1
|
Baka RD, Kuleš J, Beletić A, Farkaš V, Rešetar Maslov D, Ljubić BB, Rubić I, Mrljak V, McLaughlin M, Eckersall D, Polizopoulou Z. Quantitative serum proteome analysis using tandem mass tags in dogs with epilepsy. J Proteomics 2024; 290:105034. [PMID: 37879566 DOI: 10.1016/j.jprot.2023.105034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
This study included four groups of dogs (group A: healthy controls, group B: idiopathic epilepsy receiving antiepileptic medication (AEM), group C: idiopathic epilepsy without AEM, group D: structural epilepsy). Comparative quantitative proteomic analysis of serum samples among the groups was the main target of the study. Samples were analyzed by a quantitative Tandem-Mass-Tags approach on the Q-Exactive-Plus Hybrid Quadrupole-Orbitrap mass-spectrometer. Identification and relative quantification were performed in Proteome Discoverer. Data were analyzed using R. Gene ontology terms were analyzed based on Canis lupus familiaris database. Data are available via ProteomeXchange with identifier PXD041129. Eighty-one proteins with different relative adundance were identified in the four groups and 25 were master proteins (p < 0.05). Clusterin (CLU), and apolipoprotein A1 (APOA1) had higher abundance in the three groups of dogs (groups B, C, D) compared to controls. Amine oxidase (AOC3) was higher in abundance in group B compared to groups C and D, and lower in group A. Adiponectin (ADIPOQ) had higher abundance in groups C compared to group A. ADIPOQ and fibronectin (FN1) had higher abundance in group B compared to group C and D. Peroxidase activity assay was used to quantify HP abundance change, validating and correlating with proteomic analysis (r = 0.8796). SIGNIFICANCE: The proteomic analysis of serum samples from epileptic dogs indicated potential markers of epilepsy (CLU), proteins that may contribute to nerve tissue regeneration (APOA1), and contributing factors to epileptogenesis (AOC3). AEM could alter extracellular matrix proteins (FN1). Illness (epilepsy) severity could influence ADIPOQ abundance.
Collapse
Affiliation(s)
- Rania D Baka
- Diagnostic Laboratory, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Josipa Kuleš
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Anđelo Beletić
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Farkaš
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dina Rešetar Maslov
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Blanka Beer Ljubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Rubić
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Mrljak
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia; Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Marκ McLaughlin
- Institute of Biodiversity, Animal Health & Comparative Medicine and School of Veterinary Medicine, College of Medicine, Veterinary Medicine and Life Sciences,University of Glasgow, Glasgow G61 1QH, UK
| | - David Eckersall
- Institute of Biodiversity, Animal Health & Comparative Medicine and School of Veterinary Medicine, College of Medicine, Veterinary Medicine and Life Sciences,University of Glasgow, Glasgow G61 1QH, UK
| | - Zoe Polizopoulou
- Diagnostic Laboratory, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Wang P, Yang L, Yang R, Chen Z, Ren X, Wang F, Jiao Y, Ding Y, Yang F, Sun T, Ma H. Predicted molecules and signaling pathways for regulating seizures in the hippocampus in lithium-pilocarpine induced acute epileptic rats: A proteomics study. Front Cell Neurosci 2022; 16:947732. [DOI: 10.3389/fncel.2022.947732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Seizures in rodent models that are induced by lithium-pilocarpine mimic human seizures in a highly isomorphic manner. The hippocampus is a brain region that generates and spreads seizures. In order to understand the early phases of seizure events occurring in the hippocampus, global protein expression levels in the hippocampus on day 1 and day 3 were analyzed in lithium-pilocarpine induced acute epileptic rat models using a tandem mass tag-based proteomic approach. Our results showed that differentially expressed proteins were likely to be enhanced rather than prohibited in modulating seizure activity on days 1 and 3 in lithium-pilocarpine induced seizure rats. The differentially regulated proteins differed on days 1 and 3 in the seizure rats, indicating that different molecules and pathways are involved in seizure events occurring from day 1 to day 3 following lithium-pilocarpine administration. In regard to subcellular distribution, the results suggest that post-seizure cellular function in the hippocampus is possibly regulated in a differential manner on seizure progression. Gene ontology annotation results showed that, on day 1 following lithium-pilocarpine administration, it is likely necessary to regulate macromolecular complex assembly, and cell death, while on day 3, it may be necessary to modulate protein metabolic process, cytoplasm, and protein binding. Protein metabolic process rather than macromolecular complex assembly and cell death were affected on day 3 following lithium-pilocarpine administration. The extracellular matrix, receptors, and the constitution of plasma membranes were altered most strongly in the development of seizure events. In a KEGG pathway enrichment cluster analysis, the signaling pathways identified were relevant to sustained angiogenesis and evading apoptosis, and complement and coagulation cascades. On day 3, pathways relevant to Huntington’s disease, and tumor necrosis factor signaling were most prevalent. These results suggest that seizure events occurring in day 1 modulate macromolecular complex assembly and cell death, and in day 3 modulate biological protein metabolic process. In summary, our study found limited evidence for ongoing seizure events in the hippocampus of lithium-pilocarpine induced animal models; nevertheless, evaluating the global differential expression of proteins and their impacts on bio-function may offer new perspectives for studying epileptogenesis in the future.
Collapse
|
3
|
Anwar MM, Özkan E, Gürsoy-Özdemir Y. The role of extracellular matrix alterations in mediating astrocyte damage and pericyte dysfunction in Alzheimer's disease: A comprehensive review. Eur J Neurosci 2022; 56:5453-5475. [PMID: 34182602 DOI: 10.1111/ejn.15372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
The brain is a highly vascularized tissue protected by the blood-brain barrier (BBB), a complex structure allowing only necessary substances to pass through into the brain while limiting the entrance of harmful toxins. The BBB comprises several components, and the most prominent features are tight junctions between endothelial cells (ECs), which are further wrapped in a layer of pericytes. Pericytes are multitasked cells embedded in a thick basement membrane (BM) that consists of a fibrous extracellular matrix (ECM) and are surrounded by astrocytic endfeet. The primary function of astrocytes and pericytes is to provide essential blood supply and vital nutrients to the brain. In Alzheimer's disease (AD), long-term neuroinflammatory cascades associated with infiltration of harmful neurotoxic proteins may lead to BBB dysfunction and altered ECM components resulting in brain homeostatic imbalance, synaptic damage, and declined cognitive functions. Moreover, BBB structure and functional integrity may be lost due to induced ECM alterations, astrocyte damage, and pericytes dysfunction, leading to amyloid-beta (Aβ) hallmarks deposition in different brain regions. Herein, we highlight how BBB, ECM, astrocytes, and pericytes dysfunction can play a leading role in AD's pathogenesis and discuss their impact on brain functions.
Collapse
Affiliation(s)
- Mai M Anwar
- Neuroscience Research Lab, Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.,Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority, Cairo, Egypt
| | - Esra Özkan
- Neuroscience Research Lab, Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Neuroscience Research Lab, Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.,Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
4
|
Co-Expression Analysis of microRNAs and Proteins in Brain of Alzheimer's Disease Patients. Cells 2022; 11:cells11010163. [PMID: 35011725 PMCID: PMC8750061 DOI: 10.3390/cells11010163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia globally; however, the aetiology of AD remains elusive hindering the development of effective therapeutics. MicroRNAs (miRNAs) are regulators of gene expression and have been of growing interest in recent studies in many pathologies including AD not only for their use as biomarkers but also for their implications in the therapeutic field. In this study, miRNA and protein profiles were obtained from brain tissues of different stage (Braak III-IV and Braak V-VI) of AD patients and compared to matched controls. The aim of the study was to identify in the late stage of AD, the key dysregulated pathways that may contribute to pathogenesis and then to evaluate whether any of these pathways could be detected in the early phase of AD, opening new opportunity for early treatment that could stop or delay the pathology. Six common pathways were found regulated by miRNAs and proteins in the late stage of AD, with one of them (Rap1 signalling) activated since the early phase. MiRNAs and proteins were also compared to explore an inverse trend of expression which could lead to the identification of new therapeutic targets. These results suggest that specific miRNA changes could represent molecular fingerprint of neurodegenerative processes and potential therapeutic targets for early intervention.
Collapse
|
5
|
Hippocampus chronic deep brain stimulation induces reversible transcript changes in a macaque model of mesial temporal lobe epilepsy. Chin Med J (Engl) 2021; 134:1845-1854. [PMID: 34267068 PMCID: PMC8367040 DOI: 10.1097/cm9.0000000000001644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) has seizure-suppressing effects but the molecular mechanisms underlying its therapeutic action remain unclear. This study aimed to systematically elucidate the mechanisms underlying DBS-induced seizure suppression at a molecular level. METHODS We established a macaque model of mesial temporal lobe epilepsy (mTLE), and continuous high-frequency hippocampus DBS (hip-DBS) was applied for 3 months. The effects of hip-DBS on hippocampus gene expression were examined using high-throughput microarray analysis followed by bioinformatics analysis. Moreover, the microarray results were validated using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses. RESULTS The results showed that chronic hip-DBS modulated the hippocampal gene expression. We identified 4119 differentially expressed genes and assigned these genes to 16 model profiles. Series test of cluster analysis showed that profiles 5, 3, and 2 were the predominant expression profiles. Moreover, profile 5 was mainly involved in focal adhesion and extracellular matrix-receptor interaction pathway. Nine dysregulated genes (Arhgap5, Col1a2, Itgb1, Pik3r1, Lama4, Fn1, Col3a1, Itga9, and Shc4) and three genes (Col1a2, Itgb1, and Flna) in these two pathways were further validated by qRT-PCR and Western blot analyses, respectively, which showed a concordance. CONCLUSION Our findings suggest that hip-DBS could markedly reverse mTLE-induced abnormal gene expression. Findings from this study establish the basis for further investigation of the underlying regulatory mechanisms of DBS for mTLE.
