1
|
Wimbish RT, DeLuca JG. Hec1/Ndc80 Tail Domain Function at the Kinetochore-Microtubule Interface. Front Cell Dev Biol 2020; 8:43. [PMID: 32161753 PMCID: PMC7054225 DOI: 10.3389/fcell.2020.00043] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/17/2020] [Indexed: 12/28/2022] Open
Abstract
Successful mitotic cell division is critically dependent on the formation of correct attachments between chromosomes and spindle microtubules. Microtubule attachments are mediated by kinetochores, which are large proteinaceous structures assembled on centromeric chromatin of mitotic chromosomes. These attachments must be sufficiently stable to transduce force; however, the strength of these attachments are also tightly regulated to ensure timely, error-free progression through mitosis. The highly conserved, kinetochore-associated NDC80 complex is a core component of the kinetochore-microtubule attachment machinery in eukaryotic cells. A small, disordered region within the Hec1 subunit of the NDC80 complex – the N-terminal “tail” domain – has been actively investigated during the last decade due to its roles in generating and regulating kinetochore-microtubule attachments. In this review, we discuss the role of the NDC80 complex, and specifically the Hec1 tail domain, at the kinetochore-microtubule interface, and how recent studies provide a more unified view of Hec1 tail domain function.
Collapse
Affiliation(s)
- Robert T Wimbish
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Craddock TJA, Tuszynski JA, Priel A, Freedman H. Microtubule ionic conduction and its implications for higher cognitive functions. J Integr Neurosci 2011; 9:103-22. [PMID: 20589950 DOI: 10.1142/s0219635210002421] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 05/21/2010] [Indexed: 11/18/2022] Open
Abstract
The neuronal cytoskeleton has been hypothesized to play a role in higher cognitive functions including learning, memory and consciousness. Experimental evidence suggests that both microtubules and actin filaments act as biological electrical wires that can transmit and amplify electric signals via the flow of condensed ion clouds. The potential transmission of electrical signals via the cytoskeleton is of extreme importance to the electrical activity of neurons in general. In this regard, the unique structure, geometry and electrostatics of microtubules are discussed with the expected impact on their specific functions within the neuron. Electric circuit models of ionic flow along microtubules are discussed in the context of experimental data, and the specific importance of both the tubulin C-terminal tail regions, and the nano-pore openings lining the microtubule wall is elucidated. Overall, these recent results suggest that ions, condensed around the surface of the major filaments of the cytoskeleton, flow along and through microtubules in the presence of potential differences, thus acting as transmission lines propagating intracellular signals in a given cell. The significance of this conductance to the functioning of the electrically active neuron, and to higher cognitive function is also discussed.
Collapse
|
3
|
Banerjee A, Panosian TD, Mukherjee K, Ravindra R, Gal S, Sackett DL, Bane S. Site-specific orthogonal labeling of the carboxy terminus of alpha-tubulin. ACS Chem Biol 2010; 5:777-85. [PMID: 20545322 PMCID: PMC2924941 DOI: 10.1021/cb100060v] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A fluorescent probe has been attached to the carboxy terminus of the alpha-subunit of alpha,beta-tubulin by an enzymatic reaction followed by a chemical reaction. The unnatural amino acid 3-formyltyrosine is attached to the carboxy terminus of alpha-tubulin through the use of the enzyme tubulin tyrosine ligase. The aromatic aldehyde of the unnatural amino acid serves as an orthogonal electrophile that specifically reacts with a fluorophore containing an aromatic hydrazine functional group, which in this case is 7-hydrazino-4-methyl coumarin. Conditions for covalent bond formation between the unnatural amino acid and the fluorophore are mild, allowing fluorescently labeled tubulin to retain its ability to assemble into microtubules. A key feature of the labeling reaction is that it produces a red shift in the fluorophore's absorption and emission maxima, accompanied by an increase in its quantum yield; thus, fluorescently labeled protein can be observed in the presence of unreacted fluorophore. Both the enzymatic and coupling reaction can occur in living cells. The approach presented here should be applicable to a wide variety of in vitro systems.
Collapse
Affiliation(s)
- Abhijit Banerjee
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902
| | - Timothy D. Panosian
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902
| | - Kamalika Mukherjee
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902
| | - Rudravajhala Ravindra
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902
| | - Susannah Gal
- Department of Biological Sciences, Binghamton University, Bethesda MD 20892
| | - Dan L. Sackett
- Laboratory of Integrative and Medical Biophysics, Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892
| | - Susan Bane
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902
| |
Collapse
|
4
|
Abstract
We developed tubulin purification strategies that allowed sufficient material to be produced for compound-screening projects. Tubulins were polymerized in the presence of compounds using either turbidometric or fluorescence polymerization assays. IC50 and EC50 values were calculated and used to determine ratios between host and target tubulin (TT) (e.g., IC50-neuronal tubulin/IC50-TT). This ratio can be compared between compounds to identify the ones which are most selective for a particular TT. We found ratios for different compounds ranged from 0.16 to 4.0 between neuronal and cancer cell tubulin indicating that the sequence and posttranslational heterogeneity between these tubulins are sufficient to identify selective ligands for the TT. Likewise, compounds compared between neuronal and fungal tubulin had ratios ranging from 0.03 to 0.60, and compounds compared between neuronal to plant tubulin had ratios ranging from 0.03 to 52. Considering these data, we believe cancer cell tubulin-targeted drugs could be obtained with ratios in excess of 20, herbicides with ratios in excess of 200, and fungicides in excess of 200.
