1
|
Patrone LGA, Karlen-Amarante M, Gargaglioni LH, Zoccal DB. Prenatal cannabinoid exposure affects central cardiorespiratory control in young male and female rats. J Appl Physiol (1985) 2025; 138:1201-1216. [PMID: 40235298 DOI: 10.1152/japplphysiol.00044.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/10/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025] Open
Abstract
Cannabis use among pregnant women is rising globally, mainly for recreational and medical reasons to relieve symptoms like nausea, vomiting, anxiety, and insomnia. This trend is reinforced by the misconception that its natural origin guarantees safety, along with government policies promoting legalization. However, exposure to cannabinoids in utero can impact normal offspring's neurodevelopment and induce malfunctioning of various physiological systems, including the cardiorespiratory function. The present study investigated whether prenatal cannabinoid exposure disrupts the generation and control of autonomic and respiratory activities in early adulthood. Using in situ preparations of juvenile male and female rats (27-28 days old) exposed to a synthetic cannabinoid (WIN 55,212-2; 0.5 mg/kg/day, n = 4-9) or vehicle (n = 3-10) during gestation, we analyzed the activity of nerves innervating respiratory muscles and blood vessels. We noticed that females receiving WIN prenatally exhibited a reduced excitatory drive (postinspiratory activity, post-I) to laryngeal muscles under resting conditions, suggesting impaired control of upper airway patency. Moreover, males and females exposed to WIN displayed reduced post-I and abdominal expiratory motor activities during stimulation of carotid body chemoreceptors (mimicking low-oxygen situations) or exposure to high carbon dioxide levels, indicating an inability to mount appropriate reflex respiratory motor responses during blood gas disturbances. In addition, WIN-treated males showed attenuated sympathoexcitatory responses to carotid body activation or hypercapnia, evidencing a limited capacity to promote sympathetic-mediated hemodynamic changes. Thus, manipulating the fetal endocannabinoid system impacts the development of networks controlling respiratory and autonomic functions, leading to negative, long-term consequences for ventilation and cardiovascular function.NEW & NOTEWORTHY Cannabis use among pregnant women is rising globally; however, the impact on offspring's homeostatic physiological systems is still uncertain. We found that prenatal cannabinoid exposure impairs respiratory motor control in early adulthood. We also identified that sympathetic control is limited in juvenile males exposed to cannabinoids prenatally. Cannabinoids during pregnancy disrupt offspring's central cardiorespiratory control, highlighting the need for caution regarding cannabis use during pregnancy and its postnatal implications.
Collapse
Affiliation(s)
- Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, São Paulo State University (UNESP/FCAV), Jaboticabal, Brazil
| | - Marlusa Karlen-Amarante
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, São Paulo State University (UNESP/FCAV), Jaboticabal, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP/FOAR), Araraquara, Brazil
| |
Collapse
|
2
|
Takahashi Y, Fee EL, Takahashi T, Usuda H, Ikeda H, Carter SW, Saito Y, Sato S, Mochii N, Chemtob S, Olson DM, Keelan JA, Kumagai Y, Choolani MA, Illanes SE, Saito M, Kemp MW. Interleukin-1 Receptor Antagonists Partially Inhibited Histological Injury but Not Tissue Inflammation in a Sheep Model of Pregnancy. Reprod Sci 2025; 32:1213-1227. [PMID: 39953369 DOI: 10.1007/s43032-024-01781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/27/2024] [Indexed: 02/17/2025]
Abstract
Intrauterine inflammation is a significant cause of early preterm birth and fetal injury. There is a lack of effective interventions for intrauterine inflammation. This study aimed to determine whether direct fetal treatment with IL-1 receptor antagonists (IL-1RA), specifically anakinra (competitive IL-1RA) or rytvela (allosteric IL-1RA), could reduce intrauterine inflammation caused by intraamniotic injection of E. coli lipopolysaccharides (LPS) in a sheep model of pregnancy. We hypothesized the fetal intramuscular administration of IL1-RA therapy would comprehensively resolve intrauterine inflammation caused by LPS in the pregnant sheep model. Date-mated Merino ewes carrying single fetuses were randomized into four groups: LPS Group (10 mg intraamniotic LPS injection followed by saline), RYTVELA Group (10 mg LPS injection followed by 5 mg rytvela), ANAKINRA Group (LPS injection followed by 100 mg anakinra), and SALINE Group (saline injection followed by saline). All LPS-exposed fetuses had elevated bilirubin levels, leukopenia, and increased inflammatory mediators IL-1β, IL-8, tumour necrosis factor alpha (TNFα), and monocyte chemoattractant protein 1 (MCP-1) in amniotic fluid and lung tissue. Both anakinra and rytvela treatments reduced immunocyte infiltration in chorioamniotic membranes and lungs, and microglial staining, and increased the oligodendrocyte staining, but did not significantly resolve overall inflammation compared to the SALINE Group. In conclusion, fetal intramuscular administration of anakinra and rytvela did not effectively resolve intrauterine inflammation but showed potential in reducing tissue invasion and brain injury markers. These findings suggest that modest inflammation reduction may protect against brain injury and preterm birth, though no additional benefit was observed compared to intraamniotic IL-1RA treatment.
Collapse
Affiliation(s)
- Yuki Takahashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan.
- Department of Obstetrics, Tohoku University, 1-1 Seiryomachi Aobaku, Sendai, Miyagi, Japan.
| | - Erin L Fee
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Tsukasa Takahashi
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Haruo Usuda
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Hideyuki Ikeda
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Sean W Carter
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuya Saito
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Shinichi Sato
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Noriyoshi Mochii
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Sylvain Chemtob
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Canada
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics, and Physiology, University of Alberta, Alberta, Canada
| | - Jeffrey A Keelan
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia
| | - Yusaku Kumagai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics, Tohoku University, 1-1 Seiryomachi Aobaku, Sendai, Miyagi, Japan
| | - Mahesh A Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sebastian E Illanes
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynaecology, University of the Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Masatoshi Saito
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Obstetrics, Tohoku University, 1-1 Seiryomachi Aobaku, Sendai, Miyagi, Japan
| | - Matthew W Kemp
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, Western Australia, Australia
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
- Women and Infants Research Foundation, Level 2, Carson House, King Edward Memorial Hospital, Perth, Australia
| |
Collapse
|
3
|
Gambadauro A, Galletta F, Andrenacci B, Foti Randazzese S, Patria MF, Manti S. Impact of E-Cigarettes on Fetal and Neonatal Lung Development: The Influence of Oxidative Stress and Inflammation. Antioxidants (Basel) 2025; 14:262. [PMID: 40227218 PMCID: PMC11939789 DOI: 10.3390/antiox14030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 04/15/2025] Open
Abstract
Electronic cigarettes (e-cigs) recently increased their popularity as "safer" alternatives to traditional tobacco smoking, including among pregnant women. However, the effect of e-cig exposure on fetal and neonatal developing lungs remains poorly investigated. In this review, we analysed the impact of e-cig aerosol components (e.g., nicotine, solvents, and flavouring agents) on respiratory system development. We particularly emphasized the role of e-cig-related oxidative stress and inflammation on lung impairment. Nicotine contained in e-cigs can impair lung development at anatomical and molecular levels. Solvents and flavours induce inflammation and oxidative stress and contribute to compromising neonatal lung function. Studies suggest that prenatal e-cig aerosol exposure may increase the risk of future development of respiratory diseases in offspring, such as asthma and chronic obstructive pulmonary disease (COPD). Preventive strategies, such as smoking cessation programs and antioxidant supplementation, may be essential for safeguarding respiratory health. There is an urgent need to explore the safety profile and potential risks of e-cigs, especially considering the limited studies in humans. This review highlights the necessity of regulating e-cig use during pregnancy and promoting awareness of its potential consequences on fetal and neonatal development.
