1
|
Daiy K, Wiley K, Allen J, Bailey MT, Dettmer AM. Associations among rearing environment and the infant gut microbiome with early-life neurodevelopment and cognitive development in a nonhuman primate model ( Macaca mulatta). J Dev Orig Health Dis 2025; 16:e1. [PMID: 39781670 PMCID: PMC11731890 DOI: 10.1017/s2040174424000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Early gut microbiome development may impact brain and behavioral development. Using a nonhuman primate model (Macaca mulatta), we investigated the association between social environments and the gut microbiome on infant neurodevelopment and cognitive function. Infant rhesus monkeys (n = 33) were either mother-peer-reared (MPR) or nursery-reared (NR). Neurodevelopmental outcomes, namely emotional responsivity, visual orientation, and motor maturity, were assessed with the Primate Neonatal Neurobehavioral Assessment (PNNA) at 14-30 days. Cognitive development was assessed through tasks evaluating infant reward association, cognitive flexibility, and impulsivity at 6-8 months. The fecal microbiome was quantified from rectal swabs via 16S rRNA sequencing. Factor analysis was used to identify "co-abundance factors" describing patterns of microbial composition. We used multiple linear regressions with AIC Model Selection and differential abundance analysis (MaAsLin2) to evaluate relationships between co-abundance factors, microbiome diversity, and neuro-/cognitive development outcomes. At 30 days of age, a gut microbiome co-abundance factor, or pattern, with high Prevotella and Lactobacillus (β = -0.88, p = 0.04, AIC Weight = 68%) and gut microbiome alpha diversity as measured by Shannon diversity (β = -1.33, p = 0.02, AIC Weight = 80%) were both negatively associated with infant emotional responsivity. At 30 days of age, being NR was also associated with lower emotional responsivity (Factor 1 model: β = -3.13, p < 0.01; Shannon diversity model: β = -3.77, p < 0.01). The infant gut microbiome, along with early-rearing environments, may shape domains of neuro-/cognitive development related to temperament.
Collapse
Affiliation(s)
- Katherine Daiy
- Department of Anthropology, Yale University, New Haven, CT, USA
| | - Kyle Wiley
- Department of Sociology and Anthropology, University of Texas at El Paso, El Paso, TX, USA
| | - Jacob Allen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael T Bailey
- The Research Institute at Nationwide Children's Hospital, Center for Microbial Pathogenesis, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Amanda M Dettmer
- Yale School of Medicine, Yale Child Study Center, New Haven, CT, USA
| |
Collapse
|
2
|
Nisa K, Arisandi R, Ibrahim N, Hardian H. Harnessing the power of probiotics to enhance neuroplasticity for neurodevelopment and cognitive function in stunting: a comprehensive review. Int J Neurosci 2025; 135:41-51. [PMID: 37963096 DOI: 10.1080/00207454.2023.2283690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Stunting become a global concern because it's not only affecting physical stature, but also affecting on neurodevelopment and cognitive function. These impacts are resulting in long-term consequences especially for human resources, such as poor-quality labor, decreased productivity due to decreasing of health quality, including immunity and cognitive aspect. DISCUSSION This comprehensive review found that based on many studies, there is an altered gut microbiota, or dysbiosis, in stunted children, causing the impairment of brain development through Microbiota-Gut Brain Axis (MGB Axis) mechanism. The administration of probiotics has been known affect MGBA by improving the physical and chemical gut barrier integrity, producing antimicrobial substance to inhibit pathogen, and recovering the healthy gut microbiota. Probiotics, along with healthy gut microbiota, produce SCFAs which have various positive impact on CNS, such as increase neurogenesis, support the development and function of microglia, reduce inflammatory signaling, improve the Blood Brain Barrier's (BBB's) integrity, produce neurotropic factors (e.g. BDNF, GDNF), and promote the formation of new synapse. Probiotics also could induce the production of IGF-1 by intestinal epithelial cells, which functioned as growth factor of multiple body tissues and resulted in improvement of linear growth as well as brain development. CONCLUSION These properties of probiotics made it become the promising and feasible new treatment approach for stunting. But since most of the studies in this field are conducted in animal models, it is necessary to translate animal data into human models and do additional study to identify the numerous components in the MGB axis and the effect of probiotics on human.
Collapse
Affiliation(s)
- Khairun Nisa
- Department of Physiology, University of Lampung, Bandar Lampung, Indonesia
| | - Rizki Arisandi
- Department of Physiology, University of Lampung, Bandar Lampung, Indonesia
| | - Nurhadi Ibrahim
- Department of Medical Physiology and Biophysics, Universitas Indonesia, Depok, Indonesia
| | - Hardian Hardian
- Department of Physiology, University of Diponegoro, Semarang, Indonesia
| |
Collapse
|
3
|
Trisal A, Singh I, Garg G, Jorwal K, Singh AK. Gut-brain axis and brain health: modulating neuroinflammation, cognitive decline, and neurodegeneration. 3 Biotech 2025; 15:25. [PMID: 39735610 PMCID: PMC11680542 DOI: 10.1007/s13205-024-04187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 12/31/2024] Open
Abstract
The microbiota-gut-brain axis is a pivotal medium of crosstalk between the central nervous system (CNS) and the gastrointestinal tract. It is an intricate network of synergistic molecular pathways that exert their effects far beyond their local vicinity and even affect the systemic functioning of the body. The current review explores the involvement of the gut-brain axis (GBA) in the functioning of the nervous system, with a special emphasis on the neurodegeneration, cognitive decline, and neuroinflammation that occur in Alzheimer's disease (AD) and Parkinson's disease (PD). Gut-derived microbial metabolites play an important role in facilitating this interaction. We also highlighted the complex interaction between gut-derived metabolites and CNS processes, demonstrating how microbial dysbiosis might result in clinical disorders. Short-chain fatty acids have neuroprotective properties, whereas branched-chain amino acids, trimethylamine-N-oxide (TMAO), and tryptophan derivatives such as indole have negative effects at high concentrations. Furthermore, we cover pharmaceutical and nonpharmacological approaches for restoring the gut microbial balance and promoting neurological health. We further expanded on nutritional therapies and lifestyle changes, such as the Mediterranean diet and exercise. Next, we focused on food-controlling habits such as caloric restriction and intermittent fasting. Moreover, interventional techniques such as prebiotics, probiotics, and pharmacological medications have also been utilized to modify the GBA. Historical microbiome research from early discoveries to recent studies linking gut health to cognitive and emotional well-being has increased our understanding of the GBA.
Collapse
Affiliation(s)
- Anchal Trisal
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Ishika Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka Manipal, 576 104 India
| | - Geetika Garg
- Department of Zoology, Savitribai Phule Pune University, Pune, 411007 India
| | | | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka Manipal, 576 104 India
| |
Collapse
|
4
|
Palanivelu L, Chen YY, Chang CJ, Liang YW, Tseng HY, Li SJ, Chang CW, Lo YC. Investigating brain-gut microbiota dynamics and inflammatory processes in an autistic-like rat model using MRI biomarkers during childhood and adolescence. Neuroimage 2024; 302:120899. [PMID: 39461606 DOI: 10.1016/j.neuroimage.2024.120899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
Autism spectrum disorder (ASD) is characterized by social interaction deficits and repetitive behaviors. Recent research has linked that gut dysbiosis may contribute to ASD-like behaviors. However, the exact developmental time point at which gut microbiota alterations affect brain function and behavior in patients with ASD remains unclear. We hypothesized that ASD-related brain microstructural changes and gut dysbiosis induce metabolic dysregulation and proinflammatory responses, which collectively contribute to the social behavioral deficits observed in early childhood. We used an autistic-like rat model that was generated via prenatal valproic acid exposure. We analyzed brain microstructural changes using diffusion tensor imaging (DTI) and examined microbiota, blood, and fecal samples for inflammation biomarkers. The ASD model rats exhibited significant brain microstructural changes in the anterior cingulate cortex, hippocampus, striatum, and thalamus; reduced microbiota diversity (Prevotellaceae and Peptostreptococcaceae); and altered metabolic signatures. The shift in microbiota diversity and density observed at postnatal day (PND) 35, which is a critical developmental period, underscored the importance of early ASD interventions. We identified a unique metabolic signature in the ASD model, with elevated formate and reduced acetate and butyrate levels, indicating a dysregulation in short-chain fatty acid (SCFA) metabolism. Furthermore, increased astrocytic and microglial activation and elevated proinflammatory cytokines-interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α)-were observed, indicating immune dysregulation. This study provided insights into the complex interplay between the brain and the gut, and indicated DTI metrics as potential imaging-based biomarkers in ASD, thus emphasizing the need for early childhood interventions.
Collapse
Affiliation(s)
- Lalitha Palanivelu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, 7F., No. 250, Wuxing St., Xinyi Dist., Taipei city 110, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University. 12F., Education and Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan
| | - Chih-Ju Chang
- Department of Neurosurgery, Cathay General Hospital, No. 280, Sec. 4, Renai Rd., Taipei 10629, Taiwan; School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., New Taipei City 242062, Taiwan
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan
| | - Hsin-Yi Tseng
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, 12F., Education and Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University. 12F., Education and Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan.
| |
Collapse
|
5
|
Levy Schwartz M, Magzal F, Yehuda I, Tamir S. Exploring the impact of probiotics on adult ADHD management through a double-blind RCT. Sci Rep 2024; 14:26830. [PMID: 39500949 PMCID: PMC11538393 DOI: 10.1038/s41598-024-73874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neuropsychiatric condition often persisting into adulthood, characterized by inattention, impulsivity, and hyperactivity. Emerging research suggests a connection between ADHD and gut microbiota, highlighting probiotics as potential therapeutic agents. This study involved a double-blind, randomized controlled trial where college students with ADHD received either a multi-strain probiotic supplement or a placebo daily for three months. ADHD symptoms were evaluated using a computerized performance test (MOXO) and the MATAL questionnaire. Academic records provided performance data. Additionally, eating and sleeping habits, gastrointestinal symptoms, and anthropometrics were assessed through questionnaires before and after the intervention. Fingernail cortisol concentrations (FCC) measured the long-term activity of the hypothalamic-pituitary-adrenal axis. The findings indicated that the probiotic significantly decreased hyperactivity, improved gastrointestinal symptoms, and enhanced academic performance. A multivariate analysis identified age as a significant predictor, with younger participants experiencing greater overall benefits from the intervention. There was also a negative correlation between FCC and symptoms of attention and impulsivity. Furthermore, higher academic grades were associated with lower levels of hyperactivity and impulsivity. These results suggest a beneficial impact of probiotics on ADHD symptoms and lay the groundwork for further studies to evaluate the effects of various probiotic strains on clinical outcomes in ADHD.
Collapse
Affiliation(s)
- Miri Levy Schwartz
- Department of Nutritional Sciences, Tel Hai College, 1220800, Upper Galilee, Israel
| | - Faiga Magzal
- Department of Nutritional Sciences, Tel Hai College, 1220800, Upper Galilee, Israel.
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, P.O.B. 831, 11016, Kiryat Shmona, Israel.
| | - Itamar Yehuda
- Department of Nutritional Sciences, Tel Hai College, 1220800, Upper Galilee, Israel
- Shamir Research Institute, University of Haifa, Katzrin, Israel
| | - Snait Tamir
- Department of Nutritional Sciences, Tel Hai College, 1220800, Upper Galilee, Israel.