Collapse
|
5
|
Pokorný J, Hašek J, Jelínek F. Endogenous Electric Field and Organization of Living Matter. Electromagn Biol Med 2009. [DOI: 10.1080/15368370500379566] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Priel A, Tuszynski JA, Cantiello HF. Electrodynamic Signaling by the Dendritic Cytoskeleton: Toward an Intracellular Information Processing Model. Electromagn Biol Med 2009. [DOI: 10.1080/15368370500379590] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Sataric MV, Budinski-Petkovic L, Loncarevic I, Tuszynski JA. Modelling the Role of Intrinsic Electric Fields in Microtubules as an Additional Control Mechanism of Bi-directional Intracellular Transport. Cell Biochem Biophys 2008; 52:113-24. [DOI: 10.1007/s12013-008-9028-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2008] [Indexed: 10/21/2022]
|
8
|
Mencarelli C, Lupetti P, Dallai R. New insights into the cell biology of insect axonemes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:95-145. [PMID: 18703405 DOI: 10.1016/s1937-6448(08)00804-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insects do not possess ciliated epithelia, and cilia/flagella are present in the sperm tail and--as modified cilia--in mechano- and chemosensory neurons. The core cytoskeletal component of these organelles, the axoneme, is a microtubule-based structure that has been conserved throughout evolution. However, in insects the sperm axoneme exhibits distinctive structural features; moreover, several insect groups are characterized by an unusual sperm axoneme variability. Besides the abundance of morphological data on insect sperm flagella, most of the available molecular information on the insect axoneme comes from genetic studies on Drosophila spermatogenesis, and only recently other insect species have been proposed as useful models. Here, we review the current knowledge on the cell biology of insect axoneme, including contributions from both Drosophila and other model insects.
Collapse
Affiliation(s)
- C Mencarelli
- Department of Evolutionary Biology, University of Siena, 53100 Siena, Italy
| | | | | |
Collapse
|
9
|
Libusová L, Dráber P. Multiple tubulin forms in ciliated protozoan Tetrahymena and Paramecium species. PROTOPLASMA 2006; 227:65-76. [PMID: 16736248 DOI: 10.1007/s00709-005-0152-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Accepted: 08/26/2005] [Indexed: 05/09/2023]
Abstract
Tetrahymena and Paramecium species are widely used representatives of the phylum Ciliata. Ciliates are particularly suitable model organisms for studying the functional heterogeneity of tubulins, since they provide a wide range of different microtubular structures in a single cell. Sequencing projects of the genomes of members of these two genera are in progress. Nearly all members of the tubulin superfamily (alpha-, beta-, gamma-, delta-, epsilon-, eta-, theta-, iota-, and kappa-tubulins) have been identified in Paramecium tetraurelia. In Tetrahymena spp., the functional consequences of different posttranslational tubulin modifications (acetylation, tyrosination and detyrosination, phosphorylation, glutamylation, and glycylation) have been studied by different approaches. These model organisms provide the opportunity to determine the function of tubulins found in ciliates, as well as in humans, but absent in some other model organisms. They also give us an opportunity to explore the mechanisms underlying microtubule diversity. Here we review current knowledge concerning the diversity of microtubular structures, tubulin genes, and posttranslational modifications in Tetrahymena and Paramecium species.
Collapse
Affiliation(s)
- L Libusová
- Department of Animal Physiology and Developmental Biology, Faculty of Sciences, Charles University, Prague, Czech Republic
| | | |
Collapse
|
10
|
Priel A, Tuszynski JA, Woolf NJ. Transitions in microtubule C-termini conformations as a possible dendritic signaling phenomenon. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 35:40-52. [PMID: 16184388 DOI: 10.1007/s00249-005-0003-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/12/2005] [Accepted: 05/23/2005] [Indexed: 10/25/2022]
Abstract
We model the dynamical states of the C-termini of tubulin dimers that comprise neuronal microtubules. We use molecular dynamics and other computational tools to explore the time-dependent behavior of conformational states of a C-terminus of tubulin within a microtubule and assume that each C-terminus interacts via screened Coulomb forces with the surface of a tubulin dimer, with neighboring C-termini and also with any adjacent microtubule-associated protein 2 (MAP2). Each C-terminus can either bind to the tubulin surface via one of the several positively charged regions or can be allowed to explore the space available in the solution surrounding the dimer. We find that the preferential orientation of each C-terminus is away from the tubulin surface but binding to the surface may also take place, albeit at a lower probability. The results of our model suggest that perturbations generated by the C-termini interactions with counterions surrounding a MAP2 may propagate over distances greater than those between adjacent microtubules. Thus, the MAP2 structure is able to act as a kind of biological wire (or a cable) transmitting local electrostatic perturbations resulting in ionic concentration gradients from one microtubule to another. We briefly discuss the implications the current dynamic modeling may have on synaptic activation and potentiation.
