1
|
Shabtai IA, Wilhelm RC, Schweizer SA, Höschen C, Buckley DH, Lehmann J. Calcium promotes persistent soil organic matter by altering microbial transformation of plant litter. Nat Commun 2023; 14:6609. [PMID: 37857604 PMCID: PMC10587086 DOI: 10.1038/s41467-023-42291-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Calcium (Ca) can contribute to soil organic carbon (SOC) persistence by mediating physico-chemical interactions between organic compounds and minerals. Yet, Ca is also crucial for microbial adhesion, potentially affecting colonization of plant and mineral surfaces. The importance of Ca as a mediator of microbe-mineral-organic matter interactions and resulting SOC transformation has been largely overlooked. We incubated 44Ca labeled soils with 13C15N labeled leaf litter to study how Ca affects microbial transformation of litter and formation of mineral associated organic matter. Here we show that Ca additions promote hyphae-forming bacteria, which often specialize in colonizing surfaces, and increase incorporation of litter into microbial biomass and carbon use efficiency by approximately 45% each. Ca additions reduce cumulative CO2 production by 4%, while promoting associations between minerals and microbial byproducts of plant litter. These findings expand the role of Ca in SOC persistence from solely a driver of physico-chemical reactions to a mediator of coupled abiotic-biotic cycling of SOC.
Collapse
Affiliation(s)
- Itamar A Shabtai
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA.
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA.
| | - Roland C Wilhelm
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN, 47907, USA
| | - Steffen A Schweizer
- Chair of Soil Science, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Carmen Höschen
- Chair of Soil Science, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Daniel H Buckley
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA
- Department of Microbiology, Cornell University, Ithaca, NY, 14850, USA
| | - Johannes Lehmann
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY, 14850, USA
- Institute for Advanced Study, Technical University of Munich, Garching, 85748, Germany
| |
Collapse
|
2
|
Woodcock S, Sloan WT. Biofilm community succession: a neutral perspective. Microbiology (Reading) 2017; 163:664-668. [DOI: 10.1099/mic.0.000472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Stephen Woodcock
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, Australia
- Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | | |
Collapse
|
3
|
Lawrence JR, Swerhone GDW, Kuhlicke U, Neu TR. In situevidence for metabolic and chemical microdomains in the structured polymer matrix of bacterial microcolonies. FEMS Microbiol Ecol 2016; 92:fiw183. [DOI: 10.1093/femsec/fiw183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2016] [Indexed: 11/13/2022] Open
|
4
|
Tian Q, Ong SK, Xie X, Li F, Zhu Y, Wang FR, Yang B. Enhanced phosphorus recovery and biofilm microbial community changes in an alternating anaerobic/aerobic biofilter. CHEMOSPHERE 2016; 144:1797-1806. [PMID: 26524149 DOI: 10.1016/j.chemosphere.2015.10.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 10/08/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
The operation of an alternating anaerobic/aerobic biofilter (AABF), treating synthetic wastewater, was modified to enhance recovery of phosphorus (P). The AABF was periodically fed with an additional carbon source during the anaerobic phase to force the release of biofilm-sequestered P which was then harvested and recovered. A maximum of 48% of the total influent P was found to be released in the solution for recovery. Upon implementation of periodic P bio-sequestering and P harvesting, the predominant bacterial communities changed from β-Proteobacteria to γ-Proteobacteria groups. The genus Pseudomonas of γ-Proteobacteria was found to enrich greatly with 98% dominance. Dense intracellular poly-P granules were found within the cells of the biofilm, confirming the presence of P accumulating organisms (PAOs). Periodic addition of a carbon source to the AABF coupled with intracellular P reduction during the anaerobic phase most probably exerted environmental stress in the selection of Pseudomonas PAOs over PAOs of other phylogenic types. Results of the study provided operational information on the selection of certain microbial communities for P removal and recovery. This information can be used to further advance P recovery in biofilm systems such as the AABFs.
Collapse
Affiliation(s)
- Qing Tian
- Department of Environmental Science and Engineering, DongHua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Say Kee Ong
- Department of Civil, Construction, and Environmental Engineering, Iowa State University, Iowa 50011, USA.
| | - Xuehui Xie
- Department of Environmental Science and Engineering, DongHua University, 2999 Shanghai North People's Road, 201620, PR China.
| | - Fang Li
- Department of Environmental Science and Engineering, DongHua University, 2999 Shanghai North People's Road, 201620, PR China.