Collapse
|
6
|
Kobylarek D, Iwanowski P, Lewandowska Z, Limphaibool N, Szafranek S, Labrzycka A, Kozubski W. Advances in the Potential Biomarkers of Epilepsy. Front Neurol 2019; 10:685. [PMID: 31312171 PMCID: PMC6614180 DOI: 10.3389/fneur.2019.00685] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a group of chronic neurological disorders characterized by recurrent, spontaneous, and unpredictable seizures. It is one of the most common neurological disorders, affecting tens of millions of people worldwide. Comprehensive studies on epilepsy in recent decades have revealed the complexity of epileptogenesis, in which immunological processes, epigenetic modifications, and structural changes in neuronal tissues have been identified as playing a crucial role. This review discusses the recent advances in the biomarkers of epilepsy. We evaluate the possible molecular background underlying the clinical changes observed in recent studies, focusing on therapeutic investigations, and the evidence of their safety and efficacy in the human population. This article reviews the pathophysiology of epilepsy, including recent reports on the effects of oxidative stress and hypoxia, and focuses on specific biomarkers and their clinical implications, along with further perspectives in epilepsy research.
Collapse
Affiliation(s)
- Dominik Kobylarek
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
7
|
Mohandas N, Loke YJ, Hopkins S, Mackenzie L, Bennett C, Berkovic SF, Vadlamudi L, Craig JM. Evidence for type-specific DNA methylation patterns in epilepsy: a discordant monozygotic twin approach. Epigenomics 2019; 11:951-968. [DOI: 10.2217/epi-2018-0136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: Epilepsy is a common neurological disorder characterized by recurrent seizures. We performed epigenetic analyses between and within 15 monozygotic (MZ) twin pairs discordant for focal or generalized epilepsy. Methods: DNA methylation analysis was performed using Illumina Infinium MethylationEPIC arrays, in blood and buccal samples. Results: Differentially methylated regions between epilepsy types associated with PM20D1 and GFPT2 genes in both tissues. Within MZ discordant twin pairs, differentially methylated regions associated with OTX1 and ARID5B genes for generalized epilepsy and TTC39C and DLX5 genes for focal epilepsy. Conclusion: This is the first epigenome-wide association study, utilizing the discordant MZ co-twin model, to deepen our understanding of the neurobiology of epilepsy.
Collapse
Affiliation(s)
- Namitha Mohandas
- Environmental & Genetic Epidemiology Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Flemington Road, Parkville, Victoria, Australia
| | - Yuk Jing Loke
- Environmental & Genetic Epidemiology Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia
| | - Stephanie Hopkins
- Environmental & Genetic Epidemiology Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia
- School of Medicine & Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Lisa Mackenzie
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Queensland, Australia
| | - Carmen Bennett
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Queensland, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, University of Melbourne, Austin Health, Victoria, Australia
| | - Lata Vadlamudi
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Queensland, Australia
- Royal Brisbane & Women's Hospital, Queensland, Australia
| | - Jeffrey M Craig
- Environmental & Genetic Epidemiology Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Flemington Road, Parkville, Victoria, Australia
- Centre for Molecular & Medical Research, School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
8
|
|
9
|
Wu X, Muthuchamy M, Reddy DS. Atomic force microscopy investigations of fibronectin and α5β1-integrin signaling in neuroplasticity and seizure susceptibility in experimental epilepsy. Epilepsy Res 2017; 138:71-80. [DOI: 10.1016/j.eplepsyres.2017.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/15/2017] [Accepted: 10/19/2017] [Indexed: 12/15/2022]
|
10
|
Łukawski K, Andres-Mach M, Czuczwar M, Łuszczki JJ, Kruszyński K, Czuczwar SJ. Mechanisms of epileptogenesis and preclinical approach to antiepileptogenic therapies. Pharmacol Rep 2017; 70:284-293. [PMID: 29477036 DOI: 10.1016/j.pharep.2017.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 12/30/2022]
Abstract
The prevalence of epilepsy is estimated 5-10 per 1000 population and around 70% of patients with epilepsy can be sufficiently controlled by antiepileptic drugs (AEDs). Epileptogenesis is the process responsible for converting normal into an epileptic brain and mechanisms responsible include among others: inflammation, neurodegeneration, neurogenesis, neural reorganization and plasticity. Some AEDs may be antiepileptiogenic (diazepam, eslicarbazepine) but the correlation between neuroprotection and inhibition of epileptogenesis is not evident. Antiepileptogenic activity has been postulated for mTOR ligands, resveratrol and losartan. So far, clinical evidence gives some hope for levetiracetam as an AED inhibiting epileptogenesis in neurosurgical patients. Biomarkers for epileptogenesis are needed for the proper selection of patients for evaluation of potential antiepileptogenic compounds.
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Lublin, Poland; Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - Mirosław Czuczwar
- 2nd Department of Anesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| | - Jarogniew J Łuszczki
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland; Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | | | - Stanisław J Czuczwar
- Department of Physiopathology, Institute of Rural Health, Lublin, Poland; Department of Pathophysiology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
11
|
de Araújo MA, Marques TEBS, Octacílio-Silva S, de Arroxelas-Silva CL, Pereira MGAG, Peixoto-Santos JE, Kandratavicius L, Leite JP, Garcia-Cairasco N, Castro OW, Duzzioni M, Passos GA, Paçó-Larson ML, Góes Gitaí DL. Identification of microRNAs with Dysregulated Expression in Status Epilepticus Induced Epileptogenesis. PLoS One 2016; 11:e0163855. [PMID: 27695061 PMCID: PMC5047645 DOI: 10.1371/journal.pone.0163855] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022] Open
Abstract
The involvement of miRNA in mesial temporal lobe epilepsy (MTLE) pathogenesis has increasingly become a focus of epigenetic studies. Despite advances, the number of known miRNAs with a consistent expression response during epileptogenesis is still small. Addressing this situation requires additional miRNA profiling studies coupled to detailed individual expression analyses. Here, we perform a miRNA microarray analysis of the hippocampus of Wistar rats 24 hours after intra-hippocampal pilocarpine-induced Status Epilepticus (H-PILO SE). We identified 73 miRNAs that undergo significant changes, of which 36 were up-regulated and 37 were down-regulated. To validate, we selected 5 of these (10a-5p, 128a-3p, 196b-5p, 352 and 324-3p) for RT-qPCR analysis. Our results confirmed that miR-352 and 196b-5p levels were significantly higher and miR-128a-3p levels were significantly lower in the hippocampus of H-PILO SE rats. We also evaluated whether the 3 miRNAs show a dysregulated hippocampal expression at three time periods (0h, 24h and chronic phase) after systemic pilocarpine-induced status epilepticus (S-PILO SE). We demonstrate that miR-128a-3p transcripts are significantly reduced at all time points compared to the naïve group. Moreover, miR-196b-5p was significantly higher only at 24h post-SE, while miR-352 transcripts were significantly up-regulated after 24h and in chronic phase (epileptic) rats. Finally, when we compared hippocampi of epileptic and non-epileptic humans, we observed that transcript levels of miRNAs show similar trends to the animal models. In summary, we successfully identified two novel dysregulated miRNAs (196b-5p and 352) and confirmed miR-128a-3p downregulation in SE-induced epileptogenesis. Further functional assays are required to understand the role of these miRNAs in MTLE pathogenesis.