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, P.O.B. 831, 11016, Kiryat Shmona, Israel.
| |
Collapse
|
6
|
Verma A, Inslicht SS, Bhargava A. Gut-Brain Axis: Role of Microbiome, Metabolomics, Hormones, and Stress in Mental Health Disorders. Cells 2024; 13:1436. [PMID: 39273008 PMCID: PMC11394554 DOI: 10.3390/cells13171436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The influence of gut microbiome, metabolites, omics, hormones, and stress on general and mental health is increasingly being recognized. Ancient cultures recognized the importance of diet and gut health on the overall health of an individual. Western science and modern scientific methods are beginning to unravel the foundations and mechanisms behind some of the ancient beliefs and customs. The gut microbiome, an organ itself, is now thought to influence almost all other organs, ranging from the brain to the reproductive systems. Gut microbiome, metabolites, hormones, and biological sex also influence a myriad of health conditions that range from mental health disorders, obesity, gastrointestinal disorders, and cardiovascular diseases to reproductive health. Here, we review the history and current understanding of the gut-brain axis bidirectional talk in various mental health disorders with special emphasis on anxiety and depressive disorders, whose prevalence has increased by over 50% in the past three decades with COVID-19 pandemic being the biggest risk factor in the last few years. The vagal nerve is an important contributor to this bidirectional talk, but other pathways also contribute, and most remain understudied. Probiotics containing Lactobacillus and Bifidobacterium species seem to have the most impact on improvement in mental health symptoms, but the challenge appears to be maintaining sustained levels, especially since neither Lactobacillus nor Bifidobacterium can permanently colonize the gut. Ancient endogenous retroviral DNA in the human genome is also linked to several psychiatric disorders, including depression. These discoveries reveal the complex and intricately intertwined nature of gut health with mental health disorders.
Collapse
Affiliation(s)
- Ankita Verma
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA;
| | - Sabra S. Inslicht
- San Francisco VA Health Care System, San Francisco, CA 94121, USA;
- Department of Psychiatry and Behavioral Sciences, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Aditi Bhargava
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA;
| |
Collapse
|
7
|
Jia X, Wang Q, Liu M, Ding JY. The interplay between gut microbiota and the brain-gut axis in Parkinson's disease treatment. Front Neurol 2024; 15:1415463. [PMID: 38867886 PMCID: PMC11168434 DOI: 10.3389/fneur.2024.1415463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 06/14/2024] Open
Abstract
This study delves into the pivotal role of the gut microbiota and the brain-gut axis in Parkinson's Disease (PD), a neurodegenerative disorder with significant motor and non-motor implications. It posits that disruptions in gut microbiota-dysbiosis-and alterations in the brain-gut axis contribute to PD's pathogenesis. Our findings highlight the potential of the gastrointestinal system's early involvement in PD, suggested by the precedence of gastrointestinal symptoms before motor symptoms emerge. This observation implies a possible gut-originated disease pathway. The analysis demonstrates that dysbiosis in PD patients leads to increased intestinal permeability and systemic inflammation, which in turn exacerbates neuroinflammation and neurodegeneration. Such insights into the interaction between gut microbiota and the brain-gut axis not only elucidate PD's underlying mechanisms but also pave the way for novel therapeutic interventions. We propose targeted treatment strategies, including dietary modifications and fecal microbiota transplantation, aimed at modulating the gut microbiota. These approaches hold promise for augmenting current PD treatment modalities by alleviating both motor and non-motor symptoms, thereby potentially improving patient quality of life. This research underscores the significance of the gut microbiota in the progression and treatment of PD, advocating for an integrated, multidisciplinary approach to develop personalized, efficacious management strategies for PD patients, combining insights from neurology, microbiology, and nutritional science.
Collapse
Affiliation(s)
- Xi Jia
- First Ward of Neurology Department, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Qin Wang
- Department of Rehabilitation, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Meilingzi Liu
- Third Ward of Neurology Department, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jia-yuan Ding
- Second Ward of Gastroenterology Department, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
8
|
García-Cabrerizo R, Cryan JF. A gut (microbiome) feeling about addiction: Interactions with stress and social systems. Neurobiol Stress 2024; 30:100629. [PMID: 38584880 PMCID: PMC10995916 DOI: 10.1016/j.ynstr.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
In recent years, an increasing attention has given to the intricate and diverse connection of microorganisms residing in our gut and their impact on brain health and central nervous system disease. There has been a shift in mindset to understand that drug addiction is not merely a condition that affects the brain, it is now being recognized as a disorder that also involves external factors such as the intestinal microbiota, which could influence vulnerability and the development of addictive behaviors. Furthermore, stress and social interactions, which are closely linked to the intestinal microbiota, are powerful modulators of addiction. This review delves into the mechanisms through which the microbiota-stress-immune axis may shape drug addiction and social behaviors. This work integrates preclinical and clinical evidence that demonstrate the bidirectional communication between stress, social behaviors, substance use disorders and the gut microbiota, suggesting that gut microbes might modulate social stress having a significance in drug addiction.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Meng X, Li Q, Wang D, Li J, Cui Y, Sun Z, Yin H. Exploring the role of gut microbiota in migraine risk: a two-sample Mendelian randomization study. Scand J Gastroenterol 2024; 59:411-418. [PMID: 38149430 DOI: 10.1080/00365521.2023.2298370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVES The presence of intestinal flora in the gut has been linked to migraines in recent studies, but whether the association is causal or due to bias remains to be clarified. We aimed to explore whether there is a potential causal relationship between gut microbiota and migraine risk with this study. MATERIALS AND METHODS We conducted a two-sample Mendelian randomized analysis study to explore whether gut microbiota has a causal relationship with migraine using publicly available data from large-scale genome-wide association studies. The inverse variance weighting was used as the main method, and weighted median and MR-Egger were used as supplementary methods for causal inference. Sensitivity analyses, including leave-one-out analysis, Cochran Q test, and MR-Egger intercept test, were used to verify the robustness of the results. RESULTS After rigorous quality control of the results, we identified that genetic predisposition towards a higher abundance of genus.Lactobacillus was causally associated with higher of migraine (IVW OR = 1.10, 95% CI = 1.03 - 1.18, p = .004), whereas the higher abundance of family.Prvotellaceae predicted a decreased risk of migraine (IVW OR = 0.89, 95% CI = 0.80 - 0.98, p = .02). Sensitivity analyses indicated the results were not biased by pleiotropy. CONCLUSION According to our research, there is evidence showing that gut microbiota may be involved in migraine development, which suggested that a stool examination might be helpful to recognize those with a higher risk of migraine. Further mechanisms remained to be elucidated in future studies.
Collapse
Affiliation(s)
- Xiangyue Meng
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Quan Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Delong Wang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinting Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Cui
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhongren Sun
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongna Yin
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
10
|
Marosvölgyi T, Mintál K, Farkas N, Sipos Z, Makszin L, Szabó É, Tóth A, Kocsis B, Kovács K, Hormay E, Lénárd L, Karádi Z, Bufa A. Antibiotics and probiotics-induced effects on the total fatty acid composition of feces in a rat model. Sci Rep 2024; 14:6542. [PMID: 38503819 PMCID: PMC10951306 DOI: 10.1038/s41598-024-57046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Fatty acids (FAs) play important roles as membrane components and signal transduction molecules. Changes in short chain FA (SCFA) composition are associated with gut microbiota modifications. However, the effect of bacteria-driven changes on the detailed FA spectrum has not been explored yet. We investigated the effect of antibiotics (ABx) and/or probiotics, in four treatment groups on rat stool FA composition. Principal component analysis indicated that the chromatogram profiles of the treatment groups differ, which was also observed at different time points. Linear mixed effects models showed that in the parameters compared (sampling times, treatments. and their interactions), both the weight percentage and the concentration of FAs were affected by ABx and probiotic administration. This study found that the gut microbiome defines trans and branched saturated FAs, most saturated FAs, and unsaturated FAs with less carbon atoms. These results are among the first ones to demonstrate the restoring effects of a probiotic mixture on a substantial part of the altered total FA spectrum, and also revealed a previously unknown relationship between gut bacteria and a larger group of FAs. These findings suggest that intestinal bacteria produce not only SCFAs but also other FAs that may affect the host's physiological processes.
Collapse
Affiliation(s)
- Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Kitti Mintál
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Zoltán Sipos
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Lilla Makszin
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, 7624, Hungary.
| | - Attila Tóth
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Krisztina Kovács
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Edina Hormay
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Anita Bufa
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| |
Collapse
|
11
|
Song G, Zhao Q, Chen H, Li M, Zhang Z, Qu Z, Yang C, Lin X, Ma W, Standlee CR. Toxoplasma gondii seropositivity and cognitive functioning in older adults: an analysis of cross-sectional data of the National Health and Nutrition Examination Survey 2011-2014. BMJ Open 2024; 14:e071513. [PMID: 38448067 PMCID: PMC10916126 DOI: 10.1136/bmjopen-2022-071513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
OBJECTIVES This study sought to examine the relationship between Toxoplasma gondii seropositivity and cognitive function in older adults. DESIGN An observational cross-sectional study. SETTING The National Health and Nutrition Examination Survey (NHANES) study took place at participants' homes and mobile examination centres. PARTICIPANTS A total of 2956 older adults aged 60 and above from the NHANES from 2011 to 2014 were included in the study. Exposure of interest: participants had serum Toxoplasma gondii antibody analysed in the laboratory. A value>33 IU/mL was categorised as seropositive for Toxoplasma gondii infection; <27 IU/mL was categorised as seronegative for Toxoplasma gondii infection. PRIMARY AND SECONDARY OUTCOME MEASURES Cognitive tests included the Consortium to Establish a Registry for Alzheimer's Disease Word Learning subtest (CERAD-WL) for immediate and delayed memory, the Animal Fluency Test (AFT), and the Digit Symbol Substitution Test (DSST). RESULTS About half of the 2956 participants (mean age 70.0) were female (51.0%), non-Hispanic White (48.3%), and completed some college or above (48.3%). A total of 703 participants were positive for Toxoplasma gondii infection (23.8%). Adjusted linear regression showed that compared with participants with negative Toxoplasma gondii infection, those with positive Toxoplasma gondii infection had lower CERAD-WL immediate memory (beta (β) -0.16, 95% CI -0.25 to -0.07), CERAD-WL delayed memory (β -0.15, 95% CI -0.24 to -0.06), AFT (β -0.15, 95% CI -0.24 to -0.06), DSST (β -0.34, 95% CI -0.43 to -0.26), and global cognition (β -0.24, 95% CI -0.32 to -0.16) z-scores after controlling for the covariates. CONCLUSIONS Toxoplasma gondii seropositivity is associated with worse immediate and delayed verbal learning, language proficiency, executive functioning, processing speed, sustained attention, working memory, as well as global cognition in older adults. Public health measures aiming at preventing Toxoplasma gondii infection may help preserve cognitive functioning in older adults.
Collapse
Affiliation(s)
- Ge Song
- College of Sciences and Technology, University of Houston Downtown, Houston, Texas, USA
| | - Qingxia Zhao
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyu Chen
- School of Nursing, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Li
- Kentucky Department for Public Health, Infectious Disease Branch, Frankfort, Kentucky, USA
| | - Zeyu Zhang
- Institute for Hospital Management, Tsinghua University, Beijing, China
| | - Zhe Qu
- Department of Pediatric Respiratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chao Yang
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xuechun Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Weixia Ma
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | | |
Collapse
|
12
|
Mohamed AA, al-Ramadi BK, Fernandez-Cabezudo MJ. Interplay between Microbiota and γδ T Cells: Insights into Immune Homeostasis and Neuro-Immune Interactions. Int J Mol Sci 2024; 25:1747. [PMID: 38339023 PMCID: PMC10855551 DOI: 10.3390/ijms25031747] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
The gastrointestinal (GI) tract of multicellular organisms, especially mammals, harbors a symbiotic commensal microbiota with diverse microorganisms including bacteria, fungi, viruses, and other microbial and eukaryotic species. This microbiota exerts an important role on intestinal function and contributes to host health. The microbiota, while benefiting from a nourishing environment, is involved in the development, metabolism and immunity of the host, contributing to the maintenance of homeostasis in the GI tract. The immune system orchestrates the maintenance of key features of host-microbe symbiosis via a unique immunological network that populates the intestinal wall with different immune cell populations. Intestinal epithelium contains lymphocytes in the intraepithelial (IEL) space between the tight junctions and the basal membrane of the gut epithelium. IELs are mostly CD8+ T cells, with the great majority of them expressing the CD8αα homodimer, and the γδ T cell receptor (TCR) instead of the αβ TCR expressed on conventional T cells. γδ T cells play a significant role in immune surveillance and tissue maintenance. This review provides an overview of how the microbiota regulates γδ T cells and the influence of microbiota-derived metabolites on γδ T cell responses, highlighting their impact on immune homeostasis. It also discusses intestinal neuro-immune regulation and how γδ T cells possess the ability to interact with both the microbiota and brain.