| | - Yanbin Zhu
- Department of Environmental Science and Engineering, DongHua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Feng Rui Wang
- Department of Environmental Science and Engineering, DongHua University, 2999 Shanghai North People's Road, 201620, PR China
| | - Bo Yang
- Department of Environmental Science and Engineering, DongHua University, 2999 Shanghai North People's Road, 201620, PR China
| |
Collapse
|
5
|
Species and material considerations in the formation and development of microalgal biofilms. Appl Microbiol Biotechnol 2011; 92:283-94. [DOI: 10.1007/s00253-011-3341-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/14/2011] [Accepted: 04/16/2011] [Indexed: 10/18/2022]
|
6
|
Pollard PC. Bacterial activity in plant (Schoenoplectus validus) biofilms of constructed wetlands. WATER RESEARCH 2010; 44:5939-5948. [PMID: 20723964 DOI: 10.1016/j.watres.2010.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/08/2010] [Accepted: 07/14/2010] [Indexed: 05/29/2023]
Abstract
Biofilm-bacterial communities have been exploited in the treatment of wastewater in 'fixed-film' processes. Our understanding of biofilm dynamics requires a quantitative knowledge of bacterial growth-kinetics in these microenvironments. The aim of this paper was to apply the thymidine assay to quantify bacterial growth without disturbing the biofilm on the surfaces of emergent macrophytes (Schoenoplectus validus) of a constructed wetland. The isotope was rapidly and efficiently taken-up and incorporated into dividing biofilm-bacteria. Isotope diffusion into the biofilm did not limit the growth rate measurement. Isotope dilution was inhibited at >12 μM thymidine. Biofilm-bacterial biomass and growth rates were not correlated to the plant surface area (r(2) < 0.02). The measurements of in situ biofilm-bacterial growth rates both displayed, and accommodated, the inherent heterogeneity of the complex wetland ecosystem. Biofilm-bacterial respiratory activities, measured using the redox dye CTC, and growth rates were measured simultaneously. The dye did not interfere with bacterial growth. Biofilm-bacterial specific growth rates ranged from 1.4 ± 0.6 d(-1) to 3.3 ± 1.3 d(-1). In the constructed wetlands of this study biofilm-bacterial specific growth rates, compared to those of natural ecosystems, could be markedly improved through changes in wetland design that increased bacterial respiration while minimising biofilm growth.
Collapse
Affiliation(s)
- Peter C Pollard
- Australian Rivers Institute, Griffith University, Q 4111 Australia.
| |
Collapse
|
7
|
Dagher SF, Ragout AL, Siñeriz F, Bruno-Bárcena JM. Cell immobilization for production of lactic acid biofilms do it naturally. ADVANCES IN APPLIED MICROBIOLOGY 2010; 71:113-48. [PMID: 20378053 DOI: 10.1016/s0065-2164(10)71005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Interest in natural cell immobilization or biofilms for lactic acid fermentation has developed considerably over the last few decades. Many studies report the benefits associated with biofilms as industrial methods for food production and for wastewater treatment, since the formation represents a protective means of microbial growth offering survival advantages to cells in toxic environments. The formation of biofilms is a natural process in which microbial cells adsorb to a support without chemicals or polymers that entrap the cells and is dependent on the reactor environment, microorganism, and characteristics of the support. These unique characteristics enable biofilms to cause chronic infections, disease, food spoilage, and devastating effects as in microbial corrosion. Their distinct resistance to toxicity, high biomass potential, and improved stability over cells in suspension make biofilms a good tool for improving the industrial economics of biological lactic acid production. Lactic acid bacteria and specific filamentous fungi are the main sources of biological lactic acid. Over the past two decades, studies have focused on improving the lactic acid volumetric productivity through reactor design development, new support materials, and improvements in microbial production strains. To illustrate the operational designs applied to the natural immobilization of lactic acid producing microorganisms, this chapter presents the results of a search for optimum parameters and how they are affected by the physical, chemical, and biological variables of the process. We will place particular emphasis upon the relationship between lactic acid productivity attained by various types of reactors, supports, media formulations, and lactic acid producing microorganisms.
Collapse
Affiliation(s)
- Suzanne F Dagher
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | |
Collapse
|
8
|
Abstract
Biofilms are important in aquatic nutrient cycling and microbial proliferation. In these structures, nutrients like carbon are channeled into the production of extracellular polymeric substances or cell division; both are vital for microbial survival and propagation. The aim of this study was to assess carbon channeling into cellular or noncellular fractions in biofilms. Growing in tubular reactors, biofilms of our model strain Pseudomonas sp. strain CT07 produced cells to the planktonic phase from the early stages of biofilm development, reaching pseudo steady state with a consistent yield of approximately 10(7) cells.cm(-2).h(-1) within 72 h. Total direct counts and image analysis showed that most of the converted carbon occurred in the noncellular fraction, with the released and sessile cells accounting for <10% and <2% of inflowing carbon, respectively. A CO(2) evolution measurement system (CEMS) that monitored CO(2) in the gas phase was developed to perform a complete carbon balance across the biofilm. The measurement system was able to determine whole-biofilm CO(2) production rates in real time and showed that gaseous CO(2) production accounted for 25% of inflowing carbon. In addition, the CEMS made it possible to measure biofilm response to changing environmental conditions; changes in temperature or inflowing carbon concentration were followed by a rapid response in biofilm metabolism and the establishment of new steady-state conditions.