Collapse
Affiliation(s)
- Mykaella Andrade de Araújo
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | - Shirley Octacílio-Silva
- Department of Morphology, Health and Biological Sciences Center, Federal University of Sergipe, Aracajú, Sergipe, Brazil
| | - Carmem Lúcia de Arroxelas-Silva
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | - José Eduardo Peixoto-Santos
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ludmyla Kandratavicius
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Pereira Leite
- Division of Neurology, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Olagide Wagner Castro
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Marcelo Duzzioni
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Geraldo Aleixo Passos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Luisa Paçó-Larson
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
- * E-mail:
| |
Collapse
|
12
|
Wu X, Muthuchamy M, Reddy DS. Atomic Force Microscopy Protocol for Measurement of Membrane Plasticity and Extracellular Interactions in Single Neurons in Epilepsy. Front Aging Neurosci 2016; 8:88. [PMID: 27199735 PMCID: PMC4854888 DOI: 10.3389/fnagi.2016.00088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/08/2016] [Indexed: 11/23/2022] Open
Abstract
Physiological interactions between extracellular matrix (ECM) proteins and membrane integrin receptors play a crucial role in neuroplasticity in the hippocampus, a key region involved in epilepsy. The atomic force microscopy (AFM) is a cutting-edge technique to study structural and functional measurements at nanometer resolution between the AFM probe and cell surface under liquid. AFM has been incrementally employed in living cells including the nervous system. AFM is a unique technique that directly measures functional information at a nanoscale resolution. In addition to its ability to acquire detailed 3D imaging, the AFM probe permits quantitative measurements on the structure and function of the intracellular components such as cytoskeleton, adhesion force and binding probability between membrane receptors and ligands coated in the AFM probe, as well as the cell stiffness. Here we describe an optimized AFM protocol and its application for analysis of membrane plasticity and mechanical dynamics of individual hippocampus neurons in mice with chronic epilepsy. The unbinding force and binding probability between ECM, fibronectin-coated AFM probe and membrane integrin were strikingly lower in dentate gyrus granule cells in epilepsy. Cell elasticity, which represents changes in cytoskeletal reorganization, was significantly increased in epilepsy. The fibronectin-integrin binding probability was prevented by anti-α5β1 integrin. Thus, AFM is a unique nanotechnique that allows progressive functional changes in neuronal membrane plasticity and mechanotransduction in epilepsy and related brain disorders.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine Bryan, TX, USA
| | - Mariappan Muthuchamy
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine Bryan, TX, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine Bryan, TX, USA
| |
Collapse
|
13
|
Addis L, Rosch RE, Valentin A, Makoff A, Robinson R, Everett KV, Nashef L, Pal DK. Analysis of rare copy number variation in absence epilepsies. NEUROLOGY-GENETICS 2016; 2:e56. [PMID: 27123475 PMCID: PMC4830185 DOI: 10.1212/nxg.0000000000000056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/04/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To identify shared genes and pathways between common absence epilepsy (AE) subtypes (childhood absence epilepsy [CAE], juvenile absence epilepsy [JAE], and unclassified absence epilepsy [UAE]) that may indicate common mechanisms for absence seizure generation and potentially a diagnostic continuum. METHODS We used high-density single-nucleotide polymorphism arrays to analyze genome-wide rare copy number variation (CNV) in a cohort of 144 children with AEs (95 CAE, 26 UAE, and 23 JAE). RESULTS We identified CNVs that are known risk factors for AE in 4 patients, including 3x 15q11.2 deletion. We also expanded the phenotype at 4 regions more commonly identified in other neurodevelopmental disorders: 1p36.33 duplication, 1q21.1 deletion, 22q11.2 duplication, and Xp22.31 deletion and duplication. Fifteen patients (10.5%) were found to carry rare CNVs that disrupt genes associated with neuronal development and function (8 CAE, 2 JAE, and 5 UAE). Four categories of protein are each disrupted by several CNVs: (1) synaptic vesicle membrane or vesicle endocytosis, (2) synaptic cell adhesion, (3) synapse organization and motility via actin, and (4) gap junctions. CNVs within these categories are shared across the AE subtypes. CONCLUSIONS Our results have reinforced the complex and heterogeneous nature of the AEs and their potential for shared genetic mechanisms and have highlighted several pathways that may be important in epileptogenesis of absence seizures.
Collapse
Affiliation(s)
- Laura Addis
- Department of Basic and Clinical Neuroscience (L.A., R.E.R., A.V., A.M., D.K.P.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Neuroscience Discovery Research (L.A.), Eli Lilly and Company, Erl Wood, Surrey, United Kingdom; Wellcome Trust Centre for Neuroimaging (R.E.R.), Institute of Neurology, University College London, United Kingdom; Department of Clinical Neurophysiology (A.V.), Department of Neurology (L.N.), and Department of Child Health (D.K.P.), King's College Hospital, United Kingdom; Department of Paediatric Neurology (R.R.), Great Ormond Street Hospital, London, United Kingdom; and St George's University of London (K.V.E.), Cranmer Terrace, London, United Kingdom
| | - Richard E Rosch
- Department of Basic and Clinical Neuroscience (L.A., R.E.R., A.V., A.M., D.K.P.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Neuroscience Discovery Research (L.A.), Eli Lilly and Company, Erl Wood, Surrey, United Kingdom; Wellcome Trust Centre for Neuroimaging (R.E.R.), Institute of Neurology, University College London, United Kingdom; Department of Clinical Neurophysiology (A.V.), Department of Neurology (L.N.), and Department of Child Health (D.K.P.), King's College Hospital, United Kingdom; Department of Paediatric Neurology (R.R.), Great Ormond Street Hospital, London, United Kingdom; and St George's University of London (K.V.E.), Cranmer Terrace, London, United Kingdom
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience (L.A., R.E.R., A.V., A.M., D.K.P.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Neuroscience Discovery Research (L.A.), Eli Lilly and Company, Erl Wood, Surrey, United Kingdom; Wellcome Trust Centre for Neuroimaging (R.E.R.), Institute of Neurology, University College London, United Kingdom; Department of Clinical Neurophysiology (A.V.), Department of Neurology (L.N.), and Department of Child Health (D.K.P.), King's College Hospital, United Kingdom; Department of Paediatric Neurology (R.R.), Great Ormond Street Hospital, London, United Kingdom; and St George's University of London (K.V.E.), Cranmer Terrace, London, United Kingdom
| | - Andrew Makoff
- Department of Basic and Clinical Neuroscience (L.A., R.E.R., A.V., A.M., D.K.P.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Neuroscience Discovery Research (L.A.), Eli Lilly and Company, Erl Wood, Surrey, United Kingdom; Wellcome Trust Centre for Neuroimaging (R.E.R.), Institute of Neurology, University College London, United Kingdom; Department of Clinical Neurophysiology (A.V.), Department of Neurology (L.N.), and Department of Child Health (D.K.P.), King's College Hospital, United Kingdom; Department of Paediatric Neurology (R.R.), Great Ormond Street Hospital, London, United Kingdom; and St George's University of London (K.V.E.), Cranmer Terrace, London, United Kingdom
| | - Robert Robinson
- Department of Basic and Clinical Neuroscience (L.A., R.E.R., A.V., A.M., D.K.P.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Neuroscience Discovery Research (L.A.), Eli Lilly and Company, Erl Wood, Surrey, United Kingdom; Wellcome Trust Centre for Neuroimaging (R.E.R.), Institute of Neurology, University College London, United Kingdom; Department of Clinical Neurophysiology (A.V.), Department of Neurology (L.N.), and Department of Child Health (D.K.P.), King's College Hospital, United Kingdom; Department of Paediatric Neurology (R.R.), Great Ormond Street Hospital, London, United Kingdom; and St George's University of London (K.V.E.), Cranmer Terrace, London, United Kingdom
| | - Kate V Everett
- Department of Basic and Clinical Neuroscience (L.A., R.E.R., A.V., A.M., D.K.P.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Neuroscience Discovery Research (L.A.), Eli Lilly and Company, Erl Wood, Surrey, United Kingdom; Wellcome Trust Centre for Neuroimaging (R.E.R.), Institute of Neurology, University College London, United Kingdom; Department of Clinical Neurophysiology (A.V.), Department of Neurology (L.N.), and Department of Child Health (D.K.P.), King's College Hospital, United Kingdom; Department of Paediatric Neurology (R.R.), Great Ormond Street Hospital, London, United Kingdom; and St George's University of London (K.V.E.), Cranmer Terrace, London, United Kingdom
| | - Lina Nashef
- Department of Basic and Clinical Neuroscience (L.A., R.E.R., A.V., A.M., D.K.P.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Neuroscience Discovery Research (L.A.), Eli Lilly and Company, Erl Wood, Surrey, United Kingdom; Wellcome Trust Centre for Neuroimaging (R.E.R.), Institute of Neurology, University College London, United Kingdom; Department of Clinical Neurophysiology (A.V.), Department of Neurology (L.N.), and Department of Child Health (D.K.P.), King's College Hospital, United Kingdom; Department of Paediatric Neurology (R.R.), Great Ormond Street Hospital, London, United Kingdom; and St George's University of London (K.V.E.), Cranmer Terrace, London, United Kingdom
| | - Deb K Pal
- Department of Basic and Clinical Neuroscience (L.A., R.E.R., A.V., A.M., D.K.P.), Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, United Kingdom; Neuroscience Discovery Research (L.A.), Eli Lilly and Company, Erl Wood, Surrey, United Kingdom; Wellcome Trust Centre for Neuroimaging (R.E.R.), Institute of Neurology, University College London, United Kingdom; Department of Clinical Neurophysiology (A.V.), Department of Neurology (L.N.), and Department of Child Health (D.K.P.), King's College Hospital, United Kingdom; Department of Paediatric Neurology (R.R.), Great Ormond Street Hospital, London, United Kingdom; and St George's University of London (K.V.E.), Cranmer Terrace, London, United Kingdom
| |
Collapse
|
14
|
Ttyh1 protein is expressed in glia in vitro and shows elevated expression in activated astrocytes following status epilepticus. Neurochem Res 2014; 39:2516-26. [PMID: 25316497 PMCID: PMC4246129 DOI: 10.1007/s11064-014-1455-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/26/2014] [Accepted: 10/08/2014] [Indexed: 11/29/2022]
Abstract
In a previous study, we showed that Ttyh1 protein is expressed in neurons in vitro and in vivo in the form of punctuate structures, which are localized to neuropil and neuronal somata. Herein, we provide the first description of Ttyh1 protein expression in astrocytes, oligodendrocytes and microglia in vitro. Moreover, using double immunofluorescence, we show Ttyh1 protein expression in activated astrocytes in the hippocampus following amygdala stimulation-induced status epilepticus. We demonstrate that in migrating astrocytes in in vitro wound model Ttyh1 concentrates at the edges of extending processes. These data suggest that Ttyh1 not only participates in shaping neuronal morphology, as previously described, but may also play a role in the function of activated glia in brain pathology. To localize Ttyh1 expression in the cellular compartments of neurons and astrocytes, we performed in vitro double immunofluorescent staining using markers for the following subcellular structures: endoplasmic reticulum (GRP78), Golgi apparatus (GM130), clathrin-coated vehicles (clathrin), early endosomes (Rab5 and APPL2), recycling endosomes (Rab11), trans-Golgi network (TGN46), endoplasmic reticulum membrane (calnexin), late endosomes and lysosomes (LAMP1) and synaptic vesicles (synaptoporin and synaptotagmin 1). We found that Ttyh1 is present in the endoplasmic reticulum, Golgi apparatus and clathrin-coated vesicles (clathrin) in both neurons and astrocytes and also in late endosomes or lysosomes in astrocytes. The presence of Ttyh1 was negligible in early endosomes, recycling endosomes, trans-Golgi network, endoplasmic reticulum membrane and synaptic vesicles.