Collapse
Affiliation(s)
- Alaa A. Mohamed
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
13
|
Gonçalves CL, Doifode T, Rezende VL, Costa MA, Rhoads JM, Soutullo CA. The many faces of microbiota-gut-brain axis in autism spectrum disorder. Life Sci 2024; 337:122357. [PMID: 38123016 DOI: 10.1016/j.lfs.2023.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The gut-brain axis is gaining more attention in neurodevelopmental disorders, especially autism spectrum disorder (ASD). Many factors can influence microbiota in early life, including host genetics and perinatal events (infections, mode of birth/delivery, medications, nutritional supply, and environmental stressors). The gut microbiome can influence blood-brain barrier (BBB) permeability, drug bioavailability, and social behaviors. Developing microbiota-based interventions such as probiotics, gastrointestinal (GI) microbiota transplantation, or metabolite supplementation may offer an exciting approach to treating ASD. This review highlights that RNA sequencing, metabolomics, and transcriptomics data are needed to understand how microbial modulators can influence ASD pathophysiology. Due to the substantial clinical heterogeneity of ASD, medical caretakers may be unlikely to develop a broad and effective general gut microbiota modulator. However, dietary modulation followed by administration of microbiota modulators is a promising option for treating ASD-related behavioral and gastrointestinal symptoms. Future work should focus on the accuracy of biomarker tests and developing specific psychobiotic agents tailored towards the gut microbiota seen in ASD patients, which may include developing individualized treatment options.
Collapse
Affiliation(s)
- Cinara L Gonçalves
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Tejaswini Doifode
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Victoria L Rezende
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maiara A Costa
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - J Marc Rhoads
- Department of Pediatrics, Division of Pediatric Gastroenterology, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Cesar A Soutullo
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| |
Collapse
|
14
|
Indrio F, Dargenio VN. Preventing and Treating Colic: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:59-78. [PMID: 39060731 DOI: 10.1007/978-3-031-58572-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Infantile colic (IC) is c is a self-limiting functional gastrointestinal disorder (FGID) with a favorable natural history. Worldwide, IC has a significant impact on many newborns and their families. Although not an indication of an illness, its symptoms are wide and generic and may indicate a potentially serious underlying issue in a tiny percentage of newborns who may require a medical evaluation. The pathogenesis appears to be multifactorial implying a complex relationship between the infant and the environment. One of the most studied theories attributes a key role to the gut microbiota in the pathogenesis of IC. A variety of approaches have been suggested for the clinical management of IC, and several randomized controlled trials have been reported in the literature. Probiotics can change the host's microbiota and positively impact health. They may be able to restore balance and create a better intestinal microbiota landscape since there is mounting evidence that the gut microbial environment of colicky newborns differs from that of healthy infants. In this review, we revise the most commonly studied probiotics and mixtures to treat and prevent IC and the most recent recommendations.
Collapse
Affiliation(s)
- Flavia Indrio
- Department of Experimental Medicine, Università del Salento, Lecce, Italy
| | | |
Collapse
|
15
|
Alexoudi A, Kesidou L, Gatzonis S, Charalampopoulos C, Tsoga A. Effectiveness of the Combination of Probiotic Supplementation on Motor Symptoms and Constipation in Parkinson's Disease. Cureus 2023; 15:e49320. [PMID: 38146566 PMCID: PMC10749423 DOI: 10.7759/cureus.49320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) reflects the second most common neurodegenerative disorder and is associated with high morbidity and mortality. Besides the motor features, non-motor symptoms, such as constipation, are very common. There is accumulating evidence that neuroinflammation is associated with the PD pathological processes. Alterations of gut microbiota and microbial metabolites have been linked to the pathogenesis of PD. Previous research has shown that probiotic supplementation has beneficial effects on motor and non-motor symptoms and especially on constipation. AIM In this study, we examine the effectiveness of a combination of probiotic supplementation (butyrate triglyceride 302.86 mg, Crocus sativus L. 30 mg, and vitamin D3 100 mcg), on constipation and motor symptoms in PD. METHODS The present study is a retrospective study that examined the existing medical records of patients with diagnosed PD, having chronic constipation and used the probiotic supplementation for its management. A total of 41 existing medical records were screened. Medical records were excluded in the case of participation in another study for PD, suffering from irritable bowel syndrome, organic constipation, long-term laxative use changes in the standard dopaminergic treatment, Mini-Mental Status Examination (MMSE) score<24, hospitalization and antibiotic medication, and diarrheal syndrome. Nine medical records were excluded, and a final number of 32 medical records was finally examined. All 32 patients had evaluations carried out at baseline and three months after supplement administration. A stool diary questionnaire, the Unified Parkinson's Disease Rating Scale III (UPDRS III), and the Schwab and England and the Hoehn and Yahr scales were used for the evaluation. RESULTS The median defecation frequency was significantly improved. The supplementation administration significantly improved UPDRS III by 7.7% (from 35.72±15.51 to 32.97±15.71, p = 0.005) at month three, as compared to baseline. A positive effect was also seen in the Schwab and England scale. There was no effect on the Hoehn and Yahr scale. CONCLUSION The enteric microbiome composition is altered in PD, and there is accumulating evidence that probiotic supplementation could alleviate disease symptoms in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Athanasia Alexoudi
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, GRC
- Neurology, Neurological Institute of Athens (NIA), Athens, GRC
| | - Lydia Kesidou
- Dentistry, Santorini General Hospital, Santorini, GRC
| | - Stylianos Gatzonis
- Department of Neurosurgery, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens, GRC
| | | | - Areti Tsoga
- Department of Public Health Policy, University of West Attica, Athens, GRC
| |
Collapse
|
16
|
Lokhov PG, Balashova EE, Maslov DL, Trifonova OP, Lisitsa AV, Markova YM, Stetsenko VV, Polyanina AS, Sheveleva SA, Sharafetdinov KK, Nikityuk DB, Tutelyan VA, Archakov AI. Linking Clinical Blood Metabogram and Gut Microbiota. Metabolites 2023; 13:1095. [PMID: 37887420 PMCID: PMC10609303 DOI: 10.3390/metabo13101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Recently, a clinical blood metabogram was developed as a fast, low-cost and reproducible test that allows the implementation of metabolomics in clinical practice. The components of the metabogram are functionally related groups of blood metabolites associated with humoral regulation, the metabolism of lipids, carbohydrates and amines, lipid intake into the organism, and liver function, thereby providing clinically relevant information. It is known that the gut microbiota affects the blood metabolome, and the components of the blood metabolome may affect the composition of the gut microbiota. Therefore, before using the metabogram in the clinic, the link between the metabogram components and the level of gut microorganisms should be established. For this purpose, the metabogram and microbiota data were obtained in this work for the same individuals. Metabograms of blood plasma were obtained by direct mass spectrometry of blood plasma, and the gut microbiome was determined by a culture-based method and real-time polymerase chain reaction (PCR). This study involved healthy volunteers and individuals with varying degrees of deviation in body weight (n = 44). A correlation analysis determined which metabogram components are linked to which gut microorganisms and the strength of this link. Moreover, diagnostic parameters (sensitivity, specificity and accuracy) confirmed the capacity of metabogram components to be used for diagnosing gut microbiota alterations. Therefore, the obtained results allow the use of the metabogram in a clinical setting, taking into account its relationship with gut microbiota.
Collapse
Affiliation(s)
- Petr G. Lokhov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia (D.L.M.)
| | - Elena E. Balashova
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia (D.L.M.)
| | - Dmitry L. Maslov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia (D.L.M.)
| | - Oxana P. Trifonova
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia (D.L.M.)
| | - Andrey V. Lisitsa
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia (D.L.M.)
| | - Yulia M. Markova
- Federal State Budgetary Institution of Science, Federal Research Centre of Nutrition, Biotechnology and Food Safety, Ustinsky Passage 2/14, 109240 Moscow, Russia; (Y.M.M.)
| | - Valentina V. Stetsenko
- Federal State Budgetary Institution of Science, Federal Research Centre of Nutrition, Biotechnology and Food Safety, Ustinsky Passage 2/14, 109240 Moscow, Russia; (Y.M.M.)
| | - Anna S. Polyanina
- Federal State Budgetary Institution of Science, Federal Research Centre of Nutrition, Biotechnology and Food Safety, Ustinsky Passage 2/14, 109240 Moscow, Russia; (Y.M.M.)
| | - Svetlana A. Sheveleva
- Federal State Budgetary Institution of Science, Federal Research Centre of Nutrition, Biotechnology and Food Safety, Ustinsky Passage 2/14, 109240 Moscow, Russia; (Y.M.M.)
| | - Khaider K. Sharafetdinov
- Federal State Budgetary Institution of Science, Federal Research Centre of Nutrition, Biotechnology and Food Safety, Ustinsky Passage 2/14, 109240 Moscow, Russia; (Y.M.M.)
| | - Dmitry B. Nikityuk
- Federal State Budgetary Institution of Science, Federal Research Centre of Nutrition, Biotechnology and Food Safety, Ustinsky Passage 2/14, 109240 Moscow, Russia; (Y.M.M.)
| | - Victor A. Tutelyan
- Federal State Budgetary Institution of Science, Federal Research Centre of Nutrition, Biotechnology and Food Safety, Ustinsky Passage 2/14, 109240 Moscow, Russia; (Y.M.M.)
| | - Alexander I. Archakov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia (D.L.M.)
| |
Collapse
|
17
|
Kay T, Liberti J, Richardson TO, McKenzie SK, Weitekamp CA, La Mendola C, Rüegg M, Kesner L, Szombathy N, McGregor S, Romiguier J, Engel P, Keller L. Social network position is a major predictor of ant behavior, microbiota composition, and brain gene expression. PLoS Biol 2023; 21:e3002203. [PMID: 37486940 PMCID: PMC10399779 DOI: 10.1371/journal.pbio.3002203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/03/2023] [Accepted: 06/16/2023] [Indexed: 07/26/2023] Open
Abstract
The physiology and behavior of social organisms correlate with their social environments. However, because social environments are typically confounded by age and physical environments (i.e., spatial location and associated abiotic factors), these correlations are usually difficult to interpret. For example, associations between an individual's social environment and its gene expression patterns may result from both factors being driven by age or behavior. Simultaneous measurement of pertinent variables and quantification of the correlations between these variables can indicate whether relationships are direct (and possibly causal) or indirect. Here, we combine demographic and automated behavioral tracking with a multiomic approach to dissect the correlation structure among the social and physical environment, age, behavior, brain gene expression, and microbiota composition in the carpenter ant Camponotus fellah. Variations in physiology and behavior were most strongly correlated with the social environment. Moreover, seemingly strong correlations between brain gene expression and microbiota composition, physical environment, age, and behavior became weak when controlling for the social environment. Consistent with this, a machine learning analysis revealed that from brain gene expression data, an individual's social environment can be more accurately predicted than any other behavioral metric. These results indicate that social environment is a key regulator of behavior and physiology.