Collapse
|
9
|
Nejidat A, Saadi I, Ronen Z. Effect of flagella expression on adhesion ofAchromobacter piechaudiito chalk surfaces. J Appl Microbiol 2008; 105:2009-14. [DOI: 10.1111/j.1365-2672.2008.03930.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Lawrence JR, Swerhone GDW, Kuhlicke U, Neu TR. In situ evidence for microdomains in the polymer matrix of bacterial microcolonies. Can J Microbiol 2007; 53:450-8. [PMID: 17538657 DOI: 10.1139/w06-146] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Confocal laser scanning microscopy and fluorescent lectin-binding analyses (FLBA) were used to study the form, arrangement, and composition of exopolymeric substances (EPS) surrounding naturally occurring microcolonies in biofilms. FLBA, using multiple lectin staining and multichannel imaging, indicated that the EPS of many microcolonies exhibit distinct multiple binding regions. A common pattern in the microcolonies is a three zone arrangement with cell-associated, intercellular, and an outer layer of EPS covering the exterior of the colony. Differential binding of lectins suggests that there are differences in the glycoconjugate composition or their arrangement in the EPS of microcolonies. The combination of FLBA with fluorescent in situ hybridization (FISH) indicates that the colonies consist of the major groups, α- and β-Proteobacteria. It is suggested that the EPS arrangement observed provides a physical structuring mechanism that can segregate extracellular activities at the microscale.
Collapse
Affiliation(s)
- J R Lawrence
- National Water Research Institute, 11 Innovation Boulevard, Saskatoon, SK S7N3H5, Canada.
| | | | | | | |
Collapse
|
11
|
Chénier MR, Beaumier D, Fortin N, Roy R, Driscoll BT, Lawrence JR, Greer CW. Influence of nutrient inputs, hexadecane, and temporal variations on denitrification and community composition of river biofilms. Appl Environ Microbiol 2006; 72:575-84. [PMID: 16391094 PMCID: PMC1352192 DOI: 10.1128/aem.72.1.575-584.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms were cultivated on polycarbonate strips in rotating annular reactors using South Saskatchewan River water during the fall of 1999 and the fall of 2001, supplemented with carbon (glucose), nitrogen (NH4Cl), phosphorus (KH2PO4), or combined nutrients (CNP), with or without hexadecane, a model compound representing aliphatic hydrocarbons used to simulate a pollutant. In fall 1999 and fall 2001, comparable denitrification activities and catabolic potentials were observed in the biofilms, implying that denitrifying populations showed similar activity patterns and catabolic potentials during the fall from year to year in this river ecosystem, when environmental conditions were similar. Both nirS and nirK denitrification genes were detected by PCR amplification, suggesting that both denitrifying bacterial subpopulations can potentially contribute to total denitrification. Between 91.7 and 99.8% of the consumed N was emitted in the form of N2, suggesting that emission of N2O, a major potent greenhouse gas, by South Saskatchewan River biofilms is low. Denitrification was markedly stimulated by the addition of CNP, and nirS and nirK genes were predominant only in the presence of CNP. In contrast, individual nutrients had no impact on denitrification and on the occurrence of nirS and nirK genes detected by PCR amplification. Similarly, only CNP resulted in significant increases in algal and bacterial biomass relative to control biofilms. Biomass measurements indicated a linkage between autotrophic and heterotrophic populations in the fall 1999 biofilms. Correlation analyses demonstrated a significant relationship (P < or = 0.05) between the denitrification rate and the biomass of algae and heterotrophic bacteria but not cyanobacteria. At the concentration assessed (1 ppb), hexadecane partially inhibited denitrification in both years, slightly more in the fall of 2001. This study suggested that the response of the anaerobic heterotrophic biofilm community may be cyclic and predictable from year to year and that there are interactive effects between nutrients and the contaminant hexadecane.