Collapse
|
15
|
Che F, Fu Q, Li X, Gao N, Qi F, Sun Z, Du Y, Li M. Association of insulin receptor H1085H C>T, insulin receptor substrate 1 G972R and insulin receptor substrate 2 1057G/A polymorphisms with refractory temporal lobe epilepsy in Han Chinese. Seizure 2014; 25:178-80. [PMID: 25458098 DOI: 10.1016/j.seizure.2014.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Insulin/insulin receptor (INSR) signaling plays diverse roles in the central nervous system, including regulation of blood glucose, synaptic plasticity, dendritic growth, modulation of electrophysiological activity, proliferation of astrocytes and neuronal apoptosis. Interestingly, many of these and/or related processes represent biological mechanisms associated with temporal lobe epilepsy (TLE). Thus, insulin signaling may play a role in the development of TLE and its therapeutic responses. We hypothesized that functional polymorphisms in the insulin pathway genes INSR, insulin receptor substrate 1 (IRS1), and IRS2 may be associated with the therapeutic responses of TLE. Therefore, in this study we analyzed the association of three single nucleotide polymorphisms (SNPs) showing a risk for TLE drug resistance using a hospital-based case-control design. METHOD Two hundred and one patients with refractory TLE and one hundred and seventy-five drug-responsive TLE patients were recruited for the study. Polymerase chain reaction-restriction fragment length polymorphism was used to detect the genotypes of INSR His1085His, IRS1 G972R and IRS2 1057G/A. RESULTS No significant differences between refractory and drug-responsive TLE patients were observed for the IRS1 G972R and IRS2 1057G/A polymorphisms (P>0.05), but a significant association was found for the INSR His1085His polymorphism for both genotypes (P=0.035) and alleles (P=0.011). IRS2 1057G/A combined with the INSR His 1085 His polymorphism increased the odds ratio of drug resistance in TLE (P=0.011, OR=2.263, 95% CI: 1.208-4.239). CONCLUSION These results suggest that a genetic variation in the insulin signaling pathway genes may affect the therapeutic response of TLE.
Collapse
Affiliation(s)
- Fengyuan Che
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China; Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, PR China
| | - Qingxi Fu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, PR China.
| | - Xuesong Li
- Linyi Health School, Linyi, Shandong 276003, PR China
| | - Naiyong Gao
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, PR China
| | - Faying Qi
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, PR China
| | - Zhiqing Sun
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, PR China
| | - Yifeng Du
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China.
| | - Ming Li
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, PR China
| |
Collapse
|
16
|
Berezin V, Walmod PS, Filippov M, Dityatev A. Targeting of ECM molecules and their metabolizing enzymes and receptors for the treatment of CNS diseases. PROGRESS IN BRAIN RESEARCH 2014; 214:353-88. [DOI: 10.1016/b978-0-444-63486-3.00015-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Transcriptomic profiling of human peritumoral neocortex tissues revealed genes possibly involved in tumor-induced epilepsy. PLoS One 2013; 8:e56077. [PMID: 23418513 PMCID: PMC3572021 DOI: 10.1371/journal.pone.0056077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/09/2013] [Indexed: 12/11/2022] Open
Abstract
The molecular mechanism underlying tumor-induced epileptogenesis is poorly understood. Alterations in the peritumoral microenvironment are believed to play a significant role in inducing epileptogenesis. We hypothesize that the change of gene expression in brain peritumoral tissues may contribute to the increased neuronal excitability and epileptogenesis. To identify the genes possibly involved in tumor-induced epilepsy, a genome-wide gene expression profiling was conducted using Affymetrix HG U133 plus 2.0 arrays and RNAs derived from formalin-fixed paraffin embedded (FFPE) peritumoral cortex tissue slides from 5-seizure vs. 5-non-seizure low grade brain tumor patients. We identified many differentially expressed genes (DEGs). Seven dysregulated genes (i.e., C1QB, CALCRL, CCR1, KAL1, SLC1A2, SSTR1 and TYRO3) were validated by qRT-PCR, which showed a high concordance. Principal Component Analysis (PCA) showed that epilepsy subjects were clustered together tightly (except one sample) and were clearly separated from the non-epilepsy subjects. Molecular functional categorization showed that significant portions of the DEGs functioned as receptor activity, molecular binding including enzyme binding and transcription factor binding. Pathway analysis showed these DEGs were mainly enriched in focal adhesion, ECM-receptor interaction, and cell adhesion molecules pathways. In conclusion, our study showed that dysregulation of gene expression in the peritumoral tissues may be one of the major mechanisms of brain tumor induced-epilepsy. However, due to the small sample size of the present study, further validation study is needed. A deeper characterization on the dysregulated genes involved in brain tumor-induced epilepsy may shed some light on the management of epilepsy due to brain tumors.
Collapse
|
18
|
Dendritic spine pathology in epilepsy: cause or consequence? Neuroscience 2012; 251:141-50. [PMID: 22522469 DOI: 10.1016/j.neuroscience.2012.03.048] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/26/2012] [Accepted: 03/04/2012] [Indexed: 01/23/2023]
Abstract
Abnormalities in dendritic spines have commonly been observed in brain specimens from epilepsy patients and animal models of epilepsy. However, the functional implications and clinical consequences of this dendritic pathology for epilepsy are uncertain. Dendritic spine abnormalities may promote hyperexcitable circuits and seizures in some types of epilepsy, especially in specific genetic syndromes with documented dendritic pathology, but in these cases it is difficult to differentiate their effects on seizures versus other comorbidities, such as cognitive deficits and autism. In other situations, seizures themselves may cause damage to dendrites and dendritic spines and this seizure-induced brain injury may then contribute to progressive epileptogenesis, memory problems and other neurological deficits in epilepsy patients. The mechanistic basis of dendritic spine abnormalities in epilepsy has begun to be elucidated and suggests novel therapeutic strategies for treating epilepsy and its complications.
Collapse
|
19
|
Wu X, Reddy DS. Integrins as receptor targets for neurological disorders. Pharmacol Ther 2011; 134:68-81. [PMID: 22233753 DOI: 10.1016/j.pharmthera.2011.12.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/15/2011] [Indexed: 12/18/2022]
Abstract
This review focuses on the neurobiology of integrins, pathophysiological roles of integrins in neuroplasticity and nervous system disorders, and therapeutic implications of integrins as potential drug targets and possible delivery pathways. Neuroplasticity is a central phenomenon in many neurological conditions such as seizures, trauma, and traumatic brain injury. During the course of many brain diseases, in addition to intracellular compartment changes, alterations in non-cell compartments such as extracellular matrix (ECM) are recognized as an essential process in forming and reorganizing neural connections. Integrins are heterodimeric transmembrane receptors that mediate cell-ECM and cell-cell adhesion events. Although the mechanisms of neuroplasticity remain unclear, it has been suggested that integrins undergo plasticity including clustering through interactions with ECM proteins, modulating ion channels, intracellular Ca(2+) and protein kinase signaling, and reorganization of cytoskeletal filaments. As cell surface receptors, integrins are central to the pathophysiology of many brain diseases, such as epilepsy, and are potential targets for the development of new drugs for neurological disorders.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX 77807, USA
| | | |
Collapse
|
20
|
Mirza N, Vasieva O, Marson AG, Pirmohamed M. Exploring the genomic basis of pharmacoresistance in epilepsy: an integrative analysis of large-scale gene expression profiling studies on brain tissue from epilepsy surgery. Hum Mol Genet 2011; 20:4381-94. [PMID: 21852245 DOI: 10.1093/hmg/ddr365] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Some patients with pharmacoresistant epilepsy undergo therapeutic resection of the epileptic focus. At least 12 large-scale microarray studies on brain tissue from epilepsy surgery have been published over the last 10 years, but they have failed to make a significant impact upon our understanding of pharmacoresistance, because (1) doubts have been raised about their reproducibility, (2) only a small number of the gene expression changes found in each microarray study have been independently validated and (3) the results of different studies have not been integrated to give a coherent picture of the genetic changes involved in epilepsy pharmacoresistance. To overcome these limitations, we (1) assessed the reproducibility of the microarray studies by calculating the overlap between lists of differentially regulated genes from pairs of microarray studies and determining if this was greater than would be expected by chance alone, (2) used an inter-study cross-validation technique to simultaneously verify the expression changes of large numbers of genes and (3) used the combined results of the different microarray studies to perform an integrative analysis based on enriched gene ontology terms, networks and pathways. Using this approach, we respectively (1) demonstrate that there are statistically significant overlaps between the gene expression changes in different publications, (2) verify the differential expression of 233 genes and (3) identify the biological processes, networks and genes likely to be most important in the development of pharmacoresistant epilepsy. Our analysis provides novel biologically plausible candidate genes and pathways which warrant further investigation to assess their causal relevance.