Collapse
Affiliation(s)
- Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy; (F.G.); (S.M.)
| | - Francesca Galletta
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy; (F.G.); (S.M.)
| | - Beatrice Andrenacci
- S.C. Pneumoinfettivologia Pediatrica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.A.); (M.F.P.)
| | - Simone Foti Randazzese
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy; (F.G.); (S.M.)
| | - Maria Francesca Patria
- S.C. Pneumoinfettivologia Pediatrica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.A.); (M.F.P.)
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy; (F.G.); (S.M.)
| |
Collapse
|
4
|
Valverde-Pérez E, Olea E, Rocher A, Aaronson PI, Prieto-Lloret J. Effects of gestational intermittent hypoxia on the respiratory system: A tale of the placenta, fetus, and developing offspring. J Sleep Res 2024:e14435. [PMID: 39675784 DOI: 10.1111/jsr.14435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/12/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024]
Abstract
Obstructive sleep apnea (OSA) is a common sleep disorder that is associated with a wide variety of health conditions, including cardiovascular, cerebrovascular, metabolic, neoplastic, and neurocognitive manifestations. OSA, as a chronic condition, is mainly characterised by repeated upper airway obstructions during sleep that cause episodes of intermittent hypoxia (IH), resulting in tissue hypoxia-reoxygenation cycles. Decreased arterial oxygen pressure (PaO2) and haemoglobin saturation (SatO2) stimulate reflex responses to overcome the obstruction. The prevalence of OSA is significant worldwide, and an underrated problem when focussing on women during pregnancy. The physiological changes associated with pregnancy, especially during its latest stages, are related to a higher prevalence of OSA events in pregnant mothers, and associated with an increased risk of hypertension, pre-eclampsia and diabetes, among other deleterious consequences. Furthermore, OSA during pregnancy can interfere with normal fetal development and is associated with growth retardation, preterm birth, or low birth weight. Carotid body overstimulation and hypoxia-reoxygenation episodes contribute to cardiovascular disease and oxidative stress, which can harm both mother and fetus and have long-lasting effects that can reach into adulthood. Because IH is the hallmark of OSA, this review examines the literature available about the impact of gestational intermittent hypoxia (GIH) on the respiratory system at maternal, fetal, and offspring levels. Offering the latest scientific data about OSA during pregnancy, we may help to tackle this condition with lifestyle changes and therapeutic approaches, that could influence the mothers, but also impact adult health problems, mostly unknown, inherited from these hypoxic episodes in the uterus.
Collapse
Affiliation(s)
- Esther Valverde-Pérez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM). Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Elena Olea
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM). Universidad de Valladolid-CSIC, Valladolid, Spain
- Departamento de Enfermería, Facultad de Enfermería, Universidad de Valladolid, Valladolid, Spain
| | - Asunción Rocher
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM). Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Philip I Aaronson
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jesús Prieto-Lloret
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM). Universidad de Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
5
|
Kaufmann M, Mense L, Springer L, Dekker J. Tactile stimulation in the delivery room: past, present, future. A systematic review. Pediatr Res 2024; 96:616-624. [PMID: 35124690 PMCID: PMC11499275 DOI: 10.1038/s41390-022-01945-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 11/08/2022]
Abstract
In current resuscitation guidelines, tactile stimulation is recommended for infants with insufficient respiratory efforts after birth. No recommendations are made regarding duration, onset, and method of stimulation. Neither is mentioned how tactile stimulation should be applied in relation to the gestational age. The aim was to review the physiological mechanisms of respiratory drive after birth and to identify and structure the current evidence on tactile stimulation during neonatal resuscitation. A systematic review of available data was performed using PubMed, covering the literature up to April 2021. Two independent investigators screened the extracted references and assessed their methodological quality. Six studies were included. Tactile stimulation management, including the onset of stimulation, overall duration, and methods as well as the effect on vital parameters was analyzed and systematically presented. Tactile stimulation varies widely between, as well as within different centers and no consensus exists which stimulation method is most effective. Some evidence shows that repetitive stimulation within the first minutes of resuscitation improves oxygenation. Further studies are warranted to optimize strategies to support spontaneous breathing after birth, assessing the effect of stimulating various body parts respectively within different gestational age groups.
Collapse
Affiliation(s)
- M Kaufmann
- Division of Neonatology and Paediatric Intensive Care Medicine, Department of Paediatrics, Medical Faculty, TU Dresden, Dresden, Germany.
| | - L Mense
- Division of Neonatology and Paediatric Intensive Care Medicine, Department of Paediatrics, Medical Faculty, TU Dresden, Dresden, Germany
- Saxony Center for Feto-Neonatal Health, Medical Faculty, TU Dresden, Dresden, Germany
| | - L Springer
- Division of Neonatology, Department of Paediatrics, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - J Dekker
- Division of Neonatology, Department of Paediatrics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Craighero L. An embodied approach to fetal and newborn perceptual and sensorimotor development. Brain Cogn 2024; 179:106184. [PMID: 38843762 DOI: 10.1016/j.bandc.2024.106184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/17/2024]
Abstract
The embodied approach argues that interaction with the environment plays a crucial role in brain development and that the presence of sensory effects generated by movements is fundamental. The movement of the fetus is initially random. Then, the repeated execution of the movement creates a link between it and its sensory effects, allowing the selection of movements that produce expected sensations. During fetal life, the brain develops from a transitory fetal circuit to the permanent cortical circuit, which completes development after birth. Accordingly, this process must concern the interaction of the fetus with the intrauterine environment and of the newborn with the new aerial environment, which provides a new sensory stimulation, light. The goal of the present review is to provide suggestions for neuroscientific research capable of shedding light on brain development process by describing from a functional point of view the relationship between the motor and sensory abilities of fetuses and newborns and the increasing complexity of their interaction with objects in the womb and outside of it.
Collapse
Affiliation(s)
- Laila Craighero
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 19, 44121 Ferrara, Italy.
| |
Collapse
|
7
|
Islam A, Ronco A, Becker SM, Blackburn J, Schittny JC, Kim K, Stein-Wexler R, Wexler AS. Can lung airway geometry be used to predict autism? A preliminary machine learning-based study. Anat Rec (Hoboken) 2024; 307:457-469. [PMID: 37771211 DOI: 10.1002/ar.25332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
The goal of this study is to assess the feasibility of airway geometry as a biomarker for autism spectrum disorder (ASD). Chest computed tomography images of children with a documented diagnosis of ASD as well as healthy controls were identified retrospectively. Fifty-four scans were obtained for analysis, including 31 ASD cases and 23 controls. A feature selection and classification procedure using principal component analysis and support vector machine achieved a peak cross validation accuracy of nearly 89% using a feature set of eight airway branching angles. Sensitivity was 94%, but specificity was only 78%. The results suggest a measurable difference in airway branching angles between children with ASD and the control population.
