel
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, Strasbourg, France
| | - Mohamed Rachid Achaâban
- Comparative Anatomy Unit, Hassan II Agronomy and Veterinary Institute, Rabat Instituts, Rabat, Morocco
| | - Mohammed Ouassat
- Comparative Anatomy Unit, Hassan II Agronomy and Veterinary Institute, Rabat Instituts, Rabat, Morocco
| | - Mohammed Piro
- Medicine and Surgical Unit of Domestic animals, Hassan II Agronomy and Veterinary Institute, Rabat Instituts, Rabat, Morocco
| | - Paul Klosen
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, Strasbourg, France
| | - Valérie Simonneaux
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, Strasbourg, France
| | - Khalid El Allali
- Comparative Anatomy Unit, Hassan II Agronomy and Veterinary Institute, Rabat Instituts, Rabat, Morocco
| |
Collapse
|
13
|
Wahab F, Khan IU, Polo IR, Zubair H, Drummer C, Shahab M, Behr R. Irisin in the primate hypothalamus and its effect on GnRH in vitro. J Endocrinol 2019; 241:175-187. [PMID: 30913538 DOI: 10.1530/joe-18-0574] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Irisin, encoded by the FNDC5 gene, is a recently discovered endocrine factor mainly secreted as a myokine and adipokine. However, irisin/FNDC5 expression has also been reported in different other organs including components of the reproductive axis. Yet, there is the scarcity of data on FNDC5/irisin expression, regulation and its reproductive effects, particularly in primates. Here, we report the expression of FNDC5/irisin, along with PGC1A (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) and ERRA (estrogen-related receptor alpha), in components of the reproductive axis of marmoset monkeys. Hypothalamic FNDC5 and ERRA transcript levels are developmentally regulated in both male and female. We further uncovered sex-specific differences in FNDC5, ERRA and PGC1A expression in muscle and the reproductive axis. Moreover, irisin and ERRα co-localize in the marmoset hypothalamus. Additionally, in the arcuate nucleus of rhesus monkeys, the number of irisin+ cells was significantly increased in short-term fasted monkeys as compared to ad libitum-fed monkeys. More importantly, we observed putative interaction of irisin-immunoreactive fibers and few GnRH-immunoreactive cell bodies in the mediobasal hypothalamus of the rhesus monkeys. Functionally, we noted a stimulatory effect of irisin on GnRH synthesis and release in mouse hypothalamic neuronal GT1-7 cells. In summary, our findings show that FNDC5 and irisin are developmentally, metabolic-status dependently and sex-specifically expressed in the primate hypothalamic-pituitary-gonadal axis and exert a stimulatory effect on GnRH expression and release in mouse hypothalamic cells. Further studies are required to confirm the reproductive effects of irisin in vivo and to illuminate the mechanisms of its regulation.
Collapse
Affiliation(s)
- Fazal Wahab
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Ikram Ullah Khan
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ignacio Rodriguez Polo
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Hira Zubair
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Charis Drummer
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Muhammad Shahab
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Voigt C, Bennett NC. Reproductive status-dependent kisspeptin and RFamide-related peptide (Rfrp) gene expression in female Damaraland mole-rats. J Neuroendocrinol 2018; 30:e12571. [PMID: 29345030 DOI: 10.1111/jne.12571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 12/18/2017] [Accepted: 01/11/2018] [Indexed: 11/29/2022]
Abstract
Damaraland mole rats (Fukomys damarensis) are cooperatively breeding, subterranean mammals that exhibit a high reproductive skew. Reproduction is monopolised by the dominant female of the group, whereas subordinates are physiologically suppressed to the extent that they are anovulatory. In these latter animals, it is assumed that normal gonadotropin-releasing hormone secretion from the hypothalamus is disrupted. The RFamide peptides kisspeptin (Kiss1) and RFamide-related peptide-3 (RFRP-3) are considered as potent regulators of gonadotropin release. To assess whether these neuropeptides are involved in the mechanism of reproductive suppression, we investigated the distribution and gene expression of Kiss1 and Rfrp by means of in situ hybridisation in wild-caught female Damaraland mole-rats with different reproductive status. In both reproductive phenotypes, substantial Kiss1 expression was found in the arcuate nucleus and only few Kiss1-expressing cells were detected in the anteroventral periventricular nucleus (AVPV), potentially as a result of low circulating oestradiol concentrations in breeding and nonbreeding females. Rfrp gene expression occurred in the dorsomedial nucleus, the paraventricular nucleus and the periventricular nucleus. While in female breeders and nonbreeders, plasma oestradiol levels were low and not significantly different, quantification of the hybridisation signal for both genes revealed significant differences in relation to reproductive status. Reproductively active females had more Kiss1-expressing cells and a higher number of silver grains per cell in the arcuate nucleus compared to nonreproductive females. This difference was most pronounced in the caudal part of the nucleus. No such differences were found in the AVPV. Furthermore, breeding status was associated with a reduced number of Rfrp-expressing cells in the anterior hypothalamus. This reproductive status-dependent expression pattern of Kiss1 and Rfrp suggests that both neuropeptides play a role in the regulation of reproduction in Damaraland mole-rats. Enhanced long-term negative feedback effects of oestradiol could be responsible for the lower Kiss1 expression in the arcuate nucleus of reproductively suppressed females.