Collapse
Affiliation(s)
- Nasir Mirza
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | | | | | | |
Collapse
|
21
|
Koranda JL, Ruskin DN, Masino SA, Blaise JH. A ketogenic diet reduces long-term potentiation in the dentate gyrus of freely behaving rats. J Neurophysiol 2011; 106:662-6. [PMID: 21613596 DOI: 10.1152/jn.00001.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ketogenic diets are very low in carbohydrates and can reduce epileptic seizures significantly. This dietary therapy is particularly effective in pediatric and drug-resistant epilepsy. Hypothesized anticonvulsant mechanisms of ketogenic diets focus on increased inhibition and/or decreased excitability/excitation. Either of these consequences might not only reduce seizures, but also could affect normal brain function and synaptic plasticity. Here, we characterized effects of a ketogenic diet on hippocampal long-term potentiation, a widely studied form of synaptic plasticity. Adult male rats were placed on a control or ketogenic diet for 3 wk before recording. To maintain the most physiological conditions possible, we assessed synaptic transmission and plasticity using chronic in vivo recordings in freely behaving animals. Rats underwent stereotaxic surgery to chronically implant a recording electrode in the hippocampal dentate gyrus and a stimulating electrode in the perforant path; they recovered for 1 wk. After habituation and stable baseline recording, 5-Hz theta-burst stimulation was delivered to induce long-term potentiation. All animals showed successful plasticity, demonstrating that potentiation was not blocked by the ketogenic diet. Compared with rats fed a control diet, rats fed a ketogenic diet demonstrated significantly diminished long-term potentiation. This decreased potentiation lasted for at least 48 h. Reduced potentiation in ketogenic diet-fed rats is consistent with a general increase in neuronal inhibition (or decrease in excitability) and decreased seizure susceptibility. A better understanding of the effects of ketogenic diets on synaptic plasticity and learning is important, as diet-based therapy is often prescribed to children with epilepsy.
Collapse
|
22
|
Wang L, Liu G, He M, Shen L, Shen D, Lu Y, Wang X. Increased insulin receptor expression in anterior temporal neocortex of patients with intractable epilepsy. J Neurol Sci 2010; 296:64-8. [PMID: 20624623 DOI: 10.1016/j.jns.2010.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 05/31/2010] [Accepted: 06/07/2010] [Indexed: 11/08/2022]
Abstract
The insulin receptor (IR) is a tyrosine kinase receptor that binds to insulin and plays pivotal roles in energy homeostasis, neuronal growth, neuronal survival, synaptic plasticity and cognitive function. The biological mechanisms of intractable epilepsy involve energy metabolism, neuron loss, neurogenesis and abnormal neural networks. Here, we evaluated the expression of the IR in the anterior temporal neocortex of patients with intractable epilepsy (IE) by immunohistochemistry, double-label immunofluorescence and immunoblotting. We compared these tissues against histologically normal anterior temporal lobes from individuals treated for post-trauma intracranial hypertension. We found that the IR was coexpressed with neuron-specific enolase (NSE) and that IR expression increased in the anterior temporal neocortex of epileptic patients. On the basis of the potential physiological effects of IR, our findings suggest that increased expression of the IR is a consequence of epileptic seizures and a cause of IE.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Xiao Z, Shen L, Chen D, Wang L, Xi Z, Xiao F, Wang X. Talin 2 concentrations in cerebrospinal fluid in patients with epilepsy. Clin Biochem 2010; 43:1129-32. [PMID: 20620133 DOI: 10.1016/j.clinbiochem.2010.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/15/2010] [Accepted: 06/16/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Talin 2 plays an important role in cell adhesion and recycling of synaptic vesicles. To explore the possible role of talin 2 in epilepsy, we designed current study to quantitatively evaluate the changes in talin 2 levels in different epilepsy patients. DESIGN AND METHODS We measured talin 2 levels in CSF and the serum of postencephalitic epilepsy (PEE) patients (subdivided into drug-refractory PEE-RPEE, and drug-effective PEE-EPEE groups) and acute encephalitis patients (subdivided into acute encephalitis with secondary seizures-AESS, and acute encephalitis without seizures-AE) by enzyme-linked immunosorbent assay. RESULTS We found that, in RPEE patients, interictal CSF-talin 2 concentrations significantly increased, whereas serum-talin 2 significantly decreased when compared with the AE, AESS, and EPEE groups. CONCLUSIONS This result suggested that the differential concentration of CSF and serum-talin 2 in the RPEE group is an intractability-related phenomenon that might be involved in the development of RPEE.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Chongqing 400016, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Takács E, Nyilas R, Szepesi Z, Baracskay P, Karlsen B, Røsvold T, Bjørkum AA, Czurkó A, Kovács Z, Kékesi AK, Juhász G. Matrix metalloproteinase-9 activity increased by two different types of epileptic seizures that do not induce neuronal death: a possible role in homeostatic synaptic plasticity. Neurochem Int 2010; 56:799-809. [PMID: 20303372 DOI: 10.1016/j.neuint.2010.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 01/26/2023]
Abstract
Matrix metalloproteases (MMPs) degrade or modify extracellular matrix or membrane-bound proteins in the brain. MMP-2 and MMP-9 are activated by treatments that result in a sustained neuronal depolarization and are thought to contribute to neuronal death and structural remodeling. At the synapse, MMP actions on extracellular proteins contribute to changes in synaptic efficacy during learning paradigms. They are also activated during epileptic seizures, and MMP-9 has been associated with the establishment of aberrant synaptic connections after neuronal death induced by kainate treatment. It remains unclear whether MMPs are activated by epileptic activities that do not induce cell death. Here we examine this point in two animal models of epilepsy that do not involve extensive cell damage. We detected an elevation of MMP-9 enzymatic activity in cortical regions of secondary generalization after focal seizures induced by 4-aminopyridine (4-AP) application in rats. Pro-MMP-9 levels were also higher in Wistar Glaxo Rijswijk (WAG/Rij) rats, a genetic model of generalized absence epilepsy, than they were in Sprague-Dawley rats, and this elevation was correlated with diurnally occurring spike-wave-discharges in WAG/Rij rats. The increased enzymatic activity of MMP-9 in these two different epilepsy models is associated with synchronized neuronal activity that does not induce widespread cell death. In these epilepsy models MMP-9 induction may therefore be associated with functions such as homeostatic synaptic plasticity rather than neuronal death.
Collapse
Affiliation(s)
- Eszter Takács
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Conant K, Wang Y, Szklarczyk A, Dudak A, Mattson MP, Lim ST. Matrix metalloproteinase-dependent shedding of intercellular adhesion molecule-5 occurs with long-term potentiation. Neuroscience 2010; 166:508-21. [PMID: 20045450 PMCID: PMC3535483 DOI: 10.1016/j.neuroscience.2009.12.061] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 12/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that can be released or activated in a neuronal activity dependent manner. Although pathologically elevated levels of MMPs may be synaptotoxic, physiologically appropriate levels of MMPs may instead enhance synaptic transmission. MMP inhibitors can block long term potentiation (LTP), and at least one family member can affect an increase in the volume of dendritic spines. While the mechanism by which MMPs affect these changes is not completely understood, one possibility is that the cleavage of specific synaptic cell adhesion molecules plays a role. In the present study, we have examined the ability of neuronal activity to stimulate rapid MMP dependent shedding of the intercellular adhesion molecule-5 (ICAM-5), a synaptic adhesion molecule that is thought to inhibit the maturation and enlargement of dendritic spines. Since such cleavage would likely occur within minutes if it were relevant to a process such as LTP, we focused on post stimulus time points of 30 min or less. We show that NMDA can stimulate rapid shedding of ICAM-5 from cortical neurons in dissociated cell cultures and that such shedding is diminished by pretreatment of cultures with inhibitors that target MMP-3 and -9, proteases thought to influence synaptic plasticity. Additional studies suggest that MMP mediated cleavage of ICAM-5 occurs at amino acid 780, so that the major portion of the ectodomain is released. Since reductions in ICAM-5 have been linked to changes in dendritic spine morphology that are associated with LTP, we also examined the possibility that MMP dependent ICAM-5 shedding occurs following high frequency tetanic stimulation of murine hippocampal slices. Results show that the shedding of ICAM-5 occurs in association with LTP, and that both LTP and the associated ICAM-5 shedding are reduced when slices are pretreated with an MMP inhibitor. Together, these findings suggest that neuronal activity is linked to the shedding of a molecule that may inhibit dendritic spine enlargement and that MMPs can affect this change. While further studies will be necessary to determine the extent to which cleavage of ICAM-5 in particular contributes to MMP dependent LTP, our data support an emerging body of literature suggesting that MMPs are critical mediators of synaptic plasticity.