Collapse
Affiliation(s)
- Avner Priel
- Department of Physics, University of Alberta Edmonton, AB, T6G 2J1, Canada
| | | | | |
Collapse
|
11
|
Mershin A, Kolomenski AA, Schuessler HA, Nanopoulos DV. Tubulin dipole moment, dielectric constant and quantum behavior: computer simulations, experimental results and suggestions. Biosystems 2005; 77:73-85. [PMID: 15527947 DOI: 10.1016/j.biosystems.2004.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 04/23/2004] [Accepted: 04/26/2004] [Indexed: 10/26/2022]
Abstract
We used computer simulation to calculate the electric dipole moments of the alpha- and beta-tubulin monomers and dimer and found those to be |p(alpha)| = 552D, |p(beta)| = 1193D and |p(alphabeta)| = 1740D, respectively. Independent surface plasmon resonance (SPR) and refractometry measurements of the high-frequency dielectric constant and polarizability strongly corroborated our previous SPR-derived results, giving Deltan/Deltac approximately 1.800 x 10(-3)ml/mg. The refractive index of tubulin was measured to be n(tub) approximately 2.90 and the high-frequency tubulin dielectric constant k(tub) approximately 8.41, while the high-frequency polarizability was found to be alpha(tub) approximately 2.1 x 10(-33)C m(2)/V. Methods for the experimental determination of the low-frequency p are explored, as well as ways to test the often conjectured quantum coherence and entanglement properties of tubulin. Biobits, bioqubits and other applications to bioelectronics are discussed.
Collapse
Affiliation(s)
- A Mershin
- Department of Physics, Texas A&M University, College Station, TX 77843-4242, USA.
| | | | | | | |
Collapse
|
12
|
Jost W, Baur A, Nick P, Reski R, Gorr G. A large plant beta-tubulin family with minimal C-terminal variation but differences in expression. Gene 2004; 340:151-60. [PMID: 15556303 DOI: 10.1016/j.gene.2004.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 05/10/2004] [Accepted: 06/03/2004] [Indexed: 11/24/2022]
Abstract
Tubulins, as the major structural component of microtubules (MT), are highly conserved throughout the entire eukaryotic kingdom. They consist of alpha/beta heterodimers. Both monomers, at least in multicellular organisms, are encoded by gene families. In higher plants up to eight beta-tubulin isotypes, mostly differing in their very C-termini, have been described. These variable beta-tubulin C-termini have been discussed in the context of functional microtubule diversity. However, in plants, in contrast to vertebrates, functional isotype specificity remains yet to be demonstrated. Unlike higher plants, unicellular green algae in general do not exhibit isotypic variations. The moss Physcomitrella patens is a phylogenetic intermediate between higher plants and green algae. We isolated six beta-tubulin genes from Physcomitrella, named PpTub1 to 6. We show that the exon/intron structure, with the exception of one additional intron in PpTub6, is identical with that of higher plants, and that some members of the family are differentially expressed. Moreover, we find that all Physcomitrella isotypes are highly conserved and, most strikingly, are almost identical within their C-terminal amino acids (aa). This evolutionary ancient and large beta-tubulin gene family without significant isotypic sequence variation points to a role of differential regulation in the evolution of plant tubulin isotypes.
Collapse
Affiliation(s)
- Wolfgang Jost
- Greenovation Biotech GmbH, Bötzingerstrasse 29b, D-79111 Freiburg, Germany
| | | | | | | | | |
Collapse
|
13
|
Hertzer KM, Ems-McClung SC, Walczak CE. Kin I kinesins: insights into the mechanism of depolymerization. Crit Rev Biochem Mol Biol 2004; 38:453-69. [PMID: 14695126 DOI: 10.1080/10409230390267419] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Kin I kinesins are members of the diverse kinesin superfamily of molecular motors. Whereas most kinesins use ATP to move along microtubules, Kin I kinesins depolymerize microtubules rather than walk along them. Functionally, this distinct subfamily of kinesins is important in regulating cellular microtubule dynamics and plays a crucial role in spindle assembly and chromosome segregation. The molecular mechanism of Kin I-induced microtubule destabilization is as yet unclear. It is generally believed that Kin Is induce a structural change on the microtubule that leads to microtubule destabilization. Recently, much progress has been made towards understanding how Kin Is may cause this structural change, and how ATPase activity is employed in the catalytic cycle.
Collapse
Affiliation(s)
- Kathleen M Hertzer
- Medical Sciences Program, Indiana University Bloomington, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
14
|
Hansen PL, Cohen JA, Podgornik R, Parsegian VA. Osmotic properties of poly(ethylene glycols): quantitative features of brush and bulk scaling laws. Biophys J 2003; 84:350-5. [PMID: 12524288 PMCID: PMC1302616 DOI: 10.1016/s0006-3495(03)74855-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
From glycosylated cell surfaces to sterically stabilized liposomes, polymers attached to membranes attract biological and therapeutic interest. Can the scaling laws of polymer "brushes" describe the physical properties of these coats? We delineate conditions where the Alexander-de Gennes theory of polymer brushes successfully fits the intermembrane distance versus applied osmotic stress data of Kenworthy et al. for poly(ethylene glycol)-grafted multilamellar liposomes. We establish that the polymer density and size in the brush must be high enough that, in a bulk solution of equivalent monomer density, the polymer osmotic pressure is independent of polymer molecular weight (the des Cloizeaux semidilute regime of bulk polymer solutions). The condition that attached polymers behave as semidilute bulk solutions offers a rigorous criterion for brush scaling-law behavior. There is a deep connection between the behaviors of semidilute polymer solutions in bulk and polymers grafted to a surface at a density such that neighbors pack to form a uniform brush. In this regime, two-parameter unconstrained fits of the Alexander-de Gennes brush scaling laws to the Kenworthy et al. data yield effective monomer lengths of 3.3-3.6 A, which agree with structural predictions. The fitted distances between grafting sites are larger than expected from the nominal mole fraction of poly(ethylene glycol)-lipids; the chains apparently saturate the surface. Osmotic stress measurements can be used to estimate the actual densities of membrane-grafted polymers.