Collapse
Affiliation(s)
- C Voigt
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - N C Bennett
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
15
|
Hou H, Uusküla-Reimand L, Makarem M, Corre C, Saleh S, Metcalf A, Goldenberg A, Palmert MR, Wilson MD. Gene expression profiling of puberty-associated genes reveals abundant tissue and sex-specific changes across postnatal development. Hum Mol Genet 2018; 26:3585-3599. [PMID: 28911201 DOI: 10.1093/hmg/ddx246] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
The timing of human puberty is highly variable, sexually dimorphic, and associated with adverse health outcomes. Over 20 genes carrying rare mutations have been identified in known pubertal disorders, many of which encode critical components of the hypothalamic-pituitary-gonadal (HPG) axis. Recent genome-wide association studies (GWAS) have identified more than 100 candidate genes at loci associated with age at menarche or voice breaking in males. We know little about the spatial, temporal or postnatal expression patterns of the majority of these puberty-associated genes. Using a high-throughput and sensitive microfluidic quantitative PCR strategy, we profiled the gene expression patterns of the mouse orthologs of 178 puberty-associated genes in male and female mouse HPG axis tissues, the pineal gland, and the liver at five postnatal ages spanning the pubertal transition. The most dynamic gene expression changes were observed prior to puberty in all tissues. We detected known and novel tissue-enhanced gene expression patterns, with the hypothalamus expressing the largest number of the puberty-associated genes. Notably, over 40 puberty-associated genes in the pituitary gland showed sex-biased gene expression, most of which occurred peri-puberty. These sex-biased genes included the orthologs of candidate genes at GWAS loci that show sex-discordant effects on pubertal timing. Our findings provide new insight into the expression of puberty-associated genes and support the possibility that the pituitary plays a role in determining sex differences in the timing of puberty.
Collapse
Affiliation(s)
- Huayun Hou
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Liis Uusküla-Reimand
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Gene Technology, Tallinn University of Technology, 12616 Tallinn, Estonia
| | - Maisam Makarem
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Christina Corre
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Shems Saleh
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Computer Science, University of Toronto, Toronto, ON M5S 2E5, Canada
| | - Ariane Metcalf
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Anna Goldenberg
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Computer Science, University of Toronto, Toronto, ON M5S 2E5, Canada
| | - Mark R Palmert
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Division of Endocrinology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Departments of Paediatrics and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael D Wilson
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
16
|
Wahab F, Atika B, Ullah F, Shahab M, Behr R. Metabolic Impact on the Hypothalamic Kisspeptin-Kiss1r Signaling Pathway. Front Endocrinol (Lausanne) 2018; 9:123. [PMID: 29643834 PMCID: PMC5882778 DOI: 10.3389/fendo.2018.00123] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
A large body of data has established the hypothalamic kisspeptin (KP) and its receptor, KISS1R, as major players in the activation of the neuroendocrine reproductive axis at the time of puberty and maintenance of reproductive capacity in the adult. Due to its strategic location, this ligand-receptor pair acts as an integrator of cues from gonadal steroids as well as of circadian and seasonal variation-related information on the reproductive axis. Besides these cues, the activity of the hypothalamic KP signaling is very sensitive to the current metabolic status of the body. In conditions of energy imbalance, either positive or negative, a number of alterations in the hypothalamic KP signaling pathway have been documented in different mammalian models including nonhuman primates and human. Deficiency of metabolic fuels during fasting causes a marked reduction of Kiss1 gene transcript levels in the hypothalamus and, hence, decreases the output of KP-containing neurons. Food intake or exogenous supply of metabolic cues, such as leptin, reverses metabolic insufficiency-related changes in the hypothalamic KP signaling. Likewise, alterations in Kiss1 expression have also been reported in other situations of energy imbalance like diabetes and obesity. Information related to the body's current metabolic status reaches to KP neurons both directly as well as indirectly via a complex network of other neurons. In this review article, we have provided an updated summary of the available literature on the regulation of the hypothalamic KP-Kiss1r signaling by metabolic cues. In particular, the potential mechanisms of metabolic impact on the hypothalamic KP-Kiss1r signaling, in light of available evidence, are discussed.