Collapse
Affiliation(s)
- Asef Islam
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Anthony Ronco
- Department of Radiology, University of California, Davis, California, USA
| | - Stephen M Becker
- Department of Mechanical and Aerospace Engineering, University of California, Davis, California, USA
| | - Jeremiah Blackburn
- Department of Mechanical and Aerospace Engineering, University of California, Davis, California, USA
| | - Johannes C Schittny
- Institute of Anatomy, University of Bern, Bern, Switzerland
- Center for Health and the Environment, University of California, Davis, California, USA
| | - Kyoungmi Kim
- Department of Public Health Science, University of California, Davis, California, USA
| | | | - Anthony S Wexler
- Department of Mechanical and Aerospace Engineering, University of California, Davis, California, USA
- Department of Civil and Environmental Engineering, University of California, Davis, California, USA
- Department of Land, Air and Water Resources, University of California, Davis, California, USA
- Air Quality Research Center, University of California, Davis, California, USA
| |
Collapse
|
8
|
Heesters V, Dekker J, Panneflek TJ, Kuypers KL, Hooper SB, Visser R, Te Pas AB. The vocal cords are predominantly closed in preterm infants <30 weeks gestation during transition after birth; an observational study. Resuscitation 2024; 194:110053. [PMID: 37979668 DOI: 10.1016/j.resuscitation.2023.110053] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
AIM Studies in animals have shown that vocal cords (VCs) close during apnoea before and after birth, thereby impairing the effect of non-invasive ventilation. We tested the feasibility of visualising VCs using ultrasonography (US) and investigated the position and movement of the VCs during non-invasive respiratory support of preterm infants at birth. METHODS In an observational study, VCs were visualised using US in infants <30 weeks gestation during both stabilisation after birth and at one hour after birth. Respiratory efforts were simultaneously recorded. The percentage of time the VCs were closed in the first ten minutes was determined from videoframes acquired at 15 Hz and compared with respiratory flow patterns measured using a respiratory function monitor. RESULTS US of the VCs could be performed in 20/20 infants included (median (IQR) gestational age 27+6 (27+1-28+6) weeks) without interfering with stabilisation, of whom 60% (12/20) were initially breathing and 40% (8/20) were apnoeic at birth. In breathing infants, the VCs closed between breaths and during breath holds, which accounted for 57% (49-66) of the time. In apnoeic infants receiving positive pressure ventilation, the VCs were closed for 93% (81-99) of the time. US at one hour after birth could be performed in 14/20 infants, VCs were closed between breaths and during breath holds, accounting for 46% (27-52) of the time. CONCLUSION Visualising VCs in preterm infants at birth using US is feasible. The VCs were closed during apnoea, in between breaths and during breath holds, impairing the effect of ventilation given.
Collapse
Affiliation(s)
- Veerle Heesters
- Willem-Alexander Children's Hospital, Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, the Netherlands.
| | - Janneke Dekker
- Willem-Alexander Children's Hospital, Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, the Netherlands
| | - Timothy Jr Panneflek
- Willem-Alexander Children's Hospital, Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, the Netherlands
| | - Kristel Lam Kuypers
- Willem-Alexander Children's Hospital, Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, the Netherlands
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia; Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC, Australia
| | - Remco Visser
- Willem-Alexander Children's Hospital, Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, the Netherlands
| | - Arjan B Te Pas
- Willem-Alexander Children's Hospital, Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, the Netherlands
| |
Collapse
|
9
|
Expression Patterns of Serotonin Receptors 5-HT1A, 5-HT2A, and 5-HT3A during Human Fetal Lung Development. Int J Mol Sci 2023; 24:ijms24032965. [PMID: 36769290 PMCID: PMC9918152 DOI: 10.3390/ijms24032965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
We analyzed the expression of the serotonin receptors 5-HT1A, 5-HT2A, and 5-HT3A at four different stages of fetal lung development from 12 to 40 weeks of gestation, divided into four groups: the pseudoglandular stage (12-16th week of development; n = 8), the canalicular stage (16th-26th week of development; n = 7), the saccular stage (26th-36th week of development; n = 5), and the alveolar stage (36th-40th week of development; n = 5). The strongest expression of all three receptor types was found in the epithelium of the proximal airways during the pseudoglandular, canalicular, and saccular stages and in a vascular wall. 5-HT1A was also strongly expressed in the smooth muscle cells of the proximal airway. Vascular smooth muscle cells and endothelium occasionally showed a strong expression of 5-HT1A and 5-HT2A. In the alveolar stage, the expression of 5-HT1A, 5-HT2A, and 5-HT3A was detected in both type I (p1) and type II (p2) pneumocytes, with a stronger expression in p2. A significant decrease in percent the 5-HT2A area and in the integrated density was observed at the alveolar stage. On the other hand, a significant decrease in the percentage area but an increase in the integrated density was observed for 5-HT3A toward the alveolar stage, suggesting that a smaller number of cells expressed 5-HT3A but that they (p1 and p2) significantly increased their 5-HT3A expression at the alveolar stage. The results presented provided us with new data on the development and function of the serotonin system in the human fetal lung and gave us insight into their possible involvement in the pathogenesis of lung pathology, particularly that characteristic of the neonatal period.
Collapse
|
10
|
De Leon N, Tse WH, Ameis D, Keijzer R. Embryology and anatomy of congenital diaphragmatic hernia. Semin Pediatr Surg 2022; 31:151229. [PMID: 36446305 DOI: 10.1016/j.sempedsurg.2022.151229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prenatal and postnatal treatment modalities for congenital diaphragmatic hernia (CDH) continue to improve, however patients still face high rates of morbidity and mortality caused by severe underlying persistent pulmonary hypertension and pulmonary hypoplasia. Though the majority of CDH cases are idiopathic, it is believed that CDH is a polygenic developmental defect caused by interactions between candidate genes, as well as environmental and epigenetic factors. However, the origin and pathogenesis of these developmental insults are poorly understood. Further, connections between disrupted lung development and the failure of diaphragmatic closure during embryogenesis have not been fully elucidated. Though several animal models have been useful in identifying candidate genes and disrupted signalling pathways, more studies are required to understand the pathogenesis and to develop effective preventative care. In this article, we summarize the most recent litterature on disrupted embryological lung and diaphragmatic development associated with CDH.