Collapse
Affiliation(s)
- Per Lyngs Hansen
- Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5626, USA
| | | | | | | |
Collapse
|
15
|
Hagan S, Hameroff SR, Tuszyński JA. Quantum computation in brain microtubules: decoherence and biological feasibility. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2002; 65:061901. [PMID: 12188753 DOI: 10.1103/physreve.65.061901] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2000] [Revised: 08/07/2001] [Indexed: 05/23/2023]
Abstract
The Penrose-Hameroff orchestrated objective reduction (orch. OR) model assigns a cognitive role to quantum computations in microtubules within the neurons of the brain. Despite an apparently "warm, wet, and noisy" intracellular milieu, the proposal suggests that microtubules avoid environmental decoherence long enough to reach threshold for "self-collapse" (objective reduction) by a quantum gravity mechanism put forth by Penrose. The model has been criticized as regards the issue of environmental decoherence, and a recent report by Tegmark finds that microtubules can maintain quantum coherence for only 10(-13) s, far too short to be neurophysiologically relevant. Here, we critically examine the decoherence mechanisms likely to dominate in a biological setting and find that (1) Tegmark's commentary is not aimed at an existing model in the literature but rather at a hybrid that replaces the superposed protein conformations of the orch. OR theory with a soliton in superposition along the microtubule; (2) recalculation after correcting for differences between the model on which Tegmark bases his calculations and the orch. OR model (superposition separation, charge vs dipole, dielectric constant) lengthens the decoherence time to 10(-5)-10(-4) s; (3) decoherence times on this order invalidate the assumptions of the derivation and determine the approximation regime considered by Tegmark to be inappropriate to the orch. OR superposition; (4) Tegmark's formulation yields decoherence times that increase with temperature contrary to well-established physical intuitions and the observed behavior of quantum coherent states; (5) incoherent metabolic energy supplied to the collective dynamics ordering water in the vicinity of microtubules at a rate exceeding that of decoherence can counter decoherence effects (in the same way that lasers avoid decoherence at room temperature); (6) microtubules are surrounded by a Debye layer of counterions, which can screen thermal fluctuations, and by an actin gel that might enhance the ordering of water in bundles of microtubules, further increasing the decoherence-free zone by an order of magnitude and, if the dependence on the distance between environmental ion and superposed state is accurately reflected in Tegmark's calculation, extending decoherence times by three orders of magnitude; (7) topological quantum computation in microtubules may be error correcting, resistant to decoherence; and (8) the decohering effect of radiative scatterers on microtubule quantum states is negligible. These considerations bring microtubule decoherence into a regime in which quantum gravity could interact with neurophysiology.
Collapse
Affiliation(s)
- S Hagan
- Department of Mathematics, British Columbia Institute of Technology, Burnaby, British Columbia, Canada V5G 3H2
| | | | | |
Collapse
|
16
|
Duan J, Gorovsky MA. Both carboxy-terminal tails of alpha- and beta-tubulin are essential, but either one will suffice. Curr Biol 2002; 12:313-6. [PMID: 11864572 DOI: 10.1016/s0960-9822(02)00651-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Microtubules (MTs) are organized into distinct systems essential for cell shape, movement, intracellular transport, and division. Electron crystallographic analyses provide little information about how MTs produce diverse structures and functions, perhaps because they failed to visualize the last 10 residues of the alpha- and the last 18 of the beta-tubulin C-terminal tails (CTTs), which likely play a role in MT diversity. CTTs define conserved, nonallelic isotypes in mammals, are major sites of posttranslational modifications (PTMs), are binding sites for microtubule-associated proteins (MAPs), and determine MT motor processivity. Using mutagenesis and homologous gene replacement in Tetrahymena thermophila, we analyzed mutations, deletions, tail switches, and tail duplications of alpha- and beta-tubulin CTTs. We demonstrate that a tail is required for the essential function of both alpha- and beta-tubulin. However, the two tails are interchangeable, and cells grow normally with either an alpha or a beta tail on both tubulins. In addition, an alpha gene containing a duplicated alpha C terminus rescues a lethal mutant lacking all known posttranslational modification sites on the beta C terminus but cannot rescue deletion of the beta tail. Thus, tubulin tails have a second essential function that is not associated with posttranslational modification.
Collapse
Affiliation(s)
- Jianming Duan
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
17
|
Nogales E. Structural insight into microtubule function. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:397-420. [PMID: 11441808 DOI: 10.1146/annurev.biophys.30.1.397] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microtubules are polymers that are essential for, among other functions, cell transport and cell division in all eukaryotes. The regulation of the microtubule system includes transcription of different tubulin isotypes, folding of alpha/beta-tubulin heterodimers, post-translation modification of tubulin, and nucleotide-based microtubule dynamics, as well as interaction with numerous microtubule-associated proteins that are themselves regulated. The result is the precise temporal and spatial pattern of microtubules that is observed throughout the cell cycle. The recent high-resolution analysis of the structure of tubulin and the microtubule has brought new insight to the study of microtubule function and regulation, as well as the mode of action of antimitotic drugs that disrupt normal microtubule behavior. The combination of structural, genetic, biochemical, and biophysical data should soon give us a fuller understanding of the exquisite details in the regulation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- E Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley California 94720, USA.