Collapse
Affiliation(s)
- Fazal Wahab
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- *Correspondence: Fazal Wahab,
| | - Bibi Atika
- Department of Developmental Biology, Faculty of Biology, University of Göttingen, Göttingen, Germany
| | - Farhad Ullah
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | - Muhammad Shahab
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quiad-i-Azam University, Islamabad, Pakistan
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
He X, Liu Q, Li X, Guo X, Wang X, Hu W, Di R, Chu M. Molecular cloning and epigenetic change detection of Kiss1 during seasonal reproduction in Chinese indigenous sheep. Reprod Fertil Dev 2017; 30:734-743. [PMID: 29136398 DOI: 10.1071/rd17028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 09/23/2017] [Indexed: 11/23/2022] Open
Abstract
Like most seasonal domesticated species, sheep are short-day breeders, which means that the reproduction axis is activated by short days. The annual photoperiodic cycle affects the amount of daylength information that is transmitted to the hypothalamic-pituitary-gonadal (HPG) axis by regulating pulsatile secretion of gonadotrophin-releasing hormone from the hypothalamus. Kisspeptin, which is encoded by Kiss1, plays a major role in reproductive seasonality. Based on results from our previous Solexa sequencing data obtained from Tan (T) and Small Tail Han (STH) sheep during anoestrus and the breeding season, full-length mRNA information for ovine Kiss1 was obtained; 894bp in T sheep and 1145bp in STH sheep. Both encode 135 amino acids. Additionally, T and STH sheep have different transcription start sites of Kiss1. Kiss1 expression during oestrus was significantly higher than that during dioestrus, both in T and STH sheep (P<0.01). We also found a strong relationship between Kiss1 mRNA levels and histone H3 acetylation status in the 5' promoter region of ovine Kiss1. These data indicated that epigenetic modification occurs during reproduction in sheep, and this is the first report that histone H3 deacetylation occurs in the hypothalamus of seasonal sheep breeders during the transition from dioestrus to oestrus.
Collapse
Affiliation(s)
- Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyu Li
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaofei Guo
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
18
|
Jennings KJ, Chasles M, Cho H, Mikkelsen J, Bentley G, Keller M, Kriegsfeld LJ. The Preoptic Area and the RFamide-Related Peptide Neuronal System Gate Seasonal Changes in Chemosensory Processing. Integr Comp Biol 2017; 57:1055-1065. [PMID: 28985371 PMCID: PMC6251579 DOI: 10.1093/icb/icx099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Males of many species rely on chemosensory information for social communication. In male Syrian hamsters (Mesocricetus auratus), as in many species, female chemosignals potently stimulate sexual behavior and a concurrent, rapid increase in circulating luteinizing hormone (LH) and testosterone (T). However, under winter-like, short-day (SD) photoperiods, when Syrian hamsters are reproductively quiescent, these same female chemosignals fail to elicit behavioral or hormonal responses, even after T replacement. It is currently unknown where in the brain chemosensory processing is gated in a seasonally dependent manner such that reproductive responses are only displayed during the appropriate breeding season. The goal of the present study was to determine where this gating occurred by identifying neural loci that respond differentially to female chemosignals across photoperiods, independent of circulating T concentrations. Adult male Syrian hamsters were housed under either long-day (LD) (reproductively active) or SD (reproductively inactive) photoperiods with half of the SD animals receiving T replacement. Animals were exposed to either female hamster vaginal secretions (FHVSs) diluted in mineral oil or to vehicle, and the activational state of chemosensory processing centers and elements of the neuroendocrine reproductive axis were examined. Components of the chemosensory pathway upstream of hypothalamic centers increased expression of FOS, an indirect marker of neuronal activation, similarly across photoperiods. In contrast, the preoptic area (POA) of the hypothalamus responded to FHVS only in LD animals, consistent with its role in promoting expression of male sexual behavior. Within the neuroendocrine axis, the RF-amide related peptide (RFRP), but not the kisspeptin neuronal system responded to FHVS only in LD animals. Neither response within the POA or the RFRP neuronal system was rescued by T replacement in SD animals, mirroring photoperiodic regulation of reproductive responses. Considering the POA and the RFRP neuronal system promote reproductive behavior and function in male Syrian hamsters, differential activation of these systems represents a potential means by which photoperiod limits expression of reproduction to the appropriate environmental context.