Collapse
Affiliation(s)
- Nolan De Leon
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Wai Hei Tse
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Dustin Ameis
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Keijzer
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
11
|
Diehl B, Oster M, Vernunft A, Wimmers K, Bostedt H. Intrinsic challenges of neonatal adaptation in swine. Arch Anim Breed 2022; 65:427-438. [PMID: 36531120 PMCID: PMC9752711 DOI: 10.5194/aab-65-427-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/20/2022] [Indexed: 09/10/2024] Open
Abstract
The losses of piglets in commercial pig farming remain at concerning levels and need to be addressed through the implementation of new sustainable breeding and management strategies. In fact, piglets are especially at risk in the first days of life. Both genetics and the farrowing process have been shown to impact piglet vitality. In addition, knowledge of the animal-intrinsic responses in adapting to extra-uterine life is particularly important but is scarcely described in the scientific literature. In this review, the three phases that constitute neonatal adaptation in the pig are systematically presented. The first phase of early adaptation involves primarily the development of cardiorespiratory function (within the first 10 min of life) as well as thermoregulatory processes and acid-base balance (up to 24 h of life). In the second phase, homeostasis is established, and organ maturation takes place (up to 14 d post natum). The final third phase aims at the development of neurological, immunological and muscular features (up to 28 d of life). The involvement of aggravating and ameliorating factors such as dystocia, low colostrum yield and heat supply is key to the development of strategies to reduce piglet losses and increase vitality. The insights are of particular value in addressing current concerns in pig farming and to further improve animal welfare in pig production across different management types.
Collapse
Affiliation(s)
- Benjamin Diehl
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals with Veterinary Ambulance, Justus Liebig University, 35392 Giessen, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Andreas Vernunft
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Hartwig Bostedt
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals with Veterinary Ambulance, Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
12
|
Jantscher-Krenn E, von Schirnding L, Trötzmüller M, Köfeler H, Kurtovic U, Fluhr H, Müller A, Bagci S. Human Milk Oligosaccharides Are Present in Amniotic Fluid and Show Specific Patterns Dependent on Gestational Age. Nutrients 2022; 14:nu14102065. [PMID: 35631205 PMCID: PMC9146373 DOI: 10.3390/nu14102065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Human milk oligosaccharides (HMOs) are already found in maternal circulation in early pregnancy, changing with gestational age. HMOs are also present in cord blood and amniotic fluid (AF). We aimed to assess HMO profiles in AF over the course of gestation. (2) Methods: AF was collected during diagnostic amniocentesis, fetal surgery, or C-section from 77 women with a gestational age of ranging from 14.3 to 40.9 weeks. Samples were analysed using high performance liquid chromatography with fluorescence detection. (3) Results: We found lactose and up to 16 HMO structures in all AF samples investigated, starting at 14 weeks of gestation. Overall, 3′-sialyllactose (3′SL) and 2′-fucosyllactose (2′FL) were the most abundant HMOs. Individual and total HMO concentrations were significantly positively correlated with gestational age. HMO composition also changed between early, mid- and late pregnancy, with relative concentrations of 3′SL significantly decreasing (44%, 25%, 24%) and 2′FL increasing (7%, 13%, 21%), respectively. (4) Conclusion: Our study shows that HMOs are already present in AF early in pregnancy. This demonstrates extensive contact of the fetus with a broad variety of HMOs, suggesting roles for HMOs in fetal tissue development during the time course of pregnancy.
Collapse
Affiliation(s)
- Evelyn Jantscher-Krenn
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (U.K.); (H.F.)
- BioTechMed, 8010 Graz, Austria;
- Correspondence: (E.J.-K.); (S.B.); Tel.: +43-316-385-80076 (E.J.-K.); +49-228-287-37834 (S.B.)
| | - Lara von Schirnding
- Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, D-53113 Bonn, Germany; (L.v.S.); (A.M.)
| | - Martin Trötzmüller
- Core Facility Mass Spectrometry, Center for Medical Research, Medical University of Graz, 8036 Graz, Austria;
| | - Harald Köfeler
- BioTechMed, 8010 Graz, Austria;
- Core Facility Mass Spectrometry, Center for Medical Research, Medical University of Graz, 8036 Graz, Austria;
| | - Una Kurtovic
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (U.K.); (H.F.)
| | - Herbert Fluhr
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (U.K.); (H.F.)
| | - Andreas Müller
- Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, D-53113 Bonn, Germany; (L.v.S.); (A.M.)
| | - Soyhan Bagci
- Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, D-53113 Bonn, Germany; (L.v.S.); (A.M.)
- Correspondence: (E.J.-K.); (S.B.); Tel.: +43-316-385-80076 (E.J.-K.); +49-228-287-37834 (S.B.)
| |
Collapse
|
13
|
Lavezzi AM, Pusiol T, Paradiso B. Harmful Effect of Intrauterine Smoke Exposure on Neuronal Control of "Fetal Breathing System" in Stillbirths. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074164. [PMID: 35409845 PMCID: PMC8999022 DOI: 10.3390/ijerph19074164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
This article is aimed to contribute to the current knowledge on the role of toxic substances such as nicotine on sudden intrauterine unexplained deaths’ (SIUDS’) pathogenetic mechanisms. The in-depth histopathological examination of the autonomic nervous system in wide groups of victims of SIUDS (47 cases) and controls (20 cases), with both smoking and no-smoking mothers, highlighted the frequent presence of the hypodevelopment of brainstem structures checking the vital functions. In particular, the hypoplasia of the pontine parafacial nucleus together with hypoplastic lungs for gestational age were observed in SIUDS cases with mothers who smoked cigarettes, including electronic ones. The results allow us to assume that the products of cigarette smoke during pregnancy can easily cross the placental barrier, thus entering the fetal circulation and damaging the most sensitive organs, such as lungs and brain. In a non-negligible percentage of SIUDS, the mothers did not smoke. Furthermore, based on previous and ongoing studies conducted through analytical procedures and the use of scanning electron microscopy, the authors envisage the involvement of toxic nanoparticles (such as agricultural pesticides and nanomaterials increasingly used in biomedicine, bioscience and biotechnology) in the death pathogenesis, with similar mechanisms to those of nicotine.