| |
Collapse
|
18
|
Abstract
What is consciousness? Conventional approaches see it as an emergent property of complex interactions among individual neurons; however these approaches fail to address enigmatic features of consciousness. Accordingly, some philosophers have contended that "qualia," or an experiential medium from which consciousness is derived, exists as a fundamental component of reality. Whitehead, for example, described the universe as being composed of "occasions of experience." To examine this possibility scientifically, the very nature of physical reality must be re-examined. We must come to terms with the physics of spacetime--as described by Einstein's general theory of relativity, and its relation to the fundamental theory of matter--as described by quantum theory. Roger Penrose has proposed a new physics of objective reduction: "OR," which appeals to a form of quantum gravity to provide a useful description of fundamental processes at the quantum/classical borderline. Within the OR scheme, we consider that consciousness occurs if an appropriately organized system is able to develop and maintain quantum coherent superposition until a specific "objective" criterion (a threshold related to quantum gravity) is reached; the coherent system then self-reduces (objective reduction: OR). We contend that this type of objective self-collapse introduces non-computability, an essential feature of consciousness which distinguishes our minds from classical computers. Each OR is taken as an instantaneous event--the climax of a self-organizing process in fundamental spacetime--and a candidate for a conscious Whitehead "occasion of experience." How could an OR process occur in the brain, be coupled to neural activities, and account for other features of consciousness? We nominate a quantum computational OR process with the requisite characteristics to be occurring in cytoskeletal micro-tubules within the brain's neurons. In this model, quantum-superposed states develop in microtubule subunit proteins ("tubulins") within certain brain neurons, remain coherent, and recruit more superposed tubulins until a mass-time-energy threshold (related to quantum gravity) is reached. At that point, self-collapse, or objective reduction (OR), abruptly occurs. We equate the pre-reduction, coherent superposition ("quantum computing") phase with pre-conscious processes, and each instantaneous (and non-computable) OR, or self-collapse, with a discrete conscious event. Sequences of OR events give rise to a "stream" of consciousness. Microtubule-associated proteins can "tune" the quantum oscillations of the coherent superposed states; the OR is thus self-organized, or "orchestrated" ("Orch OR"). Each Orch OR event selects (non-computably) microtubule subunit states which regulate synaptic/neural functions using classical signaling. The quantum gravity threshold for self-collapse is relevant to consciousness, according to our arguments, because macroscopic superposed quantum states each have their own spacetime geometries. These geometries are also superposed, and in some way "separated," but when sufficiently separated, the superposition of spacetime geometries becomes significantly unstable and reduces to a single universe state. Quantum gravity determines the limits of the instability; we contend that the actual choice of state made by Nature is non-computable. Thus each Orch OR event is a self-selection of spacetime geometry, coupled to the brain through microtubules and other biomolecules. If conscious experience is intimately connected with the very physics underlying spacetime structure, then Orch OR in microtubules indeed provides us with a completely new and uniquely promising perspective on the difficult problems of consciousness.
Collapse
Affiliation(s)
- S Hameroff
- Department of Anesthesiology and Psychology, Center for Consciousness Studies, University of Arizona, Tucson, Arizona, USA. ,
| |
Collapse
|
19
|
Nielsen MG, Turner FR, Hutchens JA, Raff EC. Axoneme-specific beta-tubulin specialization: a conserved C-terminal motif specifies the central pair. Curr Biol 2001; 11:529-33. [PMID: 11413005 DOI: 10.1016/s0960-9822(01)00150-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Axonemes are ancient organelles that mediate motility of cilia and flagella in animals, plants, and protists. The long evolutionary conservation of axoneme architecture, a cylinder of nine doublet microtubules surrounding a central pair of singlet microtubules, suggests all motile axonemes may share common assembly mechanisms. Consistent with this, alpha- and beta-tubulins utilized in motile axonemes fall among the most conserved tubulin sequences [1, 2], and the beta-tubulins contain a sequence motif at the same position in the carboxyl terminus [3]. Axoneme doublet microtubules are initiated from the corresponding triplet microtubules of the basal body [4], but the large macromolecular "central apparatus" that includes the central pair microtubules and associated structures [5] is a specialization unique to motile axonemes. In Drosophila spermatogenesis, basal bodies and axonemes utilize the same alpha-tubulin but different beta-tubulins [6--13]. beta 1 is utilized for the centriole/basal body, and beta 2 is utilized for the motile sperm tail axoneme. beta 2 contains the motile axoneme-specific sequence motif, but beta 1 does not [3]. Here, we show that the "axoneme motif" specifies the central pair. beta 1 can provide partial function for axoneme assembly but cannot make the central microtubules [14]. Introducing the axoneme motif into the beta 1 carboxyl terminus, a two amino acid change, conferred upon beta 1 the ability to assemble 9 + 2 axonemes. This finding explains the conservation of the axoneme-specific sequence motif through 1.5 billion years of evolution.
Collapse
Affiliation(s)
- M G Nielsen
- Indiana Molecular Biology Institute and Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
20
|
Downing KH. Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu Rev Cell Dev Biol 2001; 16:89-111. [PMID: 11031231 DOI: 10.1146/annurev.cellbio.16.1.89] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The microtubule cytoskeleton is a highly regulated system. At different times in the cell cycle and positions within the organism, microtubules can be very stable or highly dynamic. Stability and dynamics are regulated by interaction with a large number of proteins that themselves may change at specific points in the cell cycle. Exogenous ligands can disrupt the normal processes by either increasing or decreasing microtubule stability and inhibiting their dynamic behavior. The recent determination of the structure of tubulin, the main component of microtubules, makes it possible now to begin to understand the details of these interactions. We review here the structure of the tubulin dimer, with particular regard to how proteins and drugs may bind and modulate microtubule dynamics.