Collapse
Affiliation(s)
- M R Chénier
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P 2R2
| | | | | | | | | | | | | |
Collapse
|
12
|
Jacques MA, Josi K, Darrasse A, Samson R. Xanthomonas axonopodis pv. phaseoli var. fuscans is aggregated in stable biofilm population sizes in the phyllosphere of field-grown beans. Appl Environ Microbiol 2005; 71:2008-15. [PMID: 15812033 PMCID: PMC1082538 DOI: 10.1128/aem.71.4.2008-2015.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 11/05/2004] [Indexed: 11/20/2022] Open
Abstract
The occurrence of "Xanthomonas axonopodis pv. phaseoli var. fuscans" (proposed name) populations as biofilms on bean leaves was investigated during three field experiments on plots established with naturally contaminated bean seeds. Behavior of aggregated versus solitary populations was determined by quantification of culturable cells in different fractions of the epiphytic population separated by particle size. X. axonopodis pv. phaseoli var. fuscans population dynamic studies confirmed an asymptomatic and epiphytic colonization of the bean phyllosphere. For all years of experiment and cultivars tested, biofilms and solitary components of the populations were always detected. Biofilm population sizes remained stable throughout the growing season (around 10(5) CFU/g of fresh weight) while solitary population sizes were more abundant and varied with climate. According to enterobacterial repetitive intergenic consensus fingerprinting, aggregated bacterial isolates were not different from solitary isolates. In controlled conditions, application of a hydric stress resulted in a decrease of the solitary populations on the leaf surface while the biofilm fraction remained stable. Suppression of the hydric stress allowed solitary bacterial populations to increase again. Aggregation in biofilms on leaf surfaces provides protection to the bacterial cells against hydric stress.
Collapse
Affiliation(s)
- M-A Jacques
- UMR PaVé, Centre INRA, 42, rue George Morel, BP 60057, 49071 Beaucouzé cedex, France.
| | | | | | | |
Collapse
|
13
|
Nejidat A, Saadi I, Ronen Z. Degradation of 2,4,6-tribromophenol by bacterial cells attached to chalk collected from a contaminated aquifer. J Appl Microbiol 2004; 96:844-52. [PMID: 15012824 DOI: 10.1111/j.1365-2672.2004.02222.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM To investigate the factors governing the adhesion and activity of the 2,4,6-tribromophenol (TBP) degrading bacterium Achromobacter piechaudii TBPZ-N61 on chalk from a contaminated aquifer. METHODS AND RESULTS Adhesion kinetics of TBPZ-N61 to grey and white chalk from a polluted fractured chalk aquifer was tested in a batch system. Both grey and white chalk contain ca 80% CaCO3, while grey chalk contains more organic matter (2.4%) than the white chalk (0.3%) and also contains Dolmite and Clinoptilolite. Adhesion of the bacterial cells to the chalk particles (<0.2 mm) occurred rapidly (96% of the cells within 15 min). Langmuir-fitted adhesion isotherms suggest that cells in the stationary phase, which are more hydrophobic, adhere to both grey and white chalk more efficiently than cells in the logarithmic growth phase. Increasing the pH (from 6.7 to 8.1) caused a significant reduction in cell adhesion to the chalk. Activity of attached cells was evaluated in both batch and column experiments. Logarithmic cells adhering to white and grey chalk were more active in TBP degradation than cells in suspension. In column experiments, significant TBP degradation was retained up to 30 days after a single injection of TBPZ cells. Thereafter, activity was fully recovered by amendment of yeast extract. Chalk surfaces that were incubated in situ in contaminated groundwater for 20 days still allowed the adhesion and activity of TBPZ cells. CONCLUSIONS Taken together, our results show that bacteria adhere efficiently to specific sites on the chalk surfaces, and that sustained bacterial activity of the attached cells can be achieved by adding a carbon source such as yeast extract which also overcome toxic constituents that may occur in some chalk types. SIGNIFICANCE AND IMPACT OF THE STUDY Bioremediation of TBP-contaminated chalk aquifers is made possible by the injection of bacterial cultures.
Collapse
Affiliation(s)
- A Nejidat
- Department of Environmental Hydrology and Microbiology, Institute for Water Sciences and Technologies, Ben-Gurion University of the Negev, Sede-Boqer Campus, Medreshet Ben Gurion, Israel.
| | | | | |
Collapse
|
14
|
Fukui R. Suppression of Soilborne Plant Pathogens through Community Evolution of Soil Microorganisms. Microbes Environ 2003. [DOI: 10.1264/jsme2.18.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ryo Fukui
- Department of Bio-productive Science, Faculty of Agriculture, Utsunomiya University
| |
Collapse
|
15
|
Långmark J, Ashbolt NJ, Szewzyk U, Stenström TA. Adequacy of in situ glass slides and direct sand extractions to assess the microbiota within sand columns used for drinking water treatment. Can J Microbiol 2001. [DOI: 10.1139/w01-052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically, Cholodny-Rossi buried glass slide techniques have been used to study the microbiota of subsurface environments, yet the bias of such a technique has not been compared against direct sand extraction using modern in situ probing. Over a period of 34 wk, four separate 4-m-deep sand columns receiving raw lake water were examined to compare direct extraction of sand filter biofilm material against in situ glass slide biofilms. Significantly different DAPI direct counts and fluorescent in situ hybridization signals for major phylogenetic groups were observed. Not only were lower proportions (P < 0.001) of EUB338-probed DAPI cells observed on in situ glass slides, but also fewer γ-Proteobacteria (12%21%) and more α-Proteobacteria (16%33%) when compared to direct sand extracts. Hence, investigators of the microbial ecology of even simple sand biofilms must consider the inherent biases from "accepted" methods and seek further independent methods to identify those which may be most accurate.Key words: sand filter, biofilms, in situ hybridization, groundwater recharge.