Collapse
Affiliation(s)
- Tomas Kay
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Joanito Liberti
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Thomas O. Richardson
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Sean K. McKenzie
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Chelsea A. Weitekamp
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Christine La Mendola
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Matthias Rüegg
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Lucie Kesner
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Natasha Szombathy
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Sean McGregor
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jonathan Romiguier
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology and Ecology, University of Montpellier, Montpellier, France
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2023; 14:1130689. [PMID: 37404311 PMCID: PMC10316519 DOI: 10.3389/fendo.2023.1130689] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Cognitive function in humans depends on the complex and interplay between multiple body systems, including the hypothalamic-pituitary-adrenal (HPA) axis. The gut microbiota, which vastly outnumbers human cells and has a genetic potential that exceeds that of the human genome, plays a crucial role in this interplay. The microbiota-gut-brain (MGB) axis is a bidirectional signalling pathway that operates through neural, endocrine, immune, and metabolic pathways. One of the major neuroendocrine systems responding to stress is the HPA axis which produces glucocorticoids such as cortisol in humans and corticosterone in rodents. Appropriate concentrations of cortisol are essential for normal neurodevelopment and function, as well as cognitive processes such as learning and memory, and studies have shown that microbes modulate the HPA axis throughout life. Stress can significantly impact the MGB axis via the HPA axis and other pathways. Animal research has advanced our understanding of these mechanisms and pathways, leading to a paradigm shift in conceptual thinking about the influence of the microbiota on human health and disease. Preclinical and human trials are currently underway to determine how these animal models translate to humans. In this review article, we summarize the current knowledge of the relationship between the gut microbiota, HPA axis, and cognition, and provide an overview of the main findings and conclusions in this broad field.
Collapse
Affiliation(s)
- Jody A. Rusch
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- C17 Chemical Pathology Laboratory, Groote Schuur Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Lara R. Dugas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
19
|
Bora G, Atkinson SN, Pan A, Sood M, Salzman N, Karrento K. Impact of auricular percutaneous electrical nerve field stimulation on gut microbiome in adolescents with irritable bowel syndrome: A pilot study. J Dig Dis 2023; 24:348-358. [PMID: 37448237 DOI: 10.1111/1751-2980.13203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/07/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVES Percutaneous electrical nerve field stimulation (PENFS) has documented efficacy for irritable bowel syndrome (IBS) via plausible vagal neuromodulation effects. The vagus nerve may affect gut microbiome composition via brain-gut-microbiome signaling. We aimed to investigate gut microbiome alterations by PENFS therapy in adolescent IBS patients. METHODS A prospective study of females with IBS aged 11-18 years receiving PENFS therapy for 4 weeks with pre- and post-intervention stool sampling was conducted. Outcome surveys completed pre-therapy, weekly, and post-therapy included IBS-Severity Scoring System (IBS-SSS), Visceral Sensitivity Index (VSI), Functional Disability Inventory (FDI), and the global symptom response scale (SRS). Bacterial DNA was extracted from stool samples followed by 16S rRNA amplification and sequencing. QIIME 2 (version 2022.2) was used for analyses of α and β diversity and differential abundance by group. RESULTS Twenty females aged 15.6 ± 1.62 years were included. IBS-SSS, VSI, and FDI scores decreased significantly after PENFS therapy (P < 0.0001, P = 0.0003, P = 0.0004, respectively). No intra- or interindividual microbiome changes were noted pre- versus post-therapy or between responders and non-responders. When response was defined by 50-point IBS-SSS score reduction, α diversity was higher in responders compared with non-responders at week 4 (P = 0.033). There was higher abundance of Blautia in excellent responders versus non-responders. CONCLUSIONS There were no substantial microbial diversity alterations with PENFS. Subjects with excellent therapeutic response showed an enrichment of relative abundance of Blautia, which may indicate that patients with specific microbial signature have a more favorable response to PENFS.
Collapse
Affiliation(s)
- Geetanjali Bora
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Samantha N Atkinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Amy Pan
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Divison of Quantitative Health Sciences, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Manu Sood
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, Illinois, USA
| | - Nita Salzman
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Katja Karrento
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
20
|
Huang C, Yue Q, Sun L, Di K, Yang D, Hao E, Wang D, Chen Y, Shi L, Zhou R, Zhao G, Chen H. Restorative effects of Lactobacillus rhamnosus LR-32 on the gut microbiota, barrier integrity, and 5-HT metabolism in reducing feather-pecking behavior in laying hens with antibiotic-induced dysbiosis. Front Microbiol 2023; 14:1173804. [PMID: 37180262 PMCID: PMC10169825 DOI: 10.3389/fmicb.2023.1173804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
The development of abnormal feather-pecking (FP) behavior, where laying hens display harmful pecks in conspecifics, is multifactorial and has been linked to the microbiota-gut-brain axis. Antibiotics affect the gut microbial composition, leading to gut-brain axis imbalance and behavior and physiology changes in many species. However, it is not clear whether intestinal dysbacteriosis can induce the development of damaging behavior, such as FP. The restorative effects of Lactobacillus rhamnosus LR-32 against intestinal dysbacteriosis-induced alternations need to be determined either. The current investigation aimed to induce intestinal dysbacteriosis in laying hens by supplementing their diet with the antibiotic lincomycin hydrochloride. The study revealed that antibiotic exposure resulted in decreased egg production performance and an increased tendency toward severe feather-pecking (SFP) behavior in laying hens. Moreover, intestinal and blood-brain barrier functions were impaired, and 5-HT metabolism was inhibited. However, treatment with Lactobacillus rhamnosus LR-32 following antibiotic exposure significantly alleviated the decline in egg production performance and reduced SFP behavior. Lactobacillus rhamnosus LR-32 supplementation restored the profile of the gut microbial community, and showed a strong positive effect by increasing the expression of tight junction proteins in the ileum and hypothalamus and promoting the expression of genes related to central 5-HT metabolism. The correlation analysis revealed that probiotic-enhanced bacteria were positively correlated, and probiotic-reduced bacteria were negatively correlated with tight junction-related gene expression, and 5-HT metabolism, and butyric acid levels. Overall, our findings indicate that dietary supplementation with Lactobacillus rhamnosus LR-32 can reduce antibiotic-induced FP in laying hens and is a promising treatment to improve the welfare of domestic birds.
Collapse
Affiliation(s)
- Chenxuan Huang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Qiaoxian Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Li Sun
- Department of Animal Nutrition and Management, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Keqian Di
- School of Basic Medical Sciences, Hebei University, Baoding, Hebei, China
| | - Duanli Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Erying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Dehe Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yifan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Lei Shi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Rongyan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guoxian Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
21
|
Lu J, Drobyshevsky A, Lu L, Yu Y, Caplan MS, Claud EC. Microbiota from Preterm Infants Who Develop Necrotizing Enterocolitis Drives the Neurodevelopment Impairment in a Humanized Mouse Model. Microorganisms 2023; 11:1131. [PMID: 37317106 PMCID: PMC10224461 DOI: 10.3390/microorganisms11051131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is the leading basis for gastrointestinal morbidity and poses a significant risk for neurodevelopmental impairment (NDI) in preterm infants. Aberrant bacterial colonization preceding NEC contributes to the pathogenesis of NEC, and we have demonstrated that immature microbiota in preterm infants negatively impacts neurodevelopment and neurological outcomes. In this study, we tested the hypothesis that microbial communities before the onset of NEC drive NDI. Using our humanized gnotobiotic model in which human infant microbial samples were gavaged to pregnant germ-free C57BL/6J dams, we compared the effects of the microbiota from preterm infants who went on to develop NEC (MNEC) to the microbiota from healthy term infants (MTERM) on brain development and neurological outcomes in offspring mice. Immunohistochemical studies demonstrated that MNEC mice had significantly decreased occludin and ZO-1 expression compared to MTERM mice and increased ileal inflammation marked by the increased nuclear phospho-p65 of NFκB expression, revealing that microbial communities from patients who developed NEC had a negative effect on ileal barrier development and homeostasis. In open field and elevated plus maze tests, MNEC mice had worse mobility and were more anxious than MTERM mice. In cued fear conditioning tests, MNEC mice had worse contextual memory than MTERM mice. MRI revealed that MNEC mice had decreased myelination in major white and grey matter structures and lower fractional anisotropy values in white matter areas, demonstrating delayed brain maturation and organization. MNEC also altered the metabolic profiles, especially carnitine, phosphocholine, and bile acid analogs in the brain. Our data demonstrated numerous significant differences in gut maturity, brain metabolic profiles, brain maturation and organization, and behaviors between MTERM and MNEC mice. Our study suggests that the microbiome before the onset of NEC has negative impacts on brain development and neurological outcomes and can be a prospective target to improve long-term developmental outcomes.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | - Lei Lu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Yueyue Yu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Michael S. Caplan
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL 60202, USA
| | - Erika C. Claud
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
22
|
Xia J, Claud EC. Gut Microbiome-Brain Axis as an Explanation for the Risk of Poor Neurodevelopment Outcome in Preterm Infants with Necrotizing Enterocolitis. Microorganisms 2023; 11:1035. [PMID: 37110458 PMCID: PMC10142133 DOI: 10.3390/microorganisms11041035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Necrotizing Enterocolitis (NEC) is characterized by an inflammation of intestinal tissue that primarily affects premature infants. It is the most common and devastating gastrointestinal morbidity of prematurity, but beyond intestinal morbidity, this condition has also been associated with an increased risk of neurodevelopmental delays that persist beyond infancy. Prematurity, enteral feeding, bacterial colonization, and prolonged exposure to antibiotics are all risk factors that predispose preterm infants to NEC. Interestingly, these factors are all also associated with the gut microbiome. However, whether or not there is a connection between the microbiome and the risk of neurodevelopmental delays in infants after NEC is still an emerging area of research. Furthermore, how microbes in the gut could impact a distant organ such as the brain is also poorly understood. In this review, we discuss the current understanding of NEC and the role of the gut microbiome-brain axis in neurodevelopmental outcomes after NEC. Understanding the potential role of the microbiome in neurodevelopmental outcomes is important as the microbiome is modifiable and thus offers the hope of improved therapeutic options. We highlight the progress and limitations in this field. Insights into the gut microbiome-brain axis may offer potential therapeutic approaches to improve the long-term outcomes of premature infants.
Collapse
Affiliation(s)
- Jason Xia
- College of Liberal Arts and Sciences, University of Illinois Urbana-Champion, Champaign, IL 61801, USA
| | - Erika C. Claud
- Department of Pediatrics and Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Ding R, Su D, Zhao Q, Wang Y, Wang JY, Lv S, Ji X. The role of microRNAs in depression. Front Pharmacol 2023; 14:1129186. [PMID: 37063278 PMCID: PMC10090555 DOI: 10.3389/fphar.2023.1129186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Major depressive disorder (MDD) is a psychiatric disorder with increasing prevalence worldwide. It is a leading cause of disability and suicide, severely affecting physical and mental health. However, the study of depression remains at an exploratory stage in terms of diagnostics and treatment due to the complexity of its pathogenesis. MicroRNAs are endogenous short-stranded non-coding RNAs capable of binding to the 3’untranslated region of mRNAs. Because of their ability to repress translation process of genes and are found at high levels in brain tissues, investigation of their role in depression has gradually increased recently. This article summarizes recent research progress on the relationship between microRNAs and depression. The microRNAs play a regulatory role in the pathophysiology of depression, involving dysregulation of monoamines, abnormalities in neuroplasticity and neurogenesis, hyperactivity of the HPA axis, and dysregulation of inflammatory responses. These microRNAs might provide new clue for the diagnosis and treatment of MDD, and the development of antidepressant drugs.