Collapse
Affiliation(s)
- Katherine Conant
- Department of Neurology, Johns Hopkins University, Baltimore, MD
- Department of Neuroscience, Georgetown University, Washington, DC
| | - Yue Wang
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD
| | - Arek Szklarczyk
- Department of Neurology, Johns Hopkins University, Baltimore, MD
| | - Amanda Dudak
- Department of Neuroscience, Georgetown University, Washington, DC
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD
| | - Seung T. Lim
- Department of Neuroscience, Georgetown University, Washington, DC
| |
Collapse
|
26
|
New insights into the regulation of ion channels by integrins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 279:135-90. [PMID: 20797679 DOI: 10.1016/s1937-6448(10)79005-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
By controlling cell adhesion to the extracellular matrix, integrin receptors regulate processes as diverse as cell migration, proliferation, differentiation, apoptosis, and synaptic stability. Because the underlying mechanisms are generally accompanied by changes in transmembrane ion flow, a complex interplay occurs between integrins, ion channels, and other membrane transporters. This reciprocal interaction regulates bidirectional signal transduction across the cell surface and may take place at all levels of control, from transcription to direct conformational coupling. In particular, it is becoming increasingly clear that integrin receptors form macromolecular complexes with ion channels. Besides contributing to the membrane localization of the channel protein, the integrin/channel complex can regulate a variety of downstream signaling pathways, centered on regulatory proteins like tyrosine kinases and small GTPases. In turn, the channel protein usually controls integrin activation and expression. We review some recent advances in the field, with special emphasis on hematology and neuroscience. Some oncological implications are also discussed.
Collapse
|
27
|
Morini R, Becchetti A. Integrin receptors and ligand-gated channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 674:95-105. [PMID: 20549943 DOI: 10.1007/978-1-4419-6066-5_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Plastic expression of different integrin subunits controls the different stages of neural development, whereas in the adult integrins regulate synaptic stability. Evidence of integrin-channel crosstalk exists for ionotropic glutamate receptors. As is often the case in other tissues, integrin engagement regulates channel activity through complex signaling pathways that often include tyrosine phosphorylation cascades. The specific pathways recruited by integrin activation depend on cerebral region and cell type. In turn, ion channels control integrin expression onto the plasma membrane and their ligand binding affinity. The most extensive studies concern the hippocampus and suggest implications for neuronal circuit plasticity. The physiological relevance of these findings depends on whether adhesion molecules, aside from determining tissue stability, contribute to synaptogenesis and the responsiveness of mature synapses, thus contributing to long-term circuit consolidation. Little evidence is available for other ligand-gated channels, with the exception of nicotinic receptors. These exert a variety of functions in neurons and non neural tissue, both in development and in the adult, by regulating cell cycle, synaptogenesis and synaptic circuit refinement. Detailed studies in epidermal keratinocytes have shed some light on the possible mechanisms through which ACh can regulate cell motility, which may be of general relevance for morphogenetic processes. As to the control of mature synapses, most results concern the integrinic control of nicotinic receptors in the neuromuscular junction. Following this lead, a few studies have addressed similar topics in adult cerebral synapses. However, pursuing and interpreting these results in the brain is especially difficult because of the complexity of the nicotinic roles and the widespread contribution of nonsynaptic, paracrine transmission. From a pathological point of view, considering the well-known contribution of both integrins and ligand-gated channels to synaptogenesis and neural regeneration, the above studies point to interesting implications for epileptogenesis.
Collapse
Affiliation(s)
- Raffaella Morini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | |
Collapse
|
28
|
Kim GW, Kim HJ, Cho KJ, Kim HW, Cho YJ, Lee BI. The role of MMP-9 in integrin-mediated hippocampal cell death after pilocarpine-induced status epilepticus. Neurobiol Dis 2009; 36:169-80. [DOI: 10.1016/j.nbd.2009.07.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 01/14/2023] Open
|
29
|
Expression of urokinase-type plasminogen activator receptor is increased during epileptogenesis in the rat hippocampus. Neuroscience 2009; 163:316-28. [DOI: 10.1016/j.neuroscience.2009.06.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/24/2009] [Accepted: 06/09/2009] [Indexed: 12/30/2022]
|
30
|
Focal adhesion kinase acts downstream of EphB receptors to maintain mature dendritic spines by regulating cofilin activity. J Neurosci 2009; 29:8129-42. [PMID: 19553453 DOI: 10.1523/jneurosci.4681-08.2009] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dendritic spines are the postsynaptic sites of most excitatory synapses in the brain and are highly enriched in polymerized F-actin, which drives the formation and maintenance of mature dendritic spines and synapses. We propose that suppressing the activity of the actin-severing protein cofilin plays an important role in the stabilization of mature dendritic spines, and is accomplished through an EphB receptor-focal adhesion kinase (FAK) pathway. Our studies revealed that Cre-mediated knock-out of loxP-flanked fak prompted the reversion of mature dendritic spines to an immature filopodial-like phenotype in primary hippocampal cultures. The effects of FAK depletion on dendritic spine number, length, and morphology were rescued by the overexpression of the constitutively active FAK(Y397E), but not FAK(Y397F), indicating the significance of FAK activation by phosphorylation on tyrosine 397. Our studies demonstrate that FAK acts downstream of EphB receptors in hippocampal neurons and EphB2-FAK signaling controls the stability of mature dendritic spines by promoting cofilin phosphorylation, thereby inhibiting cofilin activity. While constitutively active nonphosphorylatable cofilin(S3A) induced an immature spine profile, phosphomimetic cofilin(S3D) restored mature spine morphology in neurons with disrupted EphB activity or lacking FAK. Further, we found that EphB-mediated regulation of cofilin activity at least partially depends on the activation of Rho-associated kinase (ROCK) and LIMK-1. These findings indicate that EphB2-mediated dendritic spine stabilization relies, in part, on the ability of FAK to activate the RhoA-ROCK-LIMK-1 pathway, which functions to suppress cofilin activity and inhibit cofilin-mediated dendritic spine remodeling.
Collapse
|
31
|
Conroy J, Cochrane L, Anney RJL, Sutcliffe JS, Carthy P, Dunlop A, Mullarkey M, O'hici B, Green AJ, Ennis S, Gill M, Gallagher L. Fine mapping and association studies in a candidate region for autism on chromosome 2q31-q32. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:535-544. [PMID: 18846500 DOI: 10.1002/ajmg.b.30854] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Autism (OMIM %209850) is a neurodevelopmental disorder with a strong genetic component. We previously reported a de novo rearrangement of chromosome 2q31 in a patient with autism [Gallagher et al. (2003); J Autism Dev Disord 33(1):105-108]. Further cytogenetic analysis revealed this to be a 46,XY, t(9;2)(q31.1;q32.2q31.3) translocation. Association mapping with microsatellite and SNP markers of this translocated region on 2q revealed association with markers in Integrin alpha-4 (ITGA4; GeneID 3676). ITGA4 was tested for association in a sample of 179 trio-based families. SNP markers in exons 16 and 17 showed evidence of association. Mutation screening revealed a G to A synonymous variation in the last nucleotide of exon 16 (rs12690517), significantly associated with autism in the Irish sample (OR = 1.6; P = 0.04). The location of this SNP at a putative splice donor site may affect the splicing of the ITGA4 protein. Haplotype analysis showed significant overtransmission of haplotypes surrounding this marker. These markers were investigated in two additional samples, 102 families from Vanderbilt University (VT) (n = 102), and AGRE (n = 267). A non-significant trend towards overtransmission of the associated allele of rs12690517 in the Irish sample (OR = 1.2; P = 0.067) and haplotypes at the 3' end of ITGA4 was observed in the AGRE sample. The VT sample showed association with markers and haplotypes across the gene, but no association with the rs12690517 marker or its surrounding haplotypes. The combined sample showed evidence of association with rs12690517 (OR = 1.3; P = 0.008) and surrounding haplotypes. The findings indicate some evidence for the role of ITGA4 as candidate gene for autism.