Collapse
Affiliation(s)
- K H Downing
- Donner Laboratory, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| |
Collapse
|
21
|
Abstract
Microtubules are polymers that are essential for, among other functions, cell transport and cell division in all eukaryotes. The regulation of the microtubule system includes transcription of different tubulin isotypes, folding of /¿-tubulin heterodimers, post-translation modification of tubulin, and nucleotide-based microtubule dynamics, as well as interaction with numerous microtubule-associated proteins that are themselves regulated. The result is the precise temporal and spatial pattern of microtubules that is observed throughout the cell cycle. The recent high-resolution analysis of the structure of tubulin and the microtubule has brought new insight to the study of microtubule function and regulation, as well as the mode of action of antimitotic drugs that disrupt normal microtubule behavior. The combination of structural, genetic, biochemical, and biophysical data should soon give us a fuller understanding of the exquisite details in the regulation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- E Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA.
| |
Collapse
|
22
|
Watts NR, Sackett DL, Ward RD, Miller MW, Wingfield PT, Stahl SS, Steven AC. HIV-1 rev depolymerizes microtubules to form stable bilayered rings. J Cell Biol 2000; 150:349-60. [PMID: 10908577 PMCID: PMC2180222 DOI: 10.1083/jcb.150.2.349] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2000] [Accepted: 06/09/2000] [Indexed: 02/03/2023] Open
Abstract
We describe a novel interaction between HIV-1 Rev and microtubules (MTs) that results in the formation of bilayered rings that are 44-49 nm in external diameter, 3.4-4.2 MD (megadaltons) in mass, and have 28-, 30-, or 32-fold symmetry. Ring formation is not sensitive to taxol, colchicine, or microtubule-associated proteins, but requires Mg(2+) and is inhibited by maytansine. The interaction involves the NH(2)-terminal domain of Rev and the face of tubulin exposed on the exterior of the MTs. The NH(2)-terminal half of Rev has unexpected sequence similarity to the tubulin-binding portion of the catalytic/motor domains of the microtubule-destabilizing Kin I kinesins. We propose a model wherein binding of Rev dimers to MTs at their ends causes segments of two neighboring protofilaments to peel off and close into rings, circumferentially containing 14, 15, or 16 tubulin heterodimers, with Rev bound on the inside. Rev has a strong inhibitory effect on aster formation in Xenopus egg extracts, demonstrating that it can interact with tubulin in the presence of normal levels of cellular constituents. These results suggest that Rev may interact with MTs to induce their destabilization, a proposition consistent with the previously described disruption of MTs after HIV-1 infection.
Collapse
Affiliation(s)
- Norman R. Watts
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases
| | - Dan L. Sackett
- Laboratory of Integrative and Medical Biophysics, National Institute of Child Health and Human Development
| | - Rita D. Ward
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Mill W. Miller
- Department of Biological Sciences, Wright State University, Dayton, Ohio 45435
| | - Paul T. Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases
| | - Stephen S. Stahl
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases
| | - Alasdair C. Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases
| |
Collapse
|
23
|
Wallin M, Billger M. Coassembly of bovine and cod microtubule proteins: the ratio of the different tubulins within hybrid microtubules determines the ability to assemble at low temperatures, MAPs dependency and effects of Ca2+. CELL MOTILITY AND THE CYTOSKELETON 2000; 38:297-307. [PMID: 9384220 DOI: 10.1002/(sici)1097-0169(1997)38:3<297::aid-cm8>3.0.co;2-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cod and bovine microtubule proteins (MTP) differ from each other in many respects, e.g., tubulin isoforms and microtubule-associated proteins (MAPs) but only cod MTP are cold-adapted. We used these differences to determine how tubulin isoform composition affects microtubule properties. Mixtures of cod and bovine MTP coassembled at 30 degrees C as shown by light scattering and immunoelectron microscopy, with no apparent preference for one set of MAPs over the other. Bovine tubulin was, in contrast to cod tubulin, unable to assemble in the absence of MAPs, while 50%/50% mixtures of bovine and cod tubulin, respectively, coassembled readily without exclusion of cod or bovine tubulin isoforms in the hybrids, as shown by two-dimensional gel electrophoresis. Alteration in MAPs dependency was also confirmed by the use of the MAPs-binding microtubule inhibitor estramustine phosphate. Addition of 10 mM Ca2+ to microtubules induced formation of spirals or rings depending on the ratio of the cod and bovine MTP, respectively. Bovine MTP were unable to assemble at low temperatures, while cod MTP are cold-adapted and assembled efficiently at 14 degrees C in the presence of MAPs. Amounts of cod MTP as low as 33% were enough to induce assembly of bovine/cod MTP hybrids. The critical concentration for assembly of a 50%/50% mixture was similar to that of 100% cod MTP. Taken together, the results show that the divergent cod and bovine MTP can coassemble, and that alterations in tubulin isotype/isoform composition above certain thresholds significantly modulate microtubule properties such as MAPs dependency, effects of Ca2+, and ability to assemble at low temperatures.