Collapse
Affiliation(s)
- Ruidong Ding
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Dingyuan Su
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Qian Zhao
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yu Wang
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Jia-Yi Wang
- San-Quan College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shuangyu Lv
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| | - Xinying Ji
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- Kaifeng Key Laboratory for Infectious Diseases and Biosafety, Kaifeng, Henan, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| |
Collapse
|
24
|
Dargenio VN, Dargenio C, Castellaneta S, De Giacomo A, Laguardia M, Schettini F, Francavilla R, Cristofori F. Intestinal Barrier Dysfunction and Microbiota–Gut–Brain Axis: Possible Implications in the Pathogenesis and Treatment of Autism Spectrum Disorder. Nutrients 2023; 15:nu15071620. [PMID: 37049461 PMCID: PMC10096948 DOI: 10.3390/nu15071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with multifactorial etiology, characterized by impairment in two main functional areas: (1) communication and social interactions, and (2) skills, interests and activities. ASD patients often suffer from gastrointestinal symptoms associated with dysbiotic states and a “leaky gut.” A key role in the pathogenesis of ASD has been attributed to the gut microbiota, as it influences central nervous system development and neuropsychological and gastrointestinal homeostasis through the microbiota–gut–brain axis. A state of dysbiosis with a reduction in the Bacteroidetes/Firmicutes ratio and Bacteroidetes level and other imbalances is common in ASD. In recent decades, many authors have tried to study and identify the microbial signature of ASD through in vivo and ex vivo studies. In this regard, the advent of metabolomics has also been of great help. Based on these data, several therapeutic strategies, primarily the use of probiotics, are investigated to improve the symptoms of ASD through the modulation of the microbiota. However, although the results are promising, the heterogeneity of the studies precludes concrete evidence. The aim of this review is to explore the role of intestinal barrier dysfunction, the gut–brain axis and microbiota alterations in ASD and the possible role of probiotic supplementation in these patients.
Collapse
|
25
|
Ford SH, Bruckner L, Thoyre S, Baker MJ, Bartlett TR, Hodges EA. Gut-Brain Axis Perspective on Negative Symptoms and Their Neighbors in Early Adolescence: Can We Move Care Upstream? J Psychosoc Nurs Ment Health Serv 2023:1-10. [PMID: 36853039 DOI: 10.3928/02793695-20230221-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The current study investigated symptom network patterns in adolescents from a gut-brain-axis (GBA) biopsychosocial perspective. Our secondary analysis of data from the Adolescent Brain Cognitive Development Study assessed symptom relationships using network analysis to provide information about multivariate structural dependencies among 41 signs and symptoms. Cross-sectional EBICglasso symptom networks were evaluated to assess patterns associated with anhedonia and depressed mood. Significant differences were identified between symptom neighbors of anhedonia compared with depressed mood based on stratification by age. The GBA perspective revealed several symptom neighbors that could expand clinical assessment, diagnosing criteria, education, and interventions for adolescents at risk for, or with, anhedonia or depressed mood. Results speak to the unique impact of symptoms on health that are not interchangeable with other symptoms and do not have equal effects. Mental health nurses should consider a holistic and proactive precision health approach to improving health and well-being through evidence-based assessment of symptom associations. [Journal of Psychosocial Nursing and Mental Health Services, xx(xx), xx-xx.].
Collapse
|
26
|
Huang R, Lu Y, Jin M, Liu Y, Zhang M, Xian S, Chang Z, Wang L, Zhang W, Lu J, Tong X, Wang S, Zhu Y, Huang J, Jiang L, Gu M, Huang Z, Wu M, Ji S. A bibliometric analysis of the role of microbiota in trauma. Front Microbiol 2023; 14:1091060. [PMID: 36819034 PMCID: PMC9932281 DOI: 10.3389/fmicb.2023.1091060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Over the last several decades, the gut microbiota has been implicated in the formation and stabilization of health, as well as the development of disease. With basic and clinical experiments, scholars are gradually understanding the important role of gut microbiota in trauma, which may offer novel ideas of treatment for trauma patients. In this study, we purposed to summarize the current state and access future trends in gut microbiota and trauma research. Methods We retrieved relevant documents and their published information from the Web of Science Core Collection (WoSCC). Bibliometrix package was responsible for the visualized analysis. Results Totally, 625 documents were collected and the number of annual publications kept increasing, especially from 2016. China published the most documents while the USA had the highest local citations. The University of Colorado and Food & Function are respectively the top productive institution and journal, as PLOS One is the most local cited journal. With the maximum number of articles and local citations, Deitch EA is supported to be the most contributive author. Combining visualized analysis of keywords and documents and literature reading, we recognized two key topics: bacteria translocation in trauma and gut microbiota's effect on inflammation in injury, especially in nervous system injury. Discussion The impact of gut microbiota on molecular and pathological mechanism of inflammation is the focus now. In addition, the experiments of novel therapies based on gut microbiota's impact on trauma are being carried out. We hope that this study can offer a birds-eye view of this field and promote the gradual improvement of it.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuwei Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghao Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyi Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyuan Xian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, China
| | - Lei Wang
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Siqiao Wang
- Tongji University School of Medicine, Shanghai, China
| | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Minyi Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Zongqiang Huang ✉
| | - Minjuan Wu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China,Minjuan Wu ✉
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China,Shizhao Ji ✉
| |
Collapse
|
27
|
Lu J, Martin CR, Claud EC. Neurodevelopmental outcome of infants who develop necrotizing enterocolitis: The gut-brain axis. Semin Perinatol 2023; 47:151694. [PMID: 36572620 PMCID: PMC9974904 DOI: 10.1016/j.semperi.2022.151694] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Necrotizing enterocolitis (NEC) poses a significant risk for neurodevelopmental impairment in extremely preterm infants. The gut microbiota shapes the development of the gut, immune system, and the brain; and dysbiosis drive neonatal morbidities including NEC. In this chapter, we delineate a gut-brain axis linking gut microbiota to the adverse neurological outcomes in NEC patients. We propose that in NEC, immaturity of the microbiome along with aberrant gut microbiota-driven immaturity of the gut barrier and immune system can lead to effects including systemic inflammation and circulating microbial mediators. This nexus of gut microbiota-driven systemic effects further interacts with a likewise underdeveloped blood-brain barrier to regulate neuroinflammation and neurodevelopment. Targeting deviant gut-brain axis signaling presents an opportunity to improve the neurodevelopmental outcomes of NEC patients.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, Division of Biological Sciences, University of Chicago, Pritzker School of Medicine, Chicago, Illinois 60637, United States
| | - Camilia R Martin
- Department of Pediatrics, Division of Newborn Medicine, Weill Cornell Medicine, New York, New York 10021, United States
| | - Erika C Claud
- Department of Pediatrics, Division of Biological Sciences, University of Chicago, Pritzker School of Medicine, Chicago, Illinois 60637, United States.
| |
Collapse
|
28
|
Tian S, Zhang H, Chen S, Wu P, Chen M. Global research progress of visceral hypersensitivity and irritable bowel syndrome: bibliometrics and visualized analysis. Front Pharmacol 2023; 14:1175057. [PMID: 37201020 PMCID: PMC10185792 DOI: 10.3389/fphar.2023.1175057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Background: Irritable bowel syndrome (IBS) is a group of functional intestinal disorders characterized by abdominal pain, bloating, and changes in bowel habits, and/or stool characteristics. Recent studies have shown that there has been a significant advancement in the study of visceral hypersensitivity in IBS. Through the use of bibliometrics, this study aims to provide a comprehensive overview of the knowledge structure and research hotpots of visceral hypersensitivity in IBS. Methods: Publications related to visceral hypersensitivity in IBS from 2012 to 2022 were searched on the web of science core collection (WoSCC) database. CiteSpace.6.1. R2 and Vosviewer 1.6.17 were used to perform bibliometric analysis. Results: A total of 974 articles led by China and the United States from 52 countries were included. Over the past decade, the number of articles on visceral hypersensitivity and IBS has steadily increased year by year. China, the United States, and Belgium are the main countries in this field. Univ Oklahoma, Univ Gothenburg, and Zhejiang University are the main research institutions. Simren, Magnus, Greenwood-van meerveld, Beverley, and Tack, Jan are the most published authors in this research field. The research on the causes, genes, and pathways involved in visceral hypersensitivity in IBS and the mechanism of IBS are the main topics and hotspots in this field. This study also found that gut microbiota may be related to the occurrence of visceral hypersensitivity, and probiotics may be a new method for the treatment of visceral hypersensitivity and pain, which may become a new direction for research in this field. Conclusion: This is the first bibliometric study to comprehensively summarize the research trends and developments of visceral hypersensitivity in IBS. This information provides the research frontier and hot topics in this field in recent years, which will provide a reference for scholars studying this field.
Collapse
Affiliation(s)
- Siyu Tian
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Hang Zhang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Siqi Chen
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Pengning Wu
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Min Chen
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Min Chen,
| |
Collapse
|
29
|
Lu J, Fan X, Lu L, Yu Y, Markiewicz E, Little JC, Sidebottom AM, Claud EC. Limosilactobacillus reuteri normalizes blood-brain barrier dysfunction and neurodevelopment deficits associated with prenatal exposure to lipopolysaccharide. Gut Microbes 2023; 15:2178800. [PMID: 36799469 PMCID: PMC9980478 DOI: 10.1080/19490976.2023.2178800] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/12/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Maternal immune activation (MIA) derived from late gestational infection such as seen in chorioamnionitis poses a significantly increased risk for neurodevelopmental deficits in the offspring. Manipulating early microbiota through maternal probiotic supplementation has been shown to be an effective means to improve outcomes; however, the mechanisms remain unclear. In this study, we demonstrated that MIA modeled by exposing pregnant dams to lipopolysaccharide (LPS) induced an underdevelopment of the blood vessels, an increase in permeability and astrogliosis of the blood-brain barrier (BBB) at prewean age. The BBB developmental and functional deficits early in life impaired spatial learning later in life. Maternal Limosilactobacillus reuteri (L. reuteri) supplementation starting at birth rescued the BBB underdevelopment and dysfunction-associated cognitive function. Maternal L. reuteri-mediated alterations in β-diversity of the microbial community and metabolic responses in the offspring provide mechanisms and potential targets for promoting BBB integrity and long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, The University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Xiaobing Fan
- Magnetic Resonance Imaging and Spectroscopy Laboratory, The University of Chicago, Department of Radiology, Chicago, IL, USA
| | - Lei Lu
- Department of Pediatrics, The University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Yueyue Yu
- Department of Pediatrics, The University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Erica Markiewicz
- Magnetic Resonance Imaging and Spectroscopy Laboratory, The University of Chicago, Department of Radiology, Chicago, IL, USA
| | - Jessica C. Little
- Duchossois Family Institute, The University of Chicago, Host-Microbe Metabolomics Facility, Chicago, IL, USA
| | - Ashley M. Sidebottom
- Duchossois Family Institute, The University of Chicago, Host-Microbe Metabolomics Facility, Chicago, IL, USA
| | - Erika C. Claud
- Department of Pediatrics, The University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| |
Collapse
|
30
|
GÜNÜÇ S, ŞENDEMİR A. Cognitive, Emotional, Behavioral and Physiological Evaluation of the Relationship Between Brain and Gut Microbiota. PSIKIYATRIDE GUNCEL YAKLASIMLAR - CURRENT APPROACHES IN PSYCHIATRY 2022. [DOI: 10.18863/pgy.1034963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study is to examine the effect of gut microbiota on brain functions, mood and psychiatric disorders such as depression, anxiety and behavioral addictions, neurotransmitter levels, cognitive processes such as self-control, decision making and delayed gratification. In this context, the relevant literature was reviewed and the findings were evaluated. The relationships of the bidirectional communication between the brain-gut axis with cognitive, emotional, behavioral and physiological processes were explained with a diagram. As a result, although more research is needed on this subject, it has been observed that the brain-gut axis is bidirectionally established through neural, stress, endocrine and immune systems. In this bidirectional communication process, there are interactions in the context of cognitive, emotional, behavioral and other physiological factors. These factors both individually enter into bidirectional relationships with the brain and gut microbiota and are affected by the bidirectional communication between the brain and gut.