Collapse
Affiliation(s)
- Anna M. Lavezzi
- “Lino Rossi” Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20121 Milan, Italy;
- Correspondence:
| | - Teresa Pusiol
- Institute of Anatomic Pathology, APSS, 38122 Trento, Italy;
| | - Beatrice Paradiso
- “Lino Rossi” Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20121 Milan, Italy;
- General Pathology Unit, Dolo Hospital, 30031 Dolo, Italy
| |
Collapse
|
14
|
Stojanovska V, Atta J, Kelly SB, Zahra VA, Matthews-Staindl E, Nitsos I, Moxham A, Pham Y, Hooper SB, Herlenius E, Galinsky R, Polglase GR. Increased Prostaglandin E2 in Brainstem Respiratory Centers Is Associated With Inhibition of Breathing Movements in Fetal Sheep Exposed to Progressive Systemic Inflammation. Front Physiol 2022; 13:841229. [PMID: 35309054 PMCID: PMC8928579 DOI: 10.3389/fphys.2022.841229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Background Preterm newborns commonly experience apnoeas after birth and require respiratory stimulants and support. Antenatal inflammation is a common antecedent of preterm birth and inflammatory mediators, particularly prostaglandin E2 (PGE2), are associated with inhibition of vital brainstem respiratory centers. In this study, we tested the hypothesis that exposure to antenatal inflammation inhibits fetal breathing movements (FBMs) and increases inflammation and PGE2 levels in brainstem respiratory centers, cerebrospinal fluid (CSF) and blood plasma. Methods Chronically instrumented late preterm fetal sheep at 0.85 of gestation were randomly assigned to receive repeated intravenous saline (n = 8) or lipopolysaccharide (LPS) infusions (experimental day 1 = 300 ng, day 2 = 600 ng, day 3 = 1200 ng, n = 8). Fetal breathing movements were recorded throughout the experimental period. Sheep were euthanized 4 days after starting infusions for assessment of brainstem respiratory center histology. Results LPS infusions increased circulating and cerebrospinal fluid PGE2 levels, decreased arterial oxygen saturation, increased the partial pressure of carbon dioxide and lactate concentration, and decreased pH (p < 0.05 for all) compared to controls. LPS infusions caused transient reductions in the % of time fetuses spent breathing and the proportion of vigorous fetal breathing movements (P < 0.05 vs. control). LPS-exposure increased PGE2 expression in the RTN/pFRG (P < 0.05 vs. control) but not the pBÖTC (P < 0.07 vs. control) of the brainstem. No significant changes in gene expression were observed for PGE2 enzymes or caspase 3. LPS-exposure reduced the numbers of GFAP-immunoreactive astrocytes in the RTN/pFRG, NTS and XII of the brainstem (P < 0.05 vs. control for all) and increased microglial activation in the RTN/pFRG, preBÖTC, NTS, and XII brainstem respiratory centers (P < 0.05 vs. control for all). Conclusion Chronic LPS-exposure in late preterm fetal sheep increased PGE2 levels within the brainstem, CSF and plasma, and was associated with inhibition of FBMs, astrocyte loss and microglial activation within the brainstem respiratory centers. Further studies are needed to determine whether the inflammation-induced increase in PGE2 levels plays a key role in depressing respiratory drive in the perinatal period.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - John Atta
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Sharmony B. Kelly
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Valerie A. Zahra
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Eva Matthews-Staindl
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Ilias Nitsos
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Alison Moxham
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Yen Pham
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Stuart B. Hooper
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Eric Herlenius
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- Astrid Lindgren Childrens Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Galinsky
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- *Correspondence: Robert Galinsky,
| | - Graeme R. Polglase
- The Ritchie Center, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- Graeme R. Polglase,
| |
Collapse
|
15
|
Tournier A, Beacom M, Westgate JA, Bennet L, Garabedian C, Ugwumadu A, Gunn AJ, Lear CA. Physiological control of fetal heart rate variability during labour: Implications and controversies. J Physiol 2021; 600:431-450. [PMID: 34951476 DOI: 10.1113/jp282276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/25/2021] [Indexed: 11/08/2022] Open
Abstract
The interpretation of fetal heart rate (FHR) patterns is the only available method to continuously monitor fetal wellbeing during labour. One of the most important yet contentious aspects of the FHR pattern is changes in FHR variability (FHRV). Some clinical studies suggest that loss of FHRV during labour is a sign of fetal compromise so this is reflected in practice guidelines. Surprisingly, there is little systematic evidence to support this observation. In this review we methodically dissect the potential pathways controlling FHRV during labour-like hypoxaemia. Before labour, FHRV is controlled by the combined activity of the parasympathetic and sympathetic nervous systems, in part regulated by a complex interplay between fetal sleep state and behaviour. By contrast, preclinical studies using multiple autonomic blockades have now shown that sympathetic neural control of FHRV was potently suppressed between periods of labour-like hypoxaemia, and thus, that the parasympathetic system is the sole neural regulator of FHRV once FHR decelerations are present during labour. We further discuss the pattern of changes in FHRV during progressive fetal compromise and highlight potential biochemical, behavioural and clinical factors that may regulate parasympathetic-mediated FHRV during labour. Further studies are needed to investigate the regulators of parasympathetic activity to better understand the dynamic changes in FHRV and their true utility during labour. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alexane Tournier
- Department of Obstetrics, Universite de Lille, CHU Lille, ULR 2694 - METRICS, Lille, F 59000, France
| | - Michael Beacom
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Charles Garabedian
- Department of Obstetrics, Universite de Lille, CHU Lille, ULR 2694 - METRICS, Lille, F 59000, France
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St George's Hospital, St George's University of London, London, SW17 0RE, UK
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Kolobaric A, Vukojevic K, Brekalo S, Misković J, Ries M, Lasic Arapovic L, Soljic V. Expression and localization of FGFR1, FGFR2 and CTGF during normal human lung development. Acta Histochem 2021; 123:151719. [PMID: 33962151 DOI: 10.1016/j.acthis.2021.151719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
Aim of our study was to provide insight into the temporal and spatial expression of FGFR1, FGFR2 and CTGF during normal human lung development which may have an important impact on understanding occurrence of developmental lung anomalies. Morphological parameters were analysed using double immunofluorescence on human embryonal (6th and 7th developmental week-dw) and foetal (8th, 9th and 16th developmental week) human lung samples. FGFR1 and FGFR2 was positive during all the dw in both the epithelium and mesenchyme. The highest number of FGFR1 positive cells was observed during the 6th dw (112/mm2) and 9th dw (87/mm2) in the epithelium compared to the 7th, 8th and 16th dw (Kruskal-Wallis test, p < 0.001, p < 0.0001). The highest number of FGFR1 positive cells in the mesenchyme was observed during the 8th dw (19/mm2) and 16th dw (13/mm2) compared to the 6th, 7th, and 9th dw (Kruskal-Wallis test, p < 0.001, p < 0.0001). The number of FGFR1 positive cells in the epithelium was higher for FGFR2 compared to number of positive cells (Mann-Whitney test, p < 0.0001). FGFR2 showed the highest number in the epithelium during the 7th dw (111/mm2) and 9th dw (87/mm2) compared to 6th, 8th and 16th dw (Kruskal-Wallis test, p < 0.001, p < 0.0001, p < 0.01 respectively). The highest number of FGFR2 positive cells in the mesenchyme was observed during the 9th dw (26/mm2), compared to the 6th, 7th,8th and 16th dw (Kruskal-Wallis test, p < 0.0001), while the number of FGFR2 positive cells in the epithelium was significantly higher than in the mesenchyme (Mann-Whitney test, p < 0.0001). CTGF was negative in both epithelium and mesenchyme during all except the 16th dw in the mesenchyme where it co-localized with FGFR2. FGFR1 and FGFR2 might be essential for epithelial-mesenchymal interactions that determine epithelial branching and mesenchymal growth during early lung development. Sudden increase in FGF1 in the epithelium and FGF2 in the mesenchyme in the foetus at 9th dw could be associated with the onset of foetal breathing movements. CTGF first appear during the foetal lung development.