Collapse
Affiliation(s)
| | - Manon Chasles
- Department of Neurology and Neurobiology Research Unit, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Hweyryoung Cho
- Department of Psychology, University of California, Berkeley, CA 94720, USA
| | - Jens Mikkelsen
- Department of Neurology and Neurobiology Research Unit, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - George Bentley
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Matthieu Keller
- Physiologie de la Reproduction et des Comportements, UMR 0085 INRA, Centre Val-de-Loire, Nouzilly F-37380, France
| | - Lance J Kriegsfeld
- Department of Psychology, University of California, Berkeley, CA 94720, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
19
|
Xiang W, Zhang B, Lv F, Feng G, Chen L, Yang F, Zhang K, Cao C, Wang P, Chu M. The potential regulatory mechanisms of the gonadotropin-releasing hormone in gonadotropin transcriptions identified with bioinformatics analyses. Reprod Biol Endocrinol 2017; 15:46. [PMID: 28623929 PMCID: PMC5474292 DOI: 10.1186/s12958-017-0264-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/08/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The regulation of gonadotropin synthesis and release by gonadotropin-releasing hormone (GnRH) plays an essential role in the neuroendocrine control of reproduction. However, the mechanisms underlying gonadotropin regulation by GnRH pulse frequency and amplitude are still ambiguous. This study aimed to explore the molecular mechanisms and biological pathways associated with gonadotropin synthesis by GnRH pulse frequencies and amplitudes. METHODS Using GSE63251 datasets downloaded from the Gene Expression Omnibus (GEO), differentially expressed genes (DEGs) were screened by comparing the RNA expression from the GnRH pulse group, the GnRH tonic group and the control group. Pathway enrichment analyses of DEGs was performed, followed by protein-protein interaction (PPI) network construction. Furthermore, sub-network modules were constructed by ClusterONE and GO function and pathways analysed by DAVID. In addition, the relationship between the metabolic pathways and the GnRH pathway was verified in vitro. RESULTS In total, 531 common DEGs were identified in GnRH groups, including 290 up-regulated and 241 down-regulated genes. DEGs predominantly enriched in 16 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including 11 up-regulated pathways (signallingsignallingmetabolic pathways, signallingand GnRH signalling pathway) and 5 down-regulated pathways (type II diabetes mellitus). Moreover, FBJ osteosarcoma oncogene (FOS) and jun proto-oncogene (JUN) had higher connectivity degrees in the PPI network. Three modules in the PPI were identified with ClusterONE. The genes in module 1 were significantly enriched in five pathways, including signallingthe insulin resistance and GnRH signalling pathway. The genes in modules 2 and 3 were mainly enriched in metabolic pathways and steroid hormone biosynthesis, respectively. Finally, knockdown leptin receptor (LEPR) and insulin receptor (INSR) reversed the GnRH-modulated metabolic related-gene expression. CONCLUSIONS The present study revealed the involvement of GnRH in the regulation of gonadotropin biosynthesis and metabolism in the maintenance of reproduction, achieved by bioinformatics analyses. This, indicates that the GnRH signalling pathway played a central linkings role in reproductive function and metabolic balance. In addition, the present study identified the difference response between GnRH pulse and GnRH tone, indicated that abnormal GnRH pulse and amplitude may cause disease, which may provide an improved understanding of the GnRH pathway and a new insight for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Wei Xiang
- College of Bioengineering, Chongqing University, Chongqing, 400030 China
| | - Baoyun Zhang
- College of Bioengineering, Chongqing University, Chongqing, 400030 China
| | - Fenglin Lv
- College of Bioengineering, Chongqing University, Chongqing, 400030 China
| | - Guangde Feng
- Sichuan TQLS Animal Husbandry Science and Technology Co.,LTD, City, Mianyang, Sichuan 621000 China
| | - Long Chen
- College of Bioengineering, Chongqing University, Chongqing, 400030 China
| | - Fang Yang
- College of Bioengineering, Chongqing University, Chongqing, 400030 China
| | - Ke Zhang
- College of Bioengineering, Chongqing University, Chongqing, 400030 China
| | - Chunyu Cao