Collapse
|
31
|
Mahboobi S, Ghasvarian M, Ghaem H, Alipour H, Alipour S, Eftekhari MH. Effects of probiotic and magnesium co-supplementation on mood, cognition, intestinal barrier function and inflammation in individuals with obesity and depressed mood: A randomized, double-blind placebo-controlled clinical trial. Front Nutr 2022; 9:1018357. [PMID: 36245482 PMCID: PMC9555745 DOI: 10.3389/fnut.2022.1018357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Background The co-occurrence of obesity and mood impairments named as “metabolic mood syndrome” (MMS) is often neglected in the obesity management. This study aimed to evaluate effects of Probio-Tec ®BG-VCap-6.5 and magnesium co-supplementation on mood, cognition, intestinal barrier function and serum C reactive protein (CRP) levels in participants with obesity and depressed mood. Design Seventy-four eligible participants were randomly allocated to either Probio-Tec®BG-VCap-6.5 [containing Lactobacillus rhamnosus (LGG®) and Bifidobacterium animalis subsp. Lactis (BB-12®)] + Magnesium chloride or placebo for 9 weeks. Sociodemographic data were collected in the beginning. Anthropometric, dietary and physical activity (PA) assessments were carried out. Beck Depression Inventory-II (BDI-II) and Montreal Cognitive Assessment (MoCA) scores were assessed through validated questionnaires. Fasting plasma zonulin, lipopolysaccharide (LPS) and (CRP) were measured by ELIZA kits. Results Of seventy-four participants (mean age 37.51 ± 8.10), 52 completed the study. Changes in serum LPS and zonulin were not different significantly between groups (−3.04 ± 44.75 ng/dl, 0.11 ± 5.13, ng/dl, p > 0.05 for LPS and 1.40 ± 48.78 ng/dl, −0.17 ± 6.60, p > 0.05 for zonulin, respectively). CRP levels reduced significantly in intervention group compared to placebo [−474.75 (−1,300.00, −125.00) mg/l vs. 175.20 (−957.75, 1,683.25) mg/l, p = 0.016]. Changes in BDI-II and MoCA scores were not significantly different between intervention (−7.13 ± 5.67, 1.20 ± 2.16, respectively) and placebo (−5.42 ± 6.71, 1.94 ± 1.86, respectively) groups (p > 0.05). Conclusion Nine weeks of probiotic and magnesium co-supplementation resulted in decreased CRP levels as an indicator of inflammatory state with no significant effects on mood, cognition and intestinal integrity in individuals with obesity and depressed mood.
Collapse
Affiliation(s)
- Sepideh Mahboobi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Ghasvarian
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Ghaem
- Department of Epidemiology, Non-communicable Diseases Research Center, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamzeh Alipour
- Department of Vector Biology and Control of Diseases, Research Center for Health Sciences, Institute of Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shohreh Alipour
- Department of Pharmaceutics, Department of Pharmaceutical Quality Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hassan Eftekhari
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- *Correspondence: Mohammad Hassan Eftekhari
| |
Collapse
|
32
|
Guidetti C, Salvini E, Viri M, Deidda F, Amoruso A, Visciglia A, Drago L, Calgaro M, Vitulo N, Pane M, Caucino AC. Randomized Double-Blind Crossover Study for Evaluating a Probiotic Mixture on Gastrointestinal and Behavioral Symptoms of Autistic Children. J Clin Med 2022; 11:jcm11185263. [PMID: 36142909 PMCID: PMC9504504 DOI: 10.3390/jcm11185263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorders (ASDs) represent a diagnostic challenge with a still partially uncertain etiology, in which genetic and environmental factors have now been assessed. Among the hypotheses underlying the involvement of biological and environmental factors, the gut–brain axis is of particular interest in autism spectrum disorders. Several studies have highlighted the related incidence of particular gastrointestinal symptoms (GISs) in children suffering from ASDs. Probiotics have shown success in treating several gastrointestinal dysbiotic disorders; therefore, it is plausible to investigate whether they can alleviate behavioral symptoms as well. On these bases, a randomized double-blind crossover study with a placebo was conducted, evaluating the effects of a mixture of probiotics in a group of 61 subjects aged between 24 months and 16 years old with a diagnosis of ASD. Behavioral evaluation was performed through the administration of a questionnaire including a Parenting Stress Index (PSI) test and the Vineland Adaptive Behavior Scale (VABS). The Psycho-Educational Profile and the Autism Spectrum Rating Scale (ASRS) were also evaluated. Microbial composition analyses of fecal samples of the two groups was also performed. The study showed significant improvements in GISs, communication skills, maladaptive behaviors, and perceived parental stress level after the administration of probiotics. Microbiome alpha diversity was comparable between treatment arms and no significant differences were found, although beta diversity results were significantly different in the treatment group between T0 and T1 time points. Streptococcus thermophilus, Bifidobacterium longum, Limosilactobacillus fermentum, and Ligilactobacillus salivarius species were identified as some of the most discriminant taxa positively associated with T1 samples. This preliminary study corroborates the relationship between intestinal microbiota and ASD recently described in the literature.
Collapse
Affiliation(s)
- Cristina Guidetti
- Department of Child Neuropsychiatry, University Hospital Maggiore della Carità, 28100 Novara, Italy
| | - Elena Salvini
- Department of Child Neuropsychiatry, University Hospital Maggiore della Carità, 28100 Novara, Italy
| | - Maurizio Viri
- Department of Child Neuropsychiatry, University Hospital Maggiore della Carità, 28100 Novara, Italy
| | | | - Angela Amoruso
- Probiotical Research Srl, Via E. Mattei 3, 28100 Novara, Italy
| | | | - Lorenzo Drago
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Correspondence:
| | - Matteo Calgaro
- Department of Biotechnology, University of Verona, 37100 Verona, Italy
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, 37100 Verona, Italy
| | - Marco Pane
- Probiotical Research Srl, Via E. Mattei 3, 28100 Novara, Italy
| | - Anna Claudia Caucino
- Department of Child Neuropsychiatry, University Hospital Maggiore della Carità, 28100 Novara, Italy
| |
Collapse
|
33
|
Gupta L, Hoffman KW. Exploring the intersection of the microbiome and the developing brain: Impacts on schizophrenia risk. Schizophr Res 2022; 247:92-100. [PMID: 34483026 DOI: 10.1016/j.schres.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/21/2022]
Abstract
Recent findings show that the perinatal maternal and infant microbiomes have profound potential to impact long term health outcomes. Of particular interest are the ways in which the microbiome influences the developing brain during one of its most critical windows. Schizophrenia and psychosis risk are strongly connected to disruptions in perinatal neurodevelopment. In this review we present an overview of critical aspects in development of both the microbiome and brain, discuss their overlap, and consider what role the microbiome plays in schizophrenia risk during the perinatal window. Considering this, we discuss ways in which expecting and new mothers may reduce offspring schizophrenia risk.
Collapse
Affiliation(s)
- Lipi Gupta
- The University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, United States
| | - Kevin W Hoffman
- The University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, United States.
| |
Collapse
|
34
|
Bailey MJ, Holzhausen EA, Morgan ZEM, Naik N, Shaffer JP, Liang D, Chang HH, Sarnat J, Sun S, Berger PK, Schmidt KA, Lurmann F, Goran MI, Alderete TL. Postnatal exposure to ambient air pollutants is associated with the composition of the infant gut microbiota at 6-months of age. Gut Microbes 2022; 14:2105096. [PMID: 35968805 PMCID: PMC9466616 DOI: 10.1080/19490976.2022.2105096] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Epidemiological studies in adults have shown that exposure to ambient air pollution (AAP) is associated with the composition of the adult gut microbiome, but these relationships have not been examined in infancy. We aimed to determine if 6-month postnatal AAP exposure was associated with the infant gut microbiota at 6 months of age in a cohort of Latino mother-infant dyads from the Southern California Mother's Milk Study (n = 103). We estimated particulate matter (PM2.5 and PM10) and nitrogen dioxide (NO2) exposure from birth to 6-months based on residential address histories. We characterized the infant gut microbiota using 16S rRNA amplicon sequencing at 6-months of age. At 6-months, the gut microbiota was dominated by the phyla Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria. Our results show that, after adjusting for important confounders, postnatal AAP exposure was associated with the composition of the gut microbiota. As an example, PM10 exposure was positively associated with Dialister, Dorea, Acinetobacter, and Campylobacter while PM2.5 was positively associated with Actinomyces. Further, exposure to PM10 and PM2.5 was inversely associated with Alistipes and NO2 exposure was positively associated with Actinomyces, Enterococcus, Clostridium, and Eubacterium. Several of these taxa have previously been linked with systemic inflammation, including the genera Dialister and Dorea. This study provides the first evidence of significant associations between exposure to AAP and the composition of the infant gut microbiota, which may have important implications for future infant health and development.
Collapse
Affiliation(s)
- Maximilian J. Bailey
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | | | | | - Noopur Naik
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Justin P. Shaffer
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Donghai Liang
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Howard H. Chang
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jeremy Sarnat
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Paige K. Berger
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital of Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Kelsey A. Schmidt
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital of Los Angeles, University of Southern California, Los Angeles, CA, USA
| | | | - Michael I. Goran
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital of Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA,CONTACT Tanya L. Alderete Department of Integrative Physiology, University of Colorado, Boulder, CO80309, USA
| |
Collapse
|
35
|
Lazar V, Holban AM, Curutiu C, Ditu LM. Modulation of Gut Microbiota by Essential Oils and Inorganic Nanoparticles: Impact in Nutrition and Health. Front Nutr 2022; 9:920413. [PMID: 35873448 PMCID: PMC9305160 DOI: 10.3389/fnut.2022.920413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Microbiota plays a crucial role in human health and disease; therefore, the modulation of this complex and yet widely unexplored ecosystem is a biomedical priority. Numerous antibacterial alternatives have been developed in recent years, imposed by the huge problem of antibioresistance, but also by the people demand for natural therapeutical products without side effects, as dysbiosis, cyto/hepatotoxicity. Current studies are focusing mainly in the development of nanoparticles (NPs) functionalized with herbal and fruit essential oils (EOs) to fight resistant pathogens. This is due to their increased efficiency against susceptible, multidrug resistant and biofilm embedded microorganisms. They are also studied because of their versatile properties, size and possibility to ensure a targeted administration and a controlled release of bioactive substances. Accordingly, an increasing number of studies addressing the effects of functional nanoparticles and plant products on microbial pathogens has been observed. Regardless the beneficial role of EOs and NPs in the treatment of infectious diseases, concerns regarding their potential activity against human microbiota raised constantly in recent years. The main focus of current research is on gut microbiota (GM) due to well documented metabolic and immunological functions of gut microbes. Moreover, GM is constantly exposed to micro- and nano-particles, but also plant products (including EOs). Because of the great diversity of both microbiota and chemical antimicrobial alternatives (i.e., nanomaterials and EOs), here we limit our discussion on the interactions of gut microbiota, inorganic NPs and EOs. Impact of accidental exposure caused by ingestion of day care products, foods, atmospheric particles and drugs containing nanoparticles and/or fruit EOs on gut dysbiosis and associated diseases is also dissected in this paper. Current models developed to investigate mechanisms of dysbiosis after exposure to NPs/EOs and perspectives for identifying factors driving EOs functionalized NPs dysbiosis are reviewed.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Alina-Maria Holban
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Laboratory of Microbiology, Research Institute of the University of Bucharest, Bucharest, Romania
- *Correspondence: Alina-Maria Holban
| | - Carmen Curutiu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Lia Mara Ditu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Laboratory of Microbiology, Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
36
|
Bianchi VE, Rizzi L, Somaa F. The role of nutrition on Parkinson's disease: a systematic review. Nutr Neurosci 2022; 26:605-628. [PMID: 35730414 DOI: 10.1080/1028415x.2022.2073107] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Parkinson's disease (PD) in elderly patients is the second most prevalent neurodegenerative disease. The pathogenesis of PD is associated with dopaminergic neuron degeneration of the substantia nigra in the basal ganglia, causing classic motor symptoms. Oxidative stress, mitochondrial dysfunction, and neuroinflammation have been identified as possible pathways in laboratory investigations. Nutrition, a potentially versatile factor from all environmental factors affecting PD, has received intense research scrutiny. METHODS A systematic search was conducted in the MEDLINE, EMBASE, and WEB OF SCIENCE databases from 2000 until the present. Only randomized clinical trials (RCTs), observational case-control studies, and follow-up studies were included. RESULTS We retrieved fifty-two studies that met the inclusion criteria. Most selected studies investigated the effects of malnutrition and the Mediterranean diet (MeDiet) on PD incidence and progression. Other investigations contributed evidence on the critical role of microbiota, vitamins, polyphenols, dairy products, coffee, and alcohol intake. CONCLUSIONS There are still many concerns regarding the association between PD and nutrition, possibly due to underlying genetic and environmental factors. However, there is a body of evidence revealing that correcting malnutrition, gut microbiota, and following the MeDiet reduced the onset of PD and reduced clinical progression. Other factors, such as polyphenols, polyunsaturated fatty acids, and coffee intake, can have a potential protective effect. Conversely, milk and its accessory products can increase PD risk. Nutritional intervention is essential for neurologists to improve clinical outcomes and reduce the disease progression of PD.