Collapse
|
16
|
Stenström J, Svensson K, Johansson M. Reversible transition between active and dormant microbial states in soil. FEMS Microbiol Ecol 2001; 36:93-104. [PMID: 11451513 DOI: 10.1111/j.1574-6941.2001.tb00829.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The rate of respiration obtained in the substrate-induced respiration (SIR) method can be divided into the respiration rate of growing (r) and non-growing (K) microorganisms. The fraction of r is generally small (5-20%) in soils with no recent addition of substrates, but can be 100% in soils with high substrate availability. This suggests that substrate availability determines the proportion of biomass between these groups, and implies that transitions between them can take place reversibly. These hypotheses were tested by adding three different amounts of glucose which induced first-order, zero-order, and growth-associated respiration kinetics to three soils at four pre-incubation times (4, 12, 27, and 46 days) before the SIR measurement. An abiotic flush of CO(2) in the SIR measurement was detected and corrected for before data analysis. Accumulated CO(2)-C over 4 days after glucose addition, corrected for the respiration in unamended controls, corresponded to 41-50% mineralization of the glucose-C, and the relative amount mineralized by each soil was independent of the glucose amount added. The high glucose concentration gave an increased SIR, which reverted to the initial value within 27-46 days. In a specific sample, the maximum respiration rate induced during the pre-incubation, and the amount of organisms transformed from the K to the r state, as quantified in respiration rate units in the SIR measurement, were identical to each other, and these parameters were also highly correlated to the initial glucose concentration. The K-->r transition was very fast, probably concurrent with the instantaneous increase in the respiration rate obtained by the glucose amendment. Thereafter, a slow first-order back-transition from the r to the K state ensued, with half-lives of 12, 23, and 70 days for the three soils. The results suggest the existence of community-level controls by which growth within or of the whole biomass is inhibited until it has been completely transformed into the r state. The data also suggest that the microbial specific activity is not related to the availability of exogenous substrate in a continuous fashion, rather it responds as a sharp transition between dormant and fully active. Furthermore, the inherent physiological state of the microbial biomass is strongly related to its history. It is proposed that the normal dynamics of the soil microbial biomass is an oscillation between active and dormant physiological states, while significant growth occurs only at substantial substrate amendment.
Collapse
Affiliation(s)
- J Stenström
- Department of Microbiology, Swedish University of Agricultural Sciences, P.O. Box 7025, SE-750 07, Uppsala, Sweden
| | | | | |
Collapse
|
17
|
Lawrence JR, Kopf G, Headley JV, Neu TR. Sorption and metabolism of selected herbicides in river biofilm communities. Can J Microbiol 2001; 47:634-41. [PMID: 11547883 DOI: 10.1139/w01-061] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, biofilms were grown in rotating annular bioreactors with river water as inoculum and sole source of nutrients. The herbicides atrazine and diclofop methyl were applied to the bioreactors, while an identical reactor acted as a control. Biofilm structure was visualized using specific fluorescent probes in conjunction with confocal laser scanning microscopy. The concentration of both herbicides in the bulk water phase followed the pattern of application. Atrazine and metabolites were detected in biofilm samples using direct insertion probe tandem mass spectrometry (DIP-MS/MS) and only trace levels were detected after the addition phase. Monoclonal antibody (MAb) studies indicated that sorption of atrazine was associated with a unique microcolony type. In contrast, diclofop and metabolites reached a maximum level in the biofilm at the end of the addition phase and persisted in the biofilm. Experiments with 14C-labeled atrazine and diclofop methyl indicated that mineralization of these compounds to CO2 (<1%) occurred in the river biofilms. Thus, both herbicides were sorbed and metabolized by the river biofilm community and detected in biofilms when they were not detected in the bulk water phase. These results indicate that biofilms and specific community members may act as a sink for herbicides, and that this should be taken into account in terms of both sampling and studies of the environmental chemodynamics of contaminants.
Collapse
Affiliation(s)
- J R Lawrence
- National Water Research Institute, Saskatoon, SK, Canada.