- College of Bioengineering, Chongqing University, Chongqing, 400030 China
| | - Pingqing Wang
- College of Bioengineering, Chongqing University, Chongqing, 400030 China
| | - Mingxing Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
20
|
Stevenson TJ. Environmental and hormonal regulation of epigenetic enzymes in the hypothalamus. J Neuroendocrinol 2017; 29. [PMID: 28370682 DOI: 10.1111/jne.12471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/09/2017] [Accepted: 03/25/2017] [Indexed: 12/13/2022]
Abstract
Neuroendocrine structures integrate a vast range of external cues and internal signals that, in turn, result in adaptive physiological responses. Emerging data indicate that light, social cues, stress and energy balance stimulate relatively short- and long-term genomic modifications in discrete neuroendocrine structures, which are mediated by epigenetic mechanisms. Moreover, environmentally-induced fluctuations in the synthesis of local hypothalamic and circulating hormones provide an internal signal that contributes to the extensive neuroendocrine genomic plasticity. This review examines the impact of environmental stimuli and endogenous hormonal signals on the regulation of epigenetic enzymes in key neuroendocrine structures. The data discussed are predominantly derived from studies in the neuroendocrine control of seasonal reproduction and the impact of social stress in rodent models. The perspective presented considers the role of oestrogen and glucocorticoids as the primary catalysts for inducing epigenetic modifications (eg, DNA methylation) in specific neuroendocrine structures. Oestrogen and glucocorticoid actions suggest: (i) a preferential action for specific epigenetic enzymes and (ii) nucleus- and cell-specific modifications. Untangling the complex web of hormonal regulation of methylation and acetylation will enhance our understanding of short- and long-term changes in epigenetic enzymes that generate adaptive and pathological neuroendocrine responses.
Collapse
Affiliation(s)
- T J Stevenson
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
21
|
Bailey AM, Legan SJ, Demas GE. Exogenous kisspeptin enhances seasonal reproductive function in male Siberian hamsters. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Sandra J. Legan
- Department of Physiology University of Kentucky Lexington KY USA
| | | |
Collapse
|
22
|
Ella A, Delgadillo JA, Chemineau P, Keller M. Computation of a high-resolution MRI 3D stereotaxic atlas of the sheep brain. J Comp Neurol 2016; 525:676-692. [PMID: 27503489 DOI: 10.1002/cne.24079] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/17/2016] [Accepted: 07/12/2016] [Indexed: 12/16/2022]
Abstract
The sheep model was first used in the fields of animal reproduction and veterinary sciences and then was utilized in fundamental and preclinical studies. For more than a decade, magnetic resonance (MR) studies performed on this model have been increasingly reported, especially in the field of neuroscience. To contribute to MR translational neuroscience research, a brain template and an atlas are necessary. We have recently generated the first complete T1-weighted (T1W) and T2W MR population average images (or templates) of in vivo sheep brains. In this study, we 1) defined a 3D stereotaxic coordinate system for previously established in vivo population average templates; 2) used deformation fields obtained during optimized nonlinear registrations to compute nonlinear tissues or prior probability maps (nlTPMs) of cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) tissues; 3) delineated 25 external and 28 internal sheep brain structures by segmenting both templates and nlTPMs; and 4) annotated and labeled these structures using an existing histological atlas. We built a quality high-resolution 3D atlas of average in vivo sheep brains linked to a reference stereotaxic space. The atlas and nlTPMs, associated with previously computed T1W and T2W in vivo sheep brain templates and nlTPMs, provide a complete set of imaging space that are able to be imported into other imaging software programs and could be used as standardized tools for neuroimaging studies or other neuroscience methods, such as image registration, image segmentation, identification of brain structures, implementation of recording devices, or neuronavigation. J. Comp. Neurol. 525:676-692, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arsène Ella
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR 7247, F-37380, Nouzilly, France.,Université François Rabelais, F-37041, Nouzilly, France