Collapse
Affiliation(s)
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Fahad Somaa
- King Abdulaziz University, Department of occupational therapy. Jeddah, Makkah, Saudi Arabia
| |
Collapse
|
37
|
Tiwari SK. Bacteriocin-Producing Probiotic Lactic Acid Bacteria in Controlling Dysbiosis of the Gut Microbiota. Front Cell Infect Microbiol 2022; 12:851140. [PMID: 35651753 PMCID: PMC9149203 DOI: 10.3389/fcimb.2022.851140] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
Several strains of lactic acid bacteria are potent probiotics and can cure a variety of diseases using different modes of actions. These bacteria produce antimicrobial peptides, bacteriocins, which inhibit or kill generally closely related bacterial strains and other pathogenic bacteria such as Listeria, Clostridium, and Salmonella. Bacteriocins are cationic peptides that kill the target cells by pore formation and the dissipation of cytosolic contents, leading to cell death. Bacteriocins are also known to modulate native microbiota and host immunity, affecting several health-promoting functions of the host. In this review, we have discussed the ability of bacteriocin-producing probiotic lactic acid bacteria in the modulation of gut microbiota correcting dysbiosis and treatment/maintenance of a few important human disorders such as chronic infections, inflammatory bowel diseases, obesity, and cancer.
Collapse
|
38
|
Hatton-Jones KM, du Toit EF, Cox AJ. Effect of chronic restraint stress and western-diet feeding on colonic regulatory gene expression in mice. Neurogastroenterol Motil 2022; 34:e14300. [PMID: 34825433 DOI: 10.1111/nmo.14300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/07/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diet-induced obesity (DIO) and psychological stress are significant independent regulators of gastrointestinal physiology; however, our understanding of how these two disorders influence the host-microbe interface is still poorly characterized. The aim of this study was to assess the combined influences of diet-induced obesity and psychological stress on microbiome composition and colonic gene expression. METHODS C57BL/6J mice (n = 48) were subject to a combination of 22 weeks of Western diet (WD) feeding and a chronic restraint stressor (CRS) for the last 4 weeks of feeding. At the end of the combined intervention, microbiome composition was determined from cecal contents, and colonic tissue gene expression was assessed by multiplex analysis using NanoString nCounter System and real-time qPCR. RESULTS WD feeding induced a DIO phenotype with increased body weight, worsened metabolic markers, and alterations to microbiome composition. CRS reduced body weight in both dietary groups while having differential effects on glucose metabolism. CRS improved the Firmicutes/Bacteroidetes ratio in WD-fed animals while expanding the Proteobacteria phyla. Significantly lower expression of colonic Tlr4 (p = 0.008), Ocln (p = 0.004), and Cldn3 (p = 0.004) were noted in WD-fed animals compared to controls with no synergistic effects observed when combined with CRS. No changes to colonic expression of downstream inflammatory mediators were observed. Interestingly, higher levels of expression of Cldn2 (p = 0.04) and bile acid receptor Nr1h4 (p = 0.02) were seen in mice exposed to CRS. CONCLUSION Differential but not synergistic effects of WD and CRS were noted at the host-microbe interface suggesting multifactorial responses that require further investigation.
Collapse
Affiliation(s)
- Kyle M Hatton-Jones
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Eugene F du Toit
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Amanda J Cox
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
39
|
Farooq RK, Alamoudi W, Alhibshi A, Rehman S, Sharma AR, Abdulla FA. Varied Composition and Underlying Mechanisms of Gut Microbiome in Neuroinflammation. Microorganisms 2022; 10:705. [PMID: 35456757 PMCID: PMC9032006 DOI: 10.3390/microorganisms10040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The human gut microbiome has been implicated in a host of bodily functions and their regulation, including brain development and cognition. Neuroinflammation is a relatively newer piece of the puzzle and is implicated in the pathogenesis of many neurological disorders. The microbiome of the gut may alter the inflammatory signaling inside the brain through the secretion of short-chain fatty acids, controlling the availability of amino acid tryptophan and altering vagal activation. Studies in Korea and elsewhere highlight a strong link between microbiome dynamics and neurocognitive states, including personality. For these reasons, re-establishing microbial flora of the gut looks critical for keeping neuroinflammation from putting the whole system aflame through probiotics and allotransplantation of the fecal microbiome. However, the numerosity of the microbiome remains a challenge. For this purpose, it is suggested that wherever possible, a fecal microbial auto-transplant may prove more effective. This review summarizes the current knowledge about the role of the microbiome in neuroinflammation and the various mechanism involved in this process. As an example, we have also discussed the autism spectrum disorder and the implication of neuroinflammation and microbiome in its pathogenesis.
Collapse
Affiliation(s)
- Rai Khalid Farooq
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Widyan Alamoudi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Amani Alhibshi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Suriya Rehman
- Department of Epidemic Diseases Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Korea;
| | - Fuad A. Abdulla
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 2435, Dammam 31441, Saudi Arabia
| |
Collapse
|
40
|
Vellingiri B, Aishwarya SY, Benita Jancy S, Sriram Abhishek G, Winster Suresh Babu H, Vijayakumar P, Narayanasamy A, Mariappan S, Sangeetha R, Valsala Gopalakrishnan A, Parthasarathi R, Iyer M. An anxious relationship between Autism Spectrum Disorder and Gut Microbiota: A tangled chemistry? J Clin Neurosci 2022; 99:169-189. [PMID: 35286970 DOI: 10.1016/j.jocn.2022.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is a serious multifactorial neurodevelopmental disorder often accompanied by strained social communication, repetitive behaviour, immune dysregulation, and gastrointestinal (GI) issues. Recent studies have recorded a link between dysbiosis in the gut microbiota (gm) and the primary stages of ASD. A bidirectional connection (also called microbiota-gut-brain-axis) exchanges information between the gut bacteria and central nervous system. When the homeostasis of the microenvironment of the gut is dysregulated, it causes oxidative stress, affecting neuronal cells and neurotransmitters, thereby causing neurodevelopmental disorders. Studies have confirmed a difference in the constitution of gut bacteria among ASD cases and their controls. Numerous studies on animal models of ASD have shown altered gm and its association with abnormal metabolite profile and altered behaviour phenotype. This process happens due to an abnormal metabolite production in gm, leading to changes in the immune system, especially in ASD. Hence, this review aims to question the current knowledge on gm dysbiosis and its related GI discomforts and ASD behavioural symptoms and shed light on the possible therapeutic approaches available to deal with this situation. Thereby, though it is understood that more research might be needed to prove an association or causal relationship between gm and ASD, therapy with the microbiome may also be considered as an effective strategy to combat this issue.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| | - S Y Aishwarya
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - S Benita Jancy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - G Sriram Abhishek
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India; Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Padmavathi Vijayakumar
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sujitha Mariappan
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - R Sangeetha
- Department of Zoology and Wild Life Biology, Government Arts College, Udhagamandalam 643002, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, Centre for Innovation and Translational Research, Environmental Monitoring and Intervention Hub (DSIR-CRTDH), CSIR-Indian Institute of Toxicology Research, Lucknow 226001 Uttar Pradesh, India
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Tamil Nadu, India.
| |
Collapse
|
41
|
Lu J, Lu L, Yu Y, Oliphant K, Drobyshevsky A, Claud EC. Early preterm infant microbiome impacts adult learning. Sci Rep 2022; 12:3310. [PMID: 35228616 PMCID: PMC8885646 DOI: 10.1038/s41598-022-07245-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
Interventions to mitigate long-term neurodevelopmental deficits such as memory and learning impairment in preterm infants are warranted. Manipulation of the gut microbiome affects host behaviors. In this study we determined whether early maturation of the infant microbiome is associated with neurodevelopment outcomes. Germ free mice colonized at birth with human preterm infant microbiomes from infants of advancing post menstrual age (PMA) demonstrated an increase in bacterial diversity and a shift in dominance of taxa mimicking the human preterm microbiome development pattern. These characteristics along with changes in a number of metabolites as the microbiome matured influenced associative learning and memory but not locomotor ability, anxiety-like behaviors, or social interaction in adult mice. As a regulator of learning and memory, brain glial cell-derived neurotrophic factor increased with advancing PMA and was also associated with better performance in associative learning and memory in adult mice. We conclude that maturation of the microbiome in early life of preterm infants primes adult associative memory and learning ability. Our findings suggest a critical window of early intervention to affect maturation of the preterm infant microbiome and ultimately improve neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, Pritzker School of Medicine/Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Lei Lu
- Department of Pediatrics, Pritzker School of Medicine/Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Yueyue Yu
- Department of Pediatrics, Pritzker School of Medicine/Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Kaitlyn Oliphant
- Department of Pediatrics, Pritzker School of Medicine/Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, 60202, USA
| | - Erika C Claud
- Department of Pediatrics, Pritzker School of Medicine/Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
42
|
Hamed A, Pullinger G, Stevens M, Farveen F, Freestone P. Characterisation of the E. coli and Salmonella qseC and qseE mutants reveals a metabolic rather than adrenergic receptor role. FEMS Microbiol Lett 2022; 369:6524176. [PMID: 35137015 PMCID: PMC8897314 DOI: 10.1093/femsle/fnac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/31/2021] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
Catecholamine stress hormones (norepinephrine, epinephrine, and dopamine) are signals that have been shown to be used as environmental cues, which affect the growth and virulence of normal microbiota as well as pathogenic bacteria. It has been reported that Escherichia coli and Salmonella use the two-component system proteins QseC and QseE to recognise catecholamines and so act as bacterial adrenergic receptors. In this study, we mutated the E. coli O157:H7 and Salmonella enterica serovar Typhimurium genes encoding QseC and QseE and found that this did not block stress hormone responsiveness in either species. Motility, biofilm formation, and analysis of virulence of the mutants using two infection models were similar to the wild-type strains. The main differences in phenotypes of the qseC and qseE mutants were responses to changes in temperature and growth in different media particularly with respect to salt, carbon, and nitrogen salt sources. In this physiological respect, it was also found that the phenotypes of the qseC and qseE mutants differed between E. coli and Salmonella. These findings collectively suggest that QseC and QseE are not essential for E. coli and Salmonella to respond to stress hormones and that the proteins may be playing a role in regulating metabolism.