Collapse
Affiliation(s)
- M Wallin
- Department of Zoophysiology, Göteborg University, Sweden.
| | | |
Collapse
|
24
|
Sackett DL, Ruvinov SB, Thompson J. N5-(L-1-carboxyethyl)-L-ornithine synthase: physical and spectral characterization of the enzyme and its unusual low pKa fluorescent tyrosine residues. Protein Sci 1999; 8:2121-9. [PMID: 10548058 PMCID: PMC2144144 DOI: 10.1110/ps.8.10.2121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
N5-(L-1-carboxyethyl)-L-ornithine synthase [E.C. 1.5.1.24] (CEOS) from Lactococcus lactis has been cloned, expressed, and purified from Escherichia coli in quantities sufficient for characterization by biophysical methods. The NADPH-dependent enzyme is a homotetramer (Mr approximately equal to 140,000) and in the native state is stabilized by noncovalent interactions between the monomers. The far-ultraviolet circular dichroism spectrum shows that the folding pattern of the enzyme is typical of the alpha,beta family of proteins. CEOS contains one tryptophan (Trp) and 19 tyrosines (Tyr) per monomer, and the fluorescence spectrum of the protein shows emission from both Trp and Tyr residues. Relative to N-acetyltyrosinamide, the Tyr quantum yield of the native enzyme is about 0.5. All 19 Tyr residues are titratable and, of these, two exhibit the uncommonly low pKa of approximately 8.5, 11 have pKa approximately 10.75, and the remaining six titrate with pKa approximately 11.3. The two residues with pKa approximately 8.5 contribute approximately 40% of the total tyrosine emission, implying a relative quantum yield >1, probably indicating Tyr-Tyr energy transfer. In the presence of NADPH, Tyr fluorescence is reduced by 40%, and Trp fluorescence is quenched completely. The latter result suggests that the single Trp residue is either at the active site, or in proximity to the sequence GSGNVA, that constitutes the beta alphabeta fold of the nucleotide-binding domain. Chymotrypsin specifically cleaves native CEOS after Phe255. Although inactivated by this single-site cleavage of the subunit, the enzyme retains the capacity to bind NADPH and tetramer stability is maintained. Possible roles in catalysis for the chymotrypsin sensitive loop and for the low pKa Tyr residues are discussed.
Collapse
Affiliation(s)
- D L Sackett
- Laboratory of Integrative and Medical Biophysics, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4855, USA.
| | | | | |
Collapse
|
25
|
Abstract
A high-resolution model of the microtubule has been obtained by docking the crystal structure of tubulin into a 20 A map of the microtubule. The excellent fit indicates the similarity of the tubulin conformation in both polymers and defines the orientation of the tubulin structure within the microtubule. Long C-terminal helices form the crest on the outside of the protofilament, while long loops define the microtubule lumen. The exchangeable nucleotide in beta-tubulin is exposed at the plus end of the microtubule, while the proposed catalytic residue in alpha-tubulin is exposed at the minus end. Extensive longitudinal interfaces between monomers have polar and hydrophobic components. At the lateral contacts, a nucleotide-sensitive helix interacts with a loop that contributes to the binding site of taxol in beta-tubulin.
Collapse
Affiliation(s)
- E Nogales
- Lawrence Berkeley National Laboratory, Molecular and Cell Biology Department, University of California at Berkeley, California 94720, USA.
| | | | | | | |
Collapse
|
26
|
Pitcher JA, Hall RA, Daaka Y, Zhang J, Ferguson SS, Hester S, Miller S, Caron MG, Lefkowitz RJ, Barak LS. The G protein-coupled receptor kinase 2 is a microtubule-associated protein kinase that phosphorylates tubulin. J Biol Chem 1998; 273:12316-24. [PMID: 9575184 DOI: 10.1074/jbc.273.20.12316] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G protein-coupled receptor kinase 2 (GRK2) is a serine/threonine kinase that phosphorylates and desensitizes agonist-occupied G protein-coupled receptors (GPCRs). Here we demonstrate that GRK2 is a microtubule-associated protein and identify tubulin as a novel GRK2 substrate. GRK2 is associated with microtubules purified from bovine brain, forms a complex with tubulin in cell extracts, and colocalizes with tubulin in living cells. Furthermore, an endogenous tubulin kinase activity that copurifies with microtubules has properties similar to GRK2 and is inhibited by anti-GRK2 monoclonal antibodies. Indeed, GRK2 phosphorylates tubulin in vitro with kinetic parameters very similar to those for phosphorylation of the agonist-occupied beta2-adrenergic receptor, suggesting a functionally relevant role for this phosphorylation event. In a cellular environment, agonist occupancy of GPCRs, which leads to recruitment of GRK2 to the plasma membrane and its subsequent activation, promotes GRK2-tubulin complex formation and tubulin phosphorylation. These findings suggest a novel role for GRK2 as a GPCR signal transducer mediating the effects of GPCR activation on the cytoskeleton.
Collapse
Affiliation(s)
- J A Pitcher
- Howard Hughes Medical Institute Laboratories and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Bacterial cell division ends with septation, the constriction of the cell wall and cell membranes that leads to the formation of two daughter cells. During septation, FtsZ, a protein of relative molecular mass 40,000 which is ubiquitous in eubacteria and is also found in archaea and chloroplasts, localizes early at the division site to form a ring-shaped septum. This septum is required for the mechanochemical process of membrane constriction. FtsZ is a GTPase with weak sequence homology to tubulins. The nature of FtsZ polymers in vivo is unknown, but FtsZ can form tubules, sheets and minirings in vitro. Here we report the crystal structure at 2.8 A resolution of recombinant FtsZ from the hyperthermophilic methanogen Methanococcus jannaschii. FtsZ has two domains, one of which is a GTPase domain with a fold related to one found in the proteins p21ras and elongation factor EF-Tu. The carboxy-terminal domain, whose function is unknown, is a four-stranded beta-sheet tilted by 90 degrees against the beta-sheet of the GTPase domain. The two domains are arranged around a central helix. GDP binding is different from that typically found in GTPases and involves four phosphate-binding loops and a sugar-binding loop in the first domain, with guanine being recognized by residues in the central connecting helix. The three-dimensional structure of FtsZ is similar to the structure of alpha- and beta-tubulin.