| | - José A Delgadillo
- Centro de Investigacion en Reproducion Caprina, Universidad Autonoma Agraria Antonio Narro, Torreon, Mexico
| | - Philippe Chemineau
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR 7247, F-37380, Nouzilly, France.,Université François Rabelais, F-37041, Nouzilly, France
| | - Matthieu Keller
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR 7247, F-37380, Nouzilly, France.,Université François Rabelais, F-37041, Nouzilly, France
| |
Collapse
|
23
|
Jennings KJ, Chang J, Cho H, Piekarski DJ, Russo KA, Kriegsfeld LJ. Aggressive interactions are associated with reductions in RFamide-related peptide, but not kisspeptin, neuronal activation in mice. Horm Behav 2016; 78:127-34. [PMID: 26528893 DOI: 10.1016/j.yhbeh.2015.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 12/16/2022]
Abstract
Aggressive interactions lead to changes in both future behavior and circulating testosterone (T) concentrations in animals across taxa. The specific neural circuitry and neurochemical systems by which these encounters alter neuroendocrine functioning are not well understood. Neurons expressing the inhibitory and stimulatory neuropeptides, RFamide-related peptide (RFRP) and kisspeptin, respectively, project to neural loci regulating aggression in addition to neuroendocrine cells controlling sex steroid production. Given these connections to both the reproductive axis and aggression circuitry, RFRP and kisspeptin are in unique positions to mediate post-encounter changes in both T and behavior. The present study examined the activational state of RFRP and kisspeptin neurons of male C57BL/6 mice following an aggressive encounter. Both winners and losers exhibited reduced RFRP/FOS co-localization relative to handling stress controls. Social exposure controls did not display reduced RFRP neuronal activation, indicating that this effect is due to aggressive interaction specifically rather than social interaction generally. RFRP neuronal activation positively correlated with latencies to display several offensive behaviors within winners. These effects were not observed in the anteroventral periventricular (AVPV) nucleus kisspeptin cell population. Together, these findings point to potential neuromodulatory role for RFRP in aggressive behavior and in disinhibiting the reproductive axis to facilitate an increase in T in response to social challenge.
Collapse
Affiliation(s)
| | - Jenny Chang
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Hweyryoung Cho
- Department of Psychology, University of California, Berkeley, CA, USA
| | - David J Piekarski
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Kimberly A Russo
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Lance J Kriegsfeld
- Department of Psychology, University of California, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
24
|
Construction of an MRI 3D high resolution sheep brain template. Magn Reson Imaging 2015; 33:1329-1337. [PMID: 26363468 DOI: 10.1016/j.mri.2015.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/16/2015] [Accepted: 09/02/2015] [Indexed: 01/05/2023]
Abstract
Sheep is a developing animal model used in the field of neurosciences for the study of many behavioral, physiological or pathophysiological mechanisms, including for example, the central control of social behavior, brain injury or neurodegenerative diseases. However, sheep remains an orphan species in the field of magnetic resonance imaging (MRI). Therefore, a mean image (template), resulting of registrations of multiple subject images is needed and currently does not exist. In this study, we: i) computed multimodal high resolution 3D in-vivo sheep brain templates of T1 weighted (T1W) and T2W images, ii) computed gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) prior probability maps using linear and optimized non-linear registrations iii) used prior probability maps to perform the segmentation of a single brain tissues. Computed multimodal sheep brain templates showed to preserve and underline all brain patterns of a single T1W or T2W image, and prior probability maps allowed to improve the segmentation of brain tissues. Finally, we demonstrated that these templates and prior probability maps were able to be portable in other publicly available imaging software and could be used as standardized spaces for multi-institution neuroimaging studies or other neuroscience methods.