| | | | | | | |
Collapse
|
18
|
Guggenheim M, Shapiro S, Gmür R, Guggenheim B. Spatial arrangements and associative behavior of species in an in vitro oral biofilm model. Appl Environ Microbiol 2001; 67:1343-50. [PMID: 11229930 PMCID: PMC92733 DOI: 10.1128/aem.67.3.1343-1350.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spatial arrangements and associative behavior of Actinomyces naeslundii, Veillonella dispar, Fusobacterium nucleatum, Streptococcus sobrinus, and Streptococcus oralis strains in an in vitro model of supragingival plaque were determined. Using species-specific fluorescence-labeled antibodies in conjunction with confocal laser scanning microscopy, the volumes and distribution of the five strains were assessed during biofilm formation. The volume-derived cell numbers of each strain correlated well with respective culture data. Between 15 min and 64 h, populations of each strain increased in a manner reminiscent of batch growth. The microcolony morphologies of all members of the consortium and their distributions within the biofilm were characterized, as were interspecies associations. Biofilms formed 15 min after inoculation consisted principally of single nonaggregated cells. All five strains adhered strongly to the saliva-conditioned substratum, and therefore, coadhesion played no role during the initial phase of biofilm formation. This observation does not reflect the results of in vitro coaggregation of the five strains, which depended upon the nature of the suspension medium. While the possibility cannot be excluded that some interspecies associations observed at later stages of biofilm formation were initiated by coadhesion, increase in bacterial numbers appeared to be largely a growth phenomenon regulated by the prevailing cultivation conditions.
Collapse
Affiliation(s)
- M Guggenheim
- Institute for Oral Microbiology and General Immunology, Center for Dental and Oral Medicine and Maxillofacial Surgery, University of Zürich, CH-8028 Zürich, Switzerland
| | | | | | | |
Collapse
|
19
|
Russell AD. Mechanisms of bacterial resistance to antibiotics and biocides. PROGRESS IN MEDICINAL CHEMISTRY 2000; 35:133-97. [PMID: 10795401 DOI: 10.1016/s0079-6468(08)70036-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- A D Russell
- Welsh School of Pharmacy, University of Wales, Cardiff, UK
| |
Collapse
|
20
|
Molin S, Givskov M. Application of molecular tools for in situ monitoring of bacterial growth activity. Environ Microbiol 1999; 1:383-91. [PMID: 11207757 DOI: 10.1046/j.1462-2920.1999.00056.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- S Molin
- Department of Microbiology, Technical University of Denmark, Lyngby.
| | | |
Collapse
|
21
|
|
22
|
Ista LK, Pérez-Luna VH, López GP. Surface-grafted, environmentally sensitive polymers for biofilm release. Appl Environ Microbiol 1999; 65:1603-9. [PMID: 10103257 PMCID: PMC91227 DOI: 10.1128/aem.65.4.1603-1609.1999] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/1998] [Accepted: 01/28/1999] [Indexed: 11/20/2022] Open
Abstract
Controlling bacterial biofouling is desirable for almost every human enterprise in which solid surfaces are introduced into nonsterile aqueous environments. One approach that is used to decrease contamination of manufactured devices by microorganisms is using materials that easily slough off accumulated material (i.e., fouling release surfaces). The compounds currently used for this purpose rely on low surface energy to inhibit strong attachment of organisms. In this study, we examined the possible use of environmentally responsive (or "smart") polymers as a new class of fouling release agents; a surface-grafted thermally responsive polymer, poly(N-isopropylacrylamide) (PNIPAAM), was used as a model compound. PNIPAAM is known to have a lower critical solubility temperature of approximately 32 degrees C (i.e., it is insoluble in water at temperatures above 32 degrees C and is soluble at temperatures below 32 degrees C). Under experimental conditions, >90% of cultured microorganisms (Staphylococcus epidermidis, Halomonas marina) and naturally occurring marine microorganisms that attached to grafted PNIPAAM surfaces during 2-, 18-, 36-, and 72-h incubations were removed when the hydration state of the polymer was changed from a wettability that was favorable for attachment to a wettability that was less favorable. Of particular significance is the observation that an organism known to attach in the greatest numbers to hydrophobic substrata (i.e., H. marina) was removed when transition of PNIPAAM to a more hydrated state occurred, whereas an organism that attaches in the greatest numbers to hydrophilic substrata (i.e., S. epidermidis) was removed when the opposite transition occurred. Neither solvated nor desolvated PNIPAAM exhibited intrinsic fouling release properties, indicating that the phase transition was the important factor in removal of organisms. Based on our observations of the behavior of this model system, we suggest that environmentally responsive polymers represent a new approach for controlling biofouling release.
Collapse
Affiliation(s)
- L K Ista
- Department of Chemical and Nuclear Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
23
|
Kuehn M, Hausner M, Bungartz HJ, Wagner M, Wilderer PA, Wuertz S. Automated confocal laser scanning microscopy and semiautomated image processing for analysis of biofilms. Appl Environ Microbiol 1998; 64:4115-27. [PMID: 9797255 PMCID: PMC106617 DOI: 10.1128/aem.64.11.4115-4127.1998] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to develop and apply a quantitative optical method suitable for routine measurements of biofilm structures under in situ conditions. A computer program was designed to perform automated investigations of biofilms by using image acquisition and image analysis techniques. To obtain a representative profile of a growing biofilm, a nondestructive procedure was created to study and quantify undisturbed microbial populations within the physical environment of a glass flow cell. Key components of the computer-controlled processing described in this paper are the on-line collection of confocal two-dimensional (2D) cross-sectional images from a preset 3D domain of interest followed by the off-line analysis of these 2D images. With the quantitative extraction of information contained in each image, a three-dimensional reconstruction of the principal biological events can be achieved. The program is convenient to handle and was generated to determine biovolumes and thus facilitate the examination of dynamic processes within biofilms. In the present study, Pseudomonas fluorescens or a green fluorescent protein-expressing Escherichia coli strain, EC12, was inoculated into glass flow cells and the respective monoculture biofilms were analyzed in three dimensions. In this paper we describe a method for the routine measurements of biofilms by using automated image acquisition and semiautomated image analysis.