Collapse
|
17
|
Abstract
The development of the control of breathing begins in utero and continues postnatally. Fetal breathing movements are needed for establishing connectivity between the lungs and central mechanisms controlling breathing. Maturation of the control of breathing, including the increase of hypoxia chemosensitivity, continues postnatally. Insufficient oxygenation, or hypoxia, is a major stressor that can manifest for different reasons in the fetus and neonate. Though the fetus and neonate have different hypoxia sensing mechanisms and respond differently to acute hypoxia, both responses prevent deviations to respiratory and other developmental processes. Intermittent and chronic hypoxia pose much greater threats to the normal developmental respiratory processes. Gestational intermittent hypoxia, due to maternal sleep-disordered breathing and sleep apnea, increases eupneic breathing and decreases the hypoxic ventilatory response associated with impaired gasping and autoresuscitation postnatally. Chronic fetal hypoxia, due to biologic or environmental (i.e. high-altitude) factors, is implicated in fetal growth restriction and preterm birth causing a decrease in the postnatal hypoxic ventilatory responses with increases in irregular eupneic breathing. Mechanisms driving these changes include delayed chemoreceptor development, catecholaminergic activity, abnormal myelination, increased astrocyte proliferation in the dorsal respiratory group, among others. Long-term high-altitude residents demonstrate favorable adaptations to chronic hypoxia as do their offspring. Neonatal intermittent hypoxia is common among preterm infants due to immature respiratory systems and thus, display a reduced drive to breathe and apneas due to insufficient hypoxic sensitivity. However, ongoing intermittent hypoxia can enhance hypoxic sensitivity causing ventilatory overshoots followed by apnea; the number of apneas is positively correlated with degree of hypoxic sensitivity in preterm infants. Chronic neonatal hypoxia may arise from fetal complications like maternal smoking or from postnatal cardiovascular problems, causing blunting of the hypoxic ventilatory responses throughout at least adolescence due to attenuation of carotid body fibers responses to hypoxia with potential roles of brainstem serotonin, microglia, and inflammation, though these effects depend on the age in which chronic hypoxia initiates. Fetal and neonatal intermittent and chronic hypoxia are implicated in preterm birth and complicate the respiratory system through their direct effects on hypoxia sensing mechanisms and interruptions to the normal developmental processes. Thus, precise regulation of oxygen homeostasis is crucial for normal development of the respiratory control network. © 2021 American Physiological Society. Compr Physiol 11:1653-1677, 2021.
Collapse
Affiliation(s)
- Gary C. Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, UC Davis Children’s Hospital, UC Davis Health, UC Davis, Davis, California, USA
| | - Girija G. Konduri
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
18
|
Esin S, Okuyan E, Gunakan E, Zengin HY, Hayran M, Tohma YA. A novel technique for prediction of preterm birth: fetal nasal flow Doppler. J Perinat Med 2021; 49:319-325. [PMID: 33180051 DOI: 10.1515/jpm-2020-0276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/18/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Absence of fetal breathing movements (FBM) has been found to be a good predictor of preterm delivery in symptomatic patients. However, analysis of FBM patterns and Doppler measurement of them for preterm birth prediction have not been performed before. In this study, we aimed to investigate and analyze FBM patterns in symptomatic preterm labor patients by fetal ultrasonography and nasal Doppler. METHODS This was a multicenter, prospective cohort study. Singleton pregnant patients between 24 and 37 gestational weeks diagnosed with preterm labor were included in the study. Patients were evaluated in three groups: no FBM (Group 1), regular FBM (Group 2), irregular FBM (Group3). RESULTS Seventy-three patients were available for the final analysis after exclusion. Preterm delivery rate in 24 h in groups were 91.7, 32.7 and 100%, respectively. The absence of FBM (Group 1) was statistically significant for preterm delivery in for both 24 (91.7 vs. 42.6%, p=0.002) and 48 h (91.7 vs. 49.2%, p=0.006) when compared with fetal breathing positive Group 2 and 3. In fetal nasal Doppler analyses in Group 2, the inspiration/expiration number rate was significantly lower in the patients who delivered in 24 h (0.98±0.2 vs. 1.25±0.57, p=0.015). By using fetal nasal Doppler, combination of absence of FBM or irregular FBM or regular FBM with inspiration number/expiration number (I/E) <1.25 detects 94.6% of patients who will eventually deliver in the first 24 h after admission. CONCLUSIONS Examining FBM patterns and using nasal Doppler may help the clinician to differentiate those who will deliver preterm and may be an invaluable tool for managing preterm labor patients.
Collapse
Affiliation(s)
- Sertac Esin
- Department of Perinatology, Baskent University School of Medicine, Ankara, Turkey
| | | | - Emre Gunakan
- Department of Perinatology, Baskent University School of Medicine, Ankara, Turkey
| | - Hatice Yagmur Zengin
- Department of Biostatistics, Baskent University School of Medicine, Ankara, Turkey
| | - Mutlu Hayran
- Department of Preventive Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Yusuf Aytac Tohma
- Department of Obstetrics and Gynecology, Baskent University School of Medicine, Ankara, Turkey
| |
Collapse
|
19
|
Kunisaki SM, Jiang G, Biancotti JC, Ho KKY, Dye BR, Liu AP, Spence JR. Human induced pluripotent stem cell-derived lung organoids in an ex vivo model of the congenital diaphragmatic hernia fetal lung. Stem Cells Transl Med 2020; 10:98-114. [PMID: 32949227 PMCID: PMC7780804 DOI: 10.1002/sctm.20-0199] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/03/2020] [Accepted: 08/09/2020] [Indexed: 01/06/2023] Open
Abstract
Three‐dimensional lung organoids (LOs) derived from pluripotent stem cells have the potential to enhance our understanding of disease mechanisms and to enable novel therapeutic approaches in neonates with pulmonary disorders. We established a reproducible ex vivo model of lung development using transgene‐free human induced pluripotent stem cells generated from fetuses and infants with Bochdalek congenital diaphragmatic hernia (CDH), a polygenic disorder associated with fetal lung compression and pulmonary hypoplasia at birth. Molecular and cellular comparisons of CDH LOs revealed impaired generation of NKX2.1+ progenitors, type II alveolar epithelial cells, and PDGFRα+ myofibroblasts. We then subjected these LOs to disease relevant mechanical cues through ex vivo compression and observed significant changes in genes associated with pulmonary progenitors, alveolar epithelial cells, and mesenchymal fibroblasts. Collectively, these data suggest both primary cell‐intrinsic and secondary mechanical causes of CDH lung hypoplasia and support the use of this stem cell‐based approach for disease modeling in CDH.
Collapse
Affiliation(s)
- Shaun M Kunisaki
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Guihua Jiang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Juan C Biancotti
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kenneth K Y Ho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Briana R Dye
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Domingo-Gonzalez R, Zanini F, Che X, Liu M, Jones RC, Swift MA, Quake SR, Cornfield DN, Alvira CM. Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution. eLife 2020; 9:e56890. [PMID: 32484158 PMCID: PMC7358008 DOI: 10.7554/elife.56890] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
At birth, the lungs rapidly transition from a pathogen-free, hypoxic environment to a pathogen-rich, rhythmically distended air-liquid interface. Although many studies have focused on the adult lung, the perinatal lung remains unexplored. Here, we present an atlas of the murine lung immune compartment during early postnatal development. We show that the late embryonic lung is dominated by specialized proliferative macrophages with a surprising physical interaction with the developing vasculature. These macrophages disappear after birth and are replaced by a dynamic mixture of macrophage subtypes, dendritic cells, granulocytes, and lymphocytes. Detailed characterization of macrophage diversity revealed an orchestration of distinct subpopulations across postnatal development to fill context-specific functions in tissue remodeling, angiogenesis, and immunity. These data both broaden the putative roles for immune cells in the developing lung and provide a framework for understanding how external insults alter immune cell phenotype during a period of rapid lung growth and heightened vulnerability.