Collapse
Affiliation(s)
- Judith Conroy
- Neuropsychiatric Genetics Research Group, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Juhász G, Vass G, Bozsó Z, Budai D, Penke B, Szegedi V. Integrin activation modulates NMDA and AMPA receptor function of CA1 cells in a dose-related fashion in vivo. Brain Res 2008; 1233:20-6. [DOI: 10.1016/j.brainres.2008.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/12/2008] [Accepted: 05/10/2008] [Indexed: 10/22/2022]
|
33
|
Fritschy JM. Epilepsy, E/I Balance and GABA(A) Receptor Plasticity. Front Mol Neurosci 2008; 1:5. [PMID: 18946538 PMCID: PMC2525999 DOI: 10.3389/neuro.02.005.2008] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 01/30/2008] [Indexed: 01/26/2023] Open
Abstract
GABAA receptors mediate most of the fast inhibitory transmission in the CNS. They form heteromeric complexes assembled from a large family of subunit genes. The existence of multiple GABAA receptor subtypes differing in subunit composition, localization and functional properties underlies their role for fine-tuning of neuronal circuits and genesis of network oscillations. The differential regulation of GABAA receptor subtypes represents a major facet of homeostatic synaptic plasticity and contributes to the excitation/inhibition (E/I) balance under physiological conditions and upon pathological challenges. The purpose of this review is to discuss recent findings highlighting the significance of GABAA receptor heterogeneity for the concept of E/I balance and its relevance for epilepsy. Specifically, we address the following issues: (1) role for tonic inhibition, mediated by extrasynaptic GABAA receptors, for controlling neuronal excitability; (2) significance of chloride ion transport for maintenance of the E/I balance in adult brain; and (3) molecular mechanisms underlying GABAA receptor regulation (trafficking, posttranslational modification, gene transcription) that are important for homoeostatic plasticity. Finally, the relevance of these findings is discussed in light of the involvement of GABAA receptors in epileptic disorders, based on recent experimental studies of temporal lobe epilepsy (TLE) and absence seizures and on the identification of mutations in GABAA receptor subunit genes underlying familial forms of epilepsy.
Collapse
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| |
Collapse
|
34
|
Synaptic memory mechanisms: Alzheimer's disease amyloid beta-peptide-induced dysfunction. Biochem Soc Trans 2008; 35:1219-23. [PMID: 17956317 DOI: 10.1042/bst0351219] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is growing evidence that mild cognitive impairment in early AD (Alzheimer's disease) may be due to synaptic dysfunction caused by the accumulation of non-fibrillar, oligomeric Abeta (amyloid beta-peptide), long before widespread synaptic loss and neurodegeneration occurs. Soluble Abeta oligomers can rapidly disrupt synaptic memory mechanisms at extremely low concentrations via stress-activated kinases and oxidative/nitrosative stress mediators. Here, we summarize experiments that investigated whether certain putative receptors for Abeta, the alphav integrin extracellular cell matrix-binding protein and the cytokine TNFalpha (tumour necrosis factor alpha) type-1 death receptor mediate Abeta oligomer-induced inhibition of LTP (long-term potentiation). Ligands that neutralize TNFalpha or genetic knockout of TNF-R1s (type-1 TNFalpha receptors) prevented Abeta-triggered inhibition of LTP in hippocampal slices. Similarly, antibodies to alphav-containing integrins abrogated LTP block by Abeta. Protection against the synaptic plasticity-disruptive effects of soluble Abeta was also achieved using systemically administered small molecules targeting these mechanisms in vivo. Taken together, this research lends support to therapeutic trials of drugs antagonizing synaptic plasticity-disrupting actions of Abeta oligomers in preclinical AD.
Collapse
|
35
|
Watson PMD, Humphries MJ, Relton J, Rothwell NJ, Verkhratsky A, Gibson RM. Integrin-binding RGD peptides induce rapid intracellular calcium increases and MAPK signaling in cortical neurons. Mol Cell Neurosci 2007; 34:147-54. [PMID: 17150373 DOI: 10.1016/j.mcn.2006.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 10/12/2006] [Accepted: 10/17/2006] [Indexed: 10/23/2022] Open
Abstract
Integrins mediate cell adhesion to the extracellular matrix and initiate intracellular signaling. They play key roles in the central nervous system (CNS), participating in synaptogenesis, synaptic transmission and memory formation, but their precise mechanism of action remains unknown. Here we show that the integrin ligand-mimetic peptide GRGDSP induced NMDA receptor-dependent increases in intracellular calcium levels within seconds of presentation to primary cortical neurons. These were followed by transient activation and nuclear translocation of the ERK1/2 mitogen-activated protein kinase. RGD-induced effects were reduced by the NMDA receptor antagonist MK801, and ERK1/2 signaling was specifically inhibited by ifenprodil and PP2, indicating a functional connection between integrins, Src and NR2B-containing NMDA receptors. GRGDSP peptides were not significantly neuroprotective against excitotoxic insults. These results demonstrate a previously undescribed, extremely rapid effect of RGD peptide binding to integrins on cortical neurons that implies a close, functionally relevant connection between adhesion receptors and synaptic transmission.
Collapse
Affiliation(s)
- P Marc D Watson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
36
|
Martins de Lima MN, Presti-Torres J, Dornelles A, Bromberg E, Schröder N. Differential effects of low and high doses of topiramate on consolidation and retrieval of novel object recognition memory in rats. Epilepsy Behav 2007; 10:32-7. [PMID: 17070735 DOI: 10.1016/j.yebeh.2006.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/09/2006] [Accepted: 09/13/2006] [Indexed: 10/24/2022]
Abstract
Topiramate is a new antiepileptic drug proposed to facilitate synaptic inhibition and block excitatory receptors. However, little is known about the effects of topiramate on memory. In the first experiment, intraperitoneal injection of topiramate at doses of 10.0 and 100.0 mg/kg, immediately after training, induced a deficit in short-term memory (STM) of a novel object recognition (NOR) task tested 1.5 hours after training in rats. In a long-term memory (LTM) test given to the same rats 24 hours after training, topiramate 0.1mg/kg enhanced, whereas 10.0 and 100.0 mg/kg impaired, NOR retention. In the second experiment, administration of topiramate 0.01 and 0.10 mg/kg 1 hour prior to the LTM retention test improved NOR retention, whereas 10.0 and 100.0 mg/kg produced retrieval deficits. The results indicate that low doses of topiramate improve, whereas high doses impair, consolidation and retrieval of recognition memory in rats.
Collapse
Affiliation(s)
- Maria Noemia Martins de Lima
- Graduate Program in Biomedical Gerontology, Institute for Geriatrics and Gerontology, São Lucas Hospital, Pontifical Catholic University, 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE Diacylglycerol kinase epsilon (DGKepsilon) regulates seizure susceptibility and long-term potentiation through arachidonoyl-inositol lipid signaling. We studied the significance of arachidonoyl-diacylglycerol (20:4 DAG) in epileptogenesis in DGKepsilon-deficient mice undergoing rapid kindling epileptogenesis. METHODS Tripolar electrode units were implanted in right dorsal hippocampi of male DGKepsilon(+/+) and DGKepsilon(-/-) mice. Ten days after surgery, kindling was achieved by stimulating 6 times daily for 4 days with a subconvulsive electrical stimulation (10-s train of 50-Hz biphasic pulses, 75-200 muA amplitude) at 30-min intervals. After 1 week, mice were rekindled. EEGs were recorded and analyzed to characterize epileptogenic events as spikes, sharp waves, or abnormal amplitudes and rhythms. Right hippocampi were analyzed by histology [Timm's staining, neuropeptide Y (NPY) and glial fibrillary acidic protein immunoreactivity], and for DNA fragmentation (TUNEL). RESULTS DGKepsilon(-/-) mice had significantly fewer motor seizure and epileptic events compared with DGKepsilon(+/+) mice from the second day of stimulation. These differences were maintained during rekindling. DGKepsilon(-/-) mice also exhibited low-amplitude spike-wave complexes, short spreading depression, and predominant lower-frequency (1-4 Hz) bands throughout stimulation, whereas DGKepsilon(+/+) mice exhibited increased high-frequency bands (4-8 Hz; 8-15 Hz) from the second day of stimulation, as determined by power spectral analysis. DGKepsilon(-/-) mice displayed no sprouting in the supragranular area or NPY inmunoreactivity in the hilus and had weak astrocyte reactivation in all hippocampal areas. No TUNEL-positive cells were detected in any group of mice. CONCLUSIONS DGKepsilon modulates kindling epileptogenesis through inositol lipid signaling. Because arachidonate-containing diacylglycerol phosphorylation to phosphatidic acid is selectively blocked in DGKepsilon(-/-) mice, we postulate that the shortage of arachidonoyl-moiety inositol lipids and/or the messengers derived thereof is a key signaling event in epileptogenesis.