Collapse
Affiliation(s)
- M Kuehn
- Institute of Water Quality Control and Waste Management, Technical University of Munich, D-85748 Garching, Technical University of Munich, D-80290 Munich, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Christensen BB, Sternberg C, Andersen JB, Eberl L, Moller S, Givskov M, Molin S. Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol 1998; 64:2247-55. [PMID: 9603843 PMCID: PMC106307 DOI: 10.1128/aem.64.6.2247-2255.1998] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Conjugational transfer of the TOL plasmid (pWWO) was analyzed in a flow chamber biofilm community engaged in benzyl alcohol degradation. The community consisted of three species, Pseudomonas putida RI, Acinetobacter sp. strain C6, and an unidentified isolate, D8. Only P. putida RI could act as a recipient for the TOL plasmid. Cells carrying a chromosomally integrated lacIq gene and a lacp-gfp-tagged version of the TOL plasmid were introduced as donor strains in the biofilm community after its formation. The occurrence of plasmid-carrying cells was analyzed by viable-count-based enumeration of donors and transconjugants. Upon transfer of the plasmids to the recipient cells, expression of green fluorescence was activated as a result of zygotic induction of the gfp gene. This allowed a direct in situ identification of cells receiving the gfp-tagged version of the TOL plasmid. Our data suggest that the frequency of horizontal plasmid transfer was low, and growth (vertical transfer) of the recipient strain was the major cause of plasmid establishment in the biofilm community. Employment of scanning confocal laser microscopy on fixed biofilms, combined with simultaneous identification of P. putida cells and transconjugants by 16S rRNA hybridization and expression of green fluorescence, showed that transconjugants were always associated with noninfected P. putida RI recipient microcolonies. Pure colonies of transconjugants were never observed, indicating that proliferation of transconjugant cells preferentially took place on preexisting P. putida RI microcolonies in the biofilm.
Collapse
Affiliation(s)
- B B Christensen
- Department of Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
25
|
Korber DR, Choi A, Wolfaardt GM, Ingham SC, Caldwell DE. Substratum topography influences susceptibility of Salmonella enteritidis biofilms to trisodium phosphate. Appl Environ Microbiol 1997; 63:3352-8. [PMID: 9292984 PMCID: PMC168640 DOI: 10.1128/aem.63.9.3352-3358.1997] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Established (48- and 72-h) Salmonella enteritidis biofilms grown in glass flow cells with or without artificial crevices (0.5-, 0.3-, and 0.15-mm widths) were subjected to a 10% trisodium phosphate (TSP) solution under different flow regimens (0.3, 0.6, 1.2, and 1.8 cm s-1). The abundance of biofilm remaining after TSP treatment, the biocidal efficacy of TSP, and the factors which contributed to bacterial survival were then evaluated by using confocal laser microscopy and a fluorescent viability probe. Biofilm age affected the amount of biofilm which remained following a 15-s exposure to TSP. After TSP treatment of 48-h biofilms, 29% of the original biofilm remained at the biofilm-liquid interface, whereas 75% of the biofilm remained at the base (the attachment surface). Following TSP treatment of 72-h biofilms, 27% of the biofilm material remained at the biofilm-liquid interface, 73% remained at the 5-micron depth, and 91% remained at the biofilm base. Results obtained using the BacLight viability probe indicated that TSP exposure killed all the cells in 48-h biofilms, whereas in the thicker 72-h biofilms, surviving bacteria (approximately 2% of the total) were found near the 5- and 0-micron depths. In the presence of artificially constructed crevices, an inverse relationship was shown to exist between bacterial survival (ranging from approximately 13 to 83% of total biofilm material) and crevice width. This relationship was further influenced by the velocity of TSP flow; high TSP flow velocities (1.8 cm s-1) resulted in the lowest number of surviving bacteria at the base of crevices (approximately 42% survival). Extended time courses demonstrated that after TSP stress was relieved, biofilms continued to grow within crevices but not in systems without crevices. It is suggested that advective TSP flux into crevices and through the biofilm matrix was enhanced under conditions of high flow. These results suggest that the inherent roughness of the substratum on which the biofilm was grown and the timing of TSP application are important factors controlling the efficacy of TSP treatment.