Collapse
|
25
|
Wahab F, Shahab M, Behr R. The involvement of gonadotropin inhibitory hormone and kisspeptin in the metabolic regulation of reproduction. J Endocrinol 2015; 225:R49-66. [PMID: 25957191 DOI: 10.1530/joe-14-0688] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, kisspeptin (KP) and gonadotropin inhibitory hormone (GnIH), two counteracting neuropeptides, have been acknowledged as significant regulators of reproductive function. KP stimulates reproduction while GnIH inhibits it. These two neuropeptides seem to be pivotal for the modulation of reproductive activity in response to internal and external cues. It is well-documented that the current metabolic status of the body is closely linked to its reproductive output. However, how reproductive function is regulated by the body's energy status is less clear. Recent studies have suggested an active participation of hypothalamic KP and GnIH in the modulation of reproductive function according to available metabolic cues. Expression of KISS1, the KP encoding gene, is decreased while expression of RFRP (NPVF), the gene encoding GnIH, is increased in metabolic deficiency conditions. The lower levels of KP, as suggested by a decrease in KISS1 gene mRNA expression, during metabolic deficiency can be corrected by administration of exogenous KP, which leads to an increase in reproductive hormone levels. Likewise, administration of RF9, a GnIH receptor antagonist, can reverse the inhibitory effect of fasting on testosterone in monkeys. Together, it is likely that the integrated function of both these hypothalamic neuropeptides works as a reproductive output regulator in response to a change in metabolic status. In this review, we have summarized literature from nonprimate and primate studies that demonstrate the involvement of KP and GnIH in the metabolic regulation of reproduction.
Collapse
Affiliation(s)
- F Wahab
- Stem Cell Biology Unit Leibniz Institute for Primate Research, German Primate Center, Kellnerweg 4, D-37077 Göttingen, Germany Laboratory of Reproductive Neuroendocrinology Department of Animal Sciences, Faculty of Biological Sciences, Quiad-i-Azam University, Islamabad, Pakistan
| | - M Shahab
- Stem Cell Biology Unit Leibniz Institute for Primate Research, German Primate Center, Kellnerweg 4, D-37077 Göttingen, Germany Laboratory of Reproductive Neuroendocrinology Department of Animal Sciences, Faculty of Biological Sciences, Quiad-i-Azam University, Islamabad, Pakistan
| | - R Behr
- Stem Cell Biology Unit Leibniz Institute for Primate Research, German Primate Center, Kellnerweg 4, D-37077 Göttingen, Germany Laboratory of Reproductive Neuroendocrinology Department of Animal Sciences, Faculty of Biological Sciences, Quiad-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
26
|
Kennaway DJ, Hughes PE, van Wettere WHEJ. Melatonin implants do not alter estrogen feedback or advance puberty in gilts. Anim Reprod Sci 2015; 156:13-22. [PMID: 25618532 DOI: 10.1016/j.anireprosci.2014.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/08/2014] [Accepted: 12/14/2014] [Indexed: 12/31/2022]
Abstract
Puberty in pigs is often delayed during late summer and autumn, with long daylength the most likely cause. We hypothesised (1) that gilts born around the shortest day would have a later release from the negative feedback actions of estradiol than gilts born around the spring equinox and (2) melatonin treatment would result in an earlier release from estradiol negative feedback and advance the onset of puberty in gilts born around the spring equinox. We first determined the optimal number of estradiol implants required to monitor the release from estradiol negative feedback in ovariectomised gilts. Secondly we determined whether melatonin implants altered negative feedback in 4 cohorts of ovariectomised gilts born between the winter solstice and spring equinox, and in the following year whether melatonin altered the time of the first ovulation in 5 cohorts of intact gilts born between the winter solstice and spring equinox. Plasma LH and FSH increased between 126 and 210d of age (P<0.001) in each cohort (season), but there was no effect of cohort, melatonin treatment or interactions (P>0.05). Age at first detection of elevated plasma progesterone in untreated, intact gilts decreased across the 4 cohorts (P<0.05). Melatonin treatment of intact gilts failed to advance the age of puberty irrespective of their season of birth (P>0.05). In conclusion, while we confirmed that estradiol sensitivity is decreased as gilts age, we failed to demonstrate any effects of season or melatonin on estradiol feedback or melatonin on puberty.