Collapse
Affiliation(s)
- J Löwe
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
28
|
Wolff J, Sackett DL, Knipling L. Cation selective promotion of tubulin polymerization by alkali metal chlorides. Protein Sci 1996; 5:2020-8. [PMID: 8897602 PMCID: PMC2143265 DOI: 10.1002/pro.5560051008] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A role for charge-based interactions in protein stability at the monomer or dimer level is well known. We show here that such interactions can also be important for the higher-order structures of microtubule assembly. Alkali metal chlorides increase the rate of polymerization of pure tubulin driven by either taxol or dimethyl sulfoxide. The effect is cation selective, exhibiting a sequence Na+ > K+ > Li+ > Cs+, with optimal concentrations for Na+ at approximately 160 mM. Hofmeister anion effects are additive with these rate stimulations. Sodium is less potent than guanidinium ion stimulation reported previously, but produces a larger fraction of normal microtubules. Alkali metal cations lower the critical concentration by a factor of approximately 2, produce cold reversible polymers whose formation is sensitive to podophyllotoxin inhibition, increase the fraction of polymers present as microtubules from approximately 0.9 to 0.99, and reverse or prevent urea-induced depolymerization of microtubules. In the presence of microtubule-associated proteins, the promotion of polymerization is no longer cation selective. In the polymerization of tubulin S, in which the acidic C termini of both monomers have been cleaved, the cation enhancement is markedly decreased, although selective persists. Because the selectivity sequence is similar to that of the coil/helix transition of polyglutamic acid, we suggest that a major part, although not all, of the cation selective enhancement of polymerization results from shielding of the glutamate-rich C termini of the tubulin monomers.
Collapse
Affiliation(s)
- J Wolff
- Laboratory of Biochemical Pharmacology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
29
|
Bhattacharya A, Bhattacharyya B, Roy S. Fluorescence energy transfer measurement of distances between ligand binding sites of tubulin and its implication for protein-protein interaction. Protein Sci 1996; 5:2029-36. [PMID: 8897603 PMCID: PMC2143268 DOI: 10.1002/pro.5560051009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
9-(Dicyanovinyl) julolidine (DCVJ) is a fluorescent probe, which binds to a unique site on the tubulin dimer and exhibits different properties that are dependent upon its oligomeric state (Kung & Reed, 1989). DCVJ binds to tubulin, the tubulin-colchicine complex, and the tubulin-ruthenium red complex equally well, but binds tighter to the ANS-tubulin complex than to tubulin alone. The energy transfer studies indicate a small amount of energy transfer with colchicine, but a significant energy transfer with ANS. It was shown previously that ruthenium red binds near the C-terminal tail region of the alpha-subunit. Ruthenium red causes major quenching of fluorescence of the tubulin-DCVJ complex, suggesting proximity of binding sites. The derived distances are consistent with DCVJ binding near the alpha beta interface, but on the opposite face of the colchicine binding site. Location of the binding site correlates with the observed effect of a different polymerized state of tubulin on the DCVJ spectroscopic properties. The effect of dimer-dimer association on DCVJ binding, at high protein concentrations (Kung & Reed, 1989), suggests that such an association may occur through lateral contacts of the elongated tubulin dimer, at least in a significant fraction of the cases. Transmission of ANS-induced conformational change to the DCVJ binding site, which is near important dimer-dimer contact sites, makes it possible that such conformational changes may be responsible for polymerization inhibition by anilino-naphthalene sulfonates.
Collapse
Affiliation(s)
- A Bhattacharya
- Department of Biophysics, Bose Institute, Calcutta, India
| | | | | |
Collapse
|
30
|
Shen F, Triezenberg SJ, Hensley P, Porter D, Knutson JR. Transcriptional activation domain of the herpesvirus protein VP16 becomes conformationally constrained upon interaction with basal transcription factors. J Biol Chem 1996; 271:4827-37. [PMID: 8617752 DOI: 10.1074/jbc.271.9.4827] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The transcriptional activation domain of the herpesvirus protein VP16 resides in the carboxyl-terminal 78 amino acids (residues 413-490). Fluorescence analyses of this domain indicated that critical amino acids are solvent-exposed in highly mobile segments. To examine interactions between VP16 and components of the basal transcriptional machinery, we incorporated (at position 442 or 473 of VP16) tryptophan analogs that can be selectively excited in complexes with other Trp-containing proteins. TATA-box binding protein (TBP) (but not transcription factor B (TFIIB)) caused concentration-dependent changes in the steady-state anisotropy of VP16, from which equilibrium binding constants were calculated. Quenching of the fluorescence from either position (442 or 473) was significantly affected by TBP, whereas TFIIB affected quenching only at position 473. 7-aza-Trp residues at either position showed a emission spectral shift in the presence of TBP (but not TFIIB), indicating a change to a more hydrophobic environment. In anisotropy decay experiments, TBP reduced the segmental motion at either position; in contrast, TFIIB induced a slight change only at position 473. Our results support models of TBP as a target protein for transcriptional activators and suggest that ordered structure in the VP16 activation domain is induced upon interaction with target proteins.
Collapse
Affiliation(s)
- F Shen
- Biochemistry Department, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | | | |
Collapse
|