Collapse
Affiliation(s)
- D R Korber
- University of Saskatchewan, Saskatoon, Canada.
| | | | | | | | | |
Collapse
|
26
|
Beveridge TJ, Makin SA, Kadurugamuwa JL, Li Z. Interactions between biofilms and the environment. FEMS Microbiol Rev 1997; 20:291-303. [PMID: 9299708 DOI: 10.1111/j.1574-6976.1997.tb00315.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The surfaces of bacteria are highly interactive with their environment. Whether the bacterium is Gram-negative or Gram-positive, most surfaces are charged at neutral pH because of the ionization of the reactive chemical groups which stud them. Since prokaryotes have a high surface area-to-volume ratio, this can have surprising ramifications. For example, many bacteria can concentrate dilute environmental metals on their surfaces and initiate the development of fine-grained minerals. In natural environments, it is not unusual to find such bacteria closely associated with the minerals which they have helped develop. Bacteria can be free-living (planktonic), but in most natural ecosystems they prefer to grow on interfaces as biofilms; supposedly to take advantage of the nutrient concentrative effect of the interface, although there must also be gained some protective value against predators and toxic agents. Using a Pseudomonas aeruginosa model system, we have determined that lipopolysaccharide is important in the initial attachment of this Gram-negative bacterium to interfaces and that this surface moiety subtly changes during biofilm formation. Using this same model system, we have also discovered that there is a natural tendency for Gram-negative bacteria to concentrate and package periplasmic components into membrane vesicles which bleb-off the surface. Since some of these components (e.g., peptidoglycan hydrolases) can degrade other surrounding cells, the vesicles could be predatory; i.e., a natural system by which neighboring bacteria are targeted and lysed, thereby liberating additional nutrients to the microbial community. This obviously would be of benefit to vesicle-producing bacteria living in biofilms containing mixed microbial populations.
Collapse
Affiliation(s)
- T J Beveridge
- Canadian Bacterial Disease Network-National Centre of Excellence, Guelph, Ont., Canada.
| | | | | | | |
Collapse
|
27
|
Moller S, Korber DR, Wolfaardt GM, Molin S, Caldwell DE. Impact of nutrient composition on a degradative biofilm community. Appl Environ Microbiol 1997; 63:2432-8. [PMID: 16535632 PMCID: PMC1389187 DOI: 10.1128/aem.63.6.2432-2438.1997] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A microbial community was cultivated in flow cells with 2,4,6-trichlorobenzoic acid (2,4,6-TCB) as sole carbon and energy source and was examined with scanning confocal laser microscopy and fluorescent molecular probes. The biofilm community which developed under these conditions exhibited a characteristic architecture, including a basal cell layer and conspicuous mounds of bacterial cells and polymer (approximately 20 to 30 (mu)m high and 25 to 40 (mu)m in diameter) occurring at 20- to 200-(mu)m intervals. When biofilms grown on 2,4,6-TCB were shifted to a labile, nonchlorinated carbon source (Trypticase soy broth), the biofilms underwent an architectural change which included the loss of mound structures and the formation of a more homogeneous biofilm. Neutrally charged fluorescent dextrans, which upon hydration become cationic, were observed to bind to mounds, as well as to the basal cell layer, in 14-day biofilms. In contrast, polyanionic dextrans bound only to the basal cell layer, indicating that this material incorporated sites with both positive and negative charge. The results from this study indicate that nutrient composition has a significant impact on both the architecture and the physicochemistry of degradative biofilm communities.
Collapse
|
28
|
Abstract
A review of the current literature on transport of bacteria through geologic media is presented. The review addresses the major controls on bacterial transport. These controls include the nature of the substratum, the solute, and the bacterial cell. Most knowledge on the transport of bacteria through geologic media has been gained from column studies. There is need for some standardization of approaches, particularly with regard to data collection and controls on factors such as ionic strength and flow velocity. Other systems including glass micromodels have been used in conjunction with microscopy and scanning confocal laser microscopy to examine the controls on transport at the pore scale rather than porous medium scale of column studies. Many inconsistencies exist regarding the effect of the numerous variables that impact bacterial sorption in porous media. These variables include the nature of the substratum (i.e., the presence or absence of coatings), chemical composition of the solute (particularly ionic strength), system hydrodynamics, and bacterial variables such as size, shape, hydrophobicity, and electrostatic charge. Mathematical models based on the advective–dispersion equation have been developed to simulate bacterial transport. Within specific limits, these models can approximate most aspects of bacterial transport; however, they neglect parameters such as growth and behavior of bacteria. There is a need for theoretical development, extensive laboratory investigation, and model development before the goal of prediction of bacterial transport at field scale may be realized.Key words: sorption, advection, dispersion, models, facilitated transport.
Collapse
|