Collapse
Affiliation(s)
- D J Kennaway
- Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Medical School, Adelaide, South Australia, Australia.
| | - P E Hughes
- Pig and Poultry Production Institute, Roseworthy Campus, Roseworthy, South Australia, Australia
| | - W H E J van Wettere
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, Australia
| |
Collapse
|
27
|
Fernando S, Rombauts L. Melatonin: shedding light on infertility?--A review of the recent literature. J Ovarian Res 2014; 7:98. [PMID: 25330986 PMCID: PMC4209073 DOI: 10.1186/s13048-014-0098-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/11/2014] [Indexed: 12/31/2022] Open
Abstract
In recent years, the negative impact of oxidative stress on fertility has become widely recognised. Several studies have demonstrated its negative effect on the number and quality of retrieved oocytes and embryos following in-vitro fertilisation (IVF). Melatonin, a pineal hormone that regulates circadian rhythms, has also been shown to exhibit unique oxygen scavenging abilities. Some studies have suggested a role for melatonin in gamete biology. Clinical studies also suggest that melatonin supplementation in IVF may lead to better pregnancy rates. Here we present a critical review and summary of the current literature and provide suggestions for future well designed clinical trials.
Collapse
Affiliation(s)
- Shavi Fernando
- MIMR-PHI Institute of Medical Research, 246 Clayton Rd, Clayton, 3168, , Victoria, Australia. .,Monash University, Department of Obstetrics and Gynaecology, Level 5 Monash Medical Centre, 246 Clayton Rd, Clayton, 3168, , Victoria, Australia.
| | - Luk Rombauts
- MIMR-PHI Institute of Medical Research, 246 Clayton Rd, Clayton, 3168, , Victoria, Australia. .,Monash IVF, 252 Clayton rd, Clayton, 3168, , Victoria, Australia.
| |
Collapse
|
28
|
Massoud D, Barrionuevo FJ, Ortega E, Burgos M, Jiménez R. The testis of greater white-toothed shrew Crocidura russula in Southern European populations: a case of adaptive lack of seasonal involution? JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:304-15. [PMID: 24895181 DOI: 10.1002/jez.b.22582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/19/2014] [Indexed: 11/08/2022]
Abstract
Males of all seasonal breeding mammals undergo circannual periods of testis involution resulting in almost complete ablation of the germinative epithelium. We performed a morphometric, histological, hormonal, and gene-expression study of the testes from winter and summer males of the greater white-toothed shrew, Crocidura russula, in populations of the southeastern Iberian Peninsula. Unexpectedly, we found no significant differences between the two study groups. Surprisingly, female data confirmed a non-breeding period in the summer, evidencing that males retain full testis function even when most females are not receptive. This situation, which has not been described before, does not occur in northern populations of the same species where, in addition, the reproductive cycle is inverted with respect to those in the south, as the non-breeding period occurs in winter instead in summer. Considering that the non-reproductive period shortens at lower latitude locations, we hypothesize that in southern populations the non-breeding period is short enough to make testis regression inefficient in terms of energy savings, because: (1) testes of C. russula are very small, a condition derived from their monogamy that implies low investment in spermatogenesis; and (2) the spermatogenic cycle of this species is slow and long. The inverted seasonal breeding cycle and the lack of seasonal testis regression described here are new adaptive processes that deserve further research, and provide evidence that the genetic and hormonal mechanisms controlling reproduction timing in mammals are more plastic and versatile than initially suspected.
Collapse
Affiliation(s)
- Diaa Massoud
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
29
|
Dardente H, Hazlerigg DG, Ebling FJP. Thyroid hormone and seasonal rhythmicity. Front Endocrinol (Lausanne) 2014; 5:19. [PMID: 24616714 PMCID: PMC3935485 DOI: 10.3389/fendo.2014.00019] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/10/2014] [Indexed: 12/15/2022] Open
Abstract
Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of TH signaling within the medio-basal hypothalamus (MBH) through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, TH might also be involved in longer-term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal rhythmicity.
Collapse
Affiliation(s)
- Hugues Dardente
- Physiologie de la Reproduction et des Comportements, INRA, UMR085, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- Institut français du cheval et de l’équitation, Nouzilly, France
- *Correspondence: Hugues Dardente, INRA, UMR85 Physiologie de la Reproduction et des Comportements, CNRS, UMR7247, Université François Rabelais de Tours, IFCE, F-37380 Nouzilly, France e-mail:
| | - David G. Hazlerigg
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway
| | | |
Collapse
|