Collapse
Affiliation(s)
- Abdalla Hamed
- Department of Microbiology and Immunology, Faculty of Medicine, University of Zawia, Zawiya QP7X+536, Libya
| | - Gillian Pullinger
- Division of Microbiology, Institute for Animal Health, Compton, Newbury RG20 7NN, United Kingdom
| | - Mark Stevens
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Fathima Farveen
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Primrose Freestone
- Corresponding author: Department of Respiratory Sciences, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom. Tel: +44 (0)116 2525656; Fax: +44 (0)116 2525030; E-mail:
| |
Collapse
|
43
|
Relationship Among Blastocystis, the Firmicutes/Bacteroidetes Ratio and Chronic Stress in Mexican University Students. Curr Microbiol 2022; 79:72. [PMID: 35067729 PMCID: PMC8784498 DOI: 10.1007/s00284-021-02756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
The role played by Blastocystis in humans has been a subject of discussion due to its intestinal effects and modifications in the intestinal microbiota. We aimed to analyze the relationship between Blastocystis subtypes ST1-4 and 7, the Firmicutes to Bacteroidetes ratio (F/B ratio) of fecal microbiota, and chronic stress in university students. This study had a cross-sectional design with a sample of 202 students. We analyzed fecal and hair samples, and stress inventories were applied to the students. The results showed a frequency of Blastocystis-colonized students of 52.97%. Regarding fecal microbiota, a median RAU of 0.801 for Firmicutes and 0.82 of Bacteroidetes were obtained, with an F/B ratio of 0.83. A low F/B ratio (66.04%) was more frequent in Blastocystis-colonized students, whereas a high F/B ratio (68.09%) (p = < 0.0001) was found in the Blastocystis-non-colonized. Only Blastocystis ST3 did not significantly correlate with a low F/B ratio (p = 0.290). The ST4 was associated with lower values of cortisol (p = 0.030), psychological stress (p = 0.040), and lower frequency of constipation (p = 0.010). Only two students with the ST1 had abdominal pain (p = 0.007). Our results suggest that colonization by Blastocystis subtypes can modify the intestinal microbiota due to a decreased ratio between the two most representative phyla (F/B). Also, the results of this study show that ST4 colonization is related to a lower level of chronic stress.
Collapse
|
44
|
Shah F, Dwivedi M. Pathophysiological Role of Gut Microbiota Affecting Gut–Brain Axis and Intervention of Probiotics and Prebiotics in Autism Spectrum Disorder. PROBIOTIC RESEARCH IN THERAPEUTICS 2022:69-115. [DOI: 10.1007/978-981-16-6760-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
45
|
Ford SH, Hodges EA, Thoyre S, Baker M, Bartlett TR. Model Integration: Can Understanding Biopsychosocial Gut-Brain Axis Mechanistic Pathways Improve our Clinical Reasoning in Primary Care? J Nurse Pract 2021; 17:1208-1213. [PMID: 34899098 DOI: 10.1016/j.nurpra.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Introduction Most NPs practice in primary care settings. Cognitive tools to inform and advance NP understanding of biopsychosocial mechanisms can support early recognition, interdisciplinary collaboration, interventions, and prevention of negative outcomes. Theory and Methods We describe the development of a model to support NP consideration of gut-brain axis (GBA) evidence-based pathways, contributing variables, and related health outcomes. Results The model's outcomes are factors associated with homeostasis or disruption of biological, psychological, and social systems. Discussion/conclusion This cognitive tool aims to support NP awareness of multi-domain GBA relationships to consider with differential diagnoses and clinical treatment of the "whole body system".
Collapse
Affiliation(s)
- Shannon H Ford
- UNCG School of Nursing, 237 McIver Street, Greensboro, NC 27402
| | - Eric A Hodges
- UNC School of Nursing, Carrington Hall CB#7460, Chapel Hill 27516
| | - Suzanne Thoyre
- UNC School of Nursing, Carrington Hall CB#7460, Chapel Hill 27516
| | - Maureen Baker
- UNC School of Nursing, Carrington Hall CB#7460, Chapel Hill 27516
| | - T Robin Bartlett
- The University of Alabama Capstone College of Nursing, Box 870358, Tuscaloosa, Alabama 35487
| |
Collapse
|
46
|
Edem EE, Ihaza BE, Fafure AA, Ishola AO, Nebo KE, Enye LA, Akinluyi ET. Virgin coconut oil abrogates depression-associated cognitive deficits by modulating hippocampal antioxidant balance, GABAergic and glutamatergic receptors in mice. Drug Metab Pers Ther 2021; 37:177-190. [PMID: 34881837 DOI: 10.1515/dmpt-2021-0126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES GABA and glutamate neurotransmission play critical roles in both the neurobiology of depression and cognition; and Virgin coconut oil (VCO) is reported to support brain health. The present study investigated the effect of VCO on depression-associated cognitive deficits in mice. METHODS Thirty male mice divided into five groups were either exposed to chronic unpredicted mild stress (CUMS) protocol for 28 days or pre-treated with 3 mL/kg b. wt. of VCO for 21 days or post-treated with 3 mL/kg b. wt. of VCO for 21 days following 28 days of CUMS exposure. Mice were subjected to behavioural assessments for depressive-like behaviours and short-term memory, and thereafter euthanised. Hippocampal tissue was dissected from the harvested whole brain for biochemical and immunohistochemical evaluations. RESULTS Our results showed that CUMS exposure produced depressive-like behaviours, cognitive deficits and altered hippocampal redox balance. However, treatment with VCO abrogated depression-associated cognitive impairment, and enhanced hippocampal antioxidant concentration. Furthermore, immunohistochemical evaluation revealed significant improvement in GABAA and mGluR1a immunoreactivity following treatment with VCO in the depressed mice. CONCLUSIONS Therefore, findings from this study support the dietary application of VCO to enhance neural resilience in patients with depression and related disorders.
Collapse
Affiliation(s)
- Edem Ekpenyong Edem
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Blessing Eghosa Ihaza
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Adedamola Adediran Fafure
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Azeez Olakunle Ishola
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Kate Eberechukwu Nebo
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Linus Anderson Enye
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Elizabeth Toyin Akinluyi
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
47
|
Miranda-Ribera A, Serena G, Liu J, Fasano A, Kingsbury MA, Fiorentino MR. The Zonulin-transgenic mouse displays behavioral alterations ameliorated via depletion of the gut microbiota. Tissue Barriers 2021; 10:2000299. [PMID: 34775911 DOI: 10.1080/21688370.2021.2000299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The gut-brain axis hypothesis suggests that interactions in the intestinal milieu are critically involved in regulating brain function. Several studies point to a gut-microbiota-brain connection linking an impaired intestinal barrier and altered gut microbiota composition to neurological disorders involving neuroinflammation. Increased gut permeability allows luminal antigens to cross the gut epithelium, and via the blood stream and an impaired blood-brain barrier (BBB) enters the brain impacting its function. Pre-haptoglobin 2 (pHP2), the precursor protein to mature HP2, is the first characterized member of the zonulin family of structurally related proteins. pHP 2 has been identified in humans as the thus far only endogenous regulator of epithelial and endothelial tight junctions (TJs). We have leveraged the Zonulin-transgenic mouse (Ztm) that expresses a murine pHP2 (zonulin) to determine the role of increased gut permeability and its synergy with a dysbiotic intestinal microbiota on brain function and behavior. Here we show that Ztm mice display sex-dependent behavioral abnormalities accompanied by altered gene expression of BBB TJs and increased expression of brain inflammatory genes. Antibiotic depletion of the gut microbiota in Ztm mice downregulated brain inflammatory markers ameliorating some anxiety-like behavior. Overall, we show that zonulin-dependent alterations in gut permeability and dysbiosis of the gut microbiota are associated with an altered BBB integrity, neuroinflammation, and behavioral changes that are partially ameliorated by microbiota depletion. Our results suggest the Ztm model as a tool for the study of the cross-talk between the microbiome/gut and the brain in the context of neurobehavioral/neuroinflammatory disorders.
Collapse
Affiliation(s)
- Alba Miranda-Ribera
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Gloria Serena
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jundi Liu
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Alessio Fasano
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Marcy A Kingsbury
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA.,Lurie Center for Autism, Boston, MA, USA
| | - Maria R Fiorentino
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
48
|
Allison J, Kaliszewska A, Uceda S, Reiriz M, Arias N. Targeting DNA Methylation in the Adult Brain through Diet. Nutrients 2021; 13:nu13113979. [PMID: 34836233 PMCID: PMC8618930 DOI: 10.3390/nu13113979] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolism and nutrition have a significant role in epigenetic modifications such as DNA methylation, which can influence gene expression. Recently, it has been suggested that bioactive nutrients and gut microbiota can alter DNA methylation in the central nervous system (CNS) through the gut-brain axis, playing a crucial role in modulating CNS functions and, finally, behavior. Here, we will focus on the effect of metabolic signals in shaping brain DNA methylation during adulthood. We will provide an overview of potential interactions among diet, gastrointestinal microbiome and epigenetic alterations on brain methylation and behavior. In addition, the impact of different diet challenges on cytosine methylation dynamics in the adult brain will be discussed. Finally, we will explore new ways to modulate DNA hydroxymethylation, which is particularly abundant in neural tissue, through diet.
Collapse
Affiliation(s)
- Joseph Allison
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (J.A.); (A.K.)
| | - Aleksandra Kaliszewska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Denmark Hill, London SE5 8AF, UK; (J.A.); (A.K.)
| | - Sara Uceda
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain; (S.U.); (M.R.)
| | - Manuel Reiriz
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain; (S.U.); (M.R.)
| | - Natalia Arias
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain; (S.U.); (M.R.)
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), 33003 Oviedo, Spain
- Health Research Institute of the Principality of Asturias—ISPA, 33011 Oviedo, Spain
- Correspondence: ; Tel.: +34-91-452-1101
| |
Collapse
|
49
|
Yang X, Zhou R, Di W, He Q, Huo Q. Clinical therapeutic effects of probiotics in patients with constipation associated with Parkinson disease: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27705. [PMID: 34871259 PMCID: PMC8568397 DOI: 10.1097/md.0000000000027705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Constipation is the most predominant symptom of Parkinson disease (PD), preceding the occurrence of motor symptoms in some patients, leading to reduced quality of life (QOL). The general approaches for the treatment have some side effects, but probiotics are live or attenuated microorganisms attributed to ameliorating constipation effects. Moreover, as treatments are generally well tolerated and side effects are scarce, there is room for further research. Therefore this work aims at investigating the clinical effectiveness and safety of probiotics for constipation in PD. METHODS Published RCTs will be retrieved by searching Medline, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI), VIP, Wan Fang database, and China Biology Medicine Database (complete bowel movement), which will be searched from establishment of the database to October 10, 2021. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) guidelines are used to design this protocol. RevMan V.5.3 software will be used for meta-analysis, risk of bias will be assessed by the Cochrane Collaboration tool and the collected evidence will be narratively synthesized. We will also perform a meta-analysis to pool estimates from studies considered to be homogenous. Subgroup analyses will be based on intervention or overall bias. CONCLUSION The meta-analysis will assess the effectiveness and safety of using probiotics to treat and heal the constipation of PD. ETHICS AND DISSEMINATION Ethics approval is unrequired. REGISTRATION NUMBER CRD42021276215.
Collapse
|
50
|
Exploration of Relationships among Clinical Gastrointestinal Indicators and Social and Sensory Symptom Severity in Children with Autism Spectrum Disorder. Pediatr Rep 2021; 13:594-604. [PMID: 34842807 PMCID: PMC8628911 DOI: 10.3390/pediatric13040071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Autism Spectrum Disorders (ASD) are associated with co-morbidities such as gastrointestinal (GI) symptomatology, which in the absence of known causes are potential indicators of gut microbiota that may influence behavior. This study's purpose was to explore relationships among clinical GI indicators-diet, abdominal pain, and stool status-and ASD symptom severity, specifically social and sensory symptoms. Participants were 33 children with ASD, 3 to 16 years. The Social Responsiveness Scale (SRS-2) and the Child Sensory Profile Scale (CSP-2) were used to appraise social and sensory symptomatology. Significant difference was found in overall SRS-2, t(31) = -3.220, p = 0.003 when compared by abdominal pain status using independent samples t-tests. Significant difference was observed for overall CSP-2, t(31) = -2.441, p = 0.021, when grouped by stool. The three clinical GI variables predicted overall SRS-2 score using multiple linear regression, F(3, 32) = 3.257, p = 0.036; coefficient for abdominal pain significantly contributed to the outcome. Findings contribute to the growing literature signaling the need to understand occurrence of GI symptomatology more deeply, and in consideration of diet status and its implications in the children's everyday lives, behaviors, and symptom severity.
Collapse
|