Collapse
Affiliation(s)
- Racquel Domingo-Gonzalez
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| | - Fabio Zanini
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South WalesSydneyAustralia
| | - Xibing Che
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Min Liu
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| | - Robert C Jones
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Michael A Swift
- Department of Chemical and Systems Biology, Stanford UniversityStanfordUnited States
| | - Stephen R Quake
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Department of Applied Physics, Stanford UniversityStanfordUnited States
| | - David N Cornfield
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Cristina M Alvira
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Center for Excellence in Pulmonary Biology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
21
|
Kim MS, Choi YJ, Lee S, Kim WS, Suh DI, Kim MJ. Natural courses and prognostic factors of pulmonary underdevelopment except for congenital diaphragmatic hernia. ALLERGY ASTHMA & RESPIRATORY DISEASE 2020. [DOI: 10.4168/aard.2020.8.4.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Min Soo Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Yun Jung Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Seunghyun Lee
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Sun Kim
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Min Jung Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Burggren W, Bautista N. Invited review: Development of acid-base regulation in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110518. [DOI: 10.1016/j.cbpa.2019.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/26/2022]
|
23
|
Pilarski JQ, Leiter JC, Fregosi RF. Muscles of Breathing: Development, Function, and Patterns of Activation. Compr Physiol 2019; 9:1025-1080. [PMID: 31187893 DOI: 10.1002/cphy.c180008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review is a comprehensive description of all muscles that assist lung inflation or deflation in any way. The developmental origin, anatomical orientation, mechanical action, innervation, and pattern of activation are described for each respiratory muscle fulfilling this broad definition. In addition, the circumstances in which each muscle is called upon to assist ventilation are discussed. The number of "respiratory" muscles is large, and the coordination of respiratory muscles with "nonrespiratory" muscles and in nonrespiratory activities is complex-commensurate with the diversity of activities that humans pursue, including sleep (8.27). The capacity for speech and adoption of the bipedal posture in human evolution has resulted in patterns of respiratory muscle activation that differ significantly from most other animals. A disproportionate number of respiratory muscles affect the nose, mouth, pharynx, and larynx, reflecting the vital importance of coordinated muscle activity to control upper airway patency during both wakefulness and sleep. The upright posture has freed the hands from locomotor functions, but the evolutionary history and ontogeny of forelimb muscles pervades the patterns of activation and the forces generated by these muscles during breathing. The distinction between respiratory and nonrespiratory muscles is artificial, as many "nonrespiratory" muscles can augment breathing under conditions of high ventilator demand. Understanding the ontogeny, innervation, activation patterns, and functions of respiratory muscles is clinically useful, particularly in sleep medicine. Detailed explorations of how the nervous system controls the multiple muscles required for successful completion of respiratory behaviors will continue to be a fruitful area of investigation. © 2019 American Physiological Society. Compr Physiol 9:1025-1080, 2019.
Collapse
Affiliation(s)
- Jason Q Pilarski
- Department of Biological and Dental Sciences, Idaho State University Pocatello, Idaho, USA
| | - James C Leiter
- Department of Molecular and Systems Biology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Ralph F Fregosi
- Departments of Physiology and Neuroscience, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
24
|
Trask WM, Baghdadwala MI, Wilson RJA. Developmental Maturation of Functional Coupling Between Ventilatory Oscillators in the American Bullfrog. Dev Neurobiol 2018; 78:1218-1230. [PMID: 30354024 DOI: 10.1002/dneu.22647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 11/11/2022]
Abstract
Many vital motor behaviors - including locomotion, swallowing, and breathing - appear to be dependent upon the activity of and coordination between multiple endogenously rhythmogenic nuclei, or neural oscillators. Much as the functional development of sensory circuits is shaped during maturation, we hypothesized that coordination of oscillators involved in motor control may likewise be maturation-dependent, i.e., coupling and coordination between oscillators change over development. We tested this hypothesis using the bullfrog isolated brainstem preparation to study the metamorphic transition of ventilatory motor patterns from early rhythmic buccal (water) ventilation in the tadpole to the mature pattern of rhythmic buccal and lung (air) ventilation in the adult. Spatially distinct oscillators drive buccal and lung bursts in the isolated brainstem; we found these oscillators to be active but functionally uncoupled in the tadpole. Over the course of metamorphosis, the rhythms produced by the buccal and lung oscillators become increasingly tightly coordinated. These changes parallel the progression of structural and behavioral changes in the animal, with adult levels of coupling arising by the metamorphic stage (forelimb eruption). These findings suggest that oscillator coupling undergoes a maturation process similar to the refinement of sensory circuits over development.
Collapse
Affiliation(s)
- William M Trask
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mufaddal I Baghdadwala
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
25
|
Pickett KL, Stein PS, Vincen-Brown MA, Pilarski JQ. Maturation of Breathing-Related Inhibitory Neurotransmission in the Medulla Oblongata of the Embryonic and Perinatal Zebra Finch (Taeniopygia guttata). Dev Neurobiol 2018; 78:1081-1096. [PMID: 30160056 PMCID: PMC6596416 DOI: 10.1002/dneu.22632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/07/2018] [Accepted: 07/08/2018] [Indexed: 11/05/2022]
Abstract
The medullary portion of the embryonic zebra finch hindbrain was isolated and superfused with physiologically relevant artificial cerebral spinal fluid. This in vitro preparation produced uninterrupted rhythmic episodes of neural activity via cranial nerve IX (glossopharyngeal) from embryonic day 4 (E4) through hatching on E14. Cranial nerve IX carries motor activity to the glottis during the inspiratory phase of breathing, and we focused on the role of synaptic inhibition during the embryonic and perinatal maturation of this branchiomotor outflow. We show that spontaneous neural activity (SNA) is first observed on E4 and temporally transforms as the embryo ages. To start, SNA is dependent on the excitatory actions of GABAA and glycine. As the embryo continues to develop, GABAergic and glycinergic neurotransmission take on a modulatory role, albeit an excitatory one, through E10. After that, data show that GABAergic and glycinergic neurotransmission switches to a phenotype consistent with inhibition, coincident with the onset of functional breathing. We also report that the inhibitory action of GABAergic and glycinergic receptor gating is not necessary for the spontaneous generation of branchiomotor motor rhythms in these birds near hatching. This is the first report focusing on the development of central breathing-related inhibitory neurotransmission in birds during the entire period of embryogenesis.