Collapse
Affiliation(s)
- Alberto Musto
- LSU Neuroscience Center of Excellence, Louisiana State University School of Medicine, Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, U.S.A
| | | |
Collapse
|
38
|
Shi Y, Ethell IM. Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization. J Neurosci 2006; 26:1813-22. [PMID: 16467530 PMCID: PMC6793632 DOI: 10.1523/jneurosci.4091-05.2006] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The formation of dendritic spines during development and their structural plasticity in the adult brain are critical aspects of synaptogenesis and synaptic plasticity. Many different factors and proteins have been shown to control dendritic spine development and remodeling (Ethell and Pasquale, 2005). The extracellular matrix (ECM) components and their cell surface receptors, integrins, have been found in the vicinity of synapses and shown to regulate synaptic efficacy and play an important role in long-term potentiation (Bahr et al., 1997; Chavis and Westbrook, 2001; Chan et al., 2003; Lin et al., 2003; Bernard-Trifilo et al., 2005). Although molecular mechanisms by which integrins affect synaptic efficacy have begun to emerge, their role in structural plasticity is poorly understood. Here, we show that integrins are involved in spine remodeling in cultured hippocampal neurons. The treatment of 14 d in vitro hippocampal neurons with arginine-glycine-aspartate (RGD)-containing peptide, an established integrin ligand, induced elongation of existing dendritic spines and promoted formation of new filopodia. These effects were also accompanied by integrin-dependent actin reorganization and synapse remodeling, which were partially inhibited by function-blocking antibodies against beta1 and beta3 integrins. This actin reorganization was blocked with the NMDA receptor (NMDAR) antagonist MK801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate]. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 (N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide) also suppressed RGD-induced actin reorganization and synapse remodeling. Our findings show that integrins control ECM-mediated spine remodeling in hippocampal neurons through NMDAR/CaMKII-dependent actin reorganization.
Collapse
|
39
|
Shetty AK, Zaman V, Hattiangady B. Repair of the injured adult hippocampus through graft-mediated modulation of the plasticity of the dentate gyrus in a rat model of temporal lobe epilepsy. J Neurosci 2006; 25:8391-401. [PMID: 16162921 PMCID: PMC6725675 DOI: 10.1523/jneurosci.1538-05.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intracerebroventricular kainate administration in rat, a model of temporal lobe epilepsy (TLE), causes degeneration of the hippocampal CA3 pyramidal and dentate hilar neurons. This leads to a robust but aberrant sprouting of the granule cell axons (mossy fibers) into the dentate supragranular layer and the CA3 stratum oriens. Because this plasticity is linked to an increased seizure susceptibility in TLE, strategies that restrain the aberrant mossy fiber sprouting (MFS) are perceived to be important for preventing the TLE development after the hippocampal injury. We ascertained the efficacy of fetal hippocampal CA3 or CA1 cell grafting into the kainate-lesioned CA3 region of the adult rat hippocampus at early post-kainic acid injury for providing a lasting inhibition of the aberrant MFS. Analyses at 12 months after grafting revealed that host mossy fibers project vigorously into CA3 cell grafts but avoid CA1 cell grafts. Consequently, in animals receiving CA3 cell grafts, the extent of aberrant MFS was minimal, in comparison with the robust MFS observed in both "lesion-only" animals and animals receiving CA1 cell grafts. Analyses of the graft axon growth revealed strong graft efferent projections into the dentate supragranular layer with CA3 cell grafting but not with CA1 cell grafting. Thus, the formation of reciprocal circuitry between the dentate granule cells and the grafted CA3 pyramidal neurons is likely the basis of inhibition of the aberrant MFS by CA3 cell grafts. The results also underscore that grafting of cells capable of differentiating into CA3 pyramidal neurons is highly efficacious for a lasting inhibition of the abnormal mossy fiber circuitry development in the injured hippocampus.
Collapse
Affiliation(s)
- Ashok K Shetty
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
40
|
Wingerd KL, Wayne WC, Jackson DY, Clegg DO. Involvement of alpha4 integrins in maintenance of cardiac sympathetic axons. Auton Neurosci 2005; 122:58-68. [PMID: 16181811 DOI: 10.1016/j.autneu.2005.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 08/01/2005] [Accepted: 08/06/2005] [Indexed: 11/15/2022]
Abstract
Sympathetic neurons extend and maintain axons that innervate the myocardium, and proper innervation is important for cardiac function. However, the molecular basis for axon outgrowth and maintenance is not well understood. We have shown previously that the integrin alpha4beta1 is expressed on developing axons, and the alpha4 function is important for the development of innervation in vivo [Wingerd, K.L., Goodman, N.L., Tresser, J.W., Smail, M.M., Leu, S.T., Rohan, S.J., Pring, J.L., Jackson, D.Y., and Clegg, D.O., 2002. Alpha 4 integrins and vascular cell adhesion molecule-1 play a role in sympathetic innervation of the heart. J. Neurosci. 22,10772-10780]. Here we examine the function of alpha4beta1 integrins in the maintenance of cardiac sympathetic innervation in vitro and in vivo, and investigate integrin expression and function after myocardial infarction and in hypertensive rats. On substrates of vascular cell adhesion molecule-1 (VCAM-1), alpha4beta1 was required for both initial outgrowth and maintenance of neurites in vitro. On fibronectin substrates, initial outgrowth requires only alpha4 integrins, but maintenance requires both alpha4 integrins and RGD-dependent integrins. In vivo, in adult Long Evans rats, inhibition of alpha4 integrins resulted in decreased maintenance of sympathetic fibers innervating the apex of the heart. However, alpha4 integrins were not detected on most sympathetic axons that sprout after myocardial infarction, and alpha4 function was not required for sprouting. Spontaneously hypertensive rats (SHR) have increased numbers of cardiac sympathetic fibers compared to the parental Wistar strain, but many of these lack alpha4 expression, and alpha4 function is not required for maintenance of these fibers in the heart. These results suggest that developing sympathetic axons and sprouting sympathetic axons use different mechanisms of outgrowth, and that maintenance of cardiac sympathetic innervation involves alpha4 integrins in some rat strains.
Collapse
Affiliation(s)
- Kevin L Wingerd
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
41
|
Bernard-Trifilo JA, Kramár EA, Torp R, Lin CY, Pineda EA, Lynch G, Gall CM. Integrin signaling cascades are operational in adult hippocampal synapses and modulate NMDA receptor physiology. J Neurochem 2005; 93:834-49. [PMID: 15857387 DOI: 10.1111/j.1471-4159.2005.03062.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Integrin class adhesion proteins are concentrated at adult brain synapses. Whether synaptic integrins engage kinase signaling cascades has not been determined, but is a question of importance to ideas about integrin involvement in functional synaptic plasticity. Accordingly, synaptoneurosomes from adult rat brain were used to test if matrix ligands activate integrin-associated tyrosine kinases, and if integrin signaling targets include NMDA-class glutamate neurotransmitter receptors. The integrin ligand peptide Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) induced rapid (within 5 min) and robust increases in tyrosine phosphorylation of focal adhesion kinase, proline-rich tyrosine kinase 2 and Src family kinases. Increases were similarly induced by the native ligand fibronectin, blocked with neutralizing antibodies to beta1 integrin, and not obtained with control peptides, indicating that kinase activation was integrin-mediated. Both GRGDSP and fibronectin caused rapid Src kinase-dependent increases in tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B in synaptoneurosomes and acute hippocampal slices. Tests of the physiological significance of the latter result showed that ligand treatment caused a rapid and beta1 integrin-dependent increase in NMDA receptor-mediated synaptic responses. These results provide the first evidence that, in adult brain, synaptic integrins activate local kinase cascades with potent effects on the operation of nearby neurotransmitter receptors implicated in synaptic plasticity.
Collapse
|
42
|
Lin CY, Lynch G, Gall CM. AMPA receptor stimulation increases alpha5beta1 integrin surface expression, adhesive function and signaling. J Neurochem 2005; 94:531-46. [PMID: 16000124 PMCID: PMC2366053 DOI: 10.1111/j.1471-4159.2005.03203.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Integrin proteins are critical for stabilization of hippocampal long-term potentiation but the mechanisms by which integrin activities are involved in synaptic transmission are not known. The present study tested whether activation of alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) class glutamate receptors increases surface expression of alpha5beta1 integrin implicated in synaptic potentiation. Surface protein biotinylation assays demonstrated that AMPA treatment of COS7 cells expressing GluR1 homomeric AMPA receptors increased membrane insertion and steady-state surface levels of alpha5 and beta1 subunits. Treated cells exhibited increased adhesion to fibronectin- and anti-alpha5-coated substrates and tyrosine kinase signaling elicited by fibronectin-substrate adhesion, as expected if new surface receptors are functional. Increased surface expression did not occur in calcium-free medium and was blocked by the protein kinase C inhibitor chelerythrine chloride and the exocytosis inhibitor brefeldin A. AMPA treatment similarly increased alpha5 and beta1 surface expression in dissociated neurons and cultured hippocampal slices. In both neuronal preparations AMPA-induced integrin trafficking was blocked by combined antagonism of NMDA receptor and L-type voltage-sensitive calcium channel activities but was not induced by NMDA treatment alone. These results provide the first evidence that glutamate receptor activation increases integrin surface expression and function, and suggest a novel mechanism by which synaptic activity can engage a volley of new integrin signaling in coordination with, and probably involved in, stabilization of synaptic potentiation.
Collapse
Affiliation(s)
- Ching-Yi Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4292, USA
| | | | | |
Collapse
|