Collapse
Affiliation(s)
- Kaci L. Pickett
- Department of Biological Sciences, Idaho State University, Pocatello, ID. 83209-8007
| | - Paxton S. Stein
- Department of Biological Sciences, Idaho State University, Pocatello, ID. 83209-8007
| | | | - Jason Q. Pilarski
- Department of Biological Sciences, Idaho State University, Pocatello, ID. 83209-8007
- Department of Dental Sciences, Idaho State University, Pocatello, ID. 83209-8007
| |
Collapse
|
26
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
27
|
Stojanovska V, Miller SL, Hooper SB, Polglase GR. The Consequences of Preterm Birth and Chorioamnionitis on Brainstem Respiratory Centers: Implications for Neurochemical Development and Altered Functions by Inflammation and Prostaglandins. Front Cell Neurosci 2018; 12:26. [PMID: 29449803 PMCID: PMC5799271 DOI: 10.3389/fncel.2018.00026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/17/2018] [Indexed: 11/16/2022] Open
Abstract
Preterm birth is a major cause for neonatal morbidity and mortality, and is frequently associated with adverse neurological outcomes. The transition from intrauterine to extrauterine life at birth is particularly challenging for preterm infants. The main physiological driver for extrauterine transition is the establishment of spontaneous breathing. However, preterm infants have difficulty clearing lung liquid, have insufficient surfactant levels, and underdeveloped lungs. Further, preterm infants have an underdeveloped brainstem, resulting in reduced respiratory drive. These factors facilitate the increased requirement for respiratory support. A principal cause of preterm birth is intrauterine infection/inflammation (chorioamnionitis), and infants with chorioamnionitis have an increased risk and severity of neurological damage, but also demonstrate impaired autoresuscitation capacity and prevalent apnoeic episodes. The brainstem contains vital respiratory centers which provide the neural drive for breathing, but the impact of preterm birth and/or chorioamnionitis on this brain region is not well understood. The aim of this review is to provide an overview of the role and function of the brainstem respiratory centers, and to highlight the proposed mechanisms of how preterm birth and chorioamnionitis may affect central respiratory functions.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Abstract
To survive the transition to extrauterine life, newborn infants must have lungs that provide an adequate surface area and volume to allow for gas exchange. The dynamic activities of fetal breathing movements and accumulation of lung luminal fluid are key to fetal lung development throughout the various phases of lung development and growth, first by branching morphogenesis, and later by septation. Because effective gas exchange is essential to survival, pulmonary hypoplasia is among the leading findings on autopsies of children dying in the newborn period. Management of infants born prematurely who had disrupted lung development, especially at the pre-glandular or canalicular periods, may be challenging, but limited success has been reported. Growing understanding of stem cell biology and mechanical development of the lung, and how to apply them clinically, may lead to new approaches that will lead to better outcomes for these patients.
Collapse
|
29
|
Abstract
To fulfill the task of gas exchange, the lung possesses a huge inner surface and a tree-like system of conducting airways ventilating the gas exchange area. During lung development, the conducting airways are formed first, followed by the formation and enlargement of the gas exchange area. The latter (alveolarization) continues until young adulthood. During organogenesis, the left and right lungs have their own anlage, an outpouching of the foregut. Each lung bud starts a repetitive process of outgrowth and branching (branching morphogenesis) that forms all of the future airways mainly during the pseudoglandular stage. During the canalicular stage, the differentiation of the epithelia becomes visible and the bronchioalveolar duct junction is formed. The location of this junction stays constant throughout life. Towards the end of the canalicular stage, the first gas exchange may take place and survival of prematurely born babies becomes possible. Ninety percent of the gas exchange surface area will be formed by alveolarization, a process where existing airspaces are subdivided by the formation of new walls (septa). This process requires a double-layered capillary network at the basis of the newly forming septum. However, in parallel to alveolarization, the double-layered capillary network of the immature septa fuses to a single-layered network resulting in an optimized setup for gas exchange. Alveolarization still continues, because, at sites where new septa are lifting off preexisting mature septa, the required second capillary layer will be formed instantly by angiogenesis. The latter confirms a lifelong ability of alveolarization, which is important for any kind of lung regeneration.
Collapse
|
30
|
Abstract
The first breath after birth is the most difficult in life. What happens before, during and after it? The first breath after birth is the most difficult in life. What happens before, during and after it?http://ow.ly/YBOU6
Collapse
Affiliation(s)
- Antonella LoMauro
- Dipartimento di Elettronica, Informazione e Bioingegneria, ©Politecnico di Milano, Milan, Italy
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, ©Politecnico di Milano, Milan, Italy
| |
Collapse
|
31
|
Koos BJ, Rajaee A, Ibe B, Guerra C, Kruger L. Thalamic mediation of hypoxic respiratory depression in lambs. Am J Physiol Regul Integr Comp Physiol 2016; 310:R586-95. [PMID: 26818057 PMCID: PMC4867384 DOI: 10.1152/ajpregu.00412.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/27/2016] [Indexed: 11/22/2022]
Abstract
Immaturity of respiratory controllers in preterm infants dispose to recurrent apnea and oxygen deprivation. Accompanying reductions in brain oxygen tensions evoke respiratory depression, potentially exacerbating hypoxemia. Central respiratory depression during moderate hypoxia is revealed in the ventilatory decline following initial augmentation. This study determined whether the thalamic parafascicular nuclear (Pf) complex involved in adult nociception and sensorimotor regulation (Bentivoglio M, Balerecia G, Kruger L. Prog Brain Res 87: 53-80, 1991) also becomes a postnatal controller of hypoxic ventilatory decline. Respiratory responses to moderate isocapnic hypoxia were studied in conscious lambs. Hypoxic ventilatory decline was compared with peak augmentation. Pf and/or adjacent thalamic structures were destroyed by the neuron-specific toxin ibotenic acid (IB). IB lesions involving the thalamic Pf abolished hypoxic ventilatory decline. Lesions of adjacent thalamic nuclei that spared Pf and control injections of vehicle failed to blunt hypoxic respiratory depression. Our findings reveal that the thalamic Pf region is a critical controller of hypoxic ventilatory depression and thus a key target for exploring molecular concomitants of forebrain pathways regulating hypoxic ventilatory depression in early development.
Collapse
Affiliation(s)
- Brian J Koos
- Department of Obstetrics & Gynecology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California;
| | - Arezoo Rajaee
- Department of Obstetrics & Gynecology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Basil Ibe
- Department of Pediatrics, C. W. Steers Biological Resource Center, Los Angeles Biomedical Research Institute, Harbor-University of California Los Angeles Medical Center, Torrance, California; and
| | - Catalina Guerra
- C. W. Steers Biological Resource Center, Los Angeles Biomedical Research Institute, Harbor-University of California Los Angeles Medical Center, Torrance, California
| | - Lawrence Kruger
- Department of Neurobiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| |
Collapse
|
32
|
Sathish V, Prakash Y. Sex Differences in Pulmonary Anatomy and Physiology. SEX DIFFERENCES IN PHYSIOLOGY 2016:89-103. [DOI: 10.1016/b978-0-12-802388-4.